1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD$");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#if defined(__powerpc__) && defined(E500)
81#error "This architecture is not currently compatible with ULE"
82#endif
83
84#define	KTR_ULE	0
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89
90/*
91 * Thread scheduler specific section.  All fields are protected
92 * by the thread lock.
93 */
94struct td_sched {
95	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96	short		ts_flags;	/* TSF_* flags. */
97	u_char		ts_cpu;		/* CPU that we have affinity for. */
98	int		ts_rltick;	/* Real last tick, for affinity. */
99	int		ts_slice;	/* Ticks of slice remaining. */
100	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101	u_int		ts_runtime;	/* Number of ticks we were running */
102	int		ts_ltick;	/* Last tick that we were running on */
103	int		ts_ftick;	/* First tick that we were running on */
104	int		ts_ticks;	/* Tick count */
105#ifdef KTR
106	char		ts_name[TS_NAME_LEN];
107#endif
108};
109/* flags kept in ts_flags */
110#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112
113static struct td_sched td_sched0;
114
115#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119/*
120 * Priority ranges used for interactive and non-interactive timeshare
121 * threads.  The timeshare priorities are split up into four ranges.
122 * The first range handles interactive threads.  The last three ranges
123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124 * ranges supporting nice values.
125 */
126#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129
130#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/* Flags kept in td_flags. */
193#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
194
195/*
196 * tickincr:		Converts a stathz tick into a hz domain scaled by
197 *			the shift factor.  Without the shift the error rate
198 *			due to rounding would be unacceptably high.
199 * realstathz:		stathz is sometimes 0 and run off of hz.
200 * sched_slice:		Runtime of each thread before rescheduling.
201 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
202 */
203static int sched_interact = SCHED_INTERACT_THRESH;
204static int realstathz = 127;
205static int tickincr = 8 << SCHED_TICK_SHIFT;
206static int sched_slice = 12;
207#ifdef PREEMPTION
208#ifdef FULL_PREEMPTION
209static int preempt_thresh = PRI_MAX_IDLE;
210#else
211static int preempt_thresh = PRI_MIN_KERN;
212#endif
213#else
214static int preempt_thresh = 0;
215#endif
216static int static_boost = PRI_MIN_BATCH;
217static int sched_idlespins = 10000;
218static int sched_idlespinthresh = -1;
219
220/*
221 * tdq - per processor runqs and statistics.  All fields are protected by the
222 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
223 * locking in sched_pickcpu();
224 */
225struct tdq {
226	/* Ordered to improve efficiency of cpu_search() and switch(). */
227	struct mtx	tdq_lock;		/* run queue lock. */
228	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
229	volatile int	tdq_load;		/* Aggregate load. */
230	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
231	int		tdq_sysload;		/* For loadavg, !ITHD load. */
232	int		tdq_transferable;	/* Transferable thread count. */
233	short		tdq_switchcnt;		/* Switches this tick. */
234	short		tdq_oldswitchcnt;	/* Switches last tick. */
235	u_char		tdq_lowpri;		/* Lowest priority thread. */
236	u_char		tdq_ipipending;		/* IPI pending. */
237	u_char		tdq_idx;		/* Current insert index. */
238	u_char		tdq_ridx;		/* Current removal index. */
239	struct runq	tdq_realtime;		/* real-time run queue. */
240	struct runq	tdq_timeshare;		/* timeshare run queue. */
241	struct runq	tdq_idle;		/* Queue of IDLE threads. */
242	char		tdq_name[TDQ_NAME_LEN];
243#ifdef KTR
244	char		tdq_loadname[TDQ_LOADNAME_LEN];
245#endif
246} __aligned(64);
247
248/* Idle thread states and config. */
249#define	TDQ_RUNNING	1
250#define	TDQ_IDLE	2
251
252#ifdef SMP
253struct cpu_group *cpu_top;		/* CPU topology */
254
255#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
256#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
257
258/*
259 * Run-time tunables.
260 */
261static int rebalance = 1;
262static int balance_interval = 128;	/* Default set in sched_initticks(). */
263static int affinity;
264static int steal_idle = 1;
265static int steal_thresh = 2;
266
267/*
268 * One thread queue per processor.
269 */
270static struct tdq	tdq_cpu[MAXCPU];
271static struct tdq	*balance_tdq;
272static int balance_ticks;
273static DPCPU_DEFINE(uint32_t, randomval);
274
275#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
276#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
277#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
278#else	/* !SMP */
279static struct tdq	tdq_cpu;
280
281#define	TDQ_ID(x)	(0)
282#define	TDQ_SELF()	(&tdq_cpu)
283#define	TDQ_CPU(x)	(&tdq_cpu)
284#endif
285
286#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
287#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
288#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
289#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
290#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
291
292static void sched_priority(struct thread *);
293static void sched_thread_priority(struct thread *, u_char);
294static int sched_interact_score(struct thread *);
295static void sched_interact_update(struct thread *);
296static void sched_interact_fork(struct thread *);
297static void sched_pctcpu_update(struct td_sched *, int);
298
299/* Operations on per processor queues */
300static struct thread *tdq_choose(struct tdq *);
301static void tdq_setup(struct tdq *);
302static void tdq_load_add(struct tdq *, struct thread *);
303static void tdq_load_rem(struct tdq *, struct thread *);
304static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
305static __inline void tdq_runq_rem(struct tdq *, struct thread *);
306static inline int sched_shouldpreempt(int, int, int);
307void tdq_print(int cpu);
308static void runq_print(struct runq *rq);
309static void tdq_add(struct tdq *, struct thread *, int);
310#ifdef SMP
311static int tdq_move(struct tdq *, struct tdq *);
312static int tdq_idled(struct tdq *);
313static void tdq_notify(struct tdq *, struct thread *);
314static struct thread *tdq_steal(struct tdq *, int);
315static struct thread *runq_steal(struct runq *, int);
316static int sched_pickcpu(struct thread *, int);
317static void sched_balance(void);
318static int sched_balance_pair(struct tdq *, struct tdq *);
319static inline struct tdq *sched_setcpu(struct thread *, int, int);
320static inline void thread_unblock_switch(struct thread *, struct mtx *);
321static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
322static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
323static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
324    struct cpu_group *cg, int indent);
325#endif
326
327static void sched_setup(void *dummy);
328SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
329
330static void sched_initticks(void *dummy);
331SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
332    NULL);
333
334SDT_PROVIDER_DEFINE(sched);
335
336SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
337    "struct proc *", "uint8_t");
338SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
339    "struct proc *", "void *");
340SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
341    "struct proc *", "void *", "int");
342SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
343    "struct proc *", "uint8_t", "struct thread *");
344SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
345SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
346    "struct proc *");
347SDT_PROBE_DEFINE(sched, , , on__cpu);
348SDT_PROBE_DEFINE(sched, , , remain__cpu);
349SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
350    "struct proc *");
351
352/*
353 * Print the threads waiting on a run-queue.
354 */
355static void
356runq_print(struct runq *rq)
357{
358	struct rqhead *rqh;
359	struct thread *td;
360	int pri;
361	int j;
362	int i;
363
364	for (i = 0; i < RQB_LEN; i++) {
365		printf("\t\trunq bits %d 0x%zx\n",
366		    i, rq->rq_status.rqb_bits[i]);
367		for (j = 0; j < RQB_BPW; j++)
368			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
369				pri = j + (i << RQB_L2BPW);
370				rqh = &rq->rq_queues[pri];
371				TAILQ_FOREACH(td, rqh, td_runq) {
372					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
373					    td, td->td_name, td->td_priority,
374					    td->td_rqindex, pri);
375				}
376			}
377	}
378}
379
380/*
381 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
382 */
383void
384tdq_print(int cpu)
385{
386	struct tdq *tdq;
387
388	tdq = TDQ_CPU(cpu);
389
390	printf("tdq %d:\n", TDQ_ID(tdq));
391	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
392	printf("\tLock name:      %s\n", tdq->tdq_name);
393	printf("\tload:           %d\n", tdq->tdq_load);
394	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
395	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
396	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
397	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
398	printf("\tload transferable: %d\n", tdq->tdq_transferable);
399	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
400	printf("\trealtime runq:\n");
401	runq_print(&tdq->tdq_realtime);
402	printf("\ttimeshare runq:\n");
403	runq_print(&tdq->tdq_timeshare);
404	printf("\tidle runq:\n");
405	runq_print(&tdq->tdq_idle);
406}
407
408static inline int
409sched_shouldpreempt(int pri, int cpri, int remote)
410{
411	/*
412	 * If the new priority is not better than the current priority there is
413	 * nothing to do.
414	 */
415	if (pri >= cpri)
416		return (0);
417	/*
418	 * Always preempt idle.
419	 */
420	if (cpri >= PRI_MIN_IDLE)
421		return (1);
422	/*
423	 * If preemption is disabled don't preempt others.
424	 */
425	if (preempt_thresh == 0)
426		return (0);
427	/*
428	 * Preempt if we exceed the threshold.
429	 */
430	if (pri <= preempt_thresh)
431		return (1);
432	/*
433	 * If we're interactive or better and there is non-interactive
434	 * or worse running preempt only remote processors.
435	 */
436	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
437		return (1);
438	return (0);
439}
440
441/*
442 * Add a thread to the actual run-queue.  Keeps transferable counts up to
443 * date with what is actually on the run-queue.  Selects the correct
444 * queue position for timeshare threads.
445 */
446static __inline void
447tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
448{
449	struct td_sched *ts;
450	u_char pri;
451
452	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
453	THREAD_LOCK_ASSERT(td, MA_OWNED);
454
455	pri = td->td_priority;
456	ts = td->td_sched;
457	TD_SET_RUNQ(td);
458	if (THREAD_CAN_MIGRATE(td)) {
459		tdq->tdq_transferable++;
460		ts->ts_flags |= TSF_XFERABLE;
461	}
462	if (pri < PRI_MIN_BATCH) {
463		ts->ts_runq = &tdq->tdq_realtime;
464	} else if (pri <= PRI_MAX_BATCH) {
465		ts->ts_runq = &tdq->tdq_timeshare;
466		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
467			("Invalid priority %d on timeshare runq", pri));
468		/*
469		 * This queue contains only priorities between MIN and MAX
470		 * realtime.  Use the whole queue to represent these values.
471		 */
472		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
473			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
474			pri = (pri + tdq->tdq_idx) % RQ_NQS;
475			/*
476			 * This effectively shortens the queue by one so we
477			 * can have a one slot difference between idx and
478			 * ridx while we wait for threads to drain.
479			 */
480			if (tdq->tdq_ridx != tdq->tdq_idx &&
481			    pri == tdq->tdq_ridx)
482				pri = (unsigned char)(pri - 1) % RQ_NQS;
483		} else
484			pri = tdq->tdq_ridx;
485		runq_add_pri(ts->ts_runq, td, pri, flags);
486		return;
487	} else
488		ts->ts_runq = &tdq->tdq_idle;
489	runq_add(ts->ts_runq, td, flags);
490}
491
492/*
493 * Remove a thread from a run-queue.  This typically happens when a thread
494 * is selected to run.  Running threads are not on the queue and the
495 * transferable count does not reflect them.
496 */
497static __inline void
498tdq_runq_rem(struct tdq *tdq, struct thread *td)
499{
500	struct td_sched *ts;
501
502	ts = td->td_sched;
503	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
504	KASSERT(ts->ts_runq != NULL,
505	    ("tdq_runq_remove: thread %p null ts_runq", td));
506	if (ts->ts_flags & TSF_XFERABLE) {
507		tdq->tdq_transferable--;
508		ts->ts_flags &= ~TSF_XFERABLE;
509	}
510	if (ts->ts_runq == &tdq->tdq_timeshare) {
511		if (tdq->tdq_idx != tdq->tdq_ridx)
512			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
513		else
514			runq_remove_idx(ts->ts_runq, td, NULL);
515	} else
516		runq_remove(ts->ts_runq, td);
517}
518
519/*
520 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
521 * for this thread to the referenced thread queue.
522 */
523static void
524tdq_load_add(struct tdq *tdq, struct thread *td)
525{
526
527	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
528	THREAD_LOCK_ASSERT(td, MA_OWNED);
529
530	tdq->tdq_load++;
531	if ((td->td_flags & TDF_NOLOAD) == 0)
532		tdq->tdq_sysload++;
533	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
534	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
535}
536
537/*
538 * Remove the load from a thread that is transitioning to a sleep state or
539 * exiting.
540 */
541static void
542tdq_load_rem(struct tdq *tdq, struct thread *td)
543{
544
545	THREAD_LOCK_ASSERT(td, MA_OWNED);
546	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
547	KASSERT(tdq->tdq_load != 0,
548	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
549
550	tdq->tdq_load--;
551	if ((td->td_flags & TDF_NOLOAD) == 0)
552		tdq->tdq_sysload--;
553	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
554	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
555}
556
557/*
558 * Set lowpri to its exact value by searching the run-queue and
559 * evaluating curthread.  curthread may be passed as an optimization.
560 */
561static void
562tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
563{
564	struct thread *td;
565
566	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
567	if (ctd == NULL)
568		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
569	td = tdq_choose(tdq);
570	if (td == NULL || td->td_priority > ctd->td_priority)
571		tdq->tdq_lowpri = ctd->td_priority;
572	else
573		tdq->tdq_lowpri = td->td_priority;
574}
575
576#ifdef SMP
577struct cpu_search {
578	cpuset_t cs_mask;
579	u_int	cs_prefer;
580	int	cs_pri;		/* Min priority for low. */
581	int	cs_limit;	/* Max load for low, min load for high. */
582	int	cs_cpu;
583	int	cs_load;
584};
585
586#define	CPU_SEARCH_LOWEST	0x1
587#define	CPU_SEARCH_HIGHEST	0x2
588#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
589
590#define	CPUSET_FOREACH(cpu, mask)				\
591	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
592		if (CPU_ISSET(cpu, &mask))
593
594static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
595    struct cpu_search *high, const int match);
596int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
597int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
598int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
599    struct cpu_search *high);
600
601/*
602 * Search the tree of cpu_groups for the lowest or highest loaded cpu
603 * according to the match argument.  This routine actually compares the
604 * load on all paths through the tree and finds the least loaded cpu on
605 * the least loaded path, which may differ from the least loaded cpu in
606 * the system.  This balances work among caches and busses.
607 *
608 * This inline is instantiated in three forms below using constants for the
609 * match argument.  It is reduced to the minimum set for each case.  It is
610 * also recursive to the depth of the tree.
611 */
612static __inline int
613cpu_search(const struct cpu_group *cg, struct cpu_search *low,
614    struct cpu_search *high, const int match)
615{
616	struct cpu_search lgroup;
617	struct cpu_search hgroup;
618	cpuset_t cpumask;
619	struct cpu_group *child;
620	struct tdq *tdq;
621	int cpu, i, hload, lload, load, total, rnd, *rndptr;
622
623	total = 0;
624	cpumask = cg->cg_mask;
625	if (match & CPU_SEARCH_LOWEST) {
626		lload = INT_MAX;
627		lgroup = *low;
628	}
629	if (match & CPU_SEARCH_HIGHEST) {
630		hload = INT_MIN;
631		hgroup = *high;
632	}
633
634	/* Iterate through the child CPU groups and then remaining CPUs. */
635	for (i = cg->cg_children, cpu = mp_maxid; ; ) {
636		if (i == 0) {
637#ifdef HAVE_INLINE_FFSL
638			cpu = CPU_FFS(&cpumask) - 1;
639#else
640			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
641				cpu--;
642#endif
643			if (cpu < 0)
644				break;
645			child = NULL;
646		} else
647			child = &cg->cg_child[i - 1];
648
649		if (match & CPU_SEARCH_LOWEST)
650			lgroup.cs_cpu = -1;
651		if (match & CPU_SEARCH_HIGHEST)
652			hgroup.cs_cpu = -1;
653		if (child) {			/* Handle child CPU group. */
654			CPU_NAND(&cpumask, &child->cg_mask);
655			switch (match) {
656			case CPU_SEARCH_LOWEST:
657				load = cpu_search_lowest(child, &lgroup);
658				break;
659			case CPU_SEARCH_HIGHEST:
660				load = cpu_search_highest(child, &hgroup);
661				break;
662			case CPU_SEARCH_BOTH:
663				load = cpu_search_both(child, &lgroup, &hgroup);
664				break;
665			}
666		} else {			/* Handle child CPU. */
667			CPU_CLR(cpu, &cpumask);
668			tdq = TDQ_CPU(cpu);
669			load = tdq->tdq_load * 256;
670			rndptr = DPCPU_PTR(randomval);
671			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
672			if (match & CPU_SEARCH_LOWEST) {
673				if (cpu == low->cs_prefer)
674					load -= 64;
675				/* If that CPU is allowed and get data. */
676				if (tdq->tdq_lowpri > lgroup.cs_pri &&
677				    tdq->tdq_load <= lgroup.cs_limit &&
678				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
679					lgroup.cs_cpu = cpu;
680					lgroup.cs_load = load - rnd;
681				}
682			}
683			if (match & CPU_SEARCH_HIGHEST)
684				if (tdq->tdq_load >= hgroup.cs_limit &&
685				    tdq->tdq_transferable &&
686				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
687					hgroup.cs_cpu = cpu;
688					hgroup.cs_load = load - rnd;
689				}
690		}
691		total += load;
692
693		/* We have info about child item. Compare it. */
694		if (match & CPU_SEARCH_LOWEST) {
695			if (lgroup.cs_cpu >= 0 &&
696			    (load < lload ||
697			     (load == lload && lgroup.cs_load < low->cs_load))) {
698				lload = load;
699				low->cs_cpu = lgroup.cs_cpu;
700				low->cs_load = lgroup.cs_load;
701			}
702		}
703		if (match & CPU_SEARCH_HIGHEST)
704			if (hgroup.cs_cpu >= 0 &&
705			    (load > hload ||
706			     (load == hload && hgroup.cs_load > high->cs_load))) {
707				hload = load;
708				high->cs_cpu = hgroup.cs_cpu;
709				high->cs_load = hgroup.cs_load;
710			}
711		if (child) {
712			i--;
713			if (i == 0 && CPU_EMPTY(&cpumask))
714				break;
715		}
716#ifndef HAVE_INLINE_FFSL
717		else
718			cpu--;
719#endif
720	}
721	return (total);
722}
723
724/*
725 * cpu_search instantiations must pass constants to maintain the inline
726 * optimization.
727 */
728int
729cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
730{
731	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
732}
733
734int
735cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
736{
737	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
738}
739
740int
741cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
742    struct cpu_search *high)
743{
744	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
745}
746
747/*
748 * Find the cpu with the least load via the least loaded path that has a
749 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
750 * acceptable.
751 */
752static inline int
753sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
754    int prefer)
755{
756	struct cpu_search low;
757
758	low.cs_cpu = -1;
759	low.cs_prefer = prefer;
760	low.cs_mask = mask;
761	low.cs_pri = pri;
762	low.cs_limit = maxload;
763	cpu_search_lowest(cg, &low);
764	return low.cs_cpu;
765}
766
767/*
768 * Find the cpu with the highest load via the highest loaded path.
769 */
770static inline int
771sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
772{
773	struct cpu_search high;
774
775	high.cs_cpu = -1;
776	high.cs_mask = mask;
777	high.cs_limit = minload;
778	cpu_search_highest(cg, &high);
779	return high.cs_cpu;
780}
781
782static void
783sched_balance_group(struct cpu_group *cg)
784{
785	cpuset_t hmask, lmask;
786	int high, low, anylow;
787
788	CPU_FILL(&hmask);
789	for (;;) {
790		high = sched_highest(cg, hmask, 1);
791		/* Stop if there is no more CPU with transferrable threads. */
792		if (high == -1)
793			break;
794		CPU_CLR(high, &hmask);
795		CPU_COPY(&hmask, &lmask);
796		/* Stop if there is no more CPU left for low. */
797		if (CPU_EMPTY(&lmask))
798			break;
799		anylow = 1;
800nextlow:
801		low = sched_lowest(cg, lmask, -1,
802		    TDQ_CPU(high)->tdq_load - 1, high);
803		/* Stop if we looked well and found no less loaded CPU. */
804		if (anylow && low == -1)
805			break;
806		/* Go to next high if we found no less loaded CPU. */
807		if (low == -1)
808			continue;
809		/* Transfer thread from high to low. */
810		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
811			/* CPU that got thread can no longer be a donor. */
812			CPU_CLR(low, &hmask);
813		} else {
814			/*
815			 * If failed, then there is no threads on high
816			 * that can run on this low. Drop low from low
817			 * mask and look for different one.
818			 */
819			CPU_CLR(low, &lmask);
820			anylow = 0;
821			goto nextlow;
822		}
823	}
824}
825
826static void
827sched_balance(void)
828{
829	struct tdq *tdq;
830
831	/*
832	 * Select a random time between .5 * balance_interval and
833	 * 1.5 * balance_interval.
834	 */
835	balance_ticks = max(balance_interval / 2, 1);
836	balance_ticks += random() % balance_interval;
837	if (smp_started == 0 || rebalance == 0)
838		return;
839	tdq = TDQ_SELF();
840	TDQ_UNLOCK(tdq);
841	sched_balance_group(cpu_top);
842	TDQ_LOCK(tdq);
843}
844
845/*
846 * Lock two thread queues using their address to maintain lock order.
847 */
848static void
849tdq_lock_pair(struct tdq *one, struct tdq *two)
850{
851	if (one < two) {
852		TDQ_LOCK(one);
853		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
854	} else {
855		TDQ_LOCK(two);
856		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
857	}
858}
859
860/*
861 * Unlock two thread queues.  Order is not important here.
862 */
863static void
864tdq_unlock_pair(struct tdq *one, struct tdq *two)
865{
866	TDQ_UNLOCK(one);
867	TDQ_UNLOCK(two);
868}
869
870/*
871 * Transfer load between two imbalanced thread queues.
872 */
873static int
874sched_balance_pair(struct tdq *high, struct tdq *low)
875{
876	int moved;
877	int cpu;
878
879	tdq_lock_pair(high, low);
880	moved = 0;
881	/*
882	 * Determine what the imbalance is and then adjust that to how many
883	 * threads we actually have to give up (transferable).
884	 */
885	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
886	    (moved = tdq_move(high, low)) > 0) {
887		/*
888		 * In case the target isn't the current cpu IPI it to force a
889		 * reschedule with the new workload.
890		 */
891		cpu = TDQ_ID(low);
892		sched_pin();
893		if (cpu != PCPU_GET(cpuid))
894			ipi_cpu(cpu, IPI_PREEMPT);
895		sched_unpin();
896	}
897	tdq_unlock_pair(high, low);
898	return (moved);
899}
900
901/*
902 * Move a thread from one thread queue to another.
903 */
904static int
905tdq_move(struct tdq *from, struct tdq *to)
906{
907	struct td_sched *ts;
908	struct thread *td;
909	struct tdq *tdq;
910	int cpu;
911
912	TDQ_LOCK_ASSERT(from, MA_OWNED);
913	TDQ_LOCK_ASSERT(to, MA_OWNED);
914
915	tdq = from;
916	cpu = TDQ_ID(to);
917	td = tdq_steal(tdq, cpu);
918	if (td == NULL)
919		return (0);
920	ts = td->td_sched;
921	/*
922	 * Although the run queue is locked the thread may be blocked.  Lock
923	 * it to clear this and acquire the run-queue lock.
924	 */
925	thread_lock(td);
926	/* Drop recursive lock on from acquired via thread_lock(). */
927	TDQ_UNLOCK(from);
928	sched_rem(td);
929	ts->ts_cpu = cpu;
930	td->td_lock = TDQ_LOCKPTR(to);
931	tdq_add(to, td, SRQ_YIELDING);
932	return (1);
933}
934
935/*
936 * This tdq has idled.  Try to steal a thread from another cpu and switch
937 * to it.
938 */
939static int
940tdq_idled(struct tdq *tdq)
941{
942	struct cpu_group *cg;
943	struct tdq *steal;
944	cpuset_t mask;
945	int thresh;
946	int cpu;
947
948	if (smp_started == 0 || steal_idle == 0)
949		return (1);
950	CPU_FILL(&mask);
951	CPU_CLR(PCPU_GET(cpuid), &mask);
952	/* We don't want to be preempted while we're iterating. */
953	spinlock_enter();
954	for (cg = tdq->tdq_cg; cg != NULL; ) {
955		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
956			thresh = steal_thresh;
957		else
958			thresh = 1;
959		cpu = sched_highest(cg, mask, thresh);
960		if (cpu == -1) {
961			cg = cg->cg_parent;
962			continue;
963		}
964		steal = TDQ_CPU(cpu);
965		CPU_CLR(cpu, &mask);
966		tdq_lock_pair(tdq, steal);
967		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
968			tdq_unlock_pair(tdq, steal);
969			continue;
970		}
971		/*
972		 * If a thread was added while interrupts were disabled don't
973		 * steal one here.  If we fail to acquire one due to affinity
974		 * restrictions loop again with this cpu removed from the
975		 * set.
976		 */
977		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
978			tdq_unlock_pair(tdq, steal);
979			continue;
980		}
981		spinlock_exit();
982		TDQ_UNLOCK(steal);
983		mi_switch(SW_VOL | SWT_IDLE, NULL);
984		thread_unlock(curthread);
985
986		return (0);
987	}
988	spinlock_exit();
989	return (1);
990}
991
992/*
993 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
994 */
995static void
996tdq_notify(struct tdq *tdq, struct thread *td)
997{
998	struct thread *ctd;
999	int pri;
1000	int cpu;
1001
1002	if (tdq->tdq_ipipending)
1003		return;
1004	cpu = td->td_sched->ts_cpu;
1005	pri = td->td_priority;
1006	ctd = pcpu_find(cpu)->pc_curthread;
1007	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1008		return;
1009	if (TD_IS_IDLETHREAD(ctd)) {
1010		/*
1011		 * If the MD code has an idle wakeup routine try that before
1012		 * falling back to IPI.
1013		 */
1014		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1015			return;
1016	}
1017	tdq->tdq_ipipending = 1;
1018	ipi_cpu(cpu, IPI_PREEMPT);
1019}
1020
1021/*
1022 * Steals load from a timeshare queue.  Honors the rotating queue head
1023 * index.
1024 */
1025static struct thread *
1026runq_steal_from(struct runq *rq, int cpu, u_char start)
1027{
1028	struct rqbits *rqb;
1029	struct rqhead *rqh;
1030	struct thread *td, *first;
1031	int bit;
1032	int pri;
1033	int i;
1034
1035	rqb = &rq->rq_status;
1036	bit = start & (RQB_BPW -1);
1037	pri = 0;
1038	first = NULL;
1039again:
1040	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1041		if (rqb->rqb_bits[i] == 0)
1042			continue;
1043		if (bit != 0) {
1044			for (pri = bit; pri < RQB_BPW; pri++)
1045				if (rqb->rqb_bits[i] & (1ul << pri))
1046					break;
1047			if (pri >= RQB_BPW)
1048				continue;
1049		} else
1050			pri = RQB_FFS(rqb->rqb_bits[i]);
1051		pri += (i << RQB_L2BPW);
1052		rqh = &rq->rq_queues[pri];
1053		TAILQ_FOREACH(td, rqh, td_runq) {
1054			if (first && THREAD_CAN_MIGRATE(td) &&
1055			    THREAD_CAN_SCHED(td, cpu))
1056				return (td);
1057			first = td;
1058		}
1059	}
1060	if (start != 0) {
1061		start = 0;
1062		goto again;
1063	}
1064
1065	if (first && THREAD_CAN_MIGRATE(first) &&
1066	    THREAD_CAN_SCHED(first, cpu))
1067		return (first);
1068	return (NULL);
1069}
1070
1071/*
1072 * Steals load from a standard linear queue.
1073 */
1074static struct thread *
1075runq_steal(struct runq *rq, int cpu)
1076{
1077	struct rqhead *rqh;
1078	struct rqbits *rqb;
1079	struct thread *td;
1080	int word;
1081	int bit;
1082
1083	rqb = &rq->rq_status;
1084	for (word = 0; word < RQB_LEN; word++) {
1085		if (rqb->rqb_bits[word] == 0)
1086			continue;
1087		for (bit = 0; bit < RQB_BPW; bit++) {
1088			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1089				continue;
1090			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1091			TAILQ_FOREACH(td, rqh, td_runq)
1092				if (THREAD_CAN_MIGRATE(td) &&
1093				    THREAD_CAN_SCHED(td, cpu))
1094					return (td);
1095		}
1096	}
1097	return (NULL);
1098}
1099
1100/*
1101 * Attempt to steal a thread in priority order from a thread queue.
1102 */
1103static struct thread *
1104tdq_steal(struct tdq *tdq, int cpu)
1105{
1106	struct thread *td;
1107
1108	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1109	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1110		return (td);
1111	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1112	    cpu, tdq->tdq_ridx)) != NULL)
1113		return (td);
1114	return (runq_steal(&tdq->tdq_idle, cpu));
1115}
1116
1117/*
1118 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1119 * current lock and returns with the assigned queue locked.
1120 */
1121static inline struct tdq *
1122sched_setcpu(struct thread *td, int cpu, int flags)
1123{
1124
1125	struct tdq *tdq;
1126
1127	THREAD_LOCK_ASSERT(td, MA_OWNED);
1128	tdq = TDQ_CPU(cpu);
1129	td->td_sched->ts_cpu = cpu;
1130	/*
1131	 * If the lock matches just return the queue.
1132	 */
1133	if (td->td_lock == TDQ_LOCKPTR(tdq))
1134		return (tdq);
1135#ifdef notyet
1136	/*
1137	 * If the thread isn't running its lockptr is a
1138	 * turnstile or a sleepqueue.  We can just lock_set without
1139	 * blocking.
1140	 */
1141	if (TD_CAN_RUN(td)) {
1142		TDQ_LOCK(tdq);
1143		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1144		return (tdq);
1145	}
1146#endif
1147	/*
1148	 * The hard case, migration, we need to block the thread first to
1149	 * prevent order reversals with other cpus locks.
1150	 */
1151	spinlock_enter();
1152	thread_lock_block(td);
1153	TDQ_LOCK(tdq);
1154	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1155	spinlock_exit();
1156	return (tdq);
1157}
1158
1159SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1160SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1161SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1162SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1163SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1164SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1165
1166static int
1167sched_pickcpu(struct thread *td, int flags)
1168{
1169	struct cpu_group *cg, *ccg;
1170	struct td_sched *ts;
1171	struct tdq *tdq;
1172	cpuset_t mask;
1173	int cpu, pri, self;
1174
1175	self = PCPU_GET(cpuid);
1176	ts = td->td_sched;
1177	if (smp_started == 0)
1178		return (self);
1179	/*
1180	 * Don't migrate a running thread from sched_switch().
1181	 */
1182	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1183		return (ts->ts_cpu);
1184	/*
1185	 * Prefer to run interrupt threads on the processors that generate
1186	 * the interrupt.
1187	 */
1188	pri = td->td_priority;
1189	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1190	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1191		SCHED_STAT_INC(pickcpu_intrbind);
1192		ts->ts_cpu = self;
1193		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1194			SCHED_STAT_INC(pickcpu_affinity);
1195			return (ts->ts_cpu);
1196		}
1197	}
1198	/*
1199	 * If the thread can run on the last cpu and the affinity has not
1200	 * expired or it is idle run it there.
1201	 */
1202	tdq = TDQ_CPU(ts->ts_cpu);
1203	cg = tdq->tdq_cg;
1204	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1205	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1206	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1207		if (cg->cg_flags & CG_FLAG_THREAD) {
1208			CPUSET_FOREACH(cpu, cg->cg_mask) {
1209				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1210					break;
1211			}
1212		} else
1213			cpu = INT_MAX;
1214		if (cpu > mp_maxid) {
1215			SCHED_STAT_INC(pickcpu_idle_affinity);
1216			return (ts->ts_cpu);
1217		}
1218	}
1219	/*
1220	 * Search for the last level cache CPU group in the tree.
1221	 * Skip caches with expired affinity time and SMT groups.
1222	 * Affinity to higher level caches will be handled less aggressively.
1223	 */
1224	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1225		if (cg->cg_flags & CG_FLAG_THREAD)
1226			continue;
1227		if (!SCHED_AFFINITY(ts, cg->cg_level))
1228			continue;
1229		ccg = cg;
1230	}
1231	if (ccg != NULL)
1232		cg = ccg;
1233	cpu = -1;
1234	/* Search the group for the less loaded idle CPU we can run now. */
1235	mask = td->td_cpuset->cs_mask;
1236	if (cg != NULL && cg != cpu_top &&
1237	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1238		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1239		    INT_MAX, ts->ts_cpu);
1240	/* Search globally for the less loaded CPU we can run now. */
1241	if (cpu == -1)
1242		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1243	/* Search globally for the less loaded CPU. */
1244	if (cpu == -1)
1245		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1246	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1247	/*
1248	 * Compare the lowest loaded cpu to current cpu.
1249	 */
1250	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1251	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1252	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1253		SCHED_STAT_INC(pickcpu_local);
1254		cpu = self;
1255	} else
1256		SCHED_STAT_INC(pickcpu_lowest);
1257	if (cpu != ts->ts_cpu)
1258		SCHED_STAT_INC(pickcpu_migration);
1259	return (cpu);
1260}
1261#endif
1262
1263/*
1264 * Pick the highest priority task we have and return it.
1265 */
1266static struct thread *
1267tdq_choose(struct tdq *tdq)
1268{
1269	struct thread *td;
1270
1271	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1272	td = runq_choose(&tdq->tdq_realtime);
1273	if (td != NULL)
1274		return (td);
1275	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1276	if (td != NULL) {
1277		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1278		    ("tdq_choose: Invalid priority on timeshare queue %d",
1279		    td->td_priority));
1280		return (td);
1281	}
1282	td = runq_choose(&tdq->tdq_idle);
1283	if (td != NULL) {
1284		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1285		    ("tdq_choose: Invalid priority on idle queue %d",
1286		    td->td_priority));
1287		return (td);
1288	}
1289
1290	return (NULL);
1291}
1292
1293/*
1294 * Initialize a thread queue.
1295 */
1296static void
1297tdq_setup(struct tdq *tdq)
1298{
1299
1300	if (bootverbose)
1301		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1302	runq_init(&tdq->tdq_realtime);
1303	runq_init(&tdq->tdq_timeshare);
1304	runq_init(&tdq->tdq_idle);
1305	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1306	    "sched lock %d", (int)TDQ_ID(tdq));
1307	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1308	    MTX_SPIN | MTX_RECURSE);
1309#ifdef KTR
1310	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1311	    "CPU %d load", (int)TDQ_ID(tdq));
1312#endif
1313}
1314
1315#ifdef SMP
1316static void
1317sched_setup_smp(void)
1318{
1319	struct tdq *tdq;
1320	int i;
1321
1322	cpu_top = smp_topo();
1323	CPU_FOREACH(i) {
1324		tdq = TDQ_CPU(i);
1325		tdq_setup(tdq);
1326		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1327		if (tdq->tdq_cg == NULL)
1328			panic("Can't find cpu group for %d\n", i);
1329	}
1330	balance_tdq = TDQ_SELF();
1331	sched_balance();
1332}
1333#endif
1334
1335/*
1336 * Setup the thread queues and initialize the topology based on MD
1337 * information.
1338 */
1339static void
1340sched_setup(void *dummy)
1341{
1342	struct tdq *tdq;
1343
1344	tdq = TDQ_SELF();
1345#ifdef SMP
1346	sched_setup_smp();
1347#else
1348	tdq_setup(tdq);
1349#endif
1350
1351	/* Add thread0's load since it's running. */
1352	TDQ_LOCK(tdq);
1353	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1354	tdq_load_add(tdq, &thread0);
1355	tdq->tdq_lowpri = thread0.td_priority;
1356	TDQ_UNLOCK(tdq);
1357}
1358
1359/*
1360 * This routine determines time constants after stathz and hz are setup.
1361 */
1362/* ARGSUSED */
1363static void
1364sched_initticks(void *dummy)
1365{
1366	int incr;
1367
1368	realstathz = stathz ? stathz : hz;
1369	sched_slice = realstathz / 10;	/* ~100ms */
1370	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1371	    realstathz);
1372
1373	/*
1374	 * tickincr is shifted out by 10 to avoid rounding errors due to
1375	 * hz not being evenly divisible by stathz on all platforms.
1376	 */
1377	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1378	/*
1379	 * This does not work for values of stathz that are more than
1380	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1381	 */
1382	if (incr == 0)
1383		incr = 1;
1384	tickincr = incr;
1385#ifdef SMP
1386	/*
1387	 * Set the default balance interval now that we know
1388	 * what realstathz is.
1389	 */
1390	balance_interval = realstathz;
1391	affinity = SCHED_AFFINITY_DEFAULT;
1392#endif
1393	if (sched_idlespinthresh < 0)
1394		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1395}
1396
1397
1398/*
1399 * This is the core of the interactivity algorithm.  Determines a score based
1400 * on past behavior.  It is the ratio of sleep time to run time scaled to
1401 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1402 * differs from the cpu usage because it does not account for time spent
1403 * waiting on a run-queue.  Would be prettier if we had floating point.
1404 */
1405static int
1406sched_interact_score(struct thread *td)
1407{
1408	struct td_sched *ts;
1409	int div;
1410
1411	ts = td->td_sched;
1412	/*
1413	 * The score is only needed if this is likely to be an interactive
1414	 * task.  Don't go through the expense of computing it if there's
1415	 * no chance.
1416	 */
1417	if (sched_interact <= SCHED_INTERACT_HALF &&
1418		ts->ts_runtime >= ts->ts_slptime)
1419			return (SCHED_INTERACT_HALF);
1420
1421	if (ts->ts_runtime > ts->ts_slptime) {
1422		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1423		return (SCHED_INTERACT_HALF +
1424		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1425	}
1426	if (ts->ts_slptime > ts->ts_runtime) {
1427		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1428		return (ts->ts_runtime / div);
1429	}
1430	/* runtime == slptime */
1431	if (ts->ts_runtime)
1432		return (SCHED_INTERACT_HALF);
1433
1434	/*
1435	 * This can happen if slptime and runtime are 0.
1436	 */
1437	return (0);
1438
1439}
1440
1441/*
1442 * Scale the scheduling priority according to the "interactivity" of this
1443 * process.
1444 */
1445static void
1446sched_priority(struct thread *td)
1447{
1448	int score;
1449	int pri;
1450
1451	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1452		return;
1453	/*
1454	 * If the score is interactive we place the thread in the realtime
1455	 * queue with a priority that is less than kernel and interrupt
1456	 * priorities.  These threads are not subject to nice restrictions.
1457	 *
1458	 * Scores greater than this are placed on the normal timeshare queue
1459	 * where the priority is partially decided by the most recent cpu
1460	 * utilization and the rest is decided by nice value.
1461	 *
1462	 * The nice value of the process has a linear effect on the calculated
1463	 * score.  Negative nice values make it easier for a thread to be
1464	 * considered interactive.
1465	 */
1466	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1467	if (score < sched_interact) {
1468		pri = PRI_MIN_INTERACT;
1469		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1470		    sched_interact) * score;
1471		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1472		    ("sched_priority: invalid interactive priority %d score %d",
1473		    pri, score));
1474	} else {
1475		pri = SCHED_PRI_MIN;
1476		if (td->td_sched->ts_ticks)
1477			pri += min(SCHED_PRI_TICKS(td->td_sched),
1478			    SCHED_PRI_RANGE - 1);
1479		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1480		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1481		    ("sched_priority: invalid priority %d: nice %d, "
1482		    "ticks %d ftick %d ltick %d tick pri %d",
1483		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1484		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1485		    SCHED_PRI_TICKS(td->td_sched)));
1486	}
1487	sched_user_prio(td, pri);
1488
1489	return;
1490}
1491
1492/*
1493 * This routine enforces a maximum limit on the amount of scheduling history
1494 * kept.  It is called after either the slptime or runtime is adjusted.  This
1495 * function is ugly due to integer math.
1496 */
1497static void
1498sched_interact_update(struct thread *td)
1499{
1500	struct td_sched *ts;
1501	u_int sum;
1502
1503	ts = td->td_sched;
1504	sum = ts->ts_runtime + ts->ts_slptime;
1505	if (sum < SCHED_SLP_RUN_MAX)
1506		return;
1507	/*
1508	 * This only happens from two places:
1509	 * 1) We have added an unusual amount of run time from fork_exit.
1510	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1511	 */
1512	if (sum > SCHED_SLP_RUN_MAX * 2) {
1513		if (ts->ts_runtime > ts->ts_slptime) {
1514			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1515			ts->ts_slptime = 1;
1516		} else {
1517			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1518			ts->ts_runtime = 1;
1519		}
1520		return;
1521	}
1522	/*
1523	 * If we have exceeded by more than 1/5th then the algorithm below
1524	 * will not bring us back into range.  Dividing by two here forces
1525	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1526	 */
1527	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1528		ts->ts_runtime /= 2;
1529		ts->ts_slptime /= 2;
1530		return;
1531	}
1532	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1533	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1534}
1535
1536/*
1537 * Scale back the interactivity history when a child thread is created.  The
1538 * history is inherited from the parent but the thread may behave totally
1539 * differently.  For example, a shell spawning a compiler process.  We want
1540 * to learn that the compiler is behaving badly very quickly.
1541 */
1542static void
1543sched_interact_fork(struct thread *td)
1544{
1545	int ratio;
1546	int sum;
1547
1548	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1549	if (sum > SCHED_SLP_RUN_FORK) {
1550		ratio = sum / SCHED_SLP_RUN_FORK;
1551		td->td_sched->ts_runtime /= ratio;
1552		td->td_sched->ts_slptime /= ratio;
1553	}
1554}
1555
1556/*
1557 * Called from proc0_init() to setup the scheduler fields.
1558 */
1559void
1560schedinit(void)
1561{
1562
1563	/*
1564	 * Set up the scheduler specific parts of proc0.
1565	 */
1566	proc0.p_sched = NULL; /* XXX */
1567	thread0.td_sched = &td_sched0;
1568	td_sched0.ts_ltick = ticks;
1569	td_sched0.ts_ftick = ticks;
1570	td_sched0.ts_slice = sched_slice;
1571}
1572
1573/*
1574 * This is only somewhat accurate since given many processes of the same
1575 * priority they will switch when their slices run out, which will be
1576 * at most sched_slice stathz ticks.
1577 */
1578int
1579sched_rr_interval(void)
1580{
1581
1582	/* Convert sched_slice from stathz to hz. */
1583	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1584}
1585
1586/*
1587 * Update the percent cpu tracking information when it is requested or
1588 * the total history exceeds the maximum.  We keep a sliding history of
1589 * tick counts that slowly decays.  This is less precise than the 4BSD
1590 * mechanism since it happens with less regular and frequent events.
1591 */
1592static void
1593sched_pctcpu_update(struct td_sched *ts, int run)
1594{
1595	int t = ticks;
1596
1597	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1598		ts->ts_ticks = 0;
1599		ts->ts_ftick = t - SCHED_TICK_TARG;
1600	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1601		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1602		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1603		ts->ts_ftick = t - SCHED_TICK_TARG;
1604	}
1605	if (run)
1606		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1607	ts->ts_ltick = t;
1608}
1609
1610/*
1611 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1612 * if necessary.  This is the back-end for several priority related
1613 * functions.
1614 */
1615static void
1616sched_thread_priority(struct thread *td, u_char prio)
1617{
1618	struct td_sched *ts;
1619	struct tdq *tdq;
1620	int oldpri;
1621
1622	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1623	    "prio:%d", td->td_priority, "new prio:%d", prio,
1624	    KTR_ATTR_LINKED, sched_tdname(curthread));
1625	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
1626	if (td != curthread && prio < td->td_priority) {
1627		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1628		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1629		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1630		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
1631		    curthread);
1632	}
1633	ts = td->td_sched;
1634	THREAD_LOCK_ASSERT(td, MA_OWNED);
1635	if (td->td_priority == prio)
1636		return;
1637	/*
1638	 * If the priority has been elevated due to priority
1639	 * propagation, we may have to move ourselves to a new
1640	 * queue.  This could be optimized to not re-add in some
1641	 * cases.
1642	 */
1643	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1644		sched_rem(td);
1645		td->td_priority = prio;
1646		sched_add(td, SRQ_BORROWING);
1647		return;
1648	}
1649	/*
1650	 * If the thread is currently running we may have to adjust the lowpri
1651	 * information so other cpus are aware of our current priority.
1652	 */
1653	if (TD_IS_RUNNING(td)) {
1654		tdq = TDQ_CPU(ts->ts_cpu);
1655		oldpri = td->td_priority;
1656		td->td_priority = prio;
1657		if (prio < tdq->tdq_lowpri)
1658			tdq->tdq_lowpri = prio;
1659		else if (tdq->tdq_lowpri == oldpri)
1660			tdq_setlowpri(tdq, td);
1661		return;
1662	}
1663	td->td_priority = prio;
1664}
1665
1666/*
1667 * Update a thread's priority when it is lent another thread's
1668 * priority.
1669 */
1670void
1671sched_lend_prio(struct thread *td, u_char prio)
1672{
1673
1674	td->td_flags |= TDF_BORROWING;
1675	sched_thread_priority(td, prio);
1676}
1677
1678/*
1679 * Restore a thread's priority when priority propagation is
1680 * over.  The prio argument is the minimum priority the thread
1681 * needs to have to satisfy other possible priority lending
1682 * requests.  If the thread's regular priority is less
1683 * important than prio, the thread will keep a priority boost
1684 * of prio.
1685 */
1686void
1687sched_unlend_prio(struct thread *td, u_char prio)
1688{
1689	u_char base_pri;
1690
1691	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1692	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1693		base_pri = td->td_user_pri;
1694	else
1695		base_pri = td->td_base_pri;
1696	if (prio >= base_pri) {
1697		td->td_flags &= ~TDF_BORROWING;
1698		sched_thread_priority(td, base_pri);
1699	} else
1700		sched_lend_prio(td, prio);
1701}
1702
1703/*
1704 * Standard entry for setting the priority to an absolute value.
1705 */
1706void
1707sched_prio(struct thread *td, u_char prio)
1708{
1709	u_char oldprio;
1710
1711	/* First, update the base priority. */
1712	td->td_base_pri = prio;
1713
1714	/*
1715	 * If the thread is borrowing another thread's priority, don't
1716	 * ever lower the priority.
1717	 */
1718	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1719		return;
1720
1721	/* Change the real priority. */
1722	oldprio = td->td_priority;
1723	sched_thread_priority(td, prio);
1724
1725	/*
1726	 * If the thread is on a turnstile, then let the turnstile update
1727	 * its state.
1728	 */
1729	if (TD_ON_LOCK(td) && oldprio != prio)
1730		turnstile_adjust(td, oldprio);
1731}
1732
1733/*
1734 * Set the base user priority, does not effect current running priority.
1735 */
1736void
1737sched_user_prio(struct thread *td, u_char prio)
1738{
1739
1740	td->td_base_user_pri = prio;
1741	if (td->td_lend_user_pri <= prio)
1742		return;
1743	td->td_user_pri = prio;
1744}
1745
1746void
1747sched_lend_user_prio(struct thread *td, u_char prio)
1748{
1749
1750	THREAD_LOCK_ASSERT(td, MA_OWNED);
1751	td->td_lend_user_pri = prio;
1752	td->td_user_pri = min(prio, td->td_base_user_pri);
1753	if (td->td_priority > td->td_user_pri)
1754		sched_prio(td, td->td_user_pri);
1755	else if (td->td_priority != td->td_user_pri)
1756		td->td_flags |= TDF_NEEDRESCHED;
1757}
1758
1759/*
1760 * Handle migration from sched_switch().  This happens only for
1761 * cpu binding.
1762 */
1763static struct mtx *
1764sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1765{
1766	struct tdq *tdn;
1767
1768	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1769#ifdef SMP
1770	tdq_load_rem(tdq, td);
1771	/*
1772	 * Do the lock dance required to avoid LOR.  We grab an extra
1773	 * spinlock nesting to prevent preemption while we're
1774	 * not holding either run-queue lock.
1775	 */
1776	spinlock_enter();
1777	thread_lock_block(td);	/* This releases the lock on tdq. */
1778
1779	/*
1780	 * Acquire both run-queue locks before placing the thread on the new
1781	 * run-queue to avoid deadlocks created by placing a thread with a
1782	 * blocked lock on the run-queue of a remote processor.  The deadlock
1783	 * occurs when a third processor attempts to lock the two queues in
1784	 * question while the target processor is spinning with its own
1785	 * run-queue lock held while waiting for the blocked lock to clear.
1786	 */
1787	tdq_lock_pair(tdn, tdq);
1788	tdq_add(tdn, td, flags);
1789	tdq_notify(tdn, td);
1790	TDQ_UNLOCK(tdn);
1791	spinlock_exit();
1792#endif
1793	return (TDQ_LOCKPTR(tdn));
1794}
1795
1796/*
1797 * Variadic version of thread_lock_unblock() that does not assume td_lock
1798 * is blocked.
1799 */
1800static inline void
1801thread_unblock_switch(struct thread *td, struct mtx *mtx)
1802{
1803	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1804	    (uintptr_t)mtx);
1805}
1806
1807/*
1808 * Switch threads.  This function has to handle threads coming in while
1809 * blocked for some reason, running, or idle.  It also must deal with
1810 * migrating a thread from one queue to another as running threads may
1811 * be assigned elsewhere via binding.
1812 */
1813void
1814sched_switch(struct thread *td, struct thread *newtd, int flags)
1815{
1816	struct tdq *tdq;
1817	struct td_sched *ts;
1818	struct mtx *mtx;
1819	int srqflag;
1820	int cpuid, preempted;
1821
1822	THREAD_LOCK_ASSERT(td, MA_OWNED);
1823	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1824
1825	cpuid = PCPU_GET(cpuid);
1826	tdq = TDQ_CPU(cpuid);
1827	ts = td->td_sched;
1828	mtx = td->td_lock;
1829	sched_pctcpu_update(ts, 1);
1830	ts->ts_rltick = ticks;
1831	td->td_lastcpu = td->td_oncpu;
1832	td->td_oncpu = NOCPU;
1833	preempted = !(td->td_flags & TDF_SLICEEND);
1834	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1835	td->td_owepreempt = 0;
1836	if (!TD_IS_IDLETHREAD(td))
1837		tdq->tdq_switchcnt++;
1838	/*
1839	 * The lock pointer in an idle thread should never change.  Reset it
1840	 * to CAN_RUN as well.
1841	 */
1842	if (TD_IS_IDLETHREAD(td)) {
1843		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1844		TD_SET_CAN_RUN(td);
1845	} else if (TD_IS_RUNNING(td)) {
1846		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1847		srqflag = preempted ?
1848		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1849		    SRQ_OURSELF|SRQ_YIELDING;
1850#ifdef SMP
1851		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1852			ts->ts_cpu = sched_pickcpu(td, 0);
1853#endif
1854		if (ts->ts_cpu == cpuid)
1855			tdq_runq_add(tdq, td, srqflag);
1856		else {
1857			KASSERT(THREAD_CAN_MIGRATE(td) ||
1858			    (ts->ts_flags & TSF_BOUND) != 0,
1859			    ("Thread %p shouldn't migrate", td));
1860			mtx = sched_switch_migrate(tdq, td, srqflag);
1861		}
1862	} else {
1863		/* This thread must be going to sleep. */
1864		TDQ_LOCK(tdq);
1865		mtx = thread_lock_block(td);
1866		tdq_load_rem(tdq, td);
1867	}
1868	/*
1869	 * We enter here with the thread blocked and assigned to the
1870	 * appropriate cpu run-queue or sleep-queue and with the current
1871	 * thread-queue locked.
1872	 */
1873	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1874	newtd = choosethread();
1875	/*
1876	 * Call the MD code to switch contexts if necessary.
1877	 */
1878	if (td != newtd) {
1879#ifdef	HWPMC_HOOKS
1880		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1881			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1882#endif
1883		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1884		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1885		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1886		sched_pctcpu_update(newtd->td_sched, 0);
1887
1888#ifdef KDTRACE_HOOKS
1889		/*
1890		 * If DTrace has set the active vtime enum to anything
1891		 * other than INACTIVE (0), then it should have set the
1892		 * function to call.
1893		 */
1894		if (dtrace_vtime_active)
1895			(*dtrace_vtime_switch_func)(newtd);
1896#endif
1897
1898		cpu_switch(td, newtd, mtx);
1899		/*
1900		 * We may return from cpu_switch on a different cpu.  However,
1901		 * we always return with td_lock pointing to the current cpu's
1902		 * run queue lock.
1903		 */
1904		cpuid = PCPU_GET(cpuid);
1905		tdq = TDQ_CPU(cpuid);
1906		lock_profile_obtain_lock_success(
1907		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1908
1909		SDT_PROBE0(sched, , , on__cpu);
1910#ifdef	HWPMC_HOOKS
1911		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1912			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1913#endif
1914	} else {
1915		thread_unblock_switch(td, mtx);
1916		SDT_PROBE0(sched, , , remain__cpu);
1917	}
1918	/*
1919	 * Assert that all went well and return.
1920	 */
1921	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1922	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1923	td->td_oncpu = cpuid;
1924}
1925
1926/*
1927 * Adjust thread priorities as a result of a nice request.
1928 */
1929void
1930sched_nice(struct proc *p, int nice)
1931{
1932	struct thread *td;
1933
1934	PROC_LOCK_ASSERT(p, MA_OWNED);
1935
1936	p->p_nice = nice;
1937	FOREACH_THREAD_IN_PROC(p, td) {
1938		thread_lock(td);
1939		sched_priority(td);
1940		sched_prio(td, td->td_base_user_pri);
1941		thread_unlock(td);
1942	}
1943}
1944
1945/*
1946 * Record the sleep time for the interactivity scorer.
1947 */
1948void
1949sched_sleep(struct thread *td, int prio)
1950{
1951
1952	THREAD_LOCK_ASSERT(td, MA_OWNED);
1953
1954	td->td_slptick = ticks;
1955	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1956		td->td_flags |= TDF_CANSWAP;
1957	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1958		return;
1959	if (static_boost == 1 && prio)
1960		sched_prio(td, prio);
1961	else if (static_boost && td->td_priority > static_boost)
1962		sched_prio(td, static_boost);
1963}
1964
1965/*
1966 * Schedule a thread to resume execution and record how long it voluntarily
1967 * slept.  We also update the pctcpu, interactivity, and priority.
1968 */
1969void
1970sched_wakeup(struct thread *td)
1971{
1972	struct td_sched *ts;
1973	int slptick;
1974
1975	THREAD_LOCK_ASSERT(td, MA_OWNED);
1976	ts = td->td_sched;
1977	td->td_flags &= ~TDF_CANSWAP;
1978	/*
1979	 * If we slept for more than a tick update our interactivity and
1980	 * priority.
1981	 */
1982	slptick = td->td_slptick;
1983	td->td_slptick = 0;
1984	if (slptick && slptick != ticks) {
1985		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
1986		sched_interact_update(td);
1987		sched_pctcpu_update(ts, 0);
1988	}
1989	/* Reset the slice value after we sleep. */
1990	ts->ts_slice = sched_slice;
1991	sched_add(td, SRQ_BORING);
1992}
1993
1994/*
1995 * Penalize the parent for creating a new child and initialize the child's
1996 * priority.
1997 */
1998void
1999sched_fork(struct thread *td, struct thread *child)
2000{
2001	THREAD_LOCK_ASSERT(td, MA_OWNED);
2002	sched_pctcpu_update(td->td_sched, 1);
2003	sched_fork_thread(td, child);
2004	/*
2005	 * Penalize the parent and child for forking.
2006	 */
2007	sched_interact_fork(child);
2008	sched_priority(child);
2009	td->td_sched->ts_runtime += tickincr;
2010	sched_interact_update(td);
2011	sched_priority(td);
2012}
2013
2014/*
2015 * Fork a new thread, may be within the same process.
2016 */
2017void
2018sched_fork_thread(struct thread *td, struct thread *child)
2019{
2020	struct td_sched *ts;
2021	struct td_sched *ts2;
2022
2023	THREAD_LOCK_ASSERT(td, MA_OWNED);
2024	/*
2025	 * Initialize child.
2026	 */
2027	ts = td->td_sched;
2028	ts2 = child->td_sched;
2029	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2030	child->td_cpuset = cpuset_ref(td->td_cpuset);
2031	ts2->ts_cpu = ts->ts_cpu;
2032	ts2->ts_flags = 0;
2033	/*
2034	 * Grab our parents cpu estimation information.
2035	 */
2036	ts2->ts_ticks = ts->ts_ticks;
2037	ts2->ts_ltick = ts->ts_ltick;
2038	ts2->ts_ftick = ts->ts_ftick;
2039	/*
2040	 * Do not inherit any borrowed priority from the parent.
2041	 */
2042	child->td_priority = child->td_base_pri;
2043	/*
2044	 * And update interactivity score.
2045	 */
2046	ts2->ts_slptime = ts->ts_slptime;
2047	ts2->ts_runtime = ts->ts_runtime;
2048	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2049#ifdef KTR
2050	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2051#endif
2052}
2053
2054/*
2055 * Adjust the priority class of a thread.
2056 */
2057void
2058sched_class(struct thread *td, int class)
2059{
2060
2061	THREAD_LOCK_ASSERT(td, MA_OWNED);
2062	if (td->td_pri_class == class)
2063		return;
2064	td->td_pri_class = class;
2065}
2066
2067/*
2068 * Return some of the child's priority and interactivity to the parent.
2069 */
2070void
2071sched_exit(struct proc *p, struct thread *child)
2072{
2073	struct thread *td;
2074
2075	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2076	    "prio:%d", child->td_priority);
2077	PROC_LOCK_ASSERT(p, MA_OWNED);
2078	td = FIRST_THREAD_IN_PROC(p);
2079	sched_exit_thread(td, child);
2080}
2081
2082/*
2083 * Penalize another thread for the time spent on this one.  This helps to
2084 * worsen the priority and interactivity of processes which schedule batch
2085 * jobs such as make.  This has little effect on the make process itself but
2086 * causes new processes spawned by it to receive worse scores immediately.
2087 */
2088void
2089sched_exit_thread(struct thread *td, struct thread *child)
2090{
2091
2092	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2093	    "prio:%d", child->td_priority);
2094	/*
2095	 * Give the child's runtime to the parent without returning the
2096	 * sleep time as a penalty to the parent.  This causes shells that
2097	 * launch expensive things to mark their children as expensive.
2098	 */
2099	thread_lock(td);
2100	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2101	sched_interact_update(td);
2102	sched_priority(td);
2103	thread_unlock(td);
2104}
2105
2106void
2107sched_preempt(struct thread *td)
2108{
2109	struct tdq *tdq;
2110
2111	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2112
2113	thread_lock(td);
2114	tdq = TDQ_SELF();
2115	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2116	tdq->tdq_ipipending = 0;
2117	if (td->td_priority > tdq->tdq_lowpri) {
2118		int flags;
2119
2120		flags = SW_INVOL | SW_PREEMPT;
2121		if (td->td_critnest > 1)
2122			td->td_owepreempt = 1;
2123		else if (TD_IS_IDLETHREAD(td))
2124			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2125		else
2126			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2127	}
2128	thread_unlock(td);
2129}
2130
2131/*
2132 * Fix priorities on return to user-space.  Priorities may be elevated due
2133 * to static priorities in msleep() or similar.
2134 */
2135void
2136sched_userret(struct thread *td)
2137{
2138	/*
2139	 * XXX we cheat slightly on the locking here to avoid locking in
2140	 * the usual case.  Setting td_priority here is essentially an
2141	 * incomplete workaround for not setting it properly elsewhere.
2142	 * Now that some interrupt handlers are threads, not setting it
2143	 * properly elsewhere can clobber it in the window between setting
2144	 * it here and returning to user mode, so don't waste time setting
2145	 * it perfectly here.
2146	 */
2147	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2148	    ("thread with borrowed priority returning to userland"));
2149	if (td->td_priority != td->td_user_pri) {
2150		thread_lock(td);
2151		td->td_priority = td->td_user_pri;
2152		td->td_base_pri = td->td_user_pri;
2153		tdq_setlowpri(TDQ_SELF(), td);
2154		thread_unlock(td);
2155        }
2156}
2157
2158/*
2159 * Handle a stathz tick.  This is really only relevant for timeshare
2160 * threads.
2161 */
2162void
2163sched_clock(struct thread *td)
2164{
2165	struct tdq *tdq;
2166	struct td_sched *ts;
2167
2168	THREAD_LOCK_ASSERT(td, MA_OWNED);
2169	tdq = TDQ_SELF();
2170#ifdef SMP
2171	/*
2172	 * We run the long term load balancer infrequently on the first cpu.
2173	 */
2174	if (balance_tdq == tdq) {
2175		if (balance_ticks && --balance_ticks == 0)
2176			sched_balance();
2177	}
2178#endif
2179	/*
2180	 * Save the old switch count so we have a record of the last ticks
2181	 * activity.   Initialize the new switch count based on our load.
2182	 * If there is some activity seed it to reflect that.
2183	 */
2184	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2185	tdq->tdq_switchcnt = tdq->tdq_load;
2186	/*
2187	 * Advance the insert index once for each tick to ensure that all
2188	 * threads get a chance to run.
2189	 */
2190	if (tdq->tdq_idx == tdq->tdq_ridx) {
2191		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2192		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2193			tdq->tdq_ridx = tdq->tdq_idx;
2194	}
2195	ts = td->td_sched;
2196	sched_pctcpu_update(ts, 1);
2197	if (td->td_pri_class & PRI_FIFO_BIT)
2198		return;
2199	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2200		/*
2201		 * We used a tick; charge it to the thread so
2202		 * that we can compute our interactivity.
2203		 */
2204		td->td_sched->ts_runtime += tickincr;
2205		sched_interact_update(td);
2206		sched_priority(td);
2207	}
2208
2209	/*
2210	 * Force a context switch if the current thread has used up a full
2211	 * time slice (default is 100ms).
2212	 */
2213	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
2214		ts->ts_slice = sched_slice;
2215		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2216	}
2217}
2218
2219/*
2220 * Called once per hz tick.
2221 */
2222void
2223sched_tick(int cnt)
2224{
2225
2226}
2227
2228/*
2229 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2230 * cooperative idle threads.
2231 */
2232int
2233sched_runnable(void)
2234{
2235	struct tdq *tdq;
2236	int load;
2237
2238	load = 1;
2239
2240	tdq = TDQ_SELF();
2241	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2242		if (tdq->tdq_load > 0)
2243			goto out;
2244	} else
2245		if (tdq->tdq_load - 1 > 0)
2246			goto out;
2247	load = 0;
2248out:
2249	return (load);
2250}
2251
2252/*
2253 * Choose the highest priority thread to run.  The thread is removed from
2254 * the run-queue while running however the load remains.  For SMP we set
2255 * the tdq in the global idle bitmask if it idles here.
2256 */
2257struct thread *
2258sched_choose(void)
2259{
2260	struct thread *td;
2261	struct tdq *tdq;
2262
2263	tdq = TDQ_SELF();
2264	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2265	td = tdq_choose(tdq);
2266	if (td) {
2267		tdq_runq_rem(tdq, td);
2268		tdq->tdq_lowpri = td->td_priority;
2269		return (td);
2270	}
2271	tdq->tdq_lowpri = PRI_MAX_IDLE;
2272	return (PCPU_GET(idlethread));
2273}
2274
2275/*
2276 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2277 * we always request it once we exit a critical section.
2278 */
2279static inline void
2280sched_setpreempt(struct thread *td)
2281{
2282	struct thread *ctd;
2283	int cpri;
2284	int pri;
2285
2286	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2287
2288	ctd = curthread;
2289	pri = td->td_priority;
2290	cpri = ctd->td_priority;
2291	if (pri < cpri)
2292		ctd->td_flags |= TDF_NEEDRESCHED;
2293	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2294		return;
2295	if (!sched_shouldpreempt(pri, cpri, 0))
2296		return;
2297	ctd->td_owepreempt = 1;
2298}
2299
2300/*
2301 * Add a thread to a thread queue.  Select the appropriate runq and add the
2302 * thread to it.  This is the internal function called when the tdq is
2303 * predetermined.
2304 */
2305void
2306tdq_add(struct tdq *tdq, struct thread *td, int flags)
2307{
2308
2309	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2310	KASSERT((td->td_inhibitors == 0),
2311	    ("sched_add: trying to run inhibited thread"));
2312	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2313	    ("sched_add: bad thread state"));
2314	KASSERT(td->td_flags & TDF_INMEM,
2315	    ("sched_add: thread swapped out"));
2316
2317	if (td->td_priority < tdq->tdq_lowpri)
2318		tdq->tdq_lowpri = td->td_priority;
2319	tdq_runq_add(tdq, td, flags);
2320	tdq_load_add(tdq, td);
2321}
2322
2323/*
2324 * Select the target thread queue and add a thread to it.  Request
2325 * preemption or IPI a remote processor if required.
2326 */
2327void
2328sched_add(struct thread *td, int flags)
2329{
2330	struct tdq *tdq;
2331#ifdef SMP
2332	int cpu;
2333#endif
2334
2335	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2336	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2337	    sched_tdname(curthread));
2338	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2339	    KTR_ATTR_LINKED, sched_tdname(td));
2340	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2341	    flags & SRQ_PREEMPTED);
2342	THREAD_LOCK_ASSERT(td, MA_OWNED);
2343	/*
2344	 * Recalculate the priority before we select the target cpu or
2345	 * run-queue.
2346	 */
2347	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2348		sched_priority(td);
2349#ifdef SMP
2350	/*
2351	 * Pick the destination cpu and if it isn't ours transfer to the
2352	 * target cpu.
2353	 */
2354	cpu = sched_pickcpu(td, flags);
2355	tdq = sched_setcpu(td, cpu, flags);
2356	tdq_add(tdq, td, flags);
2357	if (cpu != PCPU_GET(cpuid)) {
2358		tdq_notify(tdq, td);
2359		return;
2360	}
2361#else
2362	tdq = TDQ_SELF();
2363	TDQ_LOCK(tdq);
2364	/*
2365	 * Now that the thread is moving to the run-queue, set the lock
2366	 * to the scheduler's lock.
2367	 */
2368	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2369	tdq_add(tdq, td, flags);
2370#endif
2371	if (!(flags & SRQ_YIELDING))
2372		sched_setpreempt(td);
2373}
2374
2375/*
2376 * Remove a thread from a run-queue without running it.  This is used
2377 * when we're stealing a thread from a remote queue.  Otherwise all threads
2378 * exit by calling sched_exit_thread() and sched_throw() themselves.
2379 */
2380void
2381sched_rem(struct thread *td)
2382{
2383	struct tdq *tdq;
2384
2385	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2386	    "prio:%d", td->td_priority);
2387	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2388	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2389	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2390	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2391	KASSERT(TD_ON_RUNQ(td),
2392	    ("sched_rem: thread not on run queue"));
2393	tdq_runq_rem(tdq, td);
2394	tdq_load_rem(tdq, td);
2395	TD_SET_CAN_RUN(td);
2396	if (td->td_priority == tdq->tdq_lowpri)
2397		tdq_setlowpri(tdq, NULL);
2398}
2399
2400/*
2401 * Fetch cpu utilization information.  Updates on demand.
2402 */
2403fixpt_t
2404sched_pctcpu(struct thread *td)
2405{
2406	fixpt_t pctcpu;
2407	struct td_sched *ts;
2408
2409	pctcpu = 0;
2410	ts = td->td_sched;
2411	if (ts == NULL)
2412		return (0);
2413
2414	THREAD_LOCK_ASSERT(td, MA_OWNED);
2415	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2416	if (ts->ts_ticks) {
2417		int rtick;
2418
2419		/* How many rtick per second ? */
2420		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2421		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2422	}
2423
2424	return (pctcpu);
2425}
2426
2427/*
2428 * Enforce affinity settings for a thread.  Called after adjustments to
2429 * cpumask.
2430 */
2431void
2432sched_affinity(struct thread *td)
2433{
2434#ifdef SMP
2435	struct td_sched *ts;
2436
2437	THREAD_LOCK_ASSERT(td, MA_OWNED);
2438	ts = td->td_sched;
2439	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2440		return;
2441	if (TD_ON_RUNQ(td)) {
2442		sched_rem(td);
2443		sched_add(td, SRQ_BORING);
2444		return;
2445	}
2446	if (!TD_IS_RUNNING(td))
2447		return;
2448	/*
2449	 * Force a switch before returning to userspace.  If the
2450	 * target thread is not running locally send an ipi to force
2451	 * the issue.
2452	 */
2453	td->td_flags |= TDF_NEEDRESCHED;
2454	if (td != curthread)
2455		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2456#endif
2457}
2458
2459/*
2460 * Bind a thread to a target cpu.
2461 */
2462void
2463sched_bind(struct thread *td, int cpu)
2464{
2465	struct td_sched *ts;
2466
2467	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2468	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2469	ts = td->td_sched;
2470	if (ts->ts_flags & TSF_BOUND)
2471		sched_unbind(td);
2472	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2473	ts->ts_flags |= TSF_BOUND;
2474	sched_pin();
2475	if (PCPU_GET(cpuid) == cpu)
2476		return;
2477	ts->ts_cpu = cpu;
2478	/* When we return from mi_switch we'll be on the correct cpu. */
2479	mi_switch(SW_VOL, NULL);
2480}
2481
2482/*
2483 * Release a bound thread.
2484 */
2485void
2486sched_unbind(struct thread *td)
2487{
2488	struct td_sched *ts;
2489
2490	THREAD_LOCK_ASSERT(td, MA_OWNED);
2491	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2492	ts = td->td_sched;
2493	if ((ts->ts_flags & TSF_BOUND) == 0)
2494		return;
2495	ts->ts_flags &= ~TSF_BOUND;
2496	sched_unpin();
2497}
2498
2499int
2500sched_is_bound(struct thread *td)
2501{
2502	THREAD_LOCK_ASSERT(td, MA_OWNED);
2503	return (td->td_sched->ts_flags & TSF_BOUND);
2504}
2505
2506/*
2507 * Basic yield call.
2508 */
2509void
2510sched_relinquish(struct thread *td)
2511{
2512	thread_lock(td);
2513	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2514	thread_unlock(td);
2515}
2516
2517/*
2518 * Return the total system load.
2519 */
2520int
2521sched_load(void)
2522{
2523#ifdef SMP
2524	int total;
2525	int i;
2526
2527	total = 0;
2528	CPU_FOREACH(i)
2529		total += TDQ_CPU(i)->tdq_sysload;
2530	return (total);
2531#else
2532	return (TDQ_SELF()->tdq_sysload);
2533#endif
2534}
2535
2536int
2537sched_sizeof_proc(void)
2538{
2539	return (sizeof(struct proc));
2540}
2541
2542int
2543sched_sizeof_thread(void)
2544{
2545	return (sizeof(struct thread) + sizeof(struct td_sched));
2546}
2547
2548#ifdef SMP
2549#define	TDQ_IDLESPIN(tdq)						\
2550    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2551#else
2552#define	TDQ_IDLESPIN(tdq)	1
2553#endif
2554
2555/*
2556 * The actual idle process.
2557 */
2558void
2559sched_idletd(void *dummy)
2560{
2561	struct thread *td;
2562	struct tdq *tdq;
2563	int oldswitchcnt, switchcnt;
2564	int i;
2565
2566	mtx_assert(&Giant, MA_NOTOWNED);
2567	td = curthread;
2568	tdq = TDQ_SELF();
2569	oldswitchcnt = -1;
2570	for (;;) {
2571		if (tdq->tdq_load) {
2572			thread_lock(td);
2573			mi_switch(SW_VOL | SWT_IDLE, NULL);
2574			thread_unlock(td);
2575		}
2576		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2577#ifdef SMP
2578		if (switchcnt != oldswitchcnt) {
2579			oldswitchcnt = switchcnt;
2580			if (tdq_idled(tdq) == 0)
2581				continue;
2582		}
2583		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2584#else
2585		oldswitchcnt = switchcnt;
2586#endif
2587		/*
2588		 * If we're switching very frequently, spin while checking
2589		 * for load rather than entering a low power state that
2590		 * may require an IPI.  However, don't do any busy
2591		 * loops while on SMT machines as this simply steals
2592		 * cycles from cores doing useful work.
2593		 */
2594		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2595			for (i = 0; i < sched_idlespins; i++) {
2596				if (tdq->tdq_load)
2597					break;
2598				cpu_spinwait();
2599			}
2600		}
2601
2602		/* If there was context switch during spin, restart it. */
2603		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2604		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
2605			continue;
2606
2607		/* Run main MD idle handler. */
2608		tdq->tdq_cpu_idle = 1;
2609		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
2610		tdq->tdq_cpu_idle = 0;
2611
2612		/*
2613		 * Account thread-less hardware interrupts and
2614		 * other wakeup reasons equal to context switches.
2615		 */
2616		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2617		if (switchcnt != oldswitchcnt)
2618			continue;
2619		tdq->tdq_switchcnt++;
2620		oldswitchcnt++;
2621	}
2622}
2623
2624/*
2625 * A CPU is entering for the first time or a thread is exiting.
2626 */
2627void
2628sched_throw(struct thread *td)
2629{
2630	struct thread *newtd;
2631	struct tdq *tdq;
2632
2633	tdq = TDQ_SELF();
2634	if (td == NULL) {
2635		/* Correct spinlock nesting and acquire the correct lock. */
2636		TDQ_LOCK(tdq);
2637		spinlock_exit();
2638		PCPU_SET(switchtime, cpu_ticks());
2639		PCPU_SET(switchticks, ticks);
2640	} else {
2641		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2642		tdq_load_rem(tdq, td);
2643		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2644	}
2645	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2646	newtd = choosethread();
2647	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2648	cpu_throw(td, newtd);		/* doesn't return */
2649}
2650
2651/*
2652 * This is called from fork_exit().  Just acquire the correct locks and
2653 * let fork do the rest of the work.
2654 */
2655void
2656sched_fork_exit(struct thread *td)
2657{
2658	struct td_sched *ts;
2659	struct tdq *tdq;
2660	int cpuid;
2661
2662	/*
2663	 * Finish setting up thread glue so that it begins execution in a
2664	 * non-nested critical section with the scheduler lock held.
2665	 */
2666	cpuid = PCPU_GET(cpuid);
2667	tdq = TDQ_CPU(cpuid);
2668	ts = td->td_sched;
2669	if (TD_IS_IDLETHREAD(td))
2670		td->td_lock = TDQ_LOCKPTR(tdq);
2671	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2672	td->td_oncpu = cpuid;
2673	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2674	lock_profile_obtain_lock_success(
2675	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2676}
2677
2678/*
2679 * Create on first use to catch odd startup conditons.
2680 */
2681char *
2682sched_tdname(struct thread *td)
2683{
2684#ifdef KTR
2685	struct td_sched *ts;
2686
2687	ts = td->td_sched;
2688	if (ts->ts_name[0] == '\0')
2689		snprintf(ts->ts_name, sizeof(ts->ts_name),
2690		    "%s tid %d", td->td_name, td->td_tid);
2691	return (ts->ts_name);
2692#else
2693	return (td->td_name);
2694#endif
2695}
2696
2697#ifdef KTR
2698void
2699sched_clear_tdname(struct thread *td)
2700{
2701	struct td_sched *ts;
2702
2703	ts = td->td_sched;
2704	ts->ts_name[0] = '\0';
2705}
2706#endif
2707
2708#ifdef SMP
2709
2710/*
2711 * Build the CPU topology dump string. Is recursively called to collect
2712 * the topology tree.
2713 */
2714static int
2715sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2716    int indent)
2717{
2718	char cpusetbuf[CPUSETBUFSIZ];
2719	int i, first;
2720
2721	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2722	    "", 1 + indent / 2, cg->cg_level);
2723	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2724	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2725	first = TRUE;
2726	for (i = 0; i < MAXCPU; i++) {
2727		if (CPU_ISSET(i, &cg->cg_mask)) {
2728			if (!first)
2729				sbuf_printf(sb, ", ");
2730			else
2731				first = FALSE;
2732			sbuf_printf(sb, "%d", i);
2733		}
2734	}
2735	sbuf_printf(sb, "</cpu>\n");
2736
2737	if (cg->cg_flags != 0) {
2738		sbuf_printf(sb, "%*s <flags>", indent, "");
2739		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2740			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2741		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2742			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2743		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2744			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2745		sbuf_printf(sb, "</flags>\n");
2746	}
2747
2748	if (cg->cg_children > 0) {
2749		sbuf_printf(sb, "%*s <children>\n", indent, "");
2750		for (i = 0; i < cg->cg_children; i++)
2751			sysctl_kern_sched_topology_spec_internal(sb,
2752			    &cg->cg_child[i], indent+2);
2753		sbuf_printf(sb, "%*s </children>\n", indent, "");
2754	}
2755	sbuf_printf(sb, "%*s</group>\n", indent, "");
2756	return (0);
2757}
2758
2759/*
2760 * Sysctl handler for retrieving topology dump. It's a wrapper for
2761 * the recursive sysctl_kern_smp_topology_spec_internal().
2762 */
2763static int
2764sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2765{
2766	struct sbuf *topo;
2767	int err;
2768
2769	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2770
2771	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2772	if (topo == NULL)
2773		return (ENOMEM);
2774
2775	sbuf_printf(topo, "<groups>\n");
2776	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2777	sbuf_printf(topo, "</groups>\n");
2778
2779	if (err == 0) {
2780		sbuf_finish(topo);
2781		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2782	}
2783	sbuf_delete(topo);
2784	return (err);
2785}
2786
2787#endif
2788
2789static int
2790sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2791{
2792	int error, new_val, period;
2793
2794	period = 1000000 / realstathz;
2795	new_val = period * sched_slice;
2796	error = sysctl_handle_int(oidp, &new_val, 0, req);
2797	if (error != 0 || req->newptr == NULL)
2798		return (error);
2799	if (new_val <= 0)
2800		return (EINVAL);
2801	sched_slice = imax(1, (new_val + period / 2) / period);
2802	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2803	    realstathz);
2804	return (0);
2805}
2806
2807SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2808SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2809    "Scheduler name");
2810SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2811    NULL, 0, sysctl_kern_quantum, "I",
2812    "Quantum for timeshare threads in microseconds");
2813SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2814    "Quantum for timeshare threads in stathz ticks");
2815SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2816    "Interactivity score threshold");
2817SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2818    &preempt_thresh, 0,
2819    "Maximal (lowest) priority for preemption");
2820SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2821    "Assign static kernel priorities to sleeping threads");
2822SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2823    "Number of times idle thread will spin waiting for new work");
2824SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2825    &sched_idlespinthresh, 0,
2826    "Threshold before we will permit idle thread spinning");
2827#ifdef SMP
2828SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2829    "Number of hz ticks to keep thread affinity for");
2830SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2831    "Enables the long-term load balancer");
2832SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2833    &balance_interval, 0,
2834    "Average period in stathz ticks to run the long-term balancer");
2835SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2836    "Attempts to steal work from other cores before idling");
2837SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2838    "Minimum load on remote CPU before we'll steal");
2839SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2840    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2841    "XML dump of detected CPU topology");
2842#endif
2843
2844/* ps compat.  All cpu percentages from ULE are weighted. */
2845static int ccpu = 0;
2846SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2847