sched_ule.c revision 259835
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/9/sys/kern/sched_ule.c 259835 2013-12-24 19:02:04Z jhb $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#if defined(__powerpc__) && defined(E500)
81#error "This architecture is not currently compatible with ULE"
82#endif
83
84#define	KTR_ULE	0
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89
90/*
91 * Thread scheduler specific section.  All fields are protected
92 * by the thread lock.
93 */
94struct td_sched {
95	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96	short		ts_flags;	/* TSF_* flags. */
97	u_char		ts_cpu;		/* CPU that we have affinity for. */
98	int		ts_rltick;	/* Real last tick, for affinity. */
99	int		ts_slice;	/* Ticks of slice remaining. */
100	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101	u_int		ts_runtime;	/* Number of ticks we were running */
102	int		ts_ltick;	/* Last tick that we were running on */
103	int		ts_ftick;	/* First tick that we were running on */
104	int		ts_ticks;	/* Tick count */
105#ifdef KTR
106	char		ts_name[TS_NAME_LEN];
107#endif
108};
109/* flags kept in ts_flags */
110#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112
113static struct td_sched td_sched0;
114
115#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119/*
120 * Priority ranges used for interactive and non-interactive timeshare
121 * threads.  The timeshare priorities are split up into four ranges.
122 * The first range handles interactive threads.  The last three ranges
123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124 * ranges supporting nice values.
125 */
126#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129
130#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/* Flags kept in td_flags. */
193#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
194
195/*
196 * tickincr:		Converts a stathz tick into a hz domain scaled by
197 *			the shift factor.  Without the shift the error rate
198 *			due to rounding would be unacceptably high.
199 * realstathz:		stathz is sometimes 0 and run off of hz.
200 * sched_slice:		Runtime of each thread before rescheduling.
201 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
202 */
203static int sched_interact = SCHED_INTERACT_THRESH;
204static int realstathz = 127;
205static int tickincr = 8 << SCHED_TICK_SHIFT;
206static int sched_slice = 12;
207#ifdef PREEMPTION
208#ifdef FULL_PREEMPTION
209static int preempt_thresh = PRI_MAX_IDLE;
210#else
211static int preempt_thresh = PRI_MIN_KERN;
212#endif
213#else
214static int preempt_thresh = 0;
215#endif
216static int static_boost = PRI_MIN_BATCH;
217static int sched_idlespins = 10000;
218static int sched_idlespinthresh = -1;
219
220/*
221 * tdq - per processor runqs and statistics.  All fields are protected by the
222 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
223 * locking in sched_pickcpu();
224 */
225struct tdq {
226	/* Ordered to improve efficiency of cpu_search() and switch(). */
227	struct mtx	tdq_lock;		/* run queue lock. */
228	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
229	volatile int	tdq_load;		/* Aggregate load. */
230	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
231	int		tdq_sysload;		/* For loadavg, !ITHD load. */
232	int		tdq_transferable;	/* Transferable thread count. */
233	short		tdq_switchcnt;		/* Switches this tick. */
234	short		tdq_oldswitchcnt;	/* Switches last tick. */
235	u_char		tdq_lowpri;		/* Lowest priority thread. */
236	u_char		tdq_ipipending;		/* IPI pending. */
237	u_char		tdq_idx;		/* Current insert index. */
238	u_char		tdq_ridx;		/* Current removal index. */
239	struct runq	tdq_realtime;		/* real-time run queue. */
240	struct runq	tdq_timeshare;		/* timeshare run queue. */
241	struct runq	tdq_idle;		/* Queue of IDLE threads. */
242	char		tdq_name[TDQ_NAME_LEN];
243#ifdef KTR
244	char		tdq_loadname[TDQ_LOADNAME_LEN];
245#endif
246} __aligned(64);
247
248/* Idle thread states and config. */
249#define	TDQ_RUNNING	1
250#define	TDQ_IDLE	2
251
252#ifdef SMP
253struct cpu_group *cpu_top;		/* CPU topology */
254
255#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
256#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
257
258/*
259 * Run-time tunables.
260 */
261static int rebalance = 1;
262static int balance_interval = 128;	/* Default set in sched_initticks(). */
263static int affinity;
264static int steal_idle = 1;
265static int steal_thresh = 2;
266
267/*
268 * One thread queue per processor.
269 */
270static struct tdq	tdq_cpu[MAXCPU];
271static struct tdq	*balance_tdq;
272static int balance_ticks;
273static DPCPU_DEFINE(uint32_t, randomval);
274
275#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
276#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
277#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
278#else	/* !SMP */
279static struct tdq	tdq_cpu;
280
281#define	TDQ_ID(x)	(0)
282#define	TDQ_SELF()	(&tdq_cpu)
283#define	TDQ_CPU(x)	(&tdq_cpu)
284#endif
285
286#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
287#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
288#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
289#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
290#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
291
292static void sched_priority(struct thread *);
293static void sched_thread_priority(struct thread *, u_char);
294static int sched_interact_score(struct thread *);
295static void sched_interact_update(struct thread *);
296static void sched_interact_fork(struct thread *);
297static void sched_pctcpu_update(struct td_sched *, int);
298
299/* Operations on per processor queues */
300static struct thread *tdq_choose(struct tdq *);
301static void tdq_setup(struct tdq *);
302static void tdq_load_add(struct tdq *, struct thread *);
303static void tdq_load_rem(struct tdq *, struct thread *);
304static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
305static __inline void tdq_runq_rem(struct tdq *, struct thread *);
306static inline int sched_shouldpreempt(int, int, int);
307void tdq_print(int cpu);
308static void runq_print(struct runq *rq);
309static void tdq_add(struct tdq *, struct thread *, int);
310#ifdef SMP
311static int tdq_move(struct tdq *, struct tdq *);
312static int tdq_idled(struct tdq *);
313static void tdq_notify(struct tdq *, struct thread *);
314static struct thread *tdq_steal(struct tdq *, int);
315static struct thread *runq_steal(struct runq *, int);
316static int sched_pickcpu(struct thread *, int);
317static void sched_balance(void);
318static int sched_balance_pair(struct tdq *, struct tdq *);
319static inline struct tdq *sched_setcpu(struct thread *, int, int);
320static inline void thread_unblock_switch(struct thread *, struct mtx *);
321static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
322static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
323static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
324    struct cpu_group *cg, int indent);
325#endif
326
327static void sched_setup(void *dummy);
328SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
329
330static void sched_initticks(void *dummy);
331SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
332    NULL);
333
334SDT_PROVIDER_DEFINE(sched);
335
336SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
337    "struct proc *", "uint8_t");
338SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
339    "struct proc *", "void *");
340SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
341    "struct proc *", "void *", "int");
342SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
343    "struct proc *", "uint8_t", "struct thread *");
344SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
345SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
346    "struct proc *");
347SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
348SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
349SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
350    "struct proc *");
351
352/*
353 * Print the threads waiting on a run-queue.
354 */
355static void
356runq_print(struct runq *rq)
357{
358	struct rqhead *rqh;
359	struct thread *td;
360	int pri;
361	int j;
362	int i;
363
364	for (i = 0; i < RQB_LEN; i++) {
365		printf("\t\trunq bits %d 0x%zx\n",
366		    i, rq->rq_status.rqb_bits[i]);
367		for (j = 0; j < RQB_BPW; j++)
368			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
369				pri = j + (i << RQB_L2BPW);
370				rqh = &rq->rq_queues[pri];
371				TAILQ_FOREACH(td, rqh, td_runq) {
372					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
373					    td, td->td_name, td->td_priority,
374					    td->td_rqindex, pri);
375				}
376			}
377	}
378}
379
380/*
381 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
382 */
383void
384tdq_print(int cpu)
385{
386	struct tdq *tdq;
387
388	tdq = TDQ_CPU(cpu);
389
390	printf("tdq %d:\n", TDQ_ID(tdq));
391	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
392	printf("\tLock name:      %s\n", tdq->tdq_name);
393	printf("\tload:           %d\n", tdq->tdq_load);
394	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
395	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
396	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
397	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
398	printf("\tload transferable: %d\n", tdq->tdq_transferable);
399	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
400	printf("\trealtime runq:\n");
401	runq_print(&tdq->tdq_realtime);
402	printf("\ttimeshare runq:\n");
403	runq_print(&tdq->tdq_timeshare);
404	printf("\tidle runq:\n");
405	runq_print(&tdq->tdq_idle);
406}
407
408static inline int
409sched_shouldpreempt(int pri, int cpri, int remote)
410{
411	/*
412	 * If the new priority is not better than the current priority there is
413	 * nothing to do.
414	 */
415	if (pri >= cpri)
416		return (0);
417	/*
418	 * Always preempt idle.
419	 */
420	if (cpri >= PRI_MIN_IDLE)
421		return (1);
422	/*
423	 * If preemption is disabled don't preempt others.
424	 */
425	if (preempt_thresh == 0)
426		return (0);
427	/*
428	 * Preempt if we exceed the threshold.
429	 */
430	if (pri <= preempt_thresh)
431		return (1);
432	/*
433	 * If we're interactive or better and there is non-interactive
434	 * or worse running preempt only remote processors.
435	 */
436	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
437		return (1);
438	return (0);
439}
440
441/*
442 * Add a thread to the actual run-queue.  Keeps transferable counts up to
443 * date with what is actually on the run-queue.  Selects the correct
444 * queue position for timeshare threads.
445 */
446static __inline void
447tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
448{
449	struct td_sched *ts;
450	u_char pri;
451
452	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
453	THREAD_LOCK_ASSERT(td, MA_OWNED);
454
455	pri = td->td_priority;
456	ts = td->td_sched;
457	TD_SET_RUNQ(td);
458	if (THREAD_CAN_MIGRATE(td)) {
459		tdq->tdq_transferable++;
460		ts->ts_flags |= TSF_XFERABLE;
461	}
462	if (pri < PRI_MIN_BATCH) {
463		ts->ts_runq = &tdq->tdq_realtime;
464	} else if (pri <= PRI_MAX_BATCH) {
465		ts->ts_runq = &tdq->tdq_timeshare;
466		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
467			("Invalid priority %d on timeshare runq", pri));
468		/*
469		 * This queue contains only priorities between MIN and MAX
470		 * realtime.  Use the whole queue to represent these values.
471		 */
472		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
473			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
474			pri = (pri + tdq->tdq_idx) % RQ_NQS;
475			/*
476			 * This effectively shortens the queue by one so we
477			 * can have a one slot difference between idx and
478			 * ridx while we wait for threads to drain.
479			 */
480			if (tdq->tdq_ridx != tdq->tdq_idx &&
481			    pri == tdq->tdq_ridx)
482				pri = (unsigned char)(pri - 1) % RQ_NQS;
483		} else
484			pri = tdq->tdq_ridx;
485		runq_add_pri(ts->ts_runq, td, pri, flags);
486		return;
487	} else
488		ts->ts_runq = &tdq->tdq_idle;
489	runq_add(ts->ts_runq, td, flags);
490}
491
492/*
493 * Remove a thread from a run-queue.  This typically happens when a thread
494 * is selected to run.  Running threads are not on the queue and the
495 * transferable count does not reflect them.
496 */
497static __inline void
498tdq_runq_rem(struct tdq *tdq, struct thread *td)
499{
500	struct td_sched *ts;
501
502	ts = td->td_sched;
503	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
504	KASSERT(ts->ts_runq != NULL,
505	    ("tdq_runq_remove: thread %p null ts_runq", td));
506	if (ts->ts_flags & TSF_XFERABLE) {
507		tdq->tdq_transferable--;
508		ts->ts_flags &= ~TSF_XFERABLE;
509	}
510	if (ts->ts_runq == &tdq->tdq_timeshare) {
511		if (tdq->tdq_idx != tdq->tdq_ridx)
512			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
513		else
514			runq_remove_idx(ts->ts_runq, td, NULL);
515	} else
516		runq_remove(ts->ts_runq, td);
517}
518
519/*
520 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
521 * for this thread to the referenced thread queue.
522 */
523static void
524tdq_load_add(struct tdq *tdq, struct thread *td)
525{
526
527	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
528	THREAD_LOCK_ASSERT(td, MA_OWNED);
529
530	tdq->tdq_load++;
531	if ((td->td_flags & TDF_NOLOAD) == 0)
532		tdq->tdq_sysload++;
533	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
534	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
535}
536
537/*
538 * Remove the load from a thread that is transitioning to a sleep state or
539 * exiting.
540 */
541static void
542tdq_load_rem(struct tdq *tdq, struct thread *td)
543{
544
545	THREAD_LOCK_ASSERT(td, MA_OWNED);
546	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
547	KASSERT(tdq->tdq_load != 0,
548	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
549
550	tdq->tdq_load--;
551	if ((td->td_flags & TDF_NOLOAD) == 0)
552		tdq->tdq_sysload--;
553	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
554	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
555}
556
557/*
558 * Set lowpri to its exact value by searching the run-queue and
559 * evaluating curthread.  curthread may be passed as an optimization.
560 */
561static void
562tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
563{
564	struct thread *td;
565
566	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
567	if (ctd == NULL)
568		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
569	td = tdq_choose(tdq);
570	if (td == NULL || td->td_priority > ctd->td_priority)
571		tdq->tdq_lowpri = ctd->td_priority;
572	else
573		tdq->tdq_lowpri = td->td_priority;
574}
575
576#ifdef SMP
577struct cpu_search {
578	cpuset_t cs_mask;
579	u_int	cs_prefer;
580	int	cs_pri;		/* Min priority for low. */
581	int	cs_limit;	/* Max load for low, min load for high. */
582	int	cs_cpu;
583	int	cs_load;
584};
585
586#define	CPU_SEARCH_LOWEST	0x1
587#define	CPU_SEARCH_HIGHEST	0x2
588#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
589
590#define	CPUSET_FOREACH(cpu, mask)				\
591	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
592		if (CPU_ISSET(cpu, &mask))
593
594static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
595    struct cpu_search *high, const int match);
596int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
597int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
598int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
599    struct cpu_search *high);
600
601/*
602 * Search the tree of cpu_groups for the lowest or highest loaded cpu
603 * according to the match argument.  This routine actually compares the
604 * load on all paths through the tree and finds the least loaded cpu on
605 * the least loaded path, which may differ from the least loaded cpu in
606 * the system.  This balances work among caches and busses.
607 *
608 * This inline is instantiated in three forms below using constants for the
609 * match argument.  It is reduced to the minimum set for each case.  It is
610 * also recursive to the depth of the tree.
611 */
612static __inline int
613cpu_search(const struct cpu_group *cg, struct cpu_search *low,
614    struct cpu_search *high, const int match)
615{
616	struct cpu_search lgroup;
617	struct cpu_search hgroup;
618	cpuset_t cpumask;
619	struct cpu_group *child;
620	struct tdq *tdq;
621	int cpu, i, hload, lload, load, total, rnd, *rndptr;
622
623	total = 0;
624	cpumask = cg->cg_mask;
625	if (match & CPU_SEARCH_LOWEST) {
626		lload = INT_MAX;
627		lgroup = *low;
628	}
629	if (match & CPU_SEARCH_HIGHEST) {
630		hload = INT_MIN;
631		hgroup = *high;
632	}
633
634	/* Iterate through the child CPU groups and then remaining CPUs. */
635	for (i = cg->cg_children, cpu = mp_maxid; ; ) {
636		if (i == 0) {
637#ifdef HAVE_INLINE_FFSL
638			cpu = CPU_FFS(&cpumask) - 1;
639#else
640			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
641				cpu--;
642#endif
643			if (cpu < 0)
644				break;
645			child = NULL;
646		} else
647			child = &cg->cg_child[i - 1];
648
649		if (match & CPU_SEARCH_LOWEST)
650			lgroup.cs_cpu = -1;
651		if (match & CPU_SEARCH_HIGHEST)
652			hgroup.cs_cpu = -1;
653		if (child) {			/* Handle child CPU group. */
654			CPU_NAND(&cpumask, &child->cg_mask);
655			switch (match) {
656			case CPU_SEARCH_LOWEST:
657				load = cpu_search_lowest(child, &lgroup);
658				break;
659			case CPU_SEARCH_HIGHEST:
660				load = cpu_search_highest(child, &hgroup);
661				break;
662			case CPU_SEARCH_BOTH:
663				load = cpu_search_both(child, &lgroup, &hgroup);
664				break;
665			}
666		} else {			/* Handle child CPU. */
667			CPU_CLR(cpu, &cpumask);
668			tdq = TDQ_CPU(cpu);
669			load = tdq->tdq_load * 256;
670			rndptr = DPCPU_PTR(randomval);
671			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
672			if (match & CPU_SEARCH_LOWEST) {
673				if (cpu == low->cs_prefer)
674					load -= 64;
675				/* If that CPU is allowed and get data. */
676				if (tdq->tdq_lowpri > lgroup.cs_pri &&
677				    tdq->tdq_load <= lgroup.cs_limit &&
678				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
679					lgroup.cs_cpu = cpu;
680					lgroup.cs_load = load - rnd;
681				}
682			}
683			if (match & CPU_SEARCH_HIGHEST)
684				if (tdq->tdq_load >= hgroup.cs_limit &&
685				    tdq->tdq_transferable &&
686				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
687					hgroup.cs_cpu = cpu;
688					hgroup.cs_load = load - rnd;
689				}
690		}
691		total += load;
692
693		/* We have info about child item. Compare it. */
694		if (match & CPU_SEARCH_LOWEST) {
695			if (lgroup.cs_cpu >= 0 &&
696			    (load < lload ||
697			     (load == lload && lgroup.cs_load < low->cs_load))) {
698				lload = load;
699				low->cs_cpu = lgroup.cs_cpu;
700				low->cs_load = lgroup.cs_load;
701			}
702		}
703		if (match & CPU_SEARCH_HIGHEST)
704			if (hgroup.cs_cpu >= 0 &&
705			    (load > hload ||
706			     (load == hload && hgroup.cs_load > high->cs_load))) {
707				hload = load;
708				high->cs_cpu = hgroup.cs_cpu;
709				high->cs_load = hgroup.cs_load;
710			}
711		if (child) {
712			i--;
713			if (i == 0 && CPU_EMPTY(&cpumask))
714				break;
715		}
716#ifndef HAVE_INLINE_FFSL
717		else
718			cpu--;
719#endif
720	}
721	return (total);
722}
723
724/*
725 * cpu_search instantiations must pass constants to maintain the inline
726 * optimization.
727 */
728int
729cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
730{
731	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
732}
733
734int
735cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
736{
737	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
738}
739
740int
741cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
742    struct cpu_search *high)
743{
744	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
745}
746
747/*
748 * Find the cpu with the least load via the least loaded path that has a
749 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
750 * acceptable.
751 */
752static inline int
753sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
754    int prefer)
755{
756	struct cpu_search low;
757
758	low.cs_cpu = -1;
759	low.cs_prefer = prefer;
760	low.cs_mask = mask;
761	low.cs_pri = pri;
762	low.cs_limit = maxload;
763	cpu_search_lowest(cg, &low);
764	return low.cs_cpu;
765}
766
767/*
768 * Find the cpu with the highest load via the highest loaded path.
769 */
770static inline int
771sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
772{
773	struct cpu_search high;
774
775	high.cs_cpu = -1;
776	high.cs_mask = mask;
777	high.cs_limit = minload;
778	cpu_search_highest(cg, &high);
779	return high.cs_cpu;
780}
781
782/*
783 * Simultaneously find the highest and lowest loaded cpu reachable via
784 * cg.
785 */
786static inline void
787sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
788{
789	struct cpu_search high;
790	struct cpu_search low;
791
792	low.cs_cpu = -1;
793	low.cs_prefer = -1;
794	low.cs_pri = -1;
795	low.cs_limit = INT_MAX;
796	low.cs_mask = mask;
797	high.cs_cpu = -1;
798	high.cs_limit = -1;
799	high.cs_mask = mask;
800	cpu_search_both(cg, &low, &high);
801	*lowcpu = low.cs_cpu;
802	*highcpu = high.cs_cpu;
803	return;
804}
805
806static void
807sched_balance_group(struct cpu_group *cg)
808{
809	cpuset_t hmask, lmask;
810	int high, low, anylow;
811
812	CPU_FILL(&hmask);
813	for (;;) {
814		high = sched_highest(cg, hmask, 1);
815		/* Stop if there is no more CPU with transferrable threads. */
816		if (high == -1)
817			break;
818		CPU_CLR(high, &hmask);
819		CPU_COPY(&hmask, &lmask);
820		/* Stop if there is no more CPU left for low. */
821		if (CPU_EMPTY(&lmask))
822			break;
823		anylow = 1;
824nextlow:
825		low = sched_lowest(cg, lmask, -1,
826		    TDQ_CPU(high)->tdq_load - 1, high);
827		/* Stop if we looked well and found no less loaded CPU. */
828		if (anylow && low == -1)
829			break;
830		/* Go to next high if we found no less loaded CPU. */
831		if (low == -1)
832			continue;
833		/* Transfer thread from high to low. */
834		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
835			/* CPU that got thread can no longer be a donor. */
836			CPU_CLR(low, &hmask);
837		} else {
838			/*
839			 * If failed, then there is no threads on high
840			 * that can run on this low. Drop low from low
841			 * mask and look for different one.
842			 */
843			CPU_CLR(low, &lmask);
844			anylow = 0;
845			goto nextlow;
846		}
847	}
848}
849
850static void
851sched_balance(void)
852{
853	struct tdq *tdq;
854
855	/*
856	 * Select a random time between .5 * balance_interval and
857	 * 1.5 * balance_interval.
858	 */
859	balance_ticks = max(balance_interval / 2, 1);
860	balance_ticks += random() % balance_interval;
861	if (smp_started == 0 || rebalance == 0)
862		return;
863	tdq = TDQ_SELF();
864	TDQ_UNLOCK(tdq);
865	sched_balance_group(cpu_top);
866	TDQ_LOCK(tdq);
867}
868
869/*
870 * Lock two thread queues using their address to maintain lock order.
871 */
872static void
873tdq_lock_pair(struct tdq *one, struct tdq *two)
874{
875	if (one < two) {
876		TDQ_LOCK(one);
877		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
878	} else {
879		TDQ_LOCK(two);
880		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
881	}
882}
883
884/*
885 * Unlock two thread queues.  Order is not important here.
886 */
887static void
888tdq_unlock_pair(struct tdq *one, struct tdq *two)
889{
890	TDQ_UNLOCK(one);
891	TDQ_UNLOCK(two);
892}
893
894/*
895 * Transfer load between two imbalanced thread queues.
896 */
897static int
898sched_balance_pair(struct tdq *high, struct tdq *low)
899{
900	int moved;
901	int cpu;
902
903	tdq_lock_pair(high, low);
904	moved = 0;
905	/*
906	 * Determine what the imbalance is and then adjust that to how many
907	 * threads we actually have to give up (transferable).
908	 */
909	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
910	    (moved = tdq_move(high, low)) > 0) {
911		/*
912		 * In case the target isn't the current cpu IPI it to force a
913		 * reschedule with the new workload.
914		 */
915		cpu = TDQ_ID(low);
916		sched_pin();
917		if (cpu != PCPU_GET(cpuid))
918			ipi_cpu(cpu, IPI_PREEMPT);
919		sched_unpin();
920	}
921	tdq_unlock_pair(high, low);
922	return (moved);
923}
924
925/*
926 * Move a thread from one thread queue to another.
927 */
928static int
929tdq_move(struct tdq *from, struct tdq *to)
930{
931	struct td_sched *ts;
932	struct thread *td;
933	struct tdq *tdq;
934	int cpu;
935
936	TDQ_LOCK_ASSERT(from, MA_OWNED);
937	TDQ_LOCK_ASSERT(to, MA_OWNED);
938
939	tdq = from;
940	cpu = TDQ_ID(to);
941	td = tdq_steal(tdq, cpu);
942	if (td == NULL)
943		return (0);
944	ts = td->td_sched;
945	/*
946	 * Although the run queue is locked the thread may be blocked.  Lock
947	 * it to clear this and acquire the run-queue lock.
948	 */
949	thread_lock(td);
950	/* Drop recursive lock on from acquired via thread_lock(). */
951	TDQ_UNLOCK(from);
952	sched_rem(td);
953	ts->ts_cpu = cpu;
954	td->td_lock = TDQ_LOCKPTR(to);
955	tdq_add(to, td, SRQ_YIELDING);
956	return (1);
957}
958
959/*
960 * This tdq has idled.  Try to steal a thread from another cpu and switch
961 * to it.
962 */
963static int
964tdq_idled(struct tdq *tdq)
965{
966	struct cpu_group *cg;
967	struct tdq *steal;
968	cpuset_t mask;
969	int thresh;
970	int cpu;
971
972	if (smp_started == 0 || steal_idle == 0)
973		return (1);
974	CPU_FILL(&mask);
975	CPU_CLR(PCPU_GET(cpuid), &mask);
976	/* We don't want to be preempted while we're iterating. */
977	spinlock_enter();
978	for (cg = tdq->tdq_cg; cg != NULL; ) {
979		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
980			thresh = steal_thresh;
981		else
982			thresh = 1;
983		cpu = sched_highest(cg, mask, thresh);
984		if (cpu == -1) {
985			cg = cg->cg_parent;
986			continue;
987		}
988		steal = TDQ_CPU(cpu);
989		CPU_CLR(cpu, &mask);
990		tdq_lock_pair(tdq, steal);
991		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
992			tdq_unlock_pair(tdq, steal);
993			continue;
994		}
995		/*
996		 * If a thread was added while interrupts were disabled don't
997		 * steal one here.  If we fail to acquire one due to affinity
998		 * restrictions loop again with this cpu removed from the
999		 * set.
1000		 */
1001		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
1002			tdq_unlock_pair(tdq, steal);
1003			continue;
1004		}
1005		spinlock_exit();
1006		TDQ_UNLOCK(steal);
1007		mi_switch(SW_VOL | SWT_IDLE, NULL);
1008		thread_unlock(curthread);
1009
1010		return (0);
1011	}
1012	spinlock_exit();
1013	return (1);
1014}
1015
1016/*
1017 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1018 */
1019static void
1020tdq_notify(struct tdq *tdq, struct thread *td)
1021{
1022	struct thread *ctd;
1023	int pri;
1024	int cpu;
1025
1026	if (tdq->tdq_ipipending)
1027		return;
1028	cpu = td->td_sched->ts_cpu;
1029	pri = td->td_priority;
1030	ctd = pcpu_find(cpu)->pc_curthread;
1031	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1032		return;
1033	if (TD_IS_IDLETHREAD(ctd)) {
1034		/*
1035		 * If the MD code has an idle wakeup routine try that before
1036		 * falling back to IPI.
1037		 */
1038		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1039			return;
1040	}
1041	tdq->tdq_ipipending = 1;
1042	ipi_cpu(cpu, IPI_PREEMPT);
1043}
1044
1045/*
1046 * Steals load from a timeshare queue.  Honors the rotating queue head
1047 * index.
1048 */
1049static struct thread *
1050runq_steal_from(struct runq *rq, int cpu, u_char start)
1051{
1052	struct rqbits *rqb;
1053	struct rqhead *rqh;
1054	struct thread *td, *first;
1055	int bit;
1056	int pri;
1057	int i;
1058
1059	rqb = &rq->rq_status;
1060	bit = start & (RQB_BPW -1);
1061	pri = 0;
1062	first = NULL;
1063again:
1064	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1065		if (rqb->rqb_bits[i] == 0)
1066			continue;
1067		if (bit != 0) {
1068			for (pri = bit; pri < RQB_BPW; pri++)
1069				if (rqb->rqb_bits[i] & (1ul << pri))
1070					break;
1071			if (pri >= RQB_BPW)
1072				continue;
1073		} else
1074			pri = RQB_FFS(rqb->rqb_bits[i]);
1075		pri += (i << RQB_L2BPW);
1076		rqh = &rq->rq_queues[pri];
1077		TAILQ_FOREACH(td, rqh, td_runq) {
1078			if (first && THREAD_CAN_MIGRATE(td) &&
1079			    THREAD_CAN_SCHED(td, cpu))
1080				return (td);
1081			first = td;
1082		}
1083	}
1084	if (start != 0) {
1085		start = 0;
1086		goto again;
1087	}
1088
1089	if (first && THREAD_CAN_MIGRATE(first) &&
1090	    THREAD_CAN_SCHED(first, cpu))
1091		return (first);
1092	return (NULL);
1093}
1094
1095/*
1096 * Steals load from a standard linear queue.
1097 */
1098static struct thread *
1099runq_steal(struct runq *rq, int cpu)
1100{
1101	struct rqhead *rqh;
1102	struct rqbits *rqb;
1103	struct thread *td;
1104	int word;
1105	int bit;
1106
1107	rqb = &rq->rq_status;
1108	for (word = 0; word < RQB_LEN; word++) {
1109		if (rqb->rqb_bits[word] == 0)
1110			continue;
1111		for (bit = 0; bit < RQB_BPW; bit++) {
1112			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1113				continue;
1114			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1115			TAILQ_FOREACH(td, rqh, td_runq)
1116				if (THREAD_CAN_MIGRATE(td) &&
1117				    THREAD_CAN_SCHED(td, cpu))
1118					return (td);
1119		}
1120	}
1121	return (NULL);
1122}
1123
1124/*
1125 * Attempt to steal a thread in priority order from a thread queue.
1126 */
1127static struct thread *
1128tdq_steal(struct tdq *tdq, int cpu)
1129{
1130	struct thread *td;
1131
1132	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1133	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1134		return (td);
1135	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1136	    cpu, tdq->tdq_ridx)) != NULL)
1137		return (td);
1138	return (runq_steal(&tdq->tdq_idle, cpu));
1139}
1140
1141/*
1142 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1143 * current lock and returns with the assigned queue locked.
1144 */
1145static inline struct tdq *
1146sched_setcpu(struct thread *td, int cpu, int flags)
1147{
1148
1149	struct tdq *tdq;
1150
1151	THREAD_LOCK_ASSERT(td, MA_OWNED);
1152	tdq = TDQ_CPU(cpu);
1153	td->td_sched->ts_cpu = cpu;
1154	/*
1155	 * If the lock matches just return the queue.
1156	 */
1157	if (td->td_lock == TDQ_LOCKPTR(tdq))
1158		return (tdq);
1159#ifdef notyet
1160	/*
1161	 * If the thread isn't running its lockptr is a
1162	 * turnstile or a sleepqueue.  We can just lock_set without
1163	 * blocking.
1164	 */
1165	if (TD_CAN_RUN(td)) {
1166		TDQ_LOCK(tdq);
1167		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1168		return (tdq);
1169	}
1170#endif
1171	/*
1172	 * The hard case, migration, we need to block the thread first to
1173	 * prevent order reversals with other cpus locks.
1174	 */
1175	spinlock_enter();
1176	thread_lock_block(td);
1177	TDQ_LOCK(tdq);
1178	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1179	spinlock_exit();
1180	return (tdq);
1181}
1182
1183SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1184SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1185SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1186SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1187SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1188SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1189
1190static int
1191sched_pickcpu(struct thread *td, int flags)
1192{
1193	struct cpu_group *cg, *ccg;
1194	struct td_sched *ts;
1195	struct tdq *tdq;
1196	cpuset_t mask;
1197	int cpu, pri, self;
1198
1199	self = PCPU_GET(cpuid);
1200	ts = td->td_sched;
1201	if (smp_started == 0)
1202		return (self);
1203	/*
1204	 * Don't migrate a running thread from sched_switch().
1205	 */
1206	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1207		return (ts->ts_cpu);
1208	/*
1209	 * Prefer to run interrupt threads on the processors that generate
1210	 * the interrupt.
1211	 */
1212	pri = td->td_priority;
1213	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1214	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1215		SCHED_STAT_INC(pickcpu_intrbind);
1216		ts->ts_cpu = self;
1217		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1218			SCHED_STAT_INC(pickcpu_affinity);
1219			return (ts->ts_cpu);
1220		}
1221	}
1222	/*
1223	 * If the thread can run on the last cpu and the affinity has not
1224	 * expired or it is idle run it there.
1225	 */
1226	tdq = TDQ_CPU(ts->ts_cpu);
1227	cg = tdq->tdq_cg;
1228	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1229	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1230	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1231		if (cg->cg_flags & CG_FLAG_THREAD) {
1232			CPUSET_FOREACH(cpu, cg->cg_mask) {
1233				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1234					break;
1235			}
1236		} else
1237			cpu = INT_MAX;
1238		if (cpu > mp_maxid) {
1239			SCHED_STAT_INC(pickcpu_idle_affinity);
1240			return (ts->ts_cpu);
1241		}
1242	}
1243	/*
1244	 * Search for the last level cache CPU group in the tree.
1245	 * Skip caches with expired affinity time and SMT groups.
1246	 * Affinity to higher level caches will be handled less aggressively.
1247	 */
1248	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1249		if (cg->cg_flags & CG_FLAG_THREAD)
1250			continue;
1251		if (!SCHED_AFFINITY(ts, cg->cg_level))
1252			continue;
1253		ccg = cg;
1254	}
1255	if (ccg != NULL)
1256		cg = ccg;
1257	cpu = -1;
1258	/* Search the group for the less loaded idle CPU we can run now. */
1259	mask = td->td_cpuset->cs_mask;
1260	if (cg != NULL && cg != cpu_top &&
1261	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1262		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1263		    INT_MAX, ts->ts_cpu);
1264	/* Search globally for the less loaded CPU we can run now. */
1265	if (cpu == -1)
1266		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1267	/* Search globally for the less loaded CPU. */
1268	if (cpu == -1)
1269		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1270	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1271	/*
1272	 * Compare the lowest loaded cpu to current cpu.
1273	 */
1274	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1275	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1276	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1277		SCHED_STAT_INC(pickcpu_local);
1278		cpu = self;
1279	} else
1280		SCHED_STAT_INC(pickcpu_lowest);
1281	if (cpu != ts->ts_cpu)
1282		SCHED_STAT_INC(pickcpu_migration);
1283	return (cpu);
1284}
1285#endif
1286
1287/*
1288 * Pick the highest priority task we have and return it.
1289 */
1290static struct thread *
1291tdq_choose(struct tdq *tdq)
1292{
1293	struct thread *td;
1294
1295	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1296	td = runq_choose(&tdq->tdq_realtime);
1297	if (td != NULL)
1298		return (td);
1299	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1300	if (td != NULL) {
1301		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1302		    ("tdq_choose: Invalid priority on timeshare queue %d",
1303		    td->td_priority));
1304		return (td);
1305	}
1306	td = runq_choose(&tdq->tdq_idle);
1307	if (td != NULL) {
1308		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1309		    ("tdq_choose: Invalid priority on idle queue %d",
1310		    td->td_priority));
1311		return (td);
1312	}
1313
1314	return (NULL);
1315}
1316
1317/*
1318 * Initialize a thread queue.
1319 */
1320static void
1321tdq_setup(struct tdq *tdq)
1322{
1323
1324	if (bootverbose)
1325		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1326	runq_init(&tdq->tdq_realtime);
1327	runq_init(&tdq->tdq_timeshare);
1328	runq_init(&tdq->tdq_idle);
1329	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1330	    "sched lock %d", (int)TDQ_ID(tdq));
1331	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1332	    MTX_SPIN | MTX_RECURSE);
1333#ifdef KTR
1334	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1335	    "CPU %d load", (int)TDQ_ID(tdq));
1336#endif
1337}
1338
1339#ifdef SMP
1340static void
1341sched_setup_smp(void)
1342{
1343	struct tdq *tdq;
1344	int i;
1345
1346	cpu_top = smp_topo();
1347	CPU_FOREACH(i) {
1348		tdq = TDQ_CPU(i);
1349		tdq_setup(tdq);
1350		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1351		if (tdq->tdq_cg == NULL)
1352			panic("Can't find cpu group for %d\n", i);
1353	}
1354	balance_tdq = TDQ_SELF();
1355	sched_balance();
1356}
1357#endif
1358
1359/*
1360 * Setup the thread queues and initialize the topology based on MD
1361 * information.
1362 */
1363static void
1364sched_setup(void *dummy)
1365{
1366	struct tdq *tdq;
1367
1368	tdq = TDQ_SELF();
1369#ifdef SMP
1370	sched_setup_smp();
1371#else
1372	tdq_setup(tdq);
1373#endif
1374
1375	/* Add thread0's load since it's running. */
1376	TDQ_LOCK(tdq);
1377	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1378	tdq_load_add(tdq, &thread0);
1379	tdq->tdq_lowpri = thread0.td_priority;
1380	TDQ_UNLOCK(tdq);
1381}
1382
1383/*
1384 * This routine determines time constants after stathz and hz are setup.
1385 */
1386/* ARGSUSED */
1387static void
1388sched_initticks(void *dummy)
1389{
1390	int incr;
1391
1392	realstathz = stathz ? stathz : hz;
1393	sched_slice = realstathz / 10;	/* ~100ms */
1394	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1395	    realstathz);
1396
1397	/*
1398	 * tickincr is shifted out by 10 to avoid rounding errors due to
1399	 * hz not being evenly divisible by stathz on all platforms.
1400	 */
1401	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1402	/*
1403	 * This does not work for values of stathz that are more than
1404	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1405	 */
1406	if (incr == 0)
1407		incr = 1;
1408	tickincr = incr;
1409#ifdef SMP
1410	/*
1411	 * Set the default balance interval now that we know
1412	 * what realstathz is.
1413	 */
1414	balance_interval = realstathz;
1415	affinity = SCHED_AFFINITY_DEFAULT;
1416#endif
1417	if (sched_idlespinthresh < 0)
1418		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1419}
1420
1421
1422/*
1423 * This is the core of the interactivity algorithm.  Determines a score based
1424 * on past behavior.  It is the ratio of sleep time to run time scaled to
1425 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1426 * differs from the cpu usage because it does not account for time spent
1427 * waiting on a run-queue.  Would be prettier if we had floating point.
1428 */
1429static int
1430sched_interact_score(struct thread *td)
1431{
1432	struct td_sched *ts;
1433	int div;
1434
1435	ts = td->td_sched;
1436	/*
1437	 * The score is only needed if this is likely to be an interactive
1438	 * task.  Don't go through the expense of computing it if there's
1439	 * no chance.
1440	 */
1441	if (sched_interact <= SCHED_INTERACT_HALF &&
1442		ts->ts_runtime >= ts->ts_slptime)
1443			return (SCHED_INTERACT_HALF);
1444
1445	if (ts->ts_runtime > ts->ts_slptime) {
1446		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1447		return (SCHED_INTERACT_HALF +
1448		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1449	}
1450	if (ts->ts_slptime > ts->ts_runtime) {
1451		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1452		return (ts->ts_runtime / div);
1453	}
1454	/* runtime == slptime */
1455	if (ts->ts_runtime)
1456		return (SCHED_INTERACT_HALF);
1457
1458	/*
1459	 * This can happen if slptime and runtime are 0.
1460	 */
1461	return (0);
1462
1463}
1464
1465/*
1466 * Scale the scheduling priority according to the "interactivity" of this
1467 * process.
1468 */
1469static void
1470sched_priority(struct thread *td)
1471{
1472	int score;
1473	int pri;
1474
1475	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1476		return;
1477	/*
1478	 * If the score is interactive we place the thread in the realtime
1479	 * queue with a priority that is less than kernel and interrupt
1480	 * priorities.  These threads are not subject to nice restrictions.
1481	 *
1482	 * Scores greater than this are placed on the normal timeshare queue
1483	 * where the priority is partially decided by the most recent cpu
1484	 * utilization and the rest is decided by nice value.
1485	 *
1486	 * The nice value of the process has a linear effect on the calculated
1487	 * score.  Negative nice values make it easier for a thread to be
1488	 * considered interactive.
1489	 */
1490	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1491	if (score < sched_interact) {
1492		pri = PRI_MIN_INTERACT;
1493		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1494		    sched_interact) * score;
1495		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1496		    ("sched_priority: invalid interactive priority %d score %d",
1497		    pri, score));
1498	} else {
1499		pri = SCHED_PRI_MIN;
1500		if (td->td_sched->ts_ticks)
1501			pri += min(SCHED_PRI_TICKS(td->td_sched),
1502			    SCHED_PRI_RANGE - 1);
1503		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1504		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1505		    ("sched_priority: invalid priority %d: nice %d, "
1506		    "ticks %d ftick %d ltick %d tick pri %d",
1507		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1508		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1509		    SCHED_PRI_TICKS(td->td_sched)));
1510	}
1511	sched_user_prio(td, pri);
1512
1513	return;
1514}
1515
1516/*
1517 * This routine enforces a maximum limit on the amount of scheduling history
1518 * kept.  It is called after either the slptime or runtime is adjusted.  This
1519 * function is ugly due to integer math.
1520 */
1521static void
1522sched_interact_update(struct thread *td)
1523{
1524	struct td_sched *ts;
1525	u_int sum;
1526
1527	ts = td->td_sched;
1528	sum = ts->ts_runtime + ts->ts_slptime;
1529	if (sum < SCHED_SLP_RUN_MAX)
1530		return;
1531	/*
1532	 * This only happens from two places:
1533	 * 1) We have added an unusual amount of run time from fork_exit.
1534	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1535	 */
1536	if (sum > SCHED_SLP_RUN_MAX * 2) {
1537		if (ts->ts_runtime > ts->ts_slptime) {
1538			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1539			ts->ts_slptime = 1;
1540		} else {
1541			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1542			ts->ts_runtime = 1;
1543		}
1544		return;
1545	}
1546	/*
1547	 * If we have exceeded by more than 1/5th then the algorithm below
1548	 * will not bring us back into range.  Dividing by two here forces
1549	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1550	 */
1551	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1552		ts->ts_runtime /= 2;
1553		ts->ts_slptime /= 2;
1554		return;
1555	}
1556	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1557	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1558}
1559
1560/*
1561 * Scale back the interactivity history when a child thread is created.  The
1562 * history is inherited from the parent but the thread may behave totally
1563 * differently.  For example, a shell spawning a compiler process.  We want
1564 * to learn that the compiler is behaving badly very quickly.
1565 */
1566static void
1567sched_interact_fork(struct thread *td)
1568{
1569	int ratio;
1570	int sum;
1571
1572	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1573	if (sum > SCHED_SLP_RUN_FORK) {
1574		ratio = sum / SCHED_SLP_RUN_FORK;
1575		td->td_sched->ts_runtime /= ratio;
1576		td->td_sched->ts_slptime /= ratio;
1577	}
1578}
1579
1580/*
1581 * Called from proc0_init() to setup the scheduler fields.
1582 */
1583void
1584schedinit(void)
1585{
1586
1587	/*
1588	 * Set up the scheduler specific parts of proc0.
1589	 */
1590	proc0.p_sched = NULL; /* XXX */
1591	thread0.td_sched = &td_sched0;
1592	td_sched0.ts_ltick = ticks;
1593	td_sched0.ts_ftick = ticks;
1594	td_sched0.ts_slice = sched_slice;
1595}
1596
1597/*
1598 * This is only somewhat accurate since given many processes of the same
1599 * priority they will switch when their slices run out, which will be
1600 * at most sched_slice stathz ticks.
1601 */
1602int
1603sched_rr_interval(void)
1604{
1605
1606	/* Convert sched_slice from stathz to hz. */
1607	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1608}
1609
1610/*
1611 * Update the percent cpu tracking information when it is requested or
1612 * the total history exceeds the maximum.  We keep a sliding history of
1613 * tick counts that slowly decays.  This is less precise than the 4BSD
1614 * mechanism since it happens with less regular and frequent events.
1615 */
1616static void
1617sched_pctcpu_update(struct td_sched *ts, int run)
1618{
1619	int t = ticks;
1620
1621	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1622		ts->ts_ticks = 0;
1623		ts->ts_ftick = t - SCHED_TICK_TARG;
1624	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1625		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1626		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1627		ts->ts_ftick = t - SCHED_TICK_TARG;
1628	}
1629	if (run)
1630		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1631	ts->ts_ltick = t;
1632}
1633
1634/*
1635 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1636 * if necessary.  This is the back-end for several priority related
1637 * functions.
1638 */
1639static void
1640sched_thread_priority(struct thread *td, u_char prio)
1641{
1642	struct td_sched *ts;
1643	struct tdq *tdq;
1644	int oldpri;
1645
1646	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1647	    "prio:%d", td->td_priority, "new prio:%d", prio,
1648	    KTR_ATTR_LINKED, sched_tdname(curthread));
1649	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1650	if (td != curthread && prio < td->td_priority) {
1651		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1652		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1653		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1654		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1655		    curthread);
1656	}
1657	ts = td->td_sched;
1658	THREAD_LOCK_ASSERT(td, MA_OWNED);
1659	if (td->td_priority == prio)
1660		return;
1661	/*
1662	 * If the priority has been elevated due to priority
1663	 * propagation, we may have to move ourselves to a new
1664	 * queue.  This could be optimized to not re-add in some
1665	 * cases.
1666	 */
1667	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1668		sched_rem(td);
1669		td->td_priority = prio;
1670		sched_add(td, SRQ_BORROWING);
1671		return;
1672	}
1673	/*
1674	 * If the thread is currently running we may have to adjust the lowpri
1675	 * information so other cpus are aware of our current priority.
1676	 */
1677	if (TD_IS_RUNNING(td)) {
1678		tdq = TDQ_CPU(ts->ts_cpu);
1679		oldpri = td->td_priority;
1680		td->td_priority = prio;
1681		if (prio < tdq->tdq_lowpri)
1682			tdq->tdq_lowpri = prio;
1683		else if (tdq->tdq_lowpri == oldpri)
1684			tdq_setlowpri(tdq, td);
1685		return;
1686	}
1687	td->td_priority = prio;
1688}
1689
1690/*
1691 * Update a thread's priority when it is lent another thread's
1692 * priority.
1693 */
1694void
1695sched_lend_prio(struct thread *td, u_char prio)
1696{
1697
1698	td->td_flags |= TDF_BORROWING;
1699	sched_thread_priority(td, prio);
1700}
1701
1702/*
1703 * Restore a thread's priority when priority propagation is
1704 * over.  The prio argument is the minimum priority the thread
1705 * needs to have to satisfy other possible priority lending
1706 * requests.  If the thread's regular priority is less
1707 * important than prio, the thread will keep a priority boost
1708 * of prio.
1709 */
1710void
1711sched_unlend_prio(struct thread *td, u_char prio)
1712{
1713	u_char base_pri;
1714
1715	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1716	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1717		base_pri = td->td_user_pri;
1718	else
1719		base_pri = td->td_base_pri;
1720	if (prio >= base_pri) {
1721		td->td_flags &= ~TDF_BORROWING;
1722		sched_thread_priority(td, base_pri);
1723	} else
1724		sched_lend_prio(td, prio);
1725}
1726
1727/*
1728 * Standard entry for setting the priority to an absolute value.
1729 */
1730void
1731sched_prio(struct thread *td, u_char prio)
1732{
1733	u_char oldprio;
1734
1735	/* First, update the base priority. */
1736	td->td_base_pri = prio;
1737
1738	/*
1739	 * If the thread is borrowing another thread's priority, don't
1740	 * ever lower the priority.
1741	 */
1742	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1743		return;
1744
1745	/* Change the real priority. */
1746	oldprio = td->td_priority;
1747	sched_thread_priority(td, prio);
1748
1749	/*
1750	 * If the thread is on a turnstile, then let the turnstile update
1751	 * its state.
1752	 */
1753	if (TD_ON_LOCK(td) && oldprio != prio)
1754		turnstile_adjust(td, oldprio);
1755}
1756
1757/*
1758 * Set the base user priority, does not effect current running priority.
1759 */
1760void
1761sched_user_prio(struct thread *td, u_char prio)
1762{
1763
1764	td->td_base_user_pri = prio;
1765	if (td->td_lend_user_pri <= prio)
1766		return;
1767	td->td_user_pri = prio;
1768}
1769
1770void
1771sched_lend_user_prio(struct thread *td, u_char prio)
1772{
1773
1774	THREAD_LOCK_ASSERT(td, MA_OWNED);
1775	td->td_lend_user_pri = prio;
1776	td->td_user_pri = min(prio, td->td_base_user_pri);
1777	if (td->td_priority > td->td_user_pri)
1778		sched_prio(td, td->td_user_pri);
1779	else if (td->td_priority != td->td_user_pri)
1780		td->td_flags |= TDF_NEEDRESCHED;
1781}
1782
1783/*
1784 * Handle migration from sched_switch().  This happens only for
1785 * cpu binding.
1786 */
1787static struct mtx *
1788sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1789{
1790	struct tdq *tdn;
1791
1792	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1793#ifdef SMP
1794	tdq_load_rem(tdq, td);
1795	/*
1796	 * Do the lock dance required to avoid LOR.  We grab an extra
1797	 * spinlock nesting to prevent preemption while we're
1798	 * not holding either run-queue lock.
1799	 */
1800	spinlock_enter();
1801	thread_lock_block(td);	/* This releases the lock on tdq. */
1802
1803	/*
1804	 * Acquire both run-queue locks before placing the thread on the new
1805	 * run-queue to avoid deadlocks created by placing a thread with a
1806	 * blocked lock on the run-queue of a remote processor.  The deadlock
1807	 * occurs when a third processor attempts to lock the two queues in
1808	 * question while the target processor is spinning with its own
1809	 * run-queue lock held while waiting for the blocked lock to clear.
1810	 */
1811	tdq_lock_pair(tdn, tdq);
1812	tdq_add(tdn, td, flags);
1813	tdq_notify(tdn, td);
1814	TDQ_UNLOCK(tdn);
1815	spinlock_exit();
1816#endif
1817	return (TDQ_LOCKPTR(tdn));
1818}
1819
1820/*
1821 * Variadic version of thread_lock_unblock() that does not assume td_lock
1822 * is blocked.
1823 */
1824static inline void
1825thread_unblock_switch(struct thread *td, struct mtx *mtx)
1826{
1827	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1828	    (uintptr_t)mtx);
1829}
1830
1831/*
1832 * Switch threads.  This function has to handle threads coming in while
1833 * blocked for some reason, running, or idle.  It also must deal with
1834 * migrating a thread from one queue to another as running threads may
1835 * be assigned elsewhere via binding.
1836 */
1837void
1838sched_switch(struct thread *td, struct thread *newtd, int flags)
1839{
1840	struct tdq *tdq;
1841	struct td_sched *ts;
1842	struct mtx *mtx;
1843	int srqflag;
1844	int cpuid, preempted;
1845
1846	THREAD_LOCK_ASSERT(td, MA_OWNED);
1847	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1848
1849	cpuid = PCPU_GET(cpuid);
1850	tdq = TDQ_CPU(cpuid);
1851	ts = td->td_sched;
1852	mtx = td->td_lock;
1853	sched_pctcpu_update(ts, 1);
1854	ts->ts_rltick = ticks;
1855	td->td_lastcpu = td->td_oncpu;
1856	td->td_oncpu = NOCPU;
1857	preempted = !(td->td_flags & TDF_SLICEEND);
1858	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1859	td->td_owepreempt = 0;
1860	if (!TD_IS_IDLETHREAD(td))
1861		tdq->tdq_switchcnt++;
1862	/*
1863	 * The lock pointer in an idle thread should never change.  Reset it
1864	 * to CAN_RUN as well.
1865	 */
1866	if (TD_IS_IDLETHREAD(td)) {
1867		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1868		TD_SET_CAN_RUN(td);
1869	} else if (TD_IS_RUNNING(td)) {
1870		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1871		srqflag = preempted ?
1872		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1873		    SRQ_OURSELF|SRQ_YIELDING;
1874#ifdef SMP
1875		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1876			ts->ts_cpu = sched_pickcpu(td, 0);
1877#endif
1878		if (ts->ts_cpu == cpuid)
1879			tdq_runq_add(tdq, td, srqflag);
1880		else {
1881			KASSERT(THREAD_CAN_MIGRATE(td) ||
1882			    (ts->ts_flags & TSF_BOUND) != 0,
1883			    ("Thread %p shouldn't migrate", td));
1884			mtx = sched_switch_migrate(tdq, td, srqflag);
1885		}
1886	} else {
1887		/* This thread must be going to sleep. */
1888		TDQ_LOCK(tdq);
1889		mtx = thread_lock_block(td);
1890		tdq_load_rem(tdq, td);
1891	}
1892	/*
1893	 * We enter here with the thread blocked and assigned to the
1894	 * appropriate cpu run-queue or sleep-queue and with the current
1895	 * thread-queue locked.
1896	 */
1897	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1898	newtd = choosethread();
1899	/*
1900	 * Call the MD code to switch contexts if necessary.
1901	 */
1902	if (td != newtd) {
1903#ifdef	HWPMC_HOOKS
1904		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1905			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1906#endif
1907		SDT_PROBE2(sched, , , off_cpu, newtd, newtd->td_proc);
1908		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1909		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1910		sched_pctcpu_update(newtd->td_sched, 0);
1911
1912#ifdef KDTRACE_HOOKS
1913		/*
1914		 * If DTrace has set the active vtime enum to anything
1915		 * other than INACTIVE (0), then it should have set the
1916		 * function to call.
1917		 */
1918		if (dtrace_vtime_active)
1919			(*dtrace_vtime_switch_func)(newtd);
1920#endif
1921
1922		cpu_switch(td, newtd, mtx);
1923		/*
1924		 * We may return from cpu_switch on a different cpu.  However,
1925		 * we always return with td_lock pointing to the current cpu's
1926		 * run queue lock.
1927		 */
1928		cpuid = PCPU_GET(cpuid);
1929		tdq = TDQ_CPU(cpuid);
1930		lock_profile_obtain_lock_success(
1931		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1932
1933		SDT_PROBE0(sched, , , on_cpu);
1934#ifdef	HWPMC_HOOKS
1935		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1936			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1937#endif
1938	} else {
1939		thread_unblock_switch(td, mtx);
1940		SDT_PROBE0(sched, , , remain_cpu);
1941	}
1942	/*
1943	 * Assert that all went well and return.
1944	 */
1945	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1946	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1947	td->td_oncpu = cpuid;
1948}
1949
1950/*
1951 * Adjust thread priorities as a result of a nice request.
1952 */
1953void
1954sched_nice(struct proc *p, int nice)
1955{
1956	struct thread *td;
1957
1958	PROC_LOCK_ASSERT(p, MA_OWNED);
1959
1960	p->p_nice = nice;
1961	FOREACH_THREAD_IN_PROC(p, td) {
1962		thread_lock(td);
1963		sched_priority(td);
1964		sched_prio(td, td->td_base_user_pri);
1965		thread_unlock(td);
1966	}
1967}
1968
1969/*
1970 * Record the sleep time for the interactivity scorer.
1971 */
1972void
1973sched_sleep(struct thread *td, int prio)
1974{
1975
1976	THREAD_LOCK_ASSERT(td, MA_OWNED);
1977
1978	td->td_slptick = ticks;
1979	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1980		td->td_flags |= TDF_CANSWAP;
1981	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1982		return;
1983	if (static_boost == 1 && prio)
1984		sched_prio(td, prio);
1985	else if (static_boost && td->td_priority > static_boost)
1986		sched_prio(td, static_boost);
1987}
1988
1989/*
1990 * Schedule a thread to resume execution and record how long it voluntarily
1991 * slept.  We also update the pctcpu, interactivity, and priority.
1992 */
1993void
1994sched_wakeup(struct thread *td)
1995{
1996	struct td_sched *ts;
1997	int slptick;
1998
1999	THREAD_LOCK_ASSERT(td, MA_OWNED);
2000	ts = td->td_sched;
2001	td->td_flags &= ~TDF_CANSWAP;
2002	/*
2003	 * If we slept for more than a tick update our interactivity and
2004	 * priority.
2005	 */
2006	slptick = td->td_slptick;
2007	td->td_slptick = 0;
2008	if (slptick && slptick != ticks) {
2009		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2010		sched_interact_update(td);
2011		sched_pctcpu_update(ts, 0);
2012	}
2013	/* Reset the slice value after we sleep. */
2014	ts->ts_slice = sched_slice;
2015	sched_add(td, SRQ_BORING);
2016}
2017
2018/*
2019 * Penalize the parent for creating a new child and initialize the child's
2020 * priority.
2021 */
2022void
2023sched_fork(struct thread *td, struct thread *child)
2024{
2025	THREAD_LOCK_ASSERT(td, MA_OWNED);
2026	sched_pctcpu_update(td->td_sched, 1);
2027	sched_fork_thread(td, child);
2028	/*
2029	 * Penalize the parent and child for forking.
2030	 */
2031	sched_interact_fork(child);
2032	sched_priority(child);
2033	td->td_sched->ts_runtime += tickincr;
2034	sched_interact_update(td);
2035	sched_priority(td);
2036}
2037
2038/*
2039 * Fork a new thread, may be within the same process.
2040 */
2041void
2042sched_fork_thread(struct thread *td, struct thread *child)
2043{
2044	struct td_sched *ts;
2045	struct td_sched *ts2;
2046
2047	THREAD_LOCK_ASSERT(td, MA_OWNED);
2048	/*
2049	 * Initialize child.
2050	 */
2051	ts = td->td_sched;
2052	ts2 = child->td_sched;
2053	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2054	child->td_cpuset = cpuset_ref(td->td_cpuset);
2055	ts2->ts_cpu = ts->ts_cpu;
2056	ts2->ts_flags = 0;
2057	/*
2058	 * Grab our parents cpu estimation information.
2059	 */
2060	ts2->ts_ticks = ts->ts_ticks;
2061	ts2->ts_ltick = ts->ts_ltick;
2062	ts2->ts_ftick = ts->ts_ftick;
2063	/*
2064	 * Do not inherit any borrowed priority from the parent.
2065	 */
2066	child->td_priority = child->td_base_pri;
2067	/*
2068	 * And update interactivity score.
2069	 */
2070	ts2->ts_slptime = ts->ts_slptime;
2071	ts2->ts_runtime = ts->ts_runtime;
2072	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2073#ifdef KTR
2074	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2075#endif
2076}
2077
2078/*
2079 * Adjust the priority class of a thread.
2080 */
2081void
2082sched_class(struct thread *td, int class)
2083{
2084
2085	THREAD_LOCK_ASSERT(td, MA_OWNED);
2086	if (td->td_pri_class == class)
2087		return;
2088	td->td_pri_class = class;
2089}
2090
2091/*
2092 * Return some of the child's priority and interactivity to the parent.
2093 */
2094void
2095sched_exit(struct proc *p, struct thread *child)
2096{
2097	struct thread *td;
2098
2099	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2100	    "prio:%d", child->td_priority);
2101	PROC_LOCK_ASSERT(p, MA_OWNED);
2102	td = FIRST_THREAD_IN_PROC(p);
2103	sched_exit_thread(td, child);
2104}
2105
2106/*
2107 * Penalize another thread for the time spent on this one.  This helps to
2108 * worsen the priority and interactivity of processes which schedule batch
2109 * jobs such as make.  This has little effect on the make process itself but
2110 * causes new processes spawned by it to receive worse scores immediately.
2111 */
2112void
2113sched_exit_thread(struct thread *td, struct thread *child)
2114{
2115
2116	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2117	    "prio:%d", child->td_priority);
2118	/*
2119	 * Give the child's runtime to the parent without returning the
2120	 * sleep time as a penalty to the parent.  This causes shells that
2121	 * launch expensive things to mark their children as expensive.
2122	 */
2123	thread_lock(td);
2124	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2125	sched_interact_update(td);
2126	sched_priority(td);
2127	thread_unlock(td);
2128}
2129
2130void
2131sched_preempt(struct thread *td)
2132{
2133	struct tdq *tdq;
2134
2135	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2136
2137	thread_lock(td);
2138	tdq = TDQ_SELF();
2139	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2140	tdq->tdq_ipipending = 0;
2141	if (td->td_priority > tdq->tdq_lowpri) {
2142		int flags;
2143
2144		flags = SW_INVOL | SW_PREEMPT;
2145		if (td->td_critnest > 1)
2146			td->td_owepreempt = 1;
2147		else if (TD_IS_IDLETHREAD(td))
2148			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2149		else
2150			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2151	}
2152	thread_unlock(td);
2153}
2154
2155/*
2156 * Fix priorities on return to user-space.  Priorities may be elevated due
2157 * to static priorities in msleep() or similar.
2158 */
2159void
2160sched_userret(struct thread *td)
2161{
2162	/*
2163	 * XXX we cheat slightly on the locking here to avoid locking in
2164	 * the usual case.  Setting td_priority here is essentially an
2165	 * incomplete workaround for not setting it properly elsewhere.
2166	 * Now that some interrupt handlers are threads, not setting it
2167	 * properly elsewhere can clobber it in the window between setting
2168	 * it here and returning to user mode, so don't waste time setting
2169	 * it perfectly here.
2170	 */
2171	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2172	    ("thread with borrowed priority returning to userland"));
2173	if (td->td_priority != td->td_user_pri) {
2174		thread_lock(td);
2175		td->td_priority = td->td_user_pri;
2176		td->td_base_pri = td->td_user_pri;
2177		tdq_setlowpri(TDQ_SELF(), td);
2178		thread_unlock(td);
2179        }
2180}
2181
2182/*
2183 * Handle a stathz tick.  This is really only relevant for timeshare
2184 * threads.
2185 */
2186void
2187sched_clock(struct thread *td)
2188{
2189	struct tdq *tdq;
2190	struct td_sched *ts;
2191
2192	THREAD_LOCK_ASSERT(td, MA_OWNED);
2193	tdq = TDQ_SELF();
2194#ifdef SMP
2195	/*
2196	 * We run the long term load balancer infrequently on the first cpu.
2197	 */
2198	if (balance_tdq == tdq) {
2199		if (balance_ticks && --balance_ticks == 0)
2200			sched_balance();
2201	}
2202#endif
2203	/*
2204	 * Save the old switch count so we have a record of the last ticks
2205	 * activity.   Initialize the new switch count based on our load.
2206	 * If there is some activity seed it to reflect that.
2207	 */
2208	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2209	tdq->tdq_switchcnt = tdq->tdq_load;
2210	/*
2211	 * Advance the insert index once for each tick to ensure that all
2212	 * threads get a chance to run.
2213	 */
2214	if (tdq->tdq_idx == tdq->tdq_ridx) {
2215		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2216		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2217			tdq->tdq_ridx = tdq->tdq_idx;
2218	}
2219	ts = td->td_sched;
2220	sched_pctcpu_update(ts, 1);
2221	if (td->td_pri_class & PRI_FIFO_BIT)
2222		return;
2223	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2224		/*
2225		 * We used a tick; charge it to the thread so
2226		 * that we can compute our interactivity.
2227		 */
2228		td->td_sched->ts_runtime += tickincr;
2229		sched_interact_update(td);
2230		sched_priority(td);
2231	}
2232
2233	/*
2234	 * Force a context switch if the current thread has used up a full
2235	 * time slice (default is 100ms).
2236	 */
2237	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
2238		ts->ts_slice = sched_slice;
2239		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2240	}
2241}
2242
2243/*
2244 * Called once per hz tick.
2245 */
2246void
2247sched_tick(int cnt)
2248{
2249
2250}
2251
2252/*
2253 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2254 * cooperative idle threads.
2255 */
2256int
2257sched_runnable(void)
2258{
2259	struct tdq *tdq;
2260	int load;
2261
2262	load = 1;
2263
2264	tdq = TDQ_SELF();
2265	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2266		if (tdq->tdq_load > 0)
2267			goto out;
2268	} else
2269		if (tdq->tdq_load - 1 > 0)
2270			goto out;
2271	load = 0;
2272out:
2273	return (load);
2274}
2275
2276/*
2277 * Choose the highest priority thread to run.  The thread is removed from
2278 * the run-queue while running however the load remains.  For SMP we set
2279 * the tdq in the global idle bitmask if it idles here.
2280 */
2281struct thread *
2282sched_choose(void)
2283{
2284	struct thread *td;
2285	struct tdq *tdq;
2286
2287	tdq = TDQ_SELF();
2288	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2289	td = tdq_choose(tdq);
2290	if (td) {
2291		tdq_runq_rem(tdq, td);
2292		tdq->tdq_lowpri = td->td_priority;
2293		return (td);
2294	}
2295	tdq->tdq_lowpri = PRI_MAX_IDLE;
2296	return (PCPU_GET(idlethread));
2297}
2298
2299/*
2300 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2301 * we always request it once we exit a critical section.
2302 */
2303static inline void
2304sched_setpreempt(struct thread *td)
2305{
2306	struct thread *ctd;
2307	int cpri;
2308	int pri;
2309
2310	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2311
2312	ctd = curthread;
2313	pri = td->td_priority;
2314	cpri = ctd->td_priority;
2315	if (pri < cpri)
2316		ctd->td_flags |= TDF_NEEDRESCHED;
2317	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2318		return;
2319	if (!sched_shouldpreempt(pri, cpri, 0))
2320		return;
2321	ctd->td_owepreempt = 1;
2322}
2323
2324/*
2325 * Add a thread to a thread queue.  Select the appropriate runq and add the
2326 * thread to it.  This is the internal function called when the tdq is
2327 * predetermined.
2328 */
2329void
2330tdq_add(struct tdq *tdq, struct thread *td, int flags)
2331{
2332
2333	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2334	KASSERT((td->td_inhibitors == 0),
2335	    ("sched_add: trying to run inhibited thread"));
2336	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2337	    ("sched_add: bad thread state"));
2338	KASSERT(td->td_flags & TDF_INMEM,
2339	    ("sched_add: thread swapped out"));
2340
2341	if (td->td_priority < tdq->tdq_lowpri)
2342		tdq->tdq_lowpri = td->td_priority;
2343	tdq_runq_add(tdq, td, flags);
2344	tdq_load_add(tdq, td);
2345}
2346
2347/*
2348 * Select the target thread queue and add a thread to it.  Request
2349 * preemption or IPI a remote processor if required.
2350 */
2351void
2352sched_add(struct thread *td, int flags)
2353{
2354	struct tdq *tdq;
2355#ifdef SMP
2356	int cpu;
2357#endif
2358
2359	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2360	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2361	    sched_tdname(curthread));
2362	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2363	    KTR_ATTR_LINKED, sched_tdname(td));
2364	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2365	    flags & SRQ_PREEMPTED);
2366	THREAD_LOCK_ASSERT(td, MA_OWNED);
2367	/*
2368	 * Recalculate the priority before we select the target cpu or
2369	 * run-queue.
2370	 */
2371	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2372		sched_priority(td);
2373#ifdef SMP
2374	/*
2375	 * Pick the destination cpu and if it isn't ours transfer to the
2376	 * target cpu.
2377	 */
2378	cpu = sched_pickcpu(td, flags);
2379	tdq = sched_setcpu(td, cpu, flags);
2380	tdq_add(tdq, td, flags);
2381	if (cpu != PCPU_GET(cpuid)) {
2382		tdq_notify(tdq, td);
2383		return;
2384	}
2385#else
2386	tdq = TDQ_SELF();
2387	TDQ_LOCK(tdq);
2388	/*
2389	 * Now that the thread is moving to the run-queue, set the lock
2390	 * to the scheduler's lock.
2391	 */
2392	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2393	tdq_add(tdq, td, flags);
2394#endif
2395	if (!(flags & SRQ_YIELDING))
2396		sched_setpreempt(td);
2397}
2398
2399/*
2400 * Remove a thread from a run-queue without running it.  This is used
2401 * when we're stealing a thread from a remote queue.  Otherwise all threads
2402 * exit by calling sched_exit_thread() and sched_throw() themselves.
2403 */
2404void
2405sched_rem(struct thread *td)
2406{
2407	struct tdq *tdq;
2408
2409	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2410	    "prio:%d", td->td_priority);
2411	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2412	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2413	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2414	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2415	KASSERT(TD_ON_RUNQ(td),
2416	    ("sched_rem: thread not on run queue"));
2417	tdq_runq_rem(tdq, td);
2418	tdq_load_rem(tdq, td);
2419	TD_SET_CAN_RUN(td);
2420	if (td->td_priority == tdq->tdq_lowpri)
2421		tdq_setlowpri(tdq, NULL);
2422}
2423
2424/*
2425 * Fetch cpu utilization information.  Updates on demand.
2426 */
2427fixpt_t
2428sched_pctcpu(struct thread *td)
2429{
2430	fixpt_t pctcpu;
2431	struct td_sched *ts;
2432
2433	pctcpu = 0;
2434	ts = td->td_sched;
2435	if (ts == NULL)
2436		return (0);
2437
2438	THREAD_LOCK_ASSERT(td, MA_OWNED);
2439	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2440	if (ts->ts_ticks) {
2441		int rtick;
2442
2443		/* How many rtick per second ? */
2444		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2445		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2446	}
2447
2448	return (pctcpu);
2449}
2450
2451/*
2452 * Enforce affinity settings for a thread.  Called after adjustments to
2453 * cpumask.
2454 */
2455void
2456sched_affinity(struct thread *td)
2457{
2458#ifdef SMP
2459	struct td_sched *ts;
2460
2461	THREAD_LOCK_ASSERT(td, MA_OWNED);
2462	ts = td->td_sched;
2463	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2464		return;
2465	if (TD_ON_RUNQ(td)) {
2466		sched_rem(td);
2467		sched_add(td, SRQ_BORING);
2468		return;
2469	}
2470	if (!TD_IS_RUNNING(td))
2471		return;
2472	/*
2473	 * Force a switch before returning to userspace.  If the
2474	 * target thread is not running locally send an ipi to force
2475	 * the issue.
2476	 */
2477	td->td_flags |= TDF_NEEDRESCHED;
2478	if (td != curthread)
2479		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2480#endif
2481}
2482
2483/*
2484 * Bind a thread to a target cpu.
2485 */
2486void
2487sched_bind(struct thread *td, int cpu)
2488{
2489	struct td_sched *ts;
2490
2491	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2492	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2493	ts = td->td_sched;
2494	if (ts->ts_flags & TSF_BOUND)
2495		sched_unbind(td);
2496	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2497	ts->ts_flags |= TSF_BOUND;
2498	sched_pin();
2499	if (PCPU_GET(cpuid) == cpu)
2500		return;
2501	ts->ts_cpu = cpu;
2502	/* When we return from mi_switch we'll be on the correct cpu. */
2503	mi_switch(SW_VOL, NULL);
2504}
2505
2506/*
2507 * Release a bound thread.
2508 */
2509void
2510sched_unbind(struct thread *td)
2511{
2512	struct td_sched *ts;
2513
2514	THREAD_LOCK_ASSERT(td, MA_OWNED);
2515	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2516	ts = td->td_sched;
2517	if ((ts->ts_flags & TSF_BOUND) == 0)
2518		return;
2519	ts->ts_flags &= ~TSF_BOUND;
2520	sched_unpin();
2521}
2522
2523int
2524sched_is_bound(struct thread *td)
2525{
2526	THREAD_LOCK_ASSERT(td, MA_OWNED);
2527	return (td->td_sched->ts_flags & TSF_BOUND);
2528}
2529
2530/*
2531 * Basic yield call.
2532 */
2533void
2534sched_relinquish(struct thread *td)
2535{
2536	thread_lock(td);
2537	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2538	thread_unlock(td);
2539}
2540
2541/*
2542 * Return the total system load.
2543 */
2544int
2545sched_load(void)
2546{
2547#ifdef SMP
2548	int total;
2549	int i;
2550
2551	total = 0;
2552	CPU_FOREACH(i)
2553		total += TDQ_CPU(i)->tdq_sysload;
2554	return (total);
2555#else
2556	return (TDQ_SELF()->tdq_sysload);
2557#endif
2558}
2559
2560int
2561sched_sizeof_proc(void)
2562{
2563	return (sizeof(struct proc));
2564}
2565
2566int
2567sched_sizeof_thread(void)
2568{
2569	return (sizeof(struct thread) + sizeof(struct td_sched));
2570}
2571
2572#ifdef SMP
2573#define	TDQ_IDLESPIN(tdq)						\
2574    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2575#else
2576#define	TDQ_IDLESPIN(tdq)	1
2577#endif
2578
2579/*
2580 * The actual idle process.
2581 */
2582void
2583sched_idletd(void *dummy)
2584{
2585	struct thread *td;
2586	struct tdq *tdq;
2587	int oldswitchcnt, switchcnt;
2588	int i;
2589
2590	mtx_assert(&Giant, MA_NOTOWNED);
2591	td = curthread;
2592	tdq = TDQ_SELF();
2593	oldswitchcnt = -1;
2594	for (;;) {
2595		if (tdq->tdq_load) {
2596			thread_lock(td);
2597			mi_switch(SW_VOL | SWT_IDLE, NULL);
2598			thread_unlock(td);
2599		}
2600		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2601#ifdef SMP
2602		if (switchcnt != oldswitchcnt) {
2603			oldswitchcnt = switchcnt;
2604			if (tdq_idled(tdq) == 0)
2605				continue;
2606		}
2607		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2608#else
2609		oldswitchcnt = switchcnt;
2610#endif
2611		/*
2612		 * If we're switching very frequently, spin while checking
2613		 * for load rather than entering a low power state that
2614		 * may require an IPI.  However, don't do any busy
2615		 * loops while on SMT machines as this simply steals
2616		 * cycles from cores doing useful work.
2617		 */
2618		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2619			for (i = 0; i < sched_idlespins; i++) {
2620				if (tdq->tdq_load)
2621					break;
2622				cpu_spinwait();
2623			}
2624		}
2625
2626		/* If there was context switch during spin, restart it. */
2627		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2628		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
2629			continue;
2630
2631		/* Run main MD idle handler. */
2632		tdq->tdq_cpu_idle = 1;
2633		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
2634		tdq->tdq_cpu_idle = 0;
2635
2636		/*
2637		 * Account thread-less hardware interrupts and
2638		 * other wakeup reasons equal to context switches.
2639		 */
2640		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2641		if (switchcnt != oldswitchcnt)
2642			continue;
2643		tdq->tdq_switchcnt++;
2644		oldswitchcnt++;
2645	}
2646}
2647
2648/*
2649 * A CPU is entering for the first time or a thread is exiting.
2650 */
2651void
2652sched_throw(struct thread *td)
2653{
2654	struct thread *newtd;
2655	struct tdq *tdq;
2656
2657	tdq = TDQ_SELF();
2658	if (td == NULL) {
2659		/* Correct spinlock nesting and acquire the correct lock. */
2660		TDQ_LOCK(tdq);
2661		spinlock_exit();
2662		PCPU_SET(switchtime, cpu_ticks());
2663		PCPU_SET(switchticks, ticks);
2664	} else {
2665		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2666		tdq_load_rem(tdq, td);
2667		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2668	}
2669	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2670	newtd = choosethread();
2671	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2672	cpu_throw(td, newtd);		/* doesn't return */
2673}
2674
2675/*
2676 * This is called from fork_exit().  Just acquire the correct locks and
2677 * let fork do the rest of the work.
2678 */
2679void
2680sched_fork_exit(struct thread *td)
2681{
2682	struct td_sched *ts;
2683	struct tdq *tdq;
2684	int cpuid;
2685
2686	/*
2687	 * Finish setting up thread glue so that it begins execution in a
2688	 * non-nested critical section with the scheduler lock held.
2689	 */
2690	cpuid = PCPU_GET(cpuid);
2691	tdq = TDQ_CPU(cpuid);
2692	ts = td->td_sched;
2693	if (TD_IS_IDLETHREAD(td))
2694		td->td_lock = TDQ_LOCKPTR(tdq);
2695	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2696	td->td_oncpu = cpuid;
2697	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2698	lock_profile_obtain_lock_success(
2699	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2700}
2701
2702/*
2703 * Create on first use to catch odd startup conditons.
2704 */
2705char *
2706sched_tdname(struct thread *td)
2707{
2708#ifdef KTR
2709	struct td_sched *ts;
2710
2711	ts = td->td_sched;
2712	if (ts->ts_name[0] == '\0')
2713		snprintf(ts->ts_name, sizeof(ts->ts_name),
2714		    "%s tid %d", td->td_name, td->td_tid);
2715	return (ts->ts_name);
2716#else
2717	return (td->td_name);
2718#endif
2719}
2720
2721#ifdef KTR
2722void
2723sched_clear_tdname(struct thread *td)
2724{
2725	struct td_sched *ts;
2726
2727	ts = td->td_sched;
2728	ts->ts_name[0] = '\0';
2729}
2730#endif
2731
2732#ifdef SMP
2733
2734/*
2735 * Build the CPU topology dump string. Is recursively called to collect
2736 * the topology tree.
2737 */
2738static int
2739sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2740    int indent)
2741{
2742	char cpusetbuf[CPUSETBUFSIZ];
2743	int i, first;
2744
2745	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2746	    "", 1 + indent / 2, cg->cg_level);
2747	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2748	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2749	first = TRUE;
2750	for (i = 0; i < MAXCPU; i++) {
2751		if (CPU_ISSET(i, &cg->cg_mask)) {
2752			if (!first)
2753				sbuf_printf(sb, ", ");
2754			else
2755				first = FALSE;
2756			sbuf_printf(sb, "%d", i);
2757		}
2758	}
2759	sbuf_printf(sb, "</cpu>\n");
2760
2761	if (cg->cg_flags != 0) {
2762		sbuf_printf(sb, "%*s <flags>", indent, "");
2763		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2764			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2765		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2766			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2767		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2768			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2769		sbuf_printf(sb, "</flags>\n");
2770	}
2771
2772	if (cg->cg_children > 0) {
2773		sbuf_printf(sb, "%*s <children>\n", indent, "");
2774		for (i = 0; i < cg->cg_children; i++)
2775			sysctl_kern_sched_topology_spec_internal(sb,
2776			    &cg->cg_child[i], indent+2);
2777		sbuf_printf(sb, "%*s </children>\n", indent, "");
2778	}
2779	sbuf_printf(sb, "%*s</group>\n", indent, "");
2780	return (0);
2781}
2782
2783/*
2784 * Sysctl handler for retrieving topology dump. It's a wrapper for
2785 * the recursive sysctl_kern_smp_topology_spec_internal().
2786 */
2787static int
2788sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2789{
2790	struct sbuf *topo;
2791	int err;
2792
2793	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2794
2795	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2796	if (topo == NULL)
2797		return (ENOMEM);
2798
2799	sbuf_printf(topo, "<groups>\n");
2800	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2801	sbuf_printf(topo, "</groups>\n");
2802
2803	if (err == 0) {
2804		sbuf_finish(topo);
2805		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2806	}
2807	sbuf_delete(topo);
2808	return (err);
2809}
2810
2811#endif
2812
2813static int
2814sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2815{
2816	int error, new_val, period;
2817
2818	period = 1000000 / realstathz;
2819	new_val = period * sched_slice;
2820	error = sysctl_handle_int(oidp, &new_val, 0, req);
2821	if (error != 0 || req->newptr == NULL)
2822		return (error);
2823	if (new_val <= 0)
2824		return (EINVAL);
2825	sched_slice = imax(1, (new_val + period / 2) / period);
2826	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2827	    realstathz);
2828	return (0);
2829}
2830
2831SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2832SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2833    "Scheduler name");
2834SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2835    NULL, 0, sysctl_kern_quantum, "I",
2836    "Quantum for timeshare threads in microseconds");
2837SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2838    "Quantum for timeshare threads in stathz ticks");
2839SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2840    "Interactivity score threshold");
2841SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2842    &preempt_thresh, 0,
2843    "Maximal (lowest) priority for preemption");
2844SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2845    "Assign static kernel priorities to sleeping threads");
2846SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2847    "Number of times idle thread will spin waiting for new work");
2848SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2849    &sched_idlespinthresh, 0,
2850    "Threshold before we will permit idle thread spinning");
2851#ifdef SMP
2852SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2853    "Number of hz ticks to keep thread affinity for");
2854SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2855    "Enables the long-term load balancer");
2856SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2857    &balance_interval, 0,
2858    "Average period in stathz ticks to run the long-term balancer");
2859SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2860    "Attempts to steal work from other cores before idling");
2861SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2862    "Minimum load on remote CPU before we'll steal");
2863SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2864    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2865    "XML dump of detected CPU topology");
2866#endif
2867
2868/* ps compat.  All cpu percentages from ULE are weighted. */
2869static int ccpu = 0;
2870SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2871