1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/proc.h>
44#include <sys/condvar.h>
45#include <sys/queue.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48#include <sys/selinfo.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/uio.h>
53#include <sys/bus.h>
54#include <sys/interrupt.h>
55
56#include <net/vnet.h>
57
58#include <machine/stdarg.h>
59
60#include <vm/uma.h>
61
62SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
63SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
64
65/*
66 * Used to attach drivers to devclasses.
67 */
68typedef struct driverlink *driverlink_t;
69struct driverlink {
70	kobj_class_t	driver;
71	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
72	int		pass;
73	TAILQ_ENTRY(driverlink) passlink;
74};
75
76/*
77 * Forward declarations
78 */
79typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
80typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
81typedef TAILQ_HEAD(device_list, device) device_list_t;
82
83struct devclass {
84	TAILQ_ENTRY(devclass) link;
85	devclass_t	parent;		/* parent in devclass hierarchy */
86	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
87	char		*name;
88	device_t	*devices;	/* array of devices indexed by unit */
89	int		maxunit;	/* size of devices array */
90	int		flags;
91#define DC_HAS_CHILDREN		1
92
93	struct sysctl_ctx_list sysctl_ctx;
94	struct sysctl_oid *sysctl_tree;
95};
96
97/**
98 * @brief Implementation of device.
99 */
100struct device {
101	/*
102	 * A device is a kernel object. The first field must be the
103	 * current ops table for the object.
104	 */
105	KOBJ_FIELDS;
106
107	/*
108	 * Device hierarchy.
109	 */
110	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
111	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
112	device_t	parent;		/**< parent of this device  */
113	device_list_t	children;	/**< list of child devices */
114
115	/*
116	 * Details of this device.
117	 */
118	driver_t	*driver;	/**< current driver */
119	devclass_t	devclass;	/**< current device class */
120	int		unit;		/**< current unit number */
121	char*		nameunit;	/**< name+unit e.g. foodev0 */
122	char*		desc;		/**< driver specific description */
123	int		busy;		/**< count of calls to device_busy() */
124	device_state_t	state;		/**< current device state  */
125	uint32_t	devflags;	/**< api level flags for device_get_flags() */
126	u_int		flags;		/**< internal device flags  */
127#define	DF_ENABLED	0x01		/* device should be probed/attached */
128#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
129#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
130#define	DF_DESCMALLOCED	0x08		/* description was malloced */
131#define	DF_QUIET	0x10		/* don't print verbose attach message */
132#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
133#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
134#define	DF_REBID	0x80		/* Can rebid after attach */
135	u_int	order;			/**< order from device_add_child_ordered() */
136	void	*ivars;			/**< instance variables  */
137	void	*softc;			/**< current driver's variables  */
138
139	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
140	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
141};
142
143static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
144static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
145
146#ifdef BUS_DEBUG
147
148static int bus_debug = 1;
149TUNABLE_INT("bus.debug", &bus_debug);
150SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
151    "Debug bus code");
152
153#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
154#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
155#define DRIVERNAME(d)	((d)? d->name : "no driver")
156#define DEVCLANAME(d)	((d)? d->name : "no devclass")
157
158/**
159 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
160 * prevent syslog from deleting initial spaces
161 */
162#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
163
164static void print_device_short(device_t dev, int indent);
165static void print_device(device_t dev, int indent);
166void print_device_tree_short(device_t dev, int indent);
167void print_device_tree(device_t dev, int indent);
168static void print_driver_short(driver_t *driver, int indent);
169static void print_driver(driver_t *driver, int indent);
170static void print_driver_list(driver_list_t drivers, int indent);
171static void print_devclass_short(devclass_t dc, int indent);
172static void print_devclass(devclass_t dc, int indent);
173void print_devclass_list_short(void);
174void print_devclass_list(void);
175
176#else
177/* Make the compiler ignore the function calls */
178#define PDEBUG(a)			/* nop */
179#define DEVICENAME(d)			/* nop */
180#define DRIVERNAME(d)			/* nop */
181#define DEVCLANAME(d)			/* nop */
182
183#define print_device_short(d,i)		/* nop */
184#define print_device(d,i)		/* nop */
185#define print_device_tree_short(d,i)	/* nop */
186#define print_device_tree(d,i)		/* nop */
187#define print_driver_short(d,i)		/* nop */
188#define print_driver(d,i)		/* nop */
189#define print_driver_list(d,i)		/* nop */
190#define print_devclass_short(d,i)	/* nop */
191#define print_devclass(d,i)		/* nop */
192#define print_devclass_list_short()	/* nop */
193#define print_devclass_list()		/* nop */
194#endif
195
196/*
197 * dev sysctl tree
198 */
199
200enum {
201	DEVCLASS_SYSCTL_PARENT,
202};
203
204static int
205devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
206{
207	devclass_t dc = (devclass_t)arg1;
208	const char *value;
209
210	switch (arg2) {
211	case DEVCLASS_SYSCTL_PARENT:
212		value = dc->parent ? dc->parent->name : "";
213		break;
214	default:
215		return (EINVAL);
216	}
217	return (SYSCTL_OUT(req, value, strlen(value)));
218}
219
220static void
221devclass_sysctl_init(devclass_t dc)
222{
223
224	if (dc->sysctl_tree != NULL)
225		return;
226	sysctl_ctx_init(&dc->sysctl_ctx);
227	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
228	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
229	    CTLFLAG_RD, NULL, "");
230	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
231	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
232	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
233	    "parent class");
234}
235
236enum {
237	DEVICE_SYSCTL_DESC,
238	DEVICE_SYSCTL_DRIVER,
239	DEVICE_SYSCTL_LOCATION,
240	DEVICE_SYSCTL_PNPINFO,
241	DEVICE_SYSCTL_PARENT,
242};
243
244static int
245device_sysctl_handler(SYSCTL_HANDLER_ARGS)
246{
247	device_t dev = (device_t)arg1;
248	const char *value;
249	char *buf;
250	int error;
251
252	buf = NULL;
253	switch (arg2) {
254	case DEVICE_SYSCTL_DESC:
255		value = dev->desc ? dev->desc : "";
256		break;
257	case DEVICE_SYSCTL_DRIVER:
258		value = dev->driver ? dev->driver->name : "";
259		break;
260	case DEVICE_SYSCTL_LOCATION:
261		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
262		bus_child_location_str(dev, buf, 1024);
263		break;
264	case DEVICE_SYSCTL_PNPINFO:
265		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
266		bus_child_pnpinfo_str(dev, buf, 1024);
267		break;
268	case DEVICE_SYSCTL_PARENT:
269		value = dev->parent ? dev->parent->nameunit : "";
270		break;
271	default:
272		return (EINVAL);
273	}
274	error = SYSCTL_OUT(req, value, strlen(value));
275	if (buf != NULL)
276		free(buf, M_BUS);
277	return (error);
278}
279
280static void
281device_sysctl_init(device_t dev)
282{
283	devclass_t dc = dev->devclass;
284
285	if (dev->sysctl_tree != NULL)
286		return;
287	devclass_sysctl_init(dc);
288	sysctl_ctx_init(&dev->sysctl_ctx);
289	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291	    dev->nameunit + strlen(dc->name),
292	    CTLFLAG_RD, NULL, "");
293	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
295	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296	    "device description");
297	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
299	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300	    "device driver name");
301	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
303	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304	    "device location relative to parent");
305	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
307	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308	    "device identification");
309	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
311	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312	    "parent device");
313}
314
315static void
316device_sysctl_update(device_t dev)
317{
318	devclass_t dc = dev->devclass;
319
320	if (dev->sysctl_tree == NULL)
321		return;
322	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
323}
324
325static void
326device_sysctl_fini(device_t dev)
327{
328	if (dev->sysctl_tree == NULL)
329		return;
330	sysctl_ctx_free(&dev->sysctl_ctx);
331	dev->sysctl_tree = NULL;
332}
333
334/*
335 * /dev/devctl implementation
336 */
337
338/*
339 * This design allows only one reader for /dev/devctl.  This is not desirable
340 * in the long run, but will get a lot of hair out of this implementation.
341 * Maybe we should make this device a clonable device.
342 *
343 * Also note: we specifically do not attach a device to the device_t tree
344 * to avoid potential chicken and egg problems.  One could argue that all
345 * of this belongs to the root node.  One could also further argue that the
346 * sysctl interface that we have not might more properly be an ioctl
347 * interface, but at this stage of the game, I'm not inclined to rock that
348 * boat.
349 *
350 * I'm also not sure that the SIGIO support is done correctly or not, as
351 * I copied it from a driver that had SIGIO support that likely hasn't been
352 * tested since 3.4 or 2.2.8!
353 */
354
355/* Deprecated way to adjust queue length */
356static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
357/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
358SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
359    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
360
361#define DEVCTL_DEFAULT_QUEUE_LEN 1000
362static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
363static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
364TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
365SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
366    0, sysctl_devctl_queue, "I", "devctl queue length");
367
368static d_open_t		devopen;
369static d_close_t	devclose;
370static d_read_t		devread;
371static d_ioctl_t	devioctl;
372static d_poll_t		devpoll;
373
374static struct cdevsw dev_cdevsw = {
375	.d_version =	D_VERSION,
376	.d_flags =	D_NEEDGIANT,
377	.d_open =	devopen,
378	.d_close =	devclose,
379	.d_read =	devread,
380	.d_ioctl =	devioctl,
381	.d_poll =	devpoll,
382	.d_name =	"devctl",
383};
384
385struct dev_event_info
386{
387	char *dei_data;
388	TAILQ_ENTRY(dev_event_info) dei_link;
389};
390
391TAILQ_HEAD(devq, dev_event_info);
392
393static struct dev_softc
394{
395	int	inuse;
396	int	nonblock;
397	int	queued;
398	struct mtx mtx;
399	struct cv cv;
400	struct selinfo sel;
401	struct devq devq;
402	struct proc *async_proc;
403} devsoftc;
404
405static struct cdev *devctl_dev;
406
407static void
408devinit(void)
409{
410	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
411	    UID_ROOT, GID_WHEEL, 0600, "devctl");
412	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
413	cv_init(&devsoftc.cv, "dev cv");
414	TAILQ_INIT(&devsoftc.devq);
415}
416
417static int
418devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
419{
420	if (devsoftc.inuse)
421		return (EBUSY);
422	/* move to init */
423	devsoftc.inuse = 1;
424	devsoftc.nonblock = 0;
425	devsoftc.async_proc = NULL;
426	return (0);
427}
428
429static int
430devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
431{
432	devsoftc.inuse = 0;
433	mtx_lock(&devsoftc.mtx);
434	cv_broadcast(&devsoftc.cv);
435	mtx_unlock(&devsoftc.mtx);
436	devsoftc.async_proc = NULL;
437	return (0);
438}
439
440/*
441 * The read channel for this device is used to report changes to
442 * userland in realtime.  We are required to free the data as well as
443 * the n1 object because we allocate them separately.  Also note that
444 * we return one record at a time.  If you try to read this device a
445 * character at a time, you will lose the rest of the data.  Listening
446 * programs are expected to cope.
447 */
448static int
449devread(struct cdev *dev, struct uio *uio, int ioflag)
450{
451	struct dev_event_info *n1;
452	int rv;
453
454	mtx_lock(&devsoftc.mtx);
455	while (TAILQ_EMPTY(&devsoftc.devq)) {
456		if (devsoftc.nonblock) {
457			mtx_unlock(&devsoftc.mtx);
458			return (EAGAIN);
459		}
460		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
461		if (rv) {
462			/*
463			 * Need to translate ERESTART to EINTR here? -- jake
464			 */
465			mtx_unlock(&devsoftc.mtx);
466			return (rv);
467		}
468	}
469	n1 = TAILQ_FIRST(&devsoftc.devq);
470	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
471	devsoftc.queued--;
472	mtx_unlock(&devsoftc.mtx);
473	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
474	free(n1->dei_data, M_BUS);
475	free(n1, M_BUS);
476	return (rv);
477}
478
479static	int
480devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
481{
482	switch (cmd) {
483
484	case FIONBIO:
485		if (*(int*)data)
486			devsoftc.nonblock = 1;
487		else
488			devsoftc.nonblock = 0;
489		return (0);
490	case FIOASYNC:
491		if (*(int*)data)
492			devsoftc.async_proc = td->td_proc;
493		else
494			devsoftc.async_proc = NULL;
495		return (0);
496
497		/* (un)Support for other fcntl() calls. */
498	case FIOCLEX:
499	case FIONCLEX:
500	case FIONREAD:
501	case FIOSETOWN:
502	case FIOGETOWN:
503	default:
504		break;
505	}
506	return (ENOTTY);
507}
508
509static	int
510devpoll(struct cdev *dev, int events, struct thread *td)
511{
512	int	revents = 0;
513
514	mtx_lock(&devsoftc.mtx);
515	if (events & (POLLIN | POLLRDNORM)) {
516		if (!TAILQ_EMPTY(&devsoftc.devq))
517			revents = events & (POLLIN | POLLRDNORM);
518		else
519			selrecord(td, &devsoftc.sel);
520	}
521	mtx_unlock(&devsoftc.mtx);
522
523	return (revents);
524}
525
526/**
527 * @brief Return whether the userland process is running
528 */
529boolean_t
530devctl_process_running(void)
531{
532	return (devsoftc.inuse == 1);
533}
534
535/**
536 * @brief Queue data to be read from the devctl device
537 *
538 * Generic interface to queue data to the devctl device.  It is
539 * assumed that @p data is properly formatted.  It is further assumed
540 * that @p data is allocated using the M_BUS malloc type.
541 */
542void
543devctl_queue_data_f(char *data, int flags)
544{
545	struct dev_event_info *n1 = NULL, *n2 = NULL;
546	struct proc *p;
547
548	if (strlen(data) == 0)
549		goto out;
550	if (devctl_queue_length == 0)
551		goto out;
552	n1 = malloc(sizeof(*n1), M_BUS, flags);
553	if (n1 == NULL)
554		goto out;
555	n1->dei_data = data;
556	mtx_lock(&devsoftc.mtx);
557	if (devctl_queue_length == 0) {
558		mtx_unlock(&devsoftc.mtx);
559		free(n1->dei_data, M_BUS);
560		free(n1, M_BUS);
561		return;
562	}
563	/* Leave at least one spot in the queue... */
564	while (devsoftc.queued > devctl_queue_length - 1) {
565		n2 = TAILQ_FIRST(&devsoftc.devq);
566		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
567		free(n2->dei_data, M_BUS);
568		free(n2, M_BUS);
569		devsoftc.queued--;
570	}
571	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
572	devsoftc.queued++;
573	cv_broadcast(&devsoftc.cv);
574	mtx_unlock(&devsoftc.mtx);
575	selwakeup(&devsoftc.sel);
576	p = devsoftc.async_proc;
577	if (p != NULL) {
578		PROC_LOCK(p);
579		kern_psignal(p, SIGIO);
580		PROC_UNLOCK(p);
581	}
582	return;
583out:
584	/*
585	 * We have to free data on all error paths since the caller
586	 * assumes it will be free'd when this item is dequeued.
587	 */
588	free(data, M_BUS);
589	return;
590}
591
592void
593devctl_queue_data(char *data)
594{
595
596	devctl_queue_data_f(data, M_NOWAIT);
597}
598
599/**
600 * @brief Send a 'notification' to userland, using standard ways
601 */
602void
603devctl_notify_f(const char *system, const char *subsystem, const char *type,
604    const char *data, int flags)
605{
606	int len = 0;
607	char *msg;
608
609	if (system == NULL)
610		return;		/* BOGUS!  Must specify system. */
611	if (subsystem == NULL)
612		return;		/* BOGUS!  Must specify subsystem. */
613	if (type == NULL)
614		return;		/* BOGUS!  Must specify type. */
615	len += strlen(" system=") + strlen(system);
616	len += strlen(" subsystem=") + strlen(subsystem);
617	len += strlen(" type=") + strlen(type);
618	/* add in the data message plus newline. */
619	if (data != NULL)
620		len += strlen(data);
621	len += 3;	/* '!', '\n', and NUL */
622	msg = malloc(len, M_BUS, flags);
623	if (msg == NULL)
624		return;		/* Drop it on the floor */
625	if (data != NULL)
626		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
627		    system, subsystem, type, data);
628	else
629		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
630		    system, subsystem, type);
631	devctl_queue_data_f(msg, flags);
632}
633
634void
635devctl_notify(const char *system, const char *subsystem, const char *type,
636    const char *data)
637{
638
639	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
640}
641
642/*
643 * Common routine that tries to make sending messages as easy as possible.
644 * We allocate memory for the data, copy strings into that, but do not
645 * free it unless there's an error.  The dequeue part of the driver should
646 * free the data.  We don't send data when the device is disabled.  We do
647 * send data, even when we have no listeners, because we wish to avoid
648 * races relating to startup and restart of listening applications.
649 *
650 * devaddq is designed to string together the type of event, with the
651 * object of that event, plus the plug and play info and location info
652 * for that event.  This is likely most useful for devices, but less
653 * useful for other consumers of this interface.  Those should use
654 * the devctl_queue_data() interface instead.
655 */
656static void
657devaddq(const char *type, const char *what, device_t dev)
658{
659	char *data = NULL;
660	char *loc = NULL;
661	char *pnp = NULL;
662	const char *parstr;
663
664	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
665		return;
666	data = malloc(1024, M_BUS, M_NOWAIT);
667	if (data == NULL)
668		goto bad;
669
670	/* get the bus specific location of this device */
671	loc = malloc(1024, M_BUS, M_NOWAIT);
672	if (loc == NULL)
673		goto bad;
674	*loc = '\0';
675	bus_child_location_str(dev, loc, 1024);
676
677	/* Get the bus specific pnp info of this device */
678	pnp = malloc(1024, M_BUS, M_NOWAIT);
679	if (pnp == NULL)
680		goto bad;
681	*pnp = '\0';
682	bus_child_pnpinfo_str(dev, pnp, 1024);
683
684	/* Get the parent of this device, or / if high enough in the tree. */
685	if (device_get_parent(dev) == NULL)
686		parstr = ".";	/* Or '/' ? */
687	else
688		parstr = device_get_nameunit(device_get_parent(dev));
689	/* String it all together. */
690	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
691	  parstr);
692	free(loc, M_BUS);
693	free(pnp, M_BUS);
694	devctl_queue_data(data);
695	return;
696bad:
697	free(pnp, M_BUS);
698	free(loc, M_BUS);
699	free(data, M_BUS);
700	return;
701}
702
703/*
704 * A device was added to the tree.  We are called just after it successfully
705 * attaches (that is, probe and attach success for this device).  No call
706 * is made if a device is merely parented into the tree.  See devnomatch
707 * if probe fails.  If attach fails, no notification is sent (but maybe
708 * we should have a different message for this).
709 */
710static void
711devadded(device_t dev)
712{
713	devaddq("+", device_get_nameunit(dev), dev);
714}
715
716/*
717 * A device was removed from the tree.  We are called just before this
718 * happens.
719 */
720static void
721devremoved(device_t dev)
722{
723	devaddq("-", device_get_nameunit(dev), dev);
724}
725
726/*
727 * Called when there's no match for this device.  This is only called
728 * the first time that no match happens, so we don't keep getting this
729 * message.  Should that prove to be undesirable, we can change it.
730 * This is called when all drivers that can attach to a given bus
731 * decline to accept this device.  Other errors may not be detected.
732 */
733static void
734devnomatch(device_t dev)
735{
736	devaddq("?", "", dev);
737}
738
739static int
740sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
741{
742	struct dev_event_info *n1;
743	int dis, error;
744
745	dis = devctl_queue_length == 0;
746	error = sysctl_handle_int(oidp, &dis, 0, req);
747	if (error || !req->newptr)
748		return (error);
749	mtx_lock(&devsoftc.mtx);
750	if (dis) {
751		while (!TAILQ_EMPTY(&devsoftc.devq)) {
752			n1 = TAILQ_FIRST(&devsoftc.devq);
753			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
754			free(n1->dei_data, M_BUS);
755			free(n1, M_BUS);
756		}
757		devsoftc.queued = 0;
758		devctl_queue_length = 0;
759	} else {
760		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
761	}
762	mtx_unlock(&devsoftc.mtx);
763	return (0);
764}
765
766static int
767sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
768{
769	struct dev_event_info *n1;
770	int q, error;
771
772	q = devctl_queue_length;
773	error = sysctl_handle_int(oidp, &q, 0, req);
774	if (error || !req->newptr)
775		return (error);
776	if (q < 0)
777		return (EINVAL);
778	mtx_lock(&devsoftc.mtx);
779	devctl_queue_length = q;
780	while (devsoftc.queued > devctl_queue_length) {
781		n1 = TAILQ_FIRST(&devsoftc.devq);
782		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
783		free(n1->dei_data, M_BUS);
784		free(n1, M_BUS);
785		devsoftc.queued--;
786	}
787	mtx_unlock(&devsoftc.mtx);
788	return (0);
789}
790
791/* End of /dev/devctl code */
792
793static TAILQ_HEAD(,device)	bus_data_devices;
794static int bus_data_generation = 1;
795
796static kobj_method_t null_methods[] = {
797	KOBJMETHOD_END
798};
799
800DEFINE_CLASS(null, null_methods, 0);
801
802/*
803 * Bus pass implementation
804 */
805
806static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
807int bus_current_pass = BUS_PASS_ROOT;
808
809/**
810 * @internal
811 * @brief Register the pass level of a new driver attachment
812 *
813 * Register a new driver attachment's pass level.  If no driver
814 * attachment with the same pass level has been added, then @p new
815 * will be added to the global passes list.
816 *
817 * @param new		the new driver attachment
818 */
819static void
820driver_register_pass(struct driverlink *new)
821{
822	struct driverlink *dl;
823
824	/* We only consider pass numbers during boot. */
825	if (bus_current_pass == BUS_PASS_DEFAULT)
826		return;
827
828	/*
829	 * Walk the passes list.  If we already know about this pass
830	 * then there is nothing to do.  If we don't, then insert this
831	 * driver link into the list.
832	 */
833	TAILQ_FOREACH(dl, &passes, passlink) {
834		if (dl->pass < new->pass)
835			continue;
836		if (dl->pass == new->pass)
837			return;
838		TAILQ_INSERT_BEFORE(dl, new, passlink);
839		return;
840	}
841	TAILQ_INSERT_TAIL(&passes, new, passlink);
842}
843
844/**
845 * @brief Raise the current bus pass
846 *
847 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
848 * method on the root bus to kick off a new device tree scan for each
849 * new pass level that has at least one driver.
850 */
851void
852bus_set_pass(int pass)
853{
854	struct driverlink *dl;
855
856	if (bus_current_pass > pass)
857		panic("Attempt to lower bus pass level");
858
859	TAILQ_FOREACH(dl, &passes, passlink) {
860		/* Skip pass values below the current pass level. */
861		if (dl->pass <= bus_current_pass)
862			continue;
863
864		/*
865		 * Bail once we hit a driver with a pass level that is
866		 * too high.
867		 */
868		if (dl->pass > pass)
869			break;
870
871		/*
872		 * Raise the pass level to the next level and rescan
873		 * the tree.
874		 */
875		bus_current_pass = dl->pass;
876		BUS_NEW_PASS(root_bus);
877	}
878
879	/*
880	 * If there isn't a driver registered for the requested pass,
881	 * then bus_current_pass might still be less than 'pass'.  Set
882	 * it to 'pass' in that case.
883	 */
884	if (bus_current_pass < pass)
885		bus_current_pass = pass;
886	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
887}
888
889/*
890 * Devclass implementation
891 */
892
893static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
894
895/**
896 * @internal
897 * @brief Find or create a device class
898 *
899 * If a device class with the name @p classname exists, return it,
900 * otherwise if @p create is non-zero create and return a new device
901 * class.
902 *
903 * If @p parentname is non-NULL, the parent of the devclass is set to
904 * the devclass of that name.
905 *
906 * @param classname	the devclass name to find or create
907 * @param parentname	the parent devclass name or @c NULL
908 * @param create	non-zero to create a devclass
909 */
910static devclass_t
911devclass_find_internal(const char *classname, const char *parentname,
912		       int create)
913{
914	devclass_t dc;
915
916	PDEBUG(("looking for %s", classname));
917	if (!classname)
918		return (NULL);
919
920	TAILQ_FOREACH(dc, &devclasses, link) {
921		if (!strcmp(dc->name, classname))
922			break;
923	}
924
925	if (create && !dc) {
926		PDEBUG(("creating %s", classname));
927		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
928		    M_BUS, M_NOWAIT | M_ZERO);
929		if (!dc)
930			return (NULL);
931		dc->parent = NULL;
932		dc->name = (char*) (dc + 1);
933		strcpy(dc->name, classname);
934		TAILQ_INIT(&dc->drivers);
935		TAILQ_INSERT_TAIL(&devclasses, dc, link);
936
937		bus_data_generation_update();
938	}
939
940	/*
941	 * If a parent class is specified, then set that as our parent so
942	 * that this devclass will support drivers for the parent class as
943	 * well.  If the parent class has the same name don't do this though
944	 * as it creates a cycle that can trigger an infinite loop in
945	 * device_probe_child() if a device exists for which there is no
946	 * suitable driver.
947	 */
948	if (parentname && dc && !dc->parent &&
949	    strcmp(classname, parentname) != 0) {
950		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
951		dc->parent->flags |= DC_HAS_CHILDREN;
952	}
953
954	return (dc);
955}
956
957/**
958 * @brief Create a device class
959 *
960 * If a device class with the name @p classname exists, return it,
961 * otherwise create and return a new device class.
962 *
963 * @param classname	the devclass name to find or create
964 */
965devclass_t
966devclass_create(const char *classname)
967{
968	return (devclass_find_internal(classname, NULL, TRUE));
969}
970
971/**
972 * @brief Find a device class
973 *
974 * If a device class with the name @p classname exists, return it,
975 * otherwise return @c NULL.
976 *
977 * @param classname	the devclass name to find
978 */
979devclass_t
980devclass_find(const char *classname)
981{
982	return (devclass_find_internal(classname, NULL, FALSE));
983}
984
985/**
986 * @brief Register that a device driver has been added to a devclass
987 *
988 * Register that a device driver has been added to a devclass.  This
989 * is called by devclass_add_driver to accomplish the recursive
990 * notification of all the children classes of dc, as well as dc.
991 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
992 * the devclass.
993 *
994 * We do a full search here of the devclass list at each iteration
995 * level to save storing children-lists in the devclass structure.  If
996 * we ever move beyond a few dozen devices doing this, we may need to
997 * reevaluate...
998 *
999 * @param dc		the devclass to edit
1000 * @param driver	the driver that was just added
1001 */
1002static void
1003devclass_driver_added(devclass_t dc, driver_t *driver)
1004{
1005	devclass_t parent;
1006	int i;
1007
1008	/*
1009	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1010	 */
1011	for (i = 0; i < dc->maxunit; i++)
1012		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1013			BUS_DRIVER_ADDED(dc->devices[i], driver);
1014
1015	/*
1016	 * Walk through the children classes.  Since we only keep a
1017	 * single parent pointer around, we walk the entire list of
1018	 * devclasses looking for children.  We set the
1019	 * DC_HAS_CHILDREN flag when a child devclass is created on
1020	 * the parent, so we only walk the list for those devclasses
1021	 * that have children.
1022	 */
1023	if (!(dc->flags & DC_HAS_CHILDREN))
1024		return;
1025	parent = dc;
1026	TAILQ_FOREACH(dc, &devclasses, link) {
1027		if (dc->parent == parent)
1028			devclass_driver_added(dc, driver);
1029	}
1030}
1031
1032/**
1033 * @brief Add a device driver to a device class
1034 *
1035 * Add a device driver to a devclass. This is normally called
1036 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1037 * all devices in the devclass will be called to allow them to attempt
1038 * to re-probe any unmatched children.
1039 *
1040 * @param dc		the devclass to edit
1041 * @param driver	the driver to register
1042 */
1043int
1044devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1045{
1046	driverlink_t dl;
1047	const char *parentname;
1048
1049	PDEBUG(("%s", DRIVERNAME(driver)));
1050
1051	/* Don't allow invalid pass values. */
1052	if (pass <= BUS_PASS_ROOT)
1053		return (EINVAL);
1054
1055	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1056	if (!dl)
1057		return (ENOMEM);
1058
1059	/*
1060	 * Compile the driver's methods. Also increase the reference count
1061	 * so that the class doesn't get freed when the last instance
1062	 * goes. This means we can safely use static methods and avoids a
1063	 * double-free in devclass_delete_driver.
1064	 */
1065	kobj_class_compile((kobj_class_t) driver);
1066
1067	/*
1068	 * If the driver has any base classes, make the
1069	 * devclass inherit from the devclass of the driver's
1070	 * first base class. This will allow the system to
1071	 * search for drivers in both devclasses for children
1072	 * of a device using this driver.
1073	 */
1074	if (driver->baseclasses)
1075		parentname = driver->baseclasses[0]->name;
1076	else
1077		parentname = NULL;
1078	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1079
1080	dl->driver = driver;
1081	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1082	driver->refs++;		/* XXX: kobj_mtx */
1083	dl->pass = pass;
1084	driver_register_pass(dl);
1085
1086	devclass_driver_added(dc, driver);
1087	bus_data_generation_update();
1088	return (0);
1089}
1090
1091/**
1092 * @brief Register that a device driver has been deleted from a devclass
1093 *
1094 * Register that a device driver has been removed from a devclass.
1095 * This is called by devclass_delete_driver to accomplish the
1096 * recursive notification of all the children classes of busclass, as
1097 * well as busclass.  Each layer will attempt to detach the driver
1098 * from any devices that are children of the bus's devclass.  The function
1099 * will return an error if a device fails to detach.
1100 *
1101 * We do a full search here of the devclass list at each iteration
1102 * level to save storing children-lists in the devclass structure.  If
1103 * we ever move beyond a few dozen devices doing this, we may need to
1104 * reevaluate...
1105 *
1106 * @param busclass	the devclass of the parent bus
1107 * @param dc		the devclass of the driver being deleted
1108 * @param driver	the driver being deleted
1109 */
1110static int
1111devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1112{
1113	devclass_t parent;
1114	device_t dev;
1115	int error, i;
1116
1117	/*
1118	 * Disassociate from any devices.  We iterate through all the
1119	 * devices in the devclass of the driver and detach any which are
1120	 * using the driver and which have a parent in the devclass which
1121	 * we are deleting from.
1122	 *
1123	 * Note that since a driver can be in multiple devclasses, we
1124	 * should not detach devices which are not children of devices in
1125	 * the affected devclass.
1126	 */
1127	for (i = 0; i < dc->maxunit; i++) {
1128		if (dc->devices[i]) {
1129			dev = dc->devices[i];
1130			if (dev->driver == driver && dev->parent &&
1131			    dev->parent->devclass == busclass) {
1132				if ((error = device_detach(dev)) != 0)
1133					return (error);
1134				BUS_PROBE_NOMATCH(dev->parent, dev);
1135				devnomatch(dev);
1136				dev->flags |= DF_DONENOMATCH;
1137			}
1138		}
1139	}
1140
1141	/*
1142	 * Walk through the children classes.  Since we only keep a
1143	 * single parent pointer around, we walk the entire list of
1144	 * devclasses looking for children.  We set the
1145	 * DC_HAS_CHILDREN flag when a child devclass is created on
1146	 * the parent, so we only walk the list for those devclasses
1147	 * that have children.
1148	 */
1149	if (!(busclass->flags & DC_HAS_CHILDREN))
1150		return (0);
1151	parent = busclass;
1152	TAILQ_FOREACH(busclass, &devclasses, link) {
1153		if (busclass->parent == parent) {
1154			error = devclass_driver_deleted(busclass, dc, driver);
1155			if (error)
1156				return (error);
1157		}
1158	}
1159	return (0);
1160}
1161
1162/**
1163 * @brief Delete a device driver from a device class
1164 *
1165 * Delete a device driver from a devclass. This is normally called
1166 * automatically by DRIVER_MODULE().
1167 *
1168 * If the driver is currently attached to any devices,
1169 * devclass_delete_driver() will first attempt to detach from each
1170 * device. If one of the detach calls fails, the driver will not be
1171 * deleted.
1172 *
1173 * @param dc		the devclass to edit
1174 * @param driver	the driver to unregister
1175 */
1176int
1177devclass_delete_driver(devclass_t busclass, driver_t *driver)
1178{
1179	devclass_t dc = devclass_find(driver->name);
1180	driverlink_t dl;
1181	int error;
1182
1183	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1184
1185	if (!dc)
1186		return (0);
1187
1188	/*
1189	 * Find the link structure in the bus' list of drivers.
1190	 */
1191	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1192		if (dl->driver == driver)
1193			break;
1194	}
1195
1196	if (!dl) {
1197		PDEBUG(("%s not found in %s list", driver->name,
1198		    busclass->name));
1199		return (ENOENT);
1200	}
1201
1202	error = devclass_driver_deleted(busclass, dc, driver);
1203	if (error != 0)
1204		return (error);
1205
1206	TAILQ_REMOVE(&busclass->drivers, dl, link);
1207	free(dl, M_BUS);
1208
1209	/* XXX: kobj_mtx */
1210	driver->refs--;
1211	if (driver->refs == 0)
1212		kobj_class_free((kobj_class_t) driver);
1213
1214	bus_data_generation_update();
1215	return (0);
1216}
1217
1218/**
1219 * @brief Quiesces a set of device drivers from a device class
1220 *
1221 * Quiesce a device driver from a devclass. This is normally called
1222 * automatically by DRIVER_MODULE().
1223 *
1224 * If the driver is currently attached to any devices,
1225 * devclass_quiesece_driver() will first attempt to quiesce each
1226 * device.
1227 *
1228 * @param dc		the devclass to edit
1229 * @param driver	the driver to unregister
1230 */
1231static int
1232devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1233{
1234	devclass_t dc = devclass_find(driver->name);
1235	driverlink_t dl;
1236	device_t dev;
1237	int i;
1238	int error;
1239
1240	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1241
1242	if (!dc)
1243		return (0);
1244
1245	/*
1246	 * Find the link structure in the bus' list of drivers.
1247	 */
1248	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1249		if (dl->driver == driver)
1250			break;
1251	}
1252
1253	if (!dl) {
1254		PDEBUG(("%s not found in %s list", driver->name,
1255		    busclass->name));
1256		return (ENOENT);
1257	}
1258
1259	/*
1260	 * Quiesce all devices.  We iterate through all the devices in
1261	 * the devclass of the driver and quiesce any which are using
1262	 * the driver and which have a parent in the devclass which we
1263	 * are quiescing.
1264	 *
1265	 * Note that since a driver can be in multiple devclasses, we
1266	 * should not quiesce devices which are not children of
1267	 * devices in the affected devclass.
1268	 */
1269	for (i = 0; i < dc->maxunit; i++) {
1270		if (dc->devices[i]) {
1271			dev = dc->devices[i];
1272			if (dev->driver == driver && dev->parent &&
1273			    dev->parent->devclass == busclass) {
1274				if ((error = device_quiesce(dev)) != 0)
1275					return (error);
1276			}
1277		}
1278	}
1279
1280	return (0);
1281}
1282
1283/**
1284 * @internal
1285 */
1286static driverlink_t
1287devclass_find_driver_internal(devclass_t dc, const char *classname)
1288{
1289	driverlink_t dl;
1290
1291	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1292
1293	TAILQ_FOREACH(dl, &dc->drivers, link) {
1294		if (!strcmp(dl->driver->name, classname))
1295			return (dl);
1296	}
1297
1298	PDEBUG(("not found"));
1299	return (NULL);
1300}
1301
1302/**
1303 * @brief Return the name of the devclass
1304 */
1305const char *
1306devclass_get_name(devclass_t dc)
1307{
1308	return (dc->name);
1309}
1310
1311/**
1312 * @brief Find a device given a unit number
1313 *
1314 * @param dc		the devclass to search
1315 * @param unit		the unit number to search for
1316 *
1317 * @returns		the device with the given unit number or @c
1318 *			NULL if there is no such device
1319 */
1320device_t
1321devclass_get_device(devclass_t dc, int unit)
1322{
1323	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1324		return (NULL);
1325	return (dc->devices[unit]);
1326}
1327
1328/**
1329 * @brief Find the softc field of a device given a unit number
1330 *
1331 * @param dc		the devclass to search
1332 * @param unit		the unit number to search for
1333 *
1334 * @returns		the softc field of the device with the given
1335 *			unit number or @c NULL if there is no such
1336 *			device
1337 */
1338void *
1339devclass_get_softc(devclass_t dc, int unit)
1340{
1341	device_t dev;
1342
1343	dev = devclass_get_device(dc, unit);
1344	if (!dev)
1345		return (NULL);
1346
1347	return (device_get_softc(dev));
1348}
1349
1350/**
1351 * @brief Get a list of devices in the devclass
1352 *
1353 * An array containing a list of all the devices in the given devclass
1354 * is allocated and returned in @p *devlistp. The number of devices
1355 * in the array is returned in @p *devcountp. The caller should free
1356 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1357 *
1358 * @param dc		the devclass to examine
1359 * @param devlistp	points at location for array pointer return
1360 *			value
1361 * @param devcountp	points at location for array size return value
1362 *
1363 * @retval 0		success
1364 * @retval ENOMEM	the array allocation failed
1365 */
1366int
1367devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1368{
1369	int count, i;
1370	device_t *list;
1371
1372	count = devclass_get_count(dc);
1373	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1374	if (!list)
1375		return (ENOMEM);
1376
1377	count = 0;
1378	for (i = 0; i < dc->maxunit; i++) {
1379		if (dc->devices[i]) {
1380			list[count] = dc->devices[i];
1381			count++;
1382		}
1383	}
1384
1385	*devlistp = list;
1386	*devcountp = count;
1387
1388	return (0);
1389}
1390
1391/**
1392 * @brief Get a list of drivers in the devclass
1393 *
1394 * An array containing a list of pointers to all the drivers in the
1395 * given devclass is allocated and returned in @p *listp.  The number
1396 * of drivers in the array is returned in @p *countp. The caller should
1397 * free the array using @c free(p, M_TEMP).
1398 *
1399 * @param dc		the devclass to examine
1400 * @param listp		gives location for array pointer return value
1401 * @param countp	gives location for number of array elements
1402 *			return value
1403 *
1404 * @retval 0		success
1405 * @retval ENOMEM	the array allocation failed
1406 */
1407int
1408devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1409{
1410	driverlink_t dl;
1411	driver_t **list;
1412	int count;
1413
1414	count = 0;
1415	TAILQ_FOREACH(dl, &dc->drivers, link)
1416		count++;
1417	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1418	if (list == NULL)
1419		return (ENOMEM);
1420
1421	count = 0;
1422	TAILQ_FOREACH(dl, &dc->drivers, link) {
1423		list[count] = dl->driver;
1424		count++;
1425	}
1426	*listp = list;
1427	*countp = count;
1428
1429	return (0);
1430}
1431
1432/**
1433 * @brief Get the number of devices in a devclass
1434 *
1435 * @param dc		the devclass to examine
1436 */
1437int
1438devclass_get_count(devclass_t dc)
1439{
1440	int count, i;
1441
1442	count = 0;
1443	for (i = 0; i < dc->maxunit; i++)
1444		if (dc->devices[i])
1445			count++;
1446	return (count);
1447}
1448
1449/**
1450 * @brief Get the maximum unit number used in a devclass
1451 *
1452 * Note that this is one greater than the highest currently-allocated
1453 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1454 * that not even the devclass has been allocated yet.
1455 *
1456 * @param dc		the devclass to examine
1457 */
1458int
1459devclass_get_maxunit(devclass_t dc)
1460{
1461	if (dc == NULL)
1462		return (-1);
1463	return (dc->maxunit);
1464}
1465
1466/**
1467 * @brief Find a free unit number in a devclass
1468 *
1469 * This function searches for the first unused unit number greater
1470 * that or equal to @p unit.
1471 *
1472 * @param dc		the devclass to examine
1473 * @param unit		the first unit number to check
1474 */
1475int
1476devclass_find_free_unit(devclass_t dc, int unit)
1477{
1478	if (dc == NULL)
1479		return (unit);
1480	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1481		unit++;
1482	return (unit);
1483}
1484
1485/**
1486 * @brief Set the parent of a devclass
1487 *
1488 * The parent class is normally initialised automatically by
1489 * DRIVER_MODULE().
1490 *
1491 * @param dc		the devclass to edit
1492 * @param pdc		the new parent devclass
1493 */
1494void
1495devclass_set_parent(devclass_t dc, devclass_t pdc)
1496{
1497	dc->parent = pdc;
1498}
1499
1500/**
1501 * @brief Get the parent of a devclass
1502 *
1503 * @param dc		the devclass to examine
1504 */
1505devclass_t
1506devclass_get_parent(devclass_t dc)
1507{
1508	return (dc->parent);
1509}
1510
1511struct sysctl_ctx_list *
1512devclass_get_sysctl_ctx(devclass_t dc)
1513{
1514	return (&dc->sysctl_ctx);
1515}
1516
1517struct sysctl_oid *
1518devclass_get_sysctl_tree(devclass_t dc)
1519{
1520	return (dc->sysctl_tree);
1521}
1522
1523/**
1524 * @internal
1525 * @brief Allocate a unit number
1526 *
1527 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1528 * will do). The allocated unit number is returned in @p *unitp.
1529
1530 * @param dc		the devclass to allocate from
1531 * @param unitp		points at the location for the allocated unit
1532 *			number
1533 *
1534 * @retval 0		success
1535 * @retval EEXIST	the requested unit number is already allocated
1536 * @retval ENOMEM	memory allocation failure
1537 */
1538static int
1539devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1540{
1541	const char *s;
1542	int unit = *unitp;
1543
1544	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1545
1546	/* Ask the parent bus if it wants to wire this device. */
1547	if (unit == -1)
1548		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1549		    &unit);
1550
1551	/* If we were given a wired unit number, check for existing device */
1552	/* XXX imp XXX */
1553	if (unit != -1) {
1554		if (unit >= 0 && unit < dc->maxunit &&
1555		    dc->devices[unit] != NULL) {
1556			if (bootverbose)
1557				printf("%s: %s%d already exists; skipping it\n",
1558				    dc->name, dc->name, *unitp);
1559			return (EEXIST);
1560		}
1561	} else {
1562		/* Unwired device, find the next available slot for it */
1563		unit = 0;
1564		for (unit = 0;; unit++) {
1565			/* If there is an "at" hint for a unit then skip it. */
1566			if (resource_string_value(dc->name, unit, "at", &s) ==
1567			    0)
1568				continue;
1569
1570			/* If this device slot is already in use, skip it. */
1571			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1572				continue;
1573
1574			break;
1575		}
1576	}
1577
1578	/*
1579	 * We've selected a unit beyond the length of the table, so let's
1580	 * extend the table to make room for all units up to and including
1581	 * this one.
1582	 */
1583	if (unit >= dc->maxunit) {
1584		device_t *newlist, *oldlist;
1585		int newsize;
1586
1587		oldlist = dc->devices;
1588		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1589		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1590		if (!newlist)
1591			return (ENOMEM);
1592		if (oldlist != NULL)
1593			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1594		bzero(newlist + dc->maxunit,
1595		    sizeof(device_t) * (newsize - dc->maxunit));
1596		dc->devices = newlist;
1597		dc->maxunit = newsize;
1598		if (oldlist != NULL)
1599			free(oldlist, M_BUS);
1600	}
1601	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1602
1603	*unitp = unit;
1604	return (0);
1605}
1606
1607/**
1608 * @internal
1609 * @brief Add a device to a devclass
1610 *
1611 * A unit number is allocated for the device (using the device's
1612 * preferred unit number if any) and the device is registered in the
1613 * devclass. This allows the device to be looked up by its unit
1614 * number, e.g. by decoding a dev_t minor number.
1615 *
1616 * @param dc		the devclass to add to
1617 * @param dev		the device to add
1618 *
1619 * @retval 0		success
1620 * @retval EEXIST	the requested unit number is already allocated
1621 * @retval ENOMEM	memory allocation failure
1622 */
1623static int
1624devclass_add_device(devclass_t dc, device_t dev)
1625{
1626	int buflen, error;
1627
1628	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1629
1630	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1631	if (buflen < 0)
1632		return (ENOMEM);
1633	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1634	if (!dev->nameunit)
1635		return (ENOMEM);
1636
1637	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1638		free(dev->nameunit, M_BUS);
1639		dev->nameunit = NULL;
1640		return (error);
1641	}
1642	dc->devices[dev->unit] = dev;
1643	dev->devclass = dc;
1644	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1645
1646	return (0);
1647}
1648
1649/**
1650 * @internal
1651 * @brief Delete a device from a devclass
1652 *
1653 * The device is removed from the devclass's device list and its unit
1654 * number is freed.
1655
1656 * @param dc		the devclass to delete from
1657 * @param dev		the device to delete
1658 *
1659 * @retval 0		success
1660 */
1661static int
1662devclass_delete_device(devclass_t dc, device_t dev)
1663{
1664	if (!dc || !dev)
1665		return (0);
1666
1667	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1668
1669	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1670		panic("devclass_delete_device: inconsistent device class");
1671	dc->devices[dev->unit] = NULL;
1672	if (dev->flags & DF_WILDCARD)
1673		dev->unit = -1;
1674	dev->devclass = NULL;
1675	free(dev->nameunit, M_BUS);
1676	dev->nameunit = NULL;
1677
1678	return (0);
1679}
1680
1681/**
1682 * @internal
1683 * @brief Make a new device and add it as a child of @p parent
1684 *
1685 * @param parent	the parent of the new device
1686 * @param name		the devclass name of the new device or @c NULL
1687 *			to leave the devclass unspecified
1688 * @parem unit		the unit number of the new device of @c -1 to
1689 *			leave the unit number unspecified
1690 *
1691 * @returns the new device
1692 */
1693static device_t
1694make_device(device_t parent, const char *name, int unit)
1695{
1696	device_t dev;
1697	devclass_t dc;
1698
1699	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1700
1701	if (name) {
1702		dc = devclass_find_internal(name, NULL, TRUE);
1703		if (!dc) {
1704			printf("make_device: can't find device class %s\n",
1705			    name);
1706			return (NULL);
1707		}
1708	} else {
1709		dc = NULL;
1710	}
1711
1712	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1713	if (!dev)
1714		return (NULL);
1715
1716	dev->parent = parent;
1717	TAILQ_INIT(&dev->children);
1718	kobj_init((kobj_t) dev, &null_class);
1719	dev->driver = NULL;
1720	dev->devclass = NULL;
1721	dev->unit = unit;
1722	dev->nameunit = NULL;
1723	dev->desc = NULL;
1724	dev->busy = 0;
1725	dev->devflags = 0;
1726	dev->flags = DF_ENABLED;
1727	dev->order = 0;
1728	if (unit == -1)
1729		dev->flags |= DF_WILDCARD;
1730	if (name) {
1731		dev->flags |= DF_FIXEDCLASS;
1732		if (devclass_add_device(dc, dev)) {
1733			kobj_delete((kobj_t) dev, M_BUS);
1734			return (NULL);
1735		}
1736	}
1737	dev->ivars = NULL;
1738	dev->softc = NULL;
1739
1740	dev->state = DS_NOTPRESENT;
1741
1742	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1743	bus_data_generation_update();
1744
1745	return (dev);
1746}
1747
1748/**
1749 * @internal
1750 * @brief Print a description of a device.
1751 */
1752static int
1753device_print_child(device_t dev, device_t child)
1754{
1755	int retval = 0;
1756
1757	if (device_is_alive(child))
1758		retval += BUS_PRINT_CHILD(dev, child);
1759	else
1760		retval += device_printf(child, " not found\n");
1761
1762	return (retval);
1763}
1764
1765/**
1766 * @brief Create a new device
1767 *
1768 * This creates a new device and adds it as a child of an existing
1769 * parent device. The new device will be added after the last existing
1770 * child with order zero.
1771 *
1772 * @param dev		the device which will be the parent of the
1773 *			new child device
1774 * @param name		devclass name for new device or @c NULL if not
1775 *			specified
1776 * @param unit		unit number for new device or @c -1 if not
1777 *			specified
1778 *
1779 * @returns		the new device
1780 */
1781device_t
1782device_add_child(device_t dev, const char *name, int unit)
1783{
1784	return (device_add_child_ordered(dev, 0, name, unit));
1785}
1786
1787/**
1788 * @brief Create a new device
1789 *
1790 * This creates a new device and adds it as a child of an existing
1791 * parent device. The new device will be added after the last existing
1792 * child with the same order.
1793 *
1794 * @param dev		the device which will be the parent of the
1795 *			new child device
1796 * @param order		a value which is used to partially sort the
1797 *			children of @p dev - devices created using
1798 *			lower values of @p order appear first in @p
1799 *			dev's list of children
1800 * @param name		devclass name for new device or @c NULL if not
1801 *			specified
1802 * @param unit		unit number for new device or @c -1 if not
1803 *			specified
1804 *
1805 * @returns		the new device
1806 */
1807device_t
1808device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1809{
1810	device_t child;
1811	device_t place;
1812
1813	PDEBUG(("%s at %s with order %u as unit %d",
1814	    name, DEVICENAME(dev), order, unit));
1815
1816	child = make_device(dev, name, unit);
1817	if (child == NULL)
1818		return (child);
1819	child->order = order;
1820
1821	TAILQ_FOREACH(place, &dev->children, link) {
1822		if (place->order > order)
1823			break;
1824	}
1825
1826	if (place) {
1827		/*
1828		 * The device 'place' is the first device whose order is
1829		 * greater than the new child.
1830		 */
1831		TAILQ_INSERT_BEFORE(place, child, link);
1832	} else {
1833		/*
1834		 * The new child's order is greater or equal to the order of
1835		 * any existing device. Add the child to the tail of the list.
1836		 */
1837		TAILQ_INSERT_TAIL(&dev->children, child, link);
1838	}
1839
1840	bus_data_generation_update();
1841	return (child);
1842}
1843
1844/**
1845 * @brief Delete a device
1846 *
1847 * This function deletes a device along with all of its children. If
1848 * the device currently has a driver attached to it, the device is
1849 * detached first using device_detach().
1850 *
1851 * @param dev		the parent device
1852 * @param child		the device to delete
1853 *
1854 * @retval 0		success
1855 * @retval non-zero	a unit error code describing the error
1856 */
1857int
1858device_delete_child(device_t dev, device_t child)
1859{
1860	int error;
1861	device_t grandchild;
1862
1863	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1864
1865	/* remove children first */
1866	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1867		error = device_delete_child(child, grandchild);
1868		if (error)
1869			return (error);
1870	}
1871
1872	if ((error = device_detach(child)) != 0)
1873		return (error);
1874	if (child->devclass)
1875		devclass_delete_device(child->devclass, child);
1876	if (child->parent)
1877		BUS_CHILD_DELETED(dev, child);
1878	TAILQ_REMOVE(&dev->children, child, link);
1879	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1880	kobj_delete((kobj_t) child, M_BUS);
1881
1882	bus_data_generation_update();
1883	return (0);
1884}
1885
1886/**
1887 * @brief Delete all children devices of the given device, if any.
1888 *
1889 * This function deletes all children devices of the given device, if
1890 * any, using the device_delete_child() function for each device it
1891 * finds. If a child device cannot be deleted, this function will
1892 * return an error code.
1893 *
1894 * @param dev		the parent device
1895 *
1896 * @retval 0		success
1897 * @retval non-zero	a device would not detach
1898 */
1899int
1900device_delete_children(device_t dev)
1901{
1902	device_t child;
1903	int error;
1904
1905	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1906
1907	error = 0;
1908
1909	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1910		error = device_delete_child(dev, child);
1911		if (error) {
1912			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1913			break;
1914		}
1915	}
1916	return (error);
1917}
1918
1919/**
1920 * @brief Find a device given a unit number
1921 *
1922 * This is similar to devclass_get_devices() but only searches for
1923 * devices which have @p dev as a parent.
1924 *
1925 * @param dev		the parent device to search
1926 * @param unit		the unit number to search for.  If the unit is -1,
1927 *			return the first child of @p dev which has name
1928 *			@p classname (that is, the one with the lowest unit.)
1929 *
1930 * @returns		the device with the given unit number or @c
1931 *			NULL if there is no such device
1932 */
1933device_t
1934device_find_child(device_t dev, const char *classname, int unit)
1935{
1936	devclass_t dc;
1937	device_t child;
1938
1939	dc = devclass_find(classname);
1940	if (!dc)
1941		return (NULL);
1942
1943	if (unit != -1) {
1944		child = devclass_get_device(dc, unit);
1945		if (child && child->parent == dev)
1946			return (child);
1947	} else {
1948		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1949			child = devclass_get_device(dc, unit);
1950			if (child && child->parent == dev)
1951				return (child);
1952		}
1953	}
1954	return (NULL);
1955}
1956
1957/**
1958 * @internal
1959 */
1960static driverlink_t
1961first_matching_driver(devclass_t dc, device_t dev)
1962{
1963	if (dev->devclass)
1964		return (devclass_find_driver_internal(dc, dev->devclass->name));
1965	return (TAILQ_FIRST(&dc->drivers));
1966}
1967
1968/**
1969 * @internal
1970 */
1971static driverlink_t
1972next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1973{
1974	if (dev->devclass) {
1975		driverlink_t dl;
1976		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1977			if (!strcmp(dev->devclass->name, dl->driver->name))
1978				return (dl);
1979		return (NULL);
1980	}
1981	return (TAILQ_NEXT(last, link));
1982}
1983
1984/**
1985 * @internal
1986 */
1987int
1988device_probe_child(device_t dev, device_t child)
1989{
1990	devclass_t dc;
1991	driverlink_t best = NULL;
1992	driverlink_t dl;
1993	int result, pri = 0;
1994	int hasclass = (child->devclass != NULL);
1995
1996	GIANT_REQUIRED;
1997
1998	dc = dev->devclass;
1999	if (!dc)
2000		panic("device_probe_child: parent device has no devclass");
2001
2002	/*
2003	 * If the state is already probed, then return.  However, don't
2004	 * return if we can rebid this object.
2005	 */
2006	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2007		return (0);
2008
2009	for (; dc; dc = dc->parent) {
2010		for (dl = first_matching_driver(dc, child);
2011		     dl;
2012		     dl = next_matching_driver(dc, child, dl)) {
2013			/* If this driver's pass is too high, then ignore it. */
2014			if (dl->pass > bus_current_pass)
2015				continue;
2016
2017			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2018			result = device_set_driver(child, dl->driver);
2019			if (result == ENOMEM)
2020				return (result);
2021			else if (result != 0)
2022				continue;
2023			if (!hasclass) {
2024				if (device_set_devclass(child,
2025				    dl->driver->name) != 0) {
2026					printf("driver bug: Unable to set "
2027					    "devclass (devname: %s)\n",
2028					    device_get_name(child));
2029					(void)device_set_driver(child, NULL);
2030					continue;
2031				}
2032			}
2033
2034			/* Fetch any flags for the device before probing. */
2035			resource_int_value(dl->driver->name, child->unit,
2036			    "flags", &child->devflags);
2037
2038			result = DEVICE_PROBE(child);
2039
2040			/* Reset flags and devclass before the next probe. */
2041			child->devflags = 0;
2042			if (!hasclass)
2043				(void)device_set_devclass(child, NULL);
2044
2045			/*
2046			 * If the driver returns SUCCESS, there can be
2047			 * no higher match for this device.
2048			 */
2049			if (result == 0) {
2050				best = dl;
2051				pri = 0;
2052				break;
2053			}
2054
2055			/*
2056			 * The driver returned an error so it
2057			 * certainly doesn't match.
2058			 */
2059			if (result > 0) {
2060				(void)device_set_driver(child, NULL);
2061				continue;
2062			}
2063
2064			/*
2065			 * A priority lower than SUCCESS, remember the
2066			 * best matching driver. Initialise the value
2067			 * of pri for the first match.
2068			 */
2069			if (best == NULL || result > pri) {
2070				/*
2071				 * Probes that return BUS_PROBE_NOWILDCARD
2072				 * or lower only match when they are set
2073				 * in stone by the parent bus.
2074				 */
2075				if (result <= BUS_PROBE_NOWILDCARD &&
2076				    child->flags & DF_WILDCARD)
2077					continue;
2078				best = dl;
2079				pri = result;
2080				continue;
2081			}
2082		}
2083		/*
2084		 * If we have an unambiguous match in this devclass,
2085		 * don't look in the parent.
2086		 */
2087		if (best && pri == 0)
2088			break;
2089	}
2090
2091	/*
2092	 * If we found a driver, change state and initialise the devclass.
2093	 */
2094	/* XXX What happens if we rebid and got no best? */
2095	if (best) {
2096		/*
2097		 * If this device was attached, and we were asked to
2098		 * rescan, and it is a different driver, then we have
2099		 * to detach the old driver and reattach this new one.
2100		 * Note, we don't have to check for DF_REBID here
2101		 * because if the state is > DS_ALIVE, we know it must
2102		 * be.
2103		 *
2104		 * This assumes that all DF_REBID drivers can have
2105		 * their probe routine called at any time and that
2106		 * they are idempotent as well as completely benign in
2107		 * normal operations.
2108		 *
2109		 * We also have to make sure that the detach
2110		 * succeeded, otherwise we fail the operation (or
2111		 * maybe it should just fail silently?  I'm torn).
2112		 */
2113		if (child->state > DS_ALIVE && best->driver != child->driver)
2114			if ((result = device_detach(dev)) != 0)
2115				return (result);
2116
2117		/* Set the winning driver, devclass, and flags. */
2118		if (!child->devclass) {
2119			result = device_set_devclass(child, best->driver->name);
2120			if (result != 0)
2121				return (result);
2122		}
2123		result = device_set_driver(child, best->driver);
2124		if (result != 0)
2125			return (result);
2126		resource_int_value(best->driver->name, child->unit,
2127		    "flags", &child->devflags);
2128
2129		if (pri < 0) {
2130			/*
2131			 * A bit bogus. Call the probe method again to make
2132			 * sure that we have the right description.
2133			 */
2134			DEVICE_PROBE(child);
2135#if 0
2136			child->flags |= DF_REBID;
2137#endif
2138		} else
2139			child->flags &= ~DF_REBID;
2140		child->state = DS_ALIVE;
2141
2142		bus_data_generation_update();
2143		return (0);
2144	}
2145
2146	return (ENXIO);
2147}
2148
2149/**
2150 * @brief Return the parent of a device
2151 */
2152device_t
2153device_get_parent(device_t dev)
2154{
2155	return (dev->parent);
2156}
2157
2158/**
2159 * @brief Get a list of children of a device
2160 *
2161 * An array containing a list of all the children of the given device
2162 * is allocated and returned in @p *devlistp. The number of devices
2163 * in the array is returned in @p *devcountp. The caller should free
2164 * the array using @c free(p, M_TEMP).
2165 *
2166 * @param dev		the device to examine
2167 * @param devlistp	points at location for array pointer return
2168 *			value
2169 * @param devcountp	points at location for array size return value
2170 *
2171 * @retval 0		success
2172 * @retval ENOMEM	the array allocation failed
2173 */
2174int
2175device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2176{
2177	int count;
2178	device_t child;
2179	device_t *list;
2180
2181	count = 0;
2182	TAILQ_FOREACH(child, &dev->children, link) {
2183		count++;
2184	}
2185	if (count == 0) {
2186		*devlistp = NULL;
2187		*devcountp = 0;
2188		return (0);
2189	}
2190
2191	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2192	if (!list)
2193		return (ENOMEM);
2194
2195	count = 0;
2196	TAILQ_FOREACH(child, &dev->children, link) {
2197		list[count] = child;
2198		count++;
2199	}
2200
2201	*devlistp = list;
2202	*devcountp = count;
2203
2204	return (0);
2205}
2206
2207/**
2208 * @brief Return the current driver for the device or @c NULL if there
2209 * is no driver currently attached
2210 */
2211driver_t *
2212device_get_driver(device_t dev)
2213{
2214	return (dev->driver);
2215}
2216
2217/**
2218 * @brief Return the current devclass for the device or @c NULL if
2219 * there is none.
2220 */
2221devclass_t
2222device_get_devclass(device_t dev)
2223{
2224	return (dev->devclass);
2225}
2226
2227/**
2228 * @brief Return the name of the device's devclass or @c NULL if there
2229 * is none.
2230 */
2231const char *
2232device_get_name(device_t dev)
2233{
2234	if (dev != NULL && dev->devclass)
2235		return (devclass_get_name(dev->devclass));
2236	return (NULL);
2237}
2238
2239/**
2240 * @brief Return a string containing the device's devclass name
2241 * followed by an ascii representation of the device's unit number
2242 * (e.g. @c "foo2").
2243 */
2244const char *
2245device_get_nameunit(device_t dev)
2246{
2247	return (dev->nameunit);
2248}
2249
2250/**
2251 * @brief Return the device's unit number.
2252 */
2253int
2254device_get_unit(device_t dev)
2255{
2256	return (dev->unit);
2257}
2258
2259/**
2260 * @brief Return the device's description string
2261 */
2262const char *
2263device_get_desc(device_t dev)
2264{
2265	return (dev->desc);
2266}
2267
2268/**
2269 * @brief Return the device's flags
2270 */
2271uint32_t
2272device_get_flags(device_t dev)
2273{
2274	return (dev->devflags);
2275}
2276
2277struct sysctl_ctx_list *
2278device_get_sysctl_ctx(device_t dev)
2279{
2280	return (&dev->sysctl_ctx);
2281}
2282
2283struct sysctl_oid *
2284device_get_sysctl_tree(device_t dev)
2285{
2286	return (dev->sysctl_tree);
2287}
2288
2289/**
2290 * @brief Print the name of the device followed by a colon and a space
2291 *
2292 * @returns the number of characters printed
2293 */
2294int
2295device_print_prettyname(device_t dev)
2296{
2297	const char *name = device_get_name(dev);
2298
2299	if (name == NULL)
2300		return (printf("unknown: "));
2301	return (printf("%s%d: ", name, device_get_unit(dev)));
2302}
2303
2304/**
2305 * @brief Print the name of the device followed by a colon, a space
2306 * and the result of calling vprintf() with the value of @p fmt and
2307 * the following arguments.
2308 *
2309 * @returns the number of characters printed
2310 */
2311int
2312device_printf(device_t dev, const char * fmt, ...)
2313{
2314	va_list ap;
2315	int retval;
2316
2317	retval = device_print_prettyname(dev);
2318	va_start(ap, fmt);
2319	retval += vprintf(fmt, ap);
2320	va_end(ap);
2321	return (retval);
2322}
2323
2324/**
2325 * @internal
2326 */
2327static void
2328device_set_desc_internal(device_t dev, const char* desc, int copy)
2329{
2330	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2331		free(dev->desc, M_BUS);
2332		dev->flags &= ~DF_DESCMALLOCED;
2333		dev->desc = NULL;
2334	}
2335
2336	if (copy && desc) {
2337		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2338		if (dev->desc) {
2339			strcpy(dev->desc, desc);
2340			dev->flags |= DF_DESCMALLOCED;
2341		}
2342	} else {
2343		/* Avoid a -Wcast-qual warning */
2344		dev->desc = (char *)(uintptr_t) desc;
2345	}
2346
2347	bus_data_generation_update();
2348}
2349
2350/**
2351 * @brief Set the device's description
2352 *
2353 * The value of @c desc should be a string constant that will not
2354 * change (at least until the description is changed in a subsequent
2355 * call to device_set_desc() or device_set_desc_copy()).
2356 */
2357void
2358device_set_desc(device_t dev, const char* desc)
2359{
2360	device_set_desc_internal(dev, desc, FALSE);
2361}
2362
2363/**
2364 * @brief Set the device's description
2365 *
2366 * The string pointed to by @c desc is copied. Use this function if
2367 * the device description is generated, (e.g. with sprintf()).
2368 */
2369void
2370device_set_desc_copy(device_t dev, const char* desc)
2371{
2372	device_set_desc_internal(dev, desc, TRUE);
2373}
2374
2375/**
2376 * @brief Set the device's flags
2377 */
2378void
2379device_set_flags(device_t dev, uint32_t flags)
2380{
2381	dev->devflags = flags;
2382}
2383
2384/**
2385 * @brief Return the device's softc field
2386 *
2387 * The softc is allocated and zeroed when a driver is attached, based
2388 * on the size field of the driver.
2389 */
2390void *
2391device_get_softc(device_t dev)
2392{
2393	return (dev->softc);
2394}
2395
2396/**
2397 * @brief Set the device's softc field
2398 *
2399 * Most drivers do not need to use this since the softc is allocated
2400 * automatically when the driver is attached.
2401 */
2402void
2403device_set_softc(device_t dev, void *softc)
2404{
2405	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2406		free(dev->softc, M_BUS_SC);
2407	dev->softc = softc;
2408	if (dev->softc)
2409		dev->flags |= DF_EXTERNALSOFTC;
2410	else
2411		dev->flags &= ~DF_EXTERNALSOFTC;
2412}
2413
2414/**
2415 * @brief Free claimed softc
2416 *
2417 * Most drivers do not need to use this since the softc is freed
2418 * automatically when the driver is detached.
2419 */
2420void
2421device_free_softc(void *softc)
2422{
2423	free(softc, M_BUS_SC);
2424}
2425
2426/**
2427 * @brief Claim softc
2428 *
2429 * This function can be used to let the driver free the automatically
2430 * allocated softc using "device_free_softc()". This function is
2431 * useful when the driver is refcounting the softc and the softc
2432 * cannot be freed when the "device_detach" method is called.
2433 */
2434void
2435device_claim_softc(device_t dev)
2436{
2437	if (dev->softc)
2438		dev->flags |= DF_EXTERNALSOFTC;
2439	else
2440		dev->flags &= ~DF_EXTERNALSOFTC;
2441}
2442
2443/**
2444 * @brief Get the device's ivars field
2445 *
2446 * The ivars field is used by the parent device to store per-device
2447 * state (e.g. the physical location of the device or a list of
2448 * resources).
2449 */
2450void *
2451device_get_ivars(device_t dev)
2452{
2453
2454	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2455	return (dev->ivars);
2456}
2457
2458/**
2459 * @brief Set the device's ivars field
2460 */
2461void
2462device_set_ivars(device_t dev, void * ivars)
2463{
2464
2465	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2466	dev->ivars = ivars;
2467}
2468
2469/**
2470 * @brief Return the device's state
2471 */
2472device_state_t
2473device_get_state(device_t dev)
2474{
2475	return (dev->state);
2476}
2477
2478/**
2479 * @brief Set the DF_ENABLED flag for the device
2480 */
2481void
2482device_enable(device_t dev)
2483{
2484	dev->flags |= DF_ENABLED;
2485}
2486
2487/**
2488 * @brief Clear the DF_ENABLED flag for the device
2489 */
2490void
2491device_disable(device_t dev)
2492{
2493	dev->flags &= ~DF_ENABLED;
2494}
2495
2496/**
2497 * @brief Increment the busy counter for the device
2498 */
2499void
2500device_busy(device_t dev)
2501{
2502	if (dev->state < DS_ATTACHING)
2503		panic("device_busy: called for unattached device");
2504	if (dev->busy == 0 && dev->parent)
2505		device_busy(dev->parent);
2506	dev->busy++;
2507	if (dev->state == DS_ATTACHED)
2508		dev->state = DS_BUSY;
2509}
2510
2511/**
2512 * @brief Decrement the busy counter for the device
2513 */
2514void
2515device_unbusy(device_t dev)
2516{
2517	if (dev->busy != 0 && dev->state != DS_BUSY &&
2518	    dev->state != DS_ATTACHING)
2519		panic("device_unbusy: called for non-busy device %s",
2520		    device_get_nameunit(dev));
2521	dev->busy--;
2522	if (dev->busy == 0) {
2523		if (dev->parent)
2524			device_unbusy(dev->parent);
2525		if (dev->state == DS_BUSY)
2526			dev->state = DS_ATTACHED;
2527	}
2528}
2529
2530/**
2531 * @brief Set the DF_QUIET flag for the device
2532 */
2533void
2534device_quiet(device_t dev)
2535{
2536	dev->flags |= DF_QUIET;
2537}
2538
2539/**
2540 * @brief Clear the DF_QUIET flag for the device
2541 */
2542void
2543device_verbose(device_t dev)
2544{
2545	dev->flags &= ~DF_QUIET;
2546}
2547
2548/**
2549 * @brief Return non-zero if the DF_QUIET flag is set on the device
2550 */
2551int
2552device_is_quiet(device_t dev)
2553{
2554	return ((dev->flags & DF_QUIET) != 0);
2555}
2556
2557/**
2558 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2559 */
2560int
2561device_is_enabled(device_t dev)
2562{
2563	return ((dev->flags & DF_ENABLED) != 0);
2564}
2565
2566/**
2567 * @brief Return non-zero if the device was successfully probed
2568 */
2569int
2570device_is_alive(device_t dev)
2571{
2572	return (dev->state >= DS_ALIVE);
2573}
2574
2575/**
2576 * @brief Return non-zero if the device currently has a driver
2577 * attached to it
2578 */
2579int
2580device_is_attached(device_t dev)
2581{
2582	return (dev->state >= DS_ATTACHED);
2583}
2584
2585/**
2586 * @brief Set the devclass of a device
2587 * @see devclass_add_device().
2588 */
2589int
2590device_set_devclass(device_t dev, const char *classname)
2591{
2592	devclass_t dc;
2593	int error;
2594
2595	if (!classname) {
2596		if (dev->devclass)
2597			devclass_delete_device(dev->devclass, dev);
2598		return (0);
2599	}
2600
2601	if (dev->devclass) {
2602		printf("device_set_devclass: device class already set\n");
2603		return (EINVAL);
2604	}
2605
2606	dc = devclass_find_internal(classname, NULL, TRUE);
2607	if (!dc)
2608		return (ENOMEM);
2609
2610	error = devclass_add_device(dc, dev);
2611
2612	bus_data_generation_update();
2613	return (error);
2614}
2615
2616/**
2617 * @brief Set the driver of a device
2618 *
2619 * @retval 0		success
2620 * @retval EBUSY	the device already has a driver attached
2621 * @retval ENOMEM	a memory allocation failure occurred
2622 */
2623int
2624device_set_driver(device_t dev, driver_t *driver)
2625{
2626	if (dev->state >= DS_ATTACHED)
2627		return (EBUSY);
2628
2629	if (dev->driver == driver)
2630		return (0);
2631
2632	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2633		free(dev->softc, M_BUS_SC);
2634		dev->softc = NULL;
2635	}
2636	device_set_desc(dev, NULL);
2637	kobj_delete((kobj_t) dev, NULL);
2638	dev->driver = driver;
2639	if (driver) {
2640		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2641		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2642			dev->softc = malloc(driver->size, M_BUS_SC,
2643			    M_NOWAIT | M_ZERO);
2644			if (!dev->softc) {
2645				kobj_delete((kobj_t) dev, NULL);
2646				kobj_init((kobj_t) dev, &null_class);
2647				dev->driver = NULL;
2648				return (ENOMEM);
2649			}
2650		}
2651	} else {
2652		kobj_init((kobj_t) dev, &null_class);
2653	}
2654
2655	bus_data_generation_update();
2656	return (0);
2657}
2658
2659/**
2660 * @brief Probe a device, and return this status.
2661 *
2662 * This function is the core of the device autoconfiguration
2663 * system. Its purpose is to select a suitable driver for a device and
2664 * then call that driver to initialise the hardware appropriately. The
2665 * driver is selected by calling the DEVICE_PROBE() method of a set of
2666 * candidate drivers and then choosing the driver which returned the
2667 * best value. This driver is then attached to the device using
2668 * device_attach().
2669 *
2670 * The set of suitable drivers is taken from the list of drivers in
2671 * the parent device's devclass. If the device was originally created
2672 * with a specific class name (see device_add_child()), only drivers
2673 * with that name are probed, otherwise all drivers in the devclass
2674 * are probed. If no drivers return successful probe values in the
2675 * parent devclass, the search continues in the parent of that
2676 * devclass (see devclass_get_parent()) if any.
2677 *
2678 * @param dev		the device to initialise
2679 *
2680 * @retval 0		success
2681 * @retval ENXIO	no driver was found
2682 * @retval ENOMEM	memory allocation failure
2683 * @retval non-zero	some other unix error code
2684 * @retval -1		Device already attached
2685 */
2686int
2687device_probe(device_t dev)
2688{
2689	int error;
2690
2691	GIANT_REQUIRED;
2692
2693	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2694		return (-1);
2695
2696	if (!(dev->flags & DF_ENABLED)) {
2697		if (bootverbose && device_get_name(dev) != NULL) {
2698			device_print_prettyname(dev);
2699			printf("not probed (disabled)\n");
2700		}
2701		return (-1);
2702	}
2703	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2704		if (bus_current_pass == BUS_PASS_DEFAULT &&
2705		    !(dev->flags & DF_DONENOMATCH)) {
2706			BUS_PROBE_NOMATCH(dev->parent, dev);
2707			devnomatch(dev);
2708			dev->flags |= DF_DONENOMATCH;
2709		}
2710		return (error);
2711	}
2712	return (0);
2713}
2714
2715/**
2716 * @brief Probe a device and attach a driver if possible
2717 *
2718 * calls device_probe() and attaches if that was successful.
2719 */
2720int
2721device_probe_and_attach(device_t dev)
2722{
2723	int error;
2724
2725	GIANT_REQUIRED;
2726
2727	error = device_probe(dev);
2728	if (error == -1)
2729		return (0);
2730	else if (error != 0)
2731		return (error);
2732
2733	CURVNET_SET_QUIET(vnet0);
2734	error = device_attach(dev);
2735	CURVNET_RESTORE();
2736	return error;
2737}
2738
2739/**
2740 * @brief Attach a device driver to a device
2741 *
2742 * This function is a wrapper around the DEVICE_ATTACH() driver
2743 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2744 * device's sysctl tree, optionally prints a description of the device
2745 * and queues a notification event for user-based device management
2746 * services.
2747 *
2748 * Normally this function is only called internally from
2749 * device_probe_and_attach().
2750 *
2751 * @param dev		the device to initialise
2752 *
2753 * @retval 0		success
2754 * @retval ENXIO	no driver was found
2755 * @retval ENOMEM	memory allocation failure
2756 * @retval non-zero	some other unix error code
2757 */
2758int
2759device_attach(device_t dev)
2760{
2761	int error;
2762
2763	if (resource_disabled(dev->driver->name, dev->unit)) {
2764		device_disable(dev);
2765		if (bootverbose)
2766			 device_printf(dev, "disabled via hints entry\n");
2767		return (ENXIO);
2768	}
2769
2770	device_sysctl_init(dev);
2771	if (!device_is_quiet(dev))
2772		device_print_child(dev->parent, dev);
2773	dev->state = DS_ATTACHING;
2774	if ((error = DEVICE_ATTACH(dev)) != 0) {
2775		printf("device_attach: %s%d attach returned %d\n",
2776		    dev->driver->name, dev->unit, error);
2777		if (!(dev->flags & DF_FIXEDCLASS))
2778			devclass_delete_device(dev->devclass, dev);
2779		(void)device_set_driver(dev, NULL);
2780		device_sysctl_fini(dev);
2781		KASSERT(dev->busy == 0, ("attach failed but busy"));
2782		dev->state = DS_NOTPRESENT;
2783		return (error);
2784	}
2785	device_sysctl_update(dev);
2786	if (dev->busy)
2787		dev->state = DS_BUSY;
2788	else
2789		dev->state = DS_ATTACHED;
2790	dev->flags &= ~DF_DONENOMATCH;
2791	devadded(dev);
2792	return (0);
2793}
2794
2795/**
2796 * @brief Detach a driver from a device
2797 *
2798 * This function is a wrapper around the DEVICE_DETACH() driver
2799 * method. If the call to DEVICE_DETACH() succeeds, it calls
2800 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2801 * notification event for user-based device management services and
2802 * cleans up the device's sysctl tree.
2803 *
2804 * @param dev		the device to un-initialise
2805 *
2806 * @retval 0		success
2807 * @retval ENXIO	no driver was found
2808 * @retval ENOMEM	memory allocation failure
2809 * @retval non-zero	some other unix error code
2810 */
2811int
2812device_detach(device_t dev)
2813{
2814	int error;
2815
2816	GIANT_REQUIRED;
2817
2818	PDEBUG(("%s", DEVICENAME(dev)));
2819	if (dev->state == DS_BUSY)
2820		return (EBUSY);
2821	if (dev->state != DS_ATTACHED)
2822		return (0);
2823
2824	if ((error = DEVICE_DETACH(dev)) != 0)
2825		return (error);
2826	devremoved(dev);
2827	if (!device_is_quiet(dev))
2828		device_printf(dev, "detached\n");
2829	if (dev->parent)
2830		BUS_CHILD_DETACHED(dev->parent, dev);
2831
2832	if (!(dev->flags & DF_FIXEDCLASS))
2833		devclass_delete_device(dev->devclass, dev);
2834
2835	dev->state = DS_NOTPRESENT;
2836	(void)device_set_driver(dev, NULL);
2837	device_sysctl_fini(dev);
2838
2839	return (0);
2840}
2841
2842/**
2843 * @brief Tells a driver to quiesce itself.
2844 *
2845 * This function is a wrapper around the DEVICE_QUIESCE() driver
2846 * method. If the call to DEVICE_QUIESCE() succeeds.
2847 *
2848 * @param dev		the device to quiesce
2849 *
2850 * @retval 0		success
2851 * @retval ENXIO	no driver was found
2852 * @retval ENOMEM	memory allocation failure
2853 * @retval non-zero	some other unix error code
2854 */
2855int
2856device_quiesce(device_t dev)
2857{
2858
2859	PDEBUG(("%s", DEVICENAME(dev)));
2860	if (dev->state == DS_BUSY)
2861		return (EBUSY);
2862	if (dev->state != DS_ATTACHED)
2863		return (0);
2864
2865	return (DEVICE_QUIESCE(dev));
2866}
2867
2868/**
2869 * @brief Notify a device of system shutdown
2870 *
2871 * This function calls the DEVICE_SHUTDOWN() driver method if the
2872 * device currently has an attached driver.
2873 *
2874 * @returns the value returned by DEVICE_SHUTDOWN()
2875 */
2876int
2877device_shutdown(device_t dev)
2878{
2879	if (dev->state < DS_ATTACHED)
2880		return (0);
2881	return (DEVICE_SHUTDOWN(dev));
2882}
2883
2884/**
2885 * @brief Set the unit number of a device
2886 *
2887 * This function can be used to override the unit number used for a
2888 * device (e.g. to wire a device to a pre-configured unit number).
2889 */
2890int
2891device_set_unit(device_t dev, int unit)
2892{
2893	devclass_t dc;
2894	int err;
2895
2896	dc = device_get_devclass(dev);
2897	if (unit < dc->maxunit && dc->devices[unit])
2898		return (EBUSY);
2899	err = devclass_delete_device(dc, dev);
2900	if (err)
2901		return (err);
2902	dev->unit = unit;
2903	err = devclass_add_device(dc, dev);
2904	if (err)
2905		return (err);
2906
2907	bus_data_generation_update();
2908	return (0);
2909}
2910
2911/*======================================*/
2912/*
2913 * Some useful method implementations to make life easier for bus drivers.
2914 */
2915
2916/**
2917 * @brief Initialise a resource list.
2918 *
2919 * @param rl		the resource list to initialise
2920 */
2921void
2922resource_list_init(struct resource_list *rl)
2923{
2924	STAILQ_INIT(rl);
2925}
2926
2927/**
2928 * @brief Reclaim memory used by a resource list.
2929 *
2930 * This function frees the memory for all resource entries on the list
2931 * (if any).
2932 *
2933 * @param rl		the resource list to free
2934 */
2935void
2936resource_list_free(struct resource_list *rl)
2937{
2938	struct resource_list_entry *rle;
2939
2940	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2941		if (rle->res)
2942			panic("resource_list_free: resource entry is busy");
2943		STAILQ_REMOVE_HEAD(rl, link);
2944		free(rle, M_BUS);
2945	}
2946}
2947
2948/**
2949 * @brief Add a resource entry.
2950 *
2951 * This function adds a resource entry using the given @p type, @p
2952 * start, @p end and @p count values. A rid value is chosen by
2953 * searching sequentially for the first unused rid starting at zero.
2954 *
2955 * @param rl		the resource list to edit
2956 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2957 * @param start		the start address of the resource
2958 * @param end		the end address of the resource
2959 * @param count		XXX end-start+1
2960 */
2961int
2962resource_list_add_next(struct resource_list *rl, int type, u_long start,
2963    u_long end, u_long count)
2964{
2965	int rid;
2966
2967	rid = 0;
2968	while (resource_list_find(rl, type, rid) != NULL)
2969		rid++;
2970	resource_list_add(rl, type, rid, start, end, count);
2971	return (rid);
2972}
2973
2974/**
2975 * @brief Add or modify a resource entry.
2976 *
2977 * If an existing entry exists with the same type and rid, it will be
2978 * modified using the given values of @p start, @p end and @p
2979 * count. If no entry exists, a new one will be created using the
2980 * given values.  The resource list entry that matches is then returned.
2981 *
2982 * @param rl		the resource list to edit
2983 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2984 * @param rid		the resource identifier
2985 * @param start		the start address of the resource
2986 * @param end		the end address of the resource
2987 * @param count		XXX end-start+1
2988 */
2989struct resource_list_entry *
2990resource_list_add(struct resource_list *rl, int type, int rid,
2991    u_long start, u_long end, u_long count)
2992{
2993	struct resource_list_entry *rle;
2994
2995	rle = resource_list_find(rl, type, rid);
2996	if (!rle) {
2997		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2998		    M_NOWAIT);
2999		if (!rle)
3000			panic("resource_list_add: can't record entry");
3001		STAILQ_INSERT_TAIL(rl, rle, link);
3002		rle->type = type;
3003		rle->rid = rid;
3004		rle->res = NULL;
3005		rle->flags = 0;
3006	}
3007
3008	if (rle->res)
3009		panic("resource_list_add: resource entry is busy");
3010
3011	rle->start = start;
3012	rle->end = end;
3013	rle->count = count;
3014	return (rle);
3015}
3016
3017/**
3018 * @brief Determine if a resource entry is busy.
3019 *
3020 * Returns true if a resource entry is busy meaning that it has an
3021 * associated resource that is not an unallocated "reserved" resource.
3022 *
3023 * @param rl		the resource list to search
3024 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3025 * @param rid		the resource identifier
3026 *
3027 * @returns Non-zero if the entry is busy, zero otherwise.
3028 */
3029int
3030resource_list_busy(struct resource_list *rl, int type, int rid)
3031{
3032	struct resource_list_entry *rle;
3033
3034	rle = resource_list_find(rl, type, rid);
3035	if (rle == NULL || rle->res == NULL)
3036		return (0);
3037	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3038		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3039		    ("reserved resource is active"));
3040		return (0);
3041	}
3042	return (1);
3043}
3044
3045/**
3046 * @brief Determine if a resource entry is reserved.
3047 *
3048 * Returns true if a resource entry is reserved meaning that it has an
3049 * associated "reserved" resource.  The resource can either be
3050 * allocated or unallocated.
3051 *
3052 * @param rl		the resource list to search
3053 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3054 * @param rid		the resource identifier
3055 *
3056 * @returns Non-zero if the entry is reserved, zero otherwise.
3057 */
3058int
3059resource_list_reserved(struct resource_list *rl, int type, int rid)
3060{
3061	struct resource_list_entry *rle;
3062
3063	rle = resource_list_find(rl, type, rid);
3064	if (rle != NULL && rle->flags & RLE_RESERVED)
3065		return (1);
3066	return (0);
3067}
3068
3069/**
3070 * @brief Find a resource entry by type and rid.
3071 *
3072 * @param rl		the resource list to search
3073 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3074 * @param rid		the resource identifier
3075 *
3076 * @returns the resource entry pointer or NULL if there is no such
3077 * entry.
3078 */
3079struct resource_list_entry *
3080resource_list_find(struct resource_list *rl, int type, int rid)
3081{
3082	struct resource_list_entry *rle;
3083
3084	STAILQ_FOREACH(rle, rl, link) {
3085		if (rle->type == type && rle->rid == rid)
3086			return (rle);
3087	}
3088	return (NULL);
3089}
3090
3091/**
3092 * @brief Delete a resource entry.
3093 *
3094 * @param rl		the resource list to edit
3095 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3096 * @param rid		the resource identifier
3097 */
3098void
3099resource_list_delete(struct resource_list *rl, int type, int rid)
3100{
3101	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3102
3103	if (rle) {
3104		if (rle->res != NULL)
3105			panic("resource_list_delete: resource has not been released");
3106		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3107		free(rle, M_BUS);
3108	}
3109}
3110
3111/**
3112 * @brief Allocate a reserved resource
3113 *
3114 * This can be used by busses to force the allocation of resources
3115 * that are always active in the system even if they are not allocated
3116 * by a driver (e.g. PCI BARs).  This function is usually called when
3117 * adding a new child to the bus.  The resource is allocated from the
3118 * parent bus when it is reserved.  The resource list entry is marked
3119 * with RLE_RESERVED to note that it is a reserved resource.
3120 *
3121 * Subsequent attempts to allocate the resource with
3122 * resource_list_alloc() will succeed the first time and will set
3123 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3124 * resource that has been allocated is released with
3125 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3126 * the actual resource remains allocated.  The resource can be released to
3127 * the parent bus by calling resource_list_unreserve().
3128 *
3129 * @param rl		the resource list to allocate from
3130 * @param bus		the parent device of @p child
3131 * @param child		the device for which the resource is being reserved
3132 * @param type		the type of resource to allocate
3133 * @param rid		a pointer to the resource identifier
3134 * @param start		hint at the start of the resource range - pass
3135 *			@c 0UL for any start address
3136 * @param end		hint at the end of the resource range - pass
3137 *			@c ~0UL for any end address
3138 * @param count		hint at the size of range required - pass @c 1
3139 *			for any size
3140 * @param flags		any extra flags to control the resource
3141 *			allocation - see @c RF_XXX flags in
3142 *			<sys/rman.h> for details
3143 *
3144 * @returns		the resource which was allocated or @c NULL if no
3145 *			resource could be allocated
3146 */
3147struct resource *
3148resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3149    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3150{
3151	struct resource_list_entry *rle = NULL;
3152	int passthrough = (device_get_parent(child) != bus);
3153	struct resource *r;
3154
3155	if (passthrough)
3156		panic(
3157    "resource_list_reserve() should only be called for direct children");
3158	if (flags & RF_ACTIVE)
3159		panic(
3160    "resource_list_reserve() should only reserve inactive resources");
3161
3162	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3163	    flags);
3164	if (r != NULL) {
3165		rle = resource_list_find(rl, type, *rid);
3166		rle->flags |= RLE_RESERVED;
3167	}
3168	return (r);
3169}
3170
3171/**
3172 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3173 *
3174 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3175 * and passing the allocation up to the parent of @p bus. This assumes
3176 * that the first entry of @c device_get_ivars(child) is a struct
3177 * resource_list. This also handles 'passthrough' allocations where a
3178 * child is a remote descendant of bus by passing the allocation up to
3179 * the parent of bus.
3180 *
3181 * Typically, a bus driver would store a list of child resources
3182 * somewhere in the child device's ivars (see device_get_ivars()) and
3183 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3184 * then call resource_list_alloc() to perform the allocation.
3185 *
3186 * @param rl		the resource list to allocate from
3187 * @param bus		the parent device of @p child
3188 * @param child		the device which is requesting an allocation
3189 * @param type		the type of resource to allocate
3190 * @param rid		a pointer to the resource identifier
3191 * @param start		hint at the start of the resource range - pass
3192 *			@c 0UL for any start address
3193 * @param end		hint at the end of the resource range - pass
3194 *			@c ~0UL for any end address
3195 * @param count		hint at the size of range required - pass @c 1
3196 *			for any size
3197 * @param flags		any extra flags to control the resource
3198 *			allocation - see @c RF_XXX flags in
3199 *			<sys/rman.h> for details
3200 *
3201 * @returns		the resource which was allocated or @c NULL if no
3202 *			resource could be allocated
3203 */
3204struct resource *
3205resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3206    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3207{
3208	struct resource_list_entry *rle = NULL;
3209	int passthrough = (device_get_parent(child) != bus);
3210	int isdefault = (start == 0UL && end == ~0UL);
3211
3212	if (passthrough) {
3213		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3214		    type, rid, start, end, count, flags));
3215	}
3216
3217	rle = resource_list_find(rl, type, *rid);
3218
3219	if (!rle)
3220		return (NULL);		/* no resource of that type/rid */
3221
3222	if (rle->res) {
3223		if (rle->flags & RLE_RESERVED) {
3224			if (rle->flags & RLE_ALLOCATED)
3225				return (NULL);
3226			if ((flags & RF_ACTIVE) &&
3227			    bus_activate_resource(child, type, *rid,
3228			    rle->res) != 0)
3229				return (NULL);
3230			rle->flags |= RLE_ALLOCATED;
3231			return (rle->res);
3232		}
3233		panic("resource_list_alloc: resource entry is busy");
3234	}
3235
3236	if (isdefault) {
3237		start = rle->start;
3238		count = ulmax(count, rle->count);
3239		end = ulmax(rle->end, start + count - 1);
3240	}
3241
3242	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3243	    type, rid, start, end, count, flags);
3244
3245	/*
3246	 * Record the new range.
3247	 */
3248	if (rle->res) {
3249		rle->start = rman_get_start(rle->res);
3250		rle->end = rman_get_end(rle->res);
3251		rle->count = count;
3252	}
3253
3254	return (rle->res);
3255}
3256
3257/**
3258 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3259 *
3260 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3261 * used with resource_list_alloc().
3262 *
3263 * @param rl		the resource list which was allocated from
3264 * @param bus		the parent device of @p child
3265 * @param child		the device which is requesting a release
3266 * @param type		the type of resource to release
3267 * @param rid		the resource identifier
3268 * @param res		the resource to release
3269 *
3270 * @retval 0		success
3271 * @retval non-zero	a standard unix error code indicating what
3272 *			error condition prevented the operation
3273 */
3274int
3275resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3276    int type, int rid, struct resource *res)
3277{
3278	struct resource_list_entry *rle = NULL;
3279	int passthrough = (device_get_parent(child) != bus);
3280	int error;
3281
3282	if (passthrough) {
3283		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3284		    type, rid, res));
3285	}
3286
3287	rle = resource_list_find(rl, type, rid);
3288
3289	if (!rle)
3290		panic("resource_list_release: can't find resource");
3291	if (!rle->res)
3292		panic("resource_list_release: resource entry is not busy");
3293	if (rle->flags & RLE_RESERVED) {
3294		if (rle->flags & RLE_ALLOCATED) {
3295			if (rman_get_flags(res) & RF_ACTIVE) {
3296				error = bus_deactivate_resource(child, type,
3297				    rid, res);
3298				if (error)
3299					return (error);
3300			}
3301			rle->flags &= ~RLE_ALLOCATED;
3302			return (0);
3303		}
3304		return (EINVAL);
3305	}
3306
3307	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3308	    type, rid, res);
3309	if (error)
3310		return (error);
3311
3312	rle->res = NULL;
3313	return (0);
3314}
3315
3316/**
3317 * @brief Fully release a reserved resource
3318 *
3319 * Fully releases a resouce reserved via resource_list_reserve().
3320 *
3321 * @param rl		the resource list which was allocated from
3322 * @param bus		the parent device of @p child
3323 * @param child		the device whose reserved resource is being released
3324 * @param type		the type of resource to release
3325 * @param rid		the resource identifier
3326 * @param res		the resource to release
3327 *
3328 * @retval 0		success
3329 * @retval non-zero	a standard unix error code indicating what
3330 *			error condition prevented the operation
3331 */
3332int
3333resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3334    int type, int rid)
3335{
3336	struct resource_list_entry *rle = NULL;
3337	int passthrough = (device_get_parent(child) != bus);
3338
3339	if (passthrough)
3340		panic(
3341    "resource_list_unreserve() should only be called for direct children");
3342
3343	rle = resource_list_find(rl, type, rid);
3344
3345	if (!rle)
3346		panic("resource_list_unreserve: can't find resource");
3347	if (!(rle->flags & RLE_RESERVED))
3348		return (EINVAL);
3349	if (rle->flags & RLE_ALLOCATED)
3350		return (EBUSY);
3351	rle->flags &= ~RLE_RESERVED;
3352	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3353}
3354
3355/**
3356 * @brief Print a description of resources in a resource list
3357 *
3358 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3359 * The name is printed if at least one resource of the given type is available.
3360 * The format is used to print resource start and end.
3361 *
3362 * @param rl		the resource list to print
3363 * @param name		the name of @p type, e.g. @c "memory"
3364 * @param type		type type of resource entry to print
3365 * @param format	printf(9) format string to print resource
3366 *			start and end values
3367 *
3368 * @returns		the number of characters printed
3369 */
3370int
3371resource_list_print_type(struct resource_list *rl, const char *name, int type,
3372    const char *format)
3373{
3374	struct resource_list_entry *rle;
3375	int printed, retval;
3376
3377	printed = 0;
3378	retval = 0;
3379	/* Yes, this is kinda cheating */
3380	STAILQ_FOREACH(rle, rl, link) {
3381		if (rle->type == type) {
3382			if (printed == 0)
3383				retval += printf(" %s ", name);
3384			else
3385				retval += printf(",");
3386			printed++;
3387			retval += printf(format, rle->start);
3388			if (rle->count > 1) {
3389				retval += printf("-");
3390				retval += printf(format, rle->start +
3391						 rle->count - 1);
3392			}
3393		}
3394	}
3395	return (retval);
3396}
3397
3398/**
3399 * @brief Releases all the resources in a list.
3400 *
3401 * @param rl		The resource list to purge.
3402 *
3403 * @returns		nothing
3404 */
3405void
3406resource_list_purge(struct resource_list *rl)
3407{
3408	struct resource_list_entry *rle;
3409
3410	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3411		if (rle->res)
3412			bus_release_resource(rman_get_device(rle->res),
3413			    rle->type, rle->rid, rle->res);
3414		STAILQ_REMOVE_HEAD(rl, link);
3415		free(rle, M_BUS);
3416	}
3417}
3418
3419device_t
3420bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3421{
3422
3423	return (device_add_child_ordered(dev, order, name, unit));
3424}
3425
3426/**
3427 * @brief Helper function for implementing DEVICE_PROBE()
3428 *
3429 * This function can be used to help implement the DEVICE_PROBE() for
3430 * a bus (i.e. a device which has other devices attached to it). It
3431 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3432 * devclass.
3433 */
3434int
3435bus_generic_probe(device_t dev)
3436{
3437	devclass_t dc = dev->devclass;
3438	driverlink_t dl;
3439
3440	TAILQ_FOREACH(dl, &dc->drivers, link) {
3441		/*
3442		 * If this driver's pass is too high, then ignore it.
3443		 * For most drivers in the default pass, this will
3444		 * never be true.  For early-pass drivers they will
3445		 * only call the identify routines of eligible drivers
3446		 * when this routine is called.  Drivers for later
3447		 * passes should have their identify routines called
3448		 * on early-pass busses during BUS_NEW_PASS().
3449		 */
3450		if (dl->pass > bus_current_pass)
3451			continue;
3452		DEVICE_IDENTIFY(dl->driver, dev);
3453	}
3454
3455	return (0);
3456}
3457
3458/**
3459 * @brief Helper function for implementing DEVICE_ATTACH()
3460 *
3461 * This function can be used to help implement the DEVICE_ATTACH() for
3462 * a bus. It calls device_probe_and_attach() for each of the device's
3463 * children.
3464 */
3465int
3466bus_generic_attach(device_t dev)
3467{
3468	device_t child;
3469
3470	TAILQ_FOREACH(child, &dev->children, link) {
3471		device_probe_and_attach(child);
3472	}
3473
3474	return (0);
3475}
3476
3477/**
3478 * @brief Helper function for implementing DEVICE_DETACH()
3479 *
3480 * This function can be used to help implement the DEVICE_DETACH() for
3481 * a bus. It calls device_detach() for each of the device's
3482 * children.
3483 */
3484int
3485bus_generic_detach(device_t dev)
3486{
3487	device_t child;
3488	int error;
3489
3490	if (dev->state != DS_ATTACHED)
3491		return (EBUSY);
3492
3493	TAILQ_FOREACH(child, &dev->children, link) {
3494		if ((error = device_detach(child)) != 0)
3495			return (error);
3496	}
3497
3498	return (0);
3499}
3500
3501/**
3502 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3503 *
3504 * This function can be used to help implement the DEVICE_SHUTDOWN()
3505 * for a bus. It calls device_shutdown() for each of the device's
3506 * children.
3507 */
3508int
3509bus_generic_shutdown(device_t dev)
3510{
3511	device_t child;
3512
3513	TAILQ_FOREACH(child, &dev->children, link) {
3514		device_shutdown(child);
3515	}
3516
3517	return (0);
3518}
3519
3520/**
3521 * @brief Helper function for implementing DEVICE_SUSPEND()
3522 *
3523 * This function can be used to help implement the DEVICE_SUSPEND()
3524 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3525 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3526 * operation is aborted and any devices which were suspended are
3527 * resumed immediately by calling their DEVICE_RESUME() methods.
3528 */
3529int
3530bus_generic_suspend(device_t dev)
3531{
3532	int		error;
3533	device_t	child, child2;
3534
3535	TAILQ_FOREACH(child, &dev->children, link) {
3536		error = DEVICE_SUSPEND(child);
3537		if (error) {
3538			for (child2 = TAILQ_FIRST(&dev->children);
3539			     child2 && child2 != child;
3540			     child2 = TAILQ_NEXT(child2, link))
3541				DEVICE_RESUME(child2);
3542			return (error);
3543		}
3544	}
3545	return (0);
3546}
3547
3548/**
3549 * @brief Helper function for implementing DEVICE_RESUME()
3550 *
3551 * This function can be used to help implement the DEVICE_RESUME() for
3552 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3553 */
3554int
3555bus_generic_resume(device_t dev)
3556{
3557	device_t	child;
3558
3559	TAILQ_FOREACH(child, &dev->children, link) {
3560		DEVICE_RESUME(child);
3561		/* if resume fails, there's nothing we can usefully do... */
3562	}
3563	return (0);
3564}
3565
3566/**
3567 * @brief Helper function for implementing BUS_PRINT_CHILD().
3568 *
3569 * This function prints the first part of the ascii representation of
3570 * @p child, including its name, unit and description (if any - see
3571 * device_set_desc()).
3572 *
3573 * @returns the number of characters printed
3574 */
3575int
3576bus_print_child_header(device_t dev, device_t child)
3577{
3578	int	retval = 0;
3579
3580	if (device_get_desc(child)) {
3581		retval += device_printf(child, "<%s>", device_get_desc(child));
3582	} else {
3583		retval += printf("%s", device_get_nameunit(child));
3584	}
3585
3586	return (retval);
3587}
3588
3589/**
3590 * @brief Helper function for implementing BUS_PRINT_CHILD().
3591 *
3592 * This function prints the last part of the ascii representation of
3593 * @p child, which consists of the string @c " on " followed by the
3594 * name and unit of the @p dev.
3595 *
3596 * @returns the number of characters printed
3597 */
3598int
3599bus_print_child_footer(device_t dev, device_t child)
3600{
3601	return (printf(" on %s\n", device_get_nameunit(dev)));
3602}
3603
3604/**
3605 * @brief Helper function for implementing BUS_PRINT_CHILD().
3606 *
3607 * This function simply calls bus_print_child_header() followed by
3608 * bus_print_child_footer().
3609 *
3610 * @returns the number of characters printed
3611 */
3612int
3613bus_generic_print_child(device_t dev, device_t child)
3614{
3615	int	retval = 0;
3616
3617	retval += bus_print_child_header(dev, child);
3618	retval += bus_print_child_footer(dev, child);
3619
3620	return (retval);
3621}
3622
3623/**
3624 * @brief Stub function for implementing BUS_READ_IVAR().
3625 *
3626 * @returns ENOENT
3627 */
3628int
3629bus_generic_read_ivar(device_t dev, device_t child, int index,
3630    uintptr_t * result)
3631{
3632	return (ENOENT);
3633}
3634
3635/**
3636 * @brief Stub function for implementing BUS_WRITE_IVAR().
3637 *
3638 * @returns ENOENT
3639 */
3640int
3641bus_generic_write_ivar(device_t dev, device_t child, int index,
3642    uintptr_t value)
3643{
3644	return (ENOENT);
3645}
3646
3647/**
3648 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3649 *
3650 * @returns NULL
3651 */
3652struct resource_list *
3653bus_generic_get_resource_list(device_t dev, device_t child)
3654{
3655	return (NULL);
3656}
3657
3658/**
3659 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3660 *
3661 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3662 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3663 * and then calls device_probe_and_attach() for each unattached child.
3664 */
3665void
3666bus_generic_driver_added(device_t dev, driver_t *driver)
3667{
3668	device_t child;
3669
3670	DEVICE_IDENTIFY(driver, dev);
3671	TAILQ_FOREACH(child, &dev->children, link) {
3672		if (child->state == DS_NOTPRESENT ||
3673		    (child->flags & DF_REBID))
3674			device_probe_and_attach(child);
3675	}
3676}
3677
3678/**
3679 * @brief Helper function for implementing BUS_NEW_PASS().
3680 *
3681 * This implementing of BUS_NEW_PASS() first calls the identify
3682 * routines for any drivers that probe at the current pass.  Then it
3683 * walks the list of devices for this bus.  If a device is already
3684 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3685 * device is not already attached, it attempts to attach a driver to
3686 * it.
3687 */
3688void
3689bus_generic_new_pass(device_t dev)
3690{
3691	driverlink_t dl;
3692	devclass_t dc;
3693	device_t child;
3694
3695	dc = dev->devclass;
3696	TAILQ_FOREACH(dl, &dc->drivers, link) {
3697		if (dl->pass == bus_current_pass)
3698			DEVICE_IDENTIFY(dl->driver, dev);
3699	}
3700	TAILQ_FOREACH(child, &dev->children, link) {
3701		if (child->state >= DS_ATTACHED)
3702			BUS_NEW_PASS(child);
3703		else if (child->state == DS_NOTPRESENT)
3704			device_probe_and_attach(child);
3705	}
3706}
3707
3708/**
3709 * @brief Helper function for implementing BUS_SETUP_INTR().
3710 *
3711 * This simple implementation of BUS_SETUP_INTR() simply calls the
3712 * BUS_SETUP_INTR() method of the parent of @p dev.
3713 */
3714int
3715bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3716    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3717    void **cookiep)
3718{
3719	/* Propagate up the bus hierarchy until someone handles it. */
3720	if (dev->parent)
3721		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3722		    filter, intr, arg, cookiep));
3723	return (EINVAL);
3724}
3725
3726/**
3727 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3728 *
3729 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3730 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3731 */
3732int
3733bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3734    void *cookie)
3735{
3736	/* Propagate up the bus hierarchy until someone handles it. */
3737	if (dev->parent)
3738		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3739	return (EINVAL);
3740}
3741
3742/**
3743 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3744 *
3745 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3746 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3747 */
3748int
3749bus_generic_adjust_resource(device_t dev, device_t child, int type,
3750    struct resource *r, u_long start, u_long end)
3751{
3752	/* Propagate up the bus hierarchy until someone handles it. */
3753	if (dev->parent)
3754		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3755		    end));
3756	return (EINVAL);
3757}
3758
3759/**
3760 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3761 *
3762 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3763 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3764 */
3765struct resource *
3766bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3767    u_long start, u_long end, u_long count, u_int flags)
3768{
3769	/* Propagate up the bus hierarchy until someone handles it. */
3770	if (dev->parent)
3771		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3772		    start, end, count, flags));
3773	return (NULL);
3774}
3775
3776/**
3777 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3778 *
3779 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3780 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3781 */
3782int
3783bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3784    struct resource *r)
3785{
3786	/* Propagate up the bus hierarchy until someone handles it. */
3787	if (dev->parent)
3788		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3789		    r));
3790	return (EINVAL);
3791}
3792
3793/**
3794 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3795 *
3796 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3797 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3798 */
3799int
3800bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3801    struct resource *r)
3802{
3803	/* Propagate up the bus hierarchy until someone handles it. */
3804	if (dev->parent)
3805		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3806		    r));
3807	return (EINVAL);
3808}
3809
3810/**
3811 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3812 *
3813 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3814 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3815 */
3816int
3817bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3818    int rid, struct resource *r)
3819{
3820	/* Propagate up the bus hierarchy until someone handles it. */
3821	if (dev->parent)
3822		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3823		    r));
3824	return (EINVAL);
3825}
3826
3827/**
3828 * @brief Helper function for implementing BUS_BIND_INTR().
3829 *
3830 * This simple implementation of BUS_BIND_INTR() simply calls the
3831 * BUS_BIND_INTR() method of the parent of @p dev.
3832 */
3833int
3834bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3835    int cpu)
3836{
3837
3838	/* Propagate up the bus hierarchy until someone handles it. */
3839	if (dev->parent)
3840		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3841	return (EINVAL);
3842}
3843
3844/**
3845 * @brief Helper function for implementing BUS_CONFIG_INTR().
3846 *
3847 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3848 * BUS_CONFIG_INTR() method of the parent of @p dev.
3849 */
3850int
3851bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3852    enum intr_polarity pol)
3853{
3854
3855	/* Propagate up the bus hierarchy until someone handles it. */
3856	if (dev->parent)
3857		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3858	return (EINVAL);
3859}
3860
3861/**
3862 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3863 *
3864 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3865 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3866 */
3867int
3868bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3869    void *cookie, const char *descr)
3870{
3871
3872	/* Propagate up the bus hierarchy until someone handles it. */
3873	if (dev->parent)
3874		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3875		    descr));
3876	return (EINVAL);
3877}
3878
3879/**
3880 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3881 *
3882 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3883 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3884 */
3885bus_dma_tag_t
3886bus_generic_get_dma_tag(device_t dev, device_t child)
3887{
3888
3889	/* Propagate up the bus hierarchy until someone handles it. */
3890	if (dev->parent != NULL)
3891		return (BUS_GET_DMA_TAG(dev->parent, child));
3892	return (NULL);
3893}
3894
3895/**
3896 * @brief Helper function for implementing BUS_GET_RESOURCE().
3897 *
3898 * This implementation of BUS_GET_RESOURCE() uses the
3899 * resource_list_find() function to do most of the work. It calls
3900 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3901 * search.
3902 */
3903int
3904bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3905    u_long *startp, u_long *countp)
3906{
3907	struct resource_list *		rl = NULL;
3908	struct resource_list_entry *	rle = NULL;
3909
3910	rl = BUS_GET_RESOURCE_LIST(dev, child);
3911	if (!rl)
3912		return (EINVAL);
3913
3914	rle = resource_list_find(rl, type, rid);
3915	if (!rle)
3916		return (ENOENT);
3917
3918	if (startp)
3919		*startp = rle->start;
3920	if (countp)
3921		*countp = rle->count;
3922
3923	return (0);
3924}
3925
3926/**
3927 * @brief Helper function for implementing BUS_SET_RESOURCE().
3928 *
3929 * This implementation of BUS_SET_RESOURCE() uses the
3930 * resource_list_add() function to do most of the work. It calls
3931 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3932 * edit.
3933 */
3934int
3935bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3936    u_long start, u_long count)
3937{
3938	struct resource_list *		rl = NULL;
3939
3940	rl = BUS_GET_RESOURCE_LIST(dev, child);
3941	if (!rl)
3942		return (EINVAL);
3943
3944	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3945
3946	return (0);
3947}
3948
3949/**
3950 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3951 *
3952 * This implementation of BUS_DELETE_RESOURCE() uses the
3953 * resource_list_delete() function to do most of the work. It calls
3954 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3955 * edit.
3956 */
3957void
3958bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3959{
3960	struct resource_list *		rl = NULL;
3961
3962	rl = BUS_GET_RESOURCE_LIST(dev, child);
3963	if (!rl)
3964		return;
3965
3966	resource_list_delete(rl, type, rid);
3967
3968	return;
3969}
3970
3971/**
3972 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3973 *
3974 * This implementation of BUS_RELEASE_RESOURCE() uses the
3975 * resource_list_release() function to do most of the work. It calls
3976 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3977 */
3978int
3979bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3980    int rid, struct resource *r)
3981{
3982	struct resource_list *		rl = NULL;
3983
3984	if (device_get_parent(child) != dev)
3985		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3986		    type, rid, r));
3987
3988	rl = BUS_GET_RESOURCE_LIST(dev, child);
3989	if (!rl)
3990		return (EINVAL);
3991
3992	return (resource_list_release(rl, dev, child, type, rid, r));
3993}
3994
3995/**
3996 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3997 *
3998 * This implementation of BUS_ALLOC_RESOURCE() uses the
3999 * resource_list_alloc() function to do most of the work. It calls
4000 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4001 */
4002struct resource *
4003bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4004    int *rid, u_long start, u_long end, u_long count, u_int flags)
4005{
4006	struct resource_list *		rl = NULL;
4007
4008	if (device_get_parent(child) != dev)
4009		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4010		    type, rid, start, end, count, flags));
4011
4012	rl = BUS_GET_RESOURCE_LIST(dev, child);
4013	if (!rl)
4014		return (NULL);
4015
4016	return (resource_list_alloc(rl, dev, child, type, rid,
4017	    start, end, count, flags));
4018}
4019
4020/**
4021 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4022 *
4023 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4024 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4025 */
4026int
4027bus_generic_child_present(device_t dev, device_t child)
4028{
4029	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4030}
4031
4032/*
4033 * Some convenience functions to make it easier for drivers to use the
4034 * resource-management functions.  All these really do is hide the
4035 * indirection through the parent's method table, making for slightly
4036 * less-wordy code.  In the future, it might make sense for this code
4037 * to maintain some sort of a list of resources allocated by each device.
4038 */
4039
4040int
4041bus_alloc_resources(device_t dev, struct resource_spec *rs,
4042    struct resource **res)
4043{
4044	int i;
4045
4046	for (i = 0; rs[i].type != -1; i++)
4047		res[i] = NULL;
4048	for (i = 0; rs[i].type != -1; i++) {
4049		res[i] = bus_alloc_resource_any(dev,
4050		    rs[i].type, &rs[i].rid, rs[i].flags);
4051		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4052			bus_release_resources(dev, rs, res);
4053			return (ENXIO);
4054		}
4055	}
4056	return (0);
4057}
4058
4059void
4060bus_release_resources(device_t dev, const struct resource_spec *rs,
4061    struct resource **res)
4062{
4063	int i;
4064
4065	for (i = 0; rs[i].type != -1; i++)
4066		if (res[i] != NULL) {
4067			bus_release_resource(
4068			    dev, rs[i].type, rs[i].rid, res[i]);
4069			res[i] = NULL;
4070		}
4071}
4072
4073/**
4074 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4075 *
4076 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4077 * parent of @p dev.
4078 */
4079struct resource *
4080bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4081    u_long count, u_int flags)
4082{
4083	if (dev->parent == NULL)
4084		return (NULL);
4085	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4086	    count, flags));
4087}
4088
4089/**
4090 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4091 *
4092 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4093 * parent of @p dev.
4094 */
4095int
4096bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4097    u_long end)
4098{
4099	if (dev->parent == NULL)
4100		return (EINVAL);
4101	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4102}
4103
4104/**
4105 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4106 *
4107 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4108 * parent of @p dev.
4109 */
4110int
4111bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4112{
4113	if (dev->parent == NULL)
4114		return (EINVAL);
4115	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4116}
4117
4118/**
4119 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4120 *
4121 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4122 * parent of @p dev.
4123 */
4124int
4125bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4126{
4127	if (dev->parent == NULL)
4128		return (EINVAL);
4129	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4130}
4131
4132/**
4133 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4134 *
4135 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4136 * parent of @p dev.
4137 */
4138int
4139bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4140{
4141	if (dev->parent == NULL)
4142		return (EINVAL);
4143	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4144}
4145
4146/**
4147 * @brief Wrapper function for BUS_SETUP_INTR().
4148 *
4149 * This function simply calls the BUS_SETUP_INTR() method of the
4150 * parent of @p dev.
4151 */
4152int
4153bus_setup_intr(device_t dev, struct resource *r, int flags,
4154    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4155{
4156	int error;
4157
4158	if (dev->parent == NULL)
4159		return (EINVAL);
4160	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4161	    arg, cookiep);
4162	if (error != 0)
4163		return (error);
4164	if (handler != NULL && !(flags & INTR_MPSAFE))
4165		device_printf(dev, "[GIANT-LOCKED]\n");
4166	return (0);
4167}
4168
4169/**
4170 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4171 *
4172 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4173 * parent of @p dev.
4174 */
4175int
4176bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4177{
4178	if (dev->parent == NULL)
4179		return (EINVAL);
4180	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4181}
4182
4183/**
4184 * @brief Wrapper function for BUS_BIND_INTR().
4185 *
4186 * This function simply calls the BUS_BIND_INTR() method of the
4187 * parent of @p dev.
4188 */
4189int
4190bus_bind_intr(device_t dev, struct resource *r, int cpu)
4191{
4192	if (dev->parent == NULL)
4193		return (EINVAL);
4194	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4195}
4196
4197/**
4198 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4199 *
4200 * This function first formats the requested description into a
4201 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4202 * the parent of @p dev.
4203 */
4204int
4205bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4206    const char *fmt, ...)
4207{
4208	va_list ap;
4209	char descr[MAXCOMLEN + 1];
4210
4211	if (dev->parent == NULL)
4212		return (EINVAL);
4213	va_start(ap, fmt);
4214	vsnprintf(descr, sizeof(descr), fmt, ap);
4215	va_end(ap);
4216	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4217}
4218
4219/**
4220 * @brief Wrapper function for BUS_SET_RESOURCE().
4221 *
4222 * This function simply calls the BUS_SET_RESOURCE() method of the
4223 * parent of @p dev.
4224 */
4225int
4226bus_set_resource(device_t dev, int type, int rid,
4227    u_long start, u_long count)
4228{
4229	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4230	    start, count));
4231}
4232
4233/**
4234 * @brief Wrapper function for BUS_GET_RESOURCE().
4235 *
4236 * This function simply calls the BUS_GET_RESOURCE() method of the
4237 * parent of @p dev.
4238 */
4239int
4240bus_get_resource(device_t dev, int type, int rid,
4241    u_long *startp, u_long *countp)
4242{
4243	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4244	    startp, countp));
4245}
4246
4247/**
4248 * @brief Wrapper function for BUS_GET_RESOURCE().
4249 *
4250 * This function simply calls the BUS_GET_RESOURCE() method of the
4251 * parent of @p dev and returns the start value.
4252 */
4253u_long
4254bus_get_resource_start(device_t dev, int type, int rid)
4255{
4256	u_long start, count;
4257	int error;
4258
4259	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4260	    &start, &count);
4261	if (error)
4262		return (0);
4263	return (start);
4264}
4265
4266/**
4267 * @brief Wrapper function for BUS_GET_RESOURCE().
4268 *
4269 * This function simply calls the BUS_GET_RESOURCE() method of the
4270 * parent of @p dev and returns the count value.
4271 */
4272u_long
4273bus_get_resource_count(device_t dev, int type, int rid)
4274{
4275	u_long start, count;
4276	int error;
4277
4278	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4279	    &start, &count);
4280	if (error)
4281		return (0);
4282	return (count);
4283}
4284
4285/**
4286 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4287 *
4288 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4289 * parent of @p dev.
4290 */
4291void
4292bus_delete_resource(device_t dev, int type, int rid)
4293{
4294	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4295}
4296
4297/**
4298 * @brief Wrapper function for BUS_CHILD_PRESENT().
4299 *
4300 * This function simply calls the BUS_CHILD_PRESENT() method of the
4301 * parent of @p dev.
4302 */
4303int
4304bus_child_present(device_t child)
4305{
4306	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4307}
4308
4309/**
4310 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4311 *
4312 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4313 * parent of @p dev.
4314 */
4315int
4316bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4317{
4318	device_t parent;
4319
4320	parent = device_get_parent(child);
4321	if (parent == NULL) {
4322		*buf = '\0';
4323		return (0);
4324	}
4325	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4326}
4327
4328/**
4329 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4330 *
4331 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4332 * parent of @p dev.
4333 */
4334int
4335bus_child_location_str(device_t child, char *buf, size_t buflen)
4336{
4337	device_t parent;
4338
4339	parent = device_get_parent(child);
4340	if (parent == NULL) {
4341		*buf = '\0';
4342		return (0);
4343	}
4344	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4345}
4346
4347/**
4348 * @brief Wrapper function for BUS_GET_DMA_TAG().
4349 *
4350 * This function simply calls the BUS_GET_DMA_TAG() method of the
4351 * parent of @p dev.
4352 */
4353bus_dma_tag_t
4354bus_get_dma_tag(device_t dev)
4355{
4356	device_t parent;
4357
4358	parent = device_get_parent(dev);
4359	if (parent == NULL)
4360		return (NULL);
4361	return (BUS_GET_DMA_TAG(parent, dev));
4362}
4363
4364/* Resume all devices and then notify userland that we're up again. */
4365static int
4366root_resume(device_t dev)
4367{
4368	int error;
4369
4370	error = bus_generic_resume(dev);
4371	if (error == 0)
4372		devctl_notify("kern", "power", "resume", NULL);
4373	return (error);
4374}
4375
4376static int
4377root_print_child(device_t dev, device_t child)
4378{
4379	int	retval = 0;
4380
4381	retval += bus_print_child_header(dev, child);
4382	retval += printf("\n");
4383
4384	return (retval);
4385}
4386
4387static int
4388root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4389    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4390{
4391	/*
4392	 * If an interrupt mapping gets to here something bad has happened.
4393	 */
4394	panic("root_setup_intr");
4395}
4396
4397/*
4398 * If we get here, assume that the device is permanant and really is
4399 * present in the system.  Removable bus drivers are expected to intercept
4400 * this call long before it gets here.  We return -1 so that drivers that
4401 * really care can check vs -1 or some ERRNO returned higher in the food
4402 * chain.
4403 */
4404static int
4405root_child_present(device_t dev, device_t child)
4406{
4407	return (-1);
4408}
4409
4410static kobj_method_t root_methods[] = {
4411	/* Device interface */
4412	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4413	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4414	KOBJMETHOD(device_resume,	root_resume),
4415
4416	/* Bus interface */
4417	KOBJMETHOD(bus_print_child,	root_print_child),
4418	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4419	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4420	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4421	KOBJMETHOD(bus_child_present,	root_child_present),
4422
4423	KOBJMETHOD_END
4424};
4425
4426static driver_t root_driver = {
4427	"root",
4428	root_methods,
4429	1,			/* no softc */
4430};
4431
4432device_t	root_bus;
4433devclass_t	root_devclass;
4434
4435static int
4436root_bus_module_handler(module_t mod, int what, void* arg)
4437{
4438	switch (what) {
4439	case MOD_LOAD:
4440		TAILQ_INIT(&bus_data_devices);
4441		kobj_class_compile((kobj_class_t) &root_driver);
4442		root_bus = make_device(NULL, "root", 0);
4443		root_bus->desc = "System root bus";
4444		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4445		root_bus->driver = &root_driver;
4446		root_bus->state = DS_ATTACHED;
4447		root_devclass = devclass_find_internal("root", NULL, FALSE);
4448		devinit();
4449		return (0);
4450
4451	case MOD_SHUTDOWN:
4452		device_shutdown(root_bus);
4453		return (0);
4454	default:
4455		return (EOPNOTSUPP);
4456	}
4457
4458	return (0);
4459}
4460
4461static moduledata_t root_bus_mod = {
4462	"rootbus",
4463	root_bus_module_handler,
4464	NULL
4465};
4466DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4467
4468/**
4469 * @brief Automatically configure devices
4470 *
4471 * This function begins the autoconfiguration process by calling
4472 * device_probe_and_attach() for each child of the @c root0 device.
4473 */
4474void
4475root_bus_configure(void)
4476{
4477
4478	PDEBUG(("."));
4479
4480	/* Eventually this will be split up, but this is sufficient for now. */
4481	bus_set_pass(BUS_PASS_DEFAULT);
4482}
4483
4484/**
4485 * @brief Module handler for registering device drivers
4486 *
4487 * This module handler is used to automatically register device
4488 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4489 * devclass_add_driver() for the driver described by the
4490 * driver_module_data structure pointed to by @p arg
4491 */
4492int
4493driver_module_handler(module_t mod, int what, void *arg)
4494{
4495	struct driver_module_data *dmd;
4496	devclass_t bus_devclass;
4497	kobj_class_t driver;
4498	int error, pass;
4499
4500	dmd = (struct driver_module_data *)arg;
4501	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4502	error = 0;
4503
4504	switch (what) {
4505	case MOD_LOAD:
4506		if (dmd->dmd_chainevh)
4507			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4508
4509		pass = dmd->dmd_pass;
4510		driver = dmd->dmd_driver;
4511		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4512		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4513		error = devclass_add_driver(bus_devclass, driver, pass,
4514		    dmd->dmd_devclass);
4515		break;
4516
4517	case MOD_UNLOAD:
4518		PDEBUG(("Unloading module: driver %s from bus %s",
4519		    DRIVERNAME(dmd->dmd_driver),
4520		    dmd->dmd_busname));
4521		error = devclass_delete_driver(bus_devclass,
4522		    dmd->dmd_driver);
4523
4524		if (!error && dmd->dmd_chainevh)
4525			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4526		break;
4527	case MOD_QUIESCE:
4528		PDEBUG(("Quiesce module: driver %s from bus %s",
4529		    DRIVERNAME(dmd->dmd_driver),
4530		    dmd->dmd_busname));
4531		error = devclass_quiesce_driver(bus_devclass,
4532		    dmd->dmd_driver);
4533
4534		if (!error && dmd->dmd_chainevh)
4535			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4536		break;
4537	default:
4538		error = EOPNOTSUPP;
4539		break;
4540	}
4541
4542	return (error);
4543}
4544
4545/**
4546 * @brief Enumerate all hinted devices for this bus.
4547 *
4548 * Walks through the hints for this bus and calls the bus_hinted_child
4549 * routine for each one it fines.  It searches first for the specific
4550 * bus that's being probed for hinted children (eg isa0), and then for
4551 * generic children (eg isa).
4552 *
4553 * @param	dev	bus device to enumerate
4554 */
4555void
4556bus_enumerate_hinted_children(device_t bus)
4557{
4558	int i;
4559	const char *dname, *busname;
4560	int dunit;
4561
4562	/*
4563	 * enumerate all devices on the specific bus
4564	 */
4565	busname = device_get_nameunit(bus);
4566	i = 0;
4567	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4568		BUS_HINTED_CHILD(bus, dname, dunit);
4569
4570	/*
4571	 * and all the generic ones.
4572	 */
4573	busname = device_get_name(bus);
4574	i = 0;
4575	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4576		BUS_HINTED_CHILD(bus, dname, dunit);
4577}
4578
4579#ifdef BUS_DEBUG
4580
4581/* the _short versions avoid iteration by not calling anything that prints
4582 * more than oneliners. I love oneliners.
4583 */
4584
4585static void
4586print_device_short(device_t dev, int indent)
4587{
4588	if (!dev)
4589		return;
4590
4591	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4592	    dev->unit, dev->desc,
4593	    (dev->parent? "":"no "),
4594	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4595	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4596	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4597	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4598	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4599	    (dev->flags&DF_REBID? "rebiddable,":""),
4600	    (dev->ivars? "":"no "),
4601	    (dev->softc? "":"no "),
4602	    dev->busy));
4603}
4604
4605static void
4606print_device(device_t dev, int indent)
4607{
4608	if (!dev)
4609		return;
4610
4611	print_device_short(dev, indent);
4612
4613	indentprintf(("Parent:\n"));
4614	print_device_short(dev->parent, indent+1);
4615	indentprintf(("Driver:\n"));
4616	print_driver_short(dev->driver, indent+1);
4617	indentprintf(("Devclass:\n"));
4618	print_devclass_short(dev->devclass, indent+1);
4619}
4620
4621void
4622print_device_tree_short(device_t dev, int indent)
4623/* print the device and all its children (indented) */
4624{
4625	device_t child;
4626
4627	if (!dev)
4628		return;
4629
4630	print_device_short(dev, indent);
4631
4632	TAILQ_FOREACH(child, &dev->children, link) {
4633		print_device_tree_short(child, indent+1);
4634	}
4635}
4636
4637void
4638print_device_tree(device_t dev, int indent)
4639/* print the device and all its children (indented) */
4640{
4641	device_t child;
4642
4643	if (!dev)
4644		return;
4645
4646	print_device(dev, indent);
4647
4648	TAILQ_FOREACH(child, &dev->children, link) {
4649		print_device_tree(child, indent+1);
4650	}
4651}
4652
4653static void
4654print_driver_short(driver_t *driver, int indent)
4655{
4656	if (!driver)
4657		return;
4658
4659	indentprintf(("driver %s: softc size = %zd\n",
4660	    driver->name, driver->size));
4661}
4662
4663static void
4664print_driver(driver_t *driver, int indent)
4665{
4666	if (!driver)
4667		return;
4668
4669	print_driver_short(driver, indent);
4670}
4671
4672static void
4673print_driver_list(driver_list_t drivers, int indent)
4674{
4675	driverlink_t driver;
4676
4677	TAILQ_FOREACH(driver, &drivers, link) {
4678		print_driver(driver->driver, indent);
4679	}
4680}
4681
4682static void
4683print_devclass_short(devclass_t dc, int indent)
4684{
4685	if ( !dc )
4686		return;
4687
4688	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4689}
4690
4691static void
4692print_devclass(devclass_t dc, int indent)
4693{
4694	int i;
4695
4696	if ( !dc )
4697		return;
4698
4699	print_devclass_short(dc, indent);
4700	indentprintf(("Drivers:\n"));
4701	print_driver_list(dc->drivers, indent+1);
4702
4703	indentprintf(("Devices:\n"));
4704	for (i = 0; i < dc->maxunit; i++)
4705		if (dc->devices[i])
4706			print_device(dc->devices[i], indent+1);
4707}
4708
4709void
4710print_devclass_list_short(void)
4711{
4712	devclass_t dc;
4713
4714	printf("Short listing of devclasses, drivers & devices:\n");
4715	TAILQ_FOREACH(dc, &devclasses, link) {
4716		print_devclass_short(dc, 0);
4717	}
4718}
4719
4720void
4721print_devclass_list(void)
4722{
4723	devclass_t dc;
4724
4725	printf("Full listing of devclasses, drivers & devices:\n");
4726	TAILQ_FOREACH(dc, &devclasses, link) {
4727		print_devclass(dc, 0);
4728	}
4729}
4730
4731#endif
4732
4733/*
4734 * User-space access to the device tree.
4735 *
4736 * We implement a small set of nodes:
4737 *
4738 * hw.bus			Single integer read method to obtain the
4739 *				current generation count.
4740 * hw.bus.devices		Reads the entire device tree in flat space.
4741 * hw.bus.rman			Resource manager interface
4742 *
4743 * We might like to add the ability to scan devclasses and/or drivers to
4744 * determine what else is currently loaded/available.
4745 */
4746
4747static int
4748sysctl_bus(SYSCTL_HANDLER_ARGS)
4749{
4750	struct u_businfo	ubus;
4751
4752	ubus.ub_version = BUS_USER_VERSION;
4753	ubus.ub_generation = bus_data_generation;
4754
4755	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4756}
4757SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4758    "bus-related data");
4759
4760static int
4761sysctl_devices(SYSCTL_HANDLER_ARGS)
4762{
4763	int			*name = (int *)arg1;
4764	u_int			namelen = arg2;
4765	int			index;
4766	struct device		*dev;
4767	struct u_device		udev;	/* XXX this is a bit big */
4768	int			error;
4769
4770	if (namelen != 2)
4771		return (EINVAL);
4772
4773	if (bus_data_generation_check(name[0]))
4774		return (EINVAL);
4775
4776	index = name[1];
4777
4778	/*
4779	 * Scan the list of devices, looking for the requested index.
4780	 */
4781	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4782		if (index-- == 0)
4783			break;
4784	}
4785	if (dev == NULL)
4786		return (ENOENT);
4787
4788	/*
4789	 * Populate the return array.
4790	 */
4791	bzero(&udev, sizeof(udev));
4792	udev.dv_handle = (uintptr_t)dev;
4793	udev.dv_parent = (uintptr_t)dev->parent;
4794	if (dev->nameunit != NULL)
4795		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4796	if (dev->desc != NULL)
4797		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4798	if (dev->driver != NULL && dev->driver->name != NULL)
4799		strlcpy(udev.dv_drivername, dev->driver->name,
4800		    sizeof(udev.dv_drivername));
4801	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4802	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4803	udev.dv_devflags = dev->devflags;
4804	udev.dv_flags = dev->flags;
4805	udev.dv_state = dev->state;
4806	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4807	return (error);
4808}
4809
4810SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4811    "system device tree");
4812
4813int
4814bus_data_generation_check(int generation)
4815{
4816	if (generation != bus_data_generation)
4817		return (1);
4818
4819	/* XXX generate optimised lists here? */
4820	return (0);
4821}
4822
4823void
4824bus_data_generation_update(void)
4825{
4826	bus_data_generation++;
4827}
4828
4829int
4830bus_free_resource(device_t dev, int type, struct resource *r)
4831{
4832	if (r == NULL)
4833		return (0);
4834	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4835}
4836