sched_ule.c revision 255569
1317683Sdim/*-
2317683Sdim * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3353358Sdim * All rights reserved.
4353358Sdim *
5353358Sdim * Redistribution and use in source and binary forms, with or without
6317683Sdim * modification, are permitted provided that the following conditions
7317683Sdim * are met:
8317683Sdim * 1. Redistributions of source code must retain the above copyright
9317683Sdim *    notice unmodified, this list of conditions, and the following
10317683Sdim *    disclaimer.
11317683Sdim * 2. Redistributions in binary form must reproduce the above copyright
12317683Sdim *    notice, this list of conditions and the following disclaimer in the
13317683Sdim *    documentation and/or other materials provided with the distribution.
14317683Sdim *
15317683Sdim * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16317683Sdim * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17319799Sdim * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18319799Sdim * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19317683Sdim * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20317683Sdim * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21317683Sdim * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22320970Sdim * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23320970Sdim * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24320970Sdim * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25317683Sdim */
26317683Sdim
27317683Sdim/*
28317683Sdim * This file implements the ULE scheduler.  ULE supports independent CPU
29317683Sdim * run queues and fine grain locking.  It has superior interactive
30317683Sdim * performance under load even on uni-processor systems.
31317683Sdim *
32317683Sdim * etymology:
33317683Sdim *   ULE is the last three letters in schedule.  It owes its name to a
34317683Sdim * generic user created for a scheduling system by Paul Mikesell at
35317683Sdim * Isilon Systems and a general lack of creativity on the part of the author.
36317683Sdim */
37317969Sdim
38317683Sdim#include <sys/cdefs.h>
39317683Sdim__FBSDID("$FreeBSD: stable/9/sys/kern/sched_ule.c 255569 2013-09-14 13:12:13Z mav $");
40317683Sdim
41317683Sdim#include "opt_hwpmc_hooks.h"
42317683Sdim#include "opt_kdtrace.h"
43317683Sdim#include "opt_sched.h"
44317683Sdim
45317683Sdim#include <sys/param.h>
46317683Sdim#include <sys/systm.h>
47317683Sdim#include <sys/kdb.h>
48317683Sdim#include <sys/kernel.h>
49317683Sdim#include <sys/ktr.h>
50317683Sdim#include <sys/lock.h>
51317683Sdim#include <sys/mutex.h>
52317683Sdim#include <sys/proc.h>
53317683Sdim#include <sys/resource.h>
54317683Sdim#include <sys/resourcevar.h>
55317683Sdim#include <sys/sched.h>
56317683Sdim#include <sys/sdt.h>
57317683Sdim#include <sys/smp.h>
58317683Sdim#include <sys/sx.h>
59317683Sdim#include <sys/sysctl.h>
60317683Sdim#include <sys/sysproto.h>
61317683Sdim#include <sys/turnstile.h>
62317683Sdim#include <sys/umtx.h>
63317683Sdim#include <sys/vmmeter.h>
64317683Sdim#include <sys/cpuset.h>
65317683Sdim#include <sys/sbuf.h>
66317683Sdim
67317683Sdim#ifdef HWPMC_HOOKS
68317683Sdim#include <sys/pmckern.h>
69317683Sdim#endif
70317683Sdim
71317683Sdim#ifdef KDTRACE_HOOKS
72317683Sdim#include <sys/dtrace_bsd.h>
73327952Sdimint				dtrace_vtime_active;
74317683Sdimdtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75317683Sdim#endif
76317683Sdim
77317683Sdim#include <machine/cpu.h>
78317683Sdim#include <machine/smp.h>
79317683Sdim
80317683Sdim#if defined(__powerpc__) && defined(E500)
81317683Sdim#error "This architecture is not currently compatible with ULE"
82317683Sdim#endif
83317683Sdim
84317683Sdim#define	KTR_ULE	0
85317683Sdim
86317683Sdim#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87317683Sdim#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88317683Sdim#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89317683Sdim
90317683Sdim/*
91317683Sdim * Thread scheduler specific section.  All fields are protected
92317683Sdim * by the thread lock.
93317683Sdim */
94317683Sdimstruct td_sched {
95317683Sdim	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96317683Sdim	short		ts_flags;	/* TSF_* flags. */
97317683Sdim	u_char		ts_cpu;		/* CPU that we have affinity for. */
98317683Sdim	int		ts_rltick;	/* Real last tick, for affinity. */
99317683Sdim	int		ts_slice;	/* Ticks of slice remaining. */
100317683Sdim	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101317683Sdim	u_int		ts_runtime;	/* Number of ticks we were running */
102317683Sdim	int		ts_ltick;	/* Last tick that we were running on */
103317683Sdim	int		ts_ftick;	/* First tick that we were running on */
104317683Sdim	int		ts_ticks;	/* Tick count */
105317683Sdim#ifdef KTR
106317683Sdim	char		ts_name[TS_NAME_LEN];
107319799Sdim#endif
108317683Sdim};
109317683Sdim/* flags kept in ts_flags */
110319799Sdim#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111317683Sdim#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112317683Sdim
113317683Sdimstatic struct td_sched td_sched0;
114317683Sdim
115317683Sdim#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116317683Sdim#define	THREAD_CAN_SCHED(td, cpu)	\
117317683Sdim    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118317683Sdim
119317683Sdim/*
120317683Sdim * Priority ranges used for interactive and non-interactive timeshare
121317683Sdim * threads.  The timeshare priorities are split up into four ranges.
122317683Sdim * The first range handles interactive threads.  The last three ranges
123317683Sdim * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124317683Sdim * ranges supporting nice values.
125317683Sdim */
126317683Sdim#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127317683Sdim#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128317683Sdim#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129317683Sdim
130317683Sdim#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131317683Sdim#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132317683Sdim#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133317683Sdim#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134317683Sdim
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/* Flags kept in td_flags. */
193#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
194
195/*
196 * tickincr:		Converts a stathz tick into a hz domain scaled by
197 *			the shift factor.  Without the shift the error rate
198 *			due to rounding would be unacceptably high.
199 * realstathz:		stathz is sometimes 0 and run off of hz.
200 * sched_slice:		Runtime of each thread before rescheduling.
201 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
202 */
203static int sched_interact = SCHED_INTERACT_THRESH;
204static int realstathz = 127;
205static int tickincr = 8 << SCHED_TICK_SHIFT;
206static int sched_slice = 12;
207#ifdef PREEMPTION
208#ifdef FULL_PREEMPTION
209static int preempt_thresh = PRI_MAX_IDLE;
210#else
211static int preempt_thresh = PRI_MIN_KERN;
212#endif
213#else
214static int preempt_thresh = 0;
215#endif
216static int static_boost = PRI_MIN_BATCH;
217static int sched_idlespins = 10000;
218static int sched_idlespinthresh = -1;
219
220/*
221 * tdq - per processor runqs and statistics.  All fields are protected by the
222 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
223 * locking in sched_pickcpu();
224 */
225struct tdq {
226	/* Ordered to improve efficiency of cpu_search() and switch(). */
227	struct mtx	tdq_lock;		/* run queue lock. */
228	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
229	volatile int	tdq_load;		/* Aggregate load. */
230	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
231	int		tdq_sysload;		/* For loadavg, !ITHD load. */
232	int		tdq_transferable;	/* Transferable thread count. */
233	short		tdq_switchcnt;		/* Switches this tick. */
234	short		tdq_oldswitchcnt;	/* Switches last tick. */
235	u_char		tdq_lowpri;		/* Lowest priority thread. */
236	u_char		tdq_ipipending;		/* IPI pending. */
237	u_char		tdq_idx;		/* Current insert index. */
238	u_char		tdq_ridx;		/* Current removal index. */
239	struct runq	tdq_realtime;		/* real-time run queue. */
240	struct runq	tdq_timeshare;		/* timeshare run queue. */
241	struct runq	tdq_idle;		/* Queue of IDLE threads. */
242	char		tdq_name[TDQ_NAME_LEN];
243#ifdef KTR
244	char		tdq_loadname[TDQ_LOADNAME_LEN];
245#endif
246} __aligned(64);
247
248/* Idle thread states and config. */
249#define	TDQ_RUNNING	1
250#define	TDQ_IDLE	2
251
252#ifdef SMP
253struct cpu_group *cpu_top;		/* CPU topology */
254
255#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
256#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
257
258/*
259 * Run-time tunables.
260 */
261static int rebalance = 1;
262static int balance_interval = 128;	/* Default set in sched_initticks(). */
263static int affinity;
264static int steal_idle = 1;
265static int steal_thresh = 2;
266
267/*
268 * One thread queue per processor.
269 */
270static struct tdq	tdq_cpu[MAXCPU];
271static struct tdq	*balance_tdq;
272static int balance_ticks;
273static DPCPU_DEFINE(uint32_t, randomval);
274
275#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
276#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
277#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
278#else	/* !SMP */
279static struct tdq	tdq_cpu;
280
281#define	TDQ_ID(x)	(0)
282#define	TDQ_SELF()	(&tdq_cpu)
283#define	TDQ_CPU(x)	(&tdq_cpu)
284#endif
285
286#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
287#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
288#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
289#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
290#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
291
292static void sched_priority(struct thread *);
293static void sched_thread_priority(struct thread *, u_char);
294static int sched_interact_score(struct thread *);
295static void sched_interact_update(struct thread *);
296static void sched_interact_fork(struct thread *);
297static void sched_pctcpu_update(struct td_sched *, int);
298
299/* Operations on per processor queues */
300static struct thread *tdq_choose(struct tdq *);
301static void tdq_setup(struct tdq *);
302static void tdq_load_add(struct tdq *, struct thread *);
303static void tdq_load_rem(struct tdq *, struct thread *);
304static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
305static __inline void tdq_runq_rem(struct tdq *, struct thread *);
306static inline int sched_shouldpreempt(int, int, int);
307void tdq_print(int cpu);
308static void runq_print(struct runq *rq);
309static void tdq_add(struct tdq *, struct thread *, int);
310#ifdef SMP
311static int tdq_move(struct tdq *, struct tdq *);
312static int tdq_idled(struct tdq *);
313static void tdq_notify(struct tdq *, struct thread *);
314static struct thread *tdq_steal(struct tdq *, int);
315static struct thread *runq_steal(struct runq *, int);
316static int sched_pickcpu(struct thread *, int);
317static void sched_balance(void);
318static int sched_balance_pair(struct tdq *, struct tdq *);
319static inline struct tdq *sched_setcpu(struct thread *, int, int);
320static inline void thread_unblock_switch(struct thread *, struct mtx *);
321static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
322static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
323static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
324    struct cpu_group *cg, int indent);
325#endif
326
327static void sched_setup(void *dummy);
328SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
329
330static void sched_initticks(void *dummy);
331SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
332    NULL);
333
334SDT_PROVIDER_DEFINE(sched);
335
336SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
337    "struct proc *", "uint8_t");
338SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
339    "struct proc *", "void *");
340SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
341    "struct proc *", "void *", "int");
342SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
343    "struct proc *", "uint8_t", "struct thread *");
344SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
345SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
346    "struct proc *");
347SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
348SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
349SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
350    "struct proc *");
351
352/*
353 * Print the threads waiting on a run-queue.
354 */
355static void
356runq_print(struct runq *rq)
357{
358	struct rqhead *rqh;
359	struct thread *td;
360	int pri;
361	int j;
362	int i;
363
364	for (i = 0; i < RQB_LEN; i++) {
365		printf("\t\trunq bits %d 0x%zx\n",
366		    i, rq->rq_status.rqb_bits[i]);
367		for (j = 0; j < RQB_BPW; j++)
368			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
369				pri = j + (i << RQB_L2BPW);
370				rqh = &rq->rq_queues[pri];
371				TAILQ_FOREACH(td, rqh, td_runq) {
372					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
373					    td, td->td_name, td->td_priority,
374					    td->td_rqindex, pri);
375				}
376			}
377	}
378}
379
380/*
381 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
382 */
383void
384tdq_print(int cpu)
385{
386	struct tdq *tdq;
387
388	tdq = TDQ_CPU(cpu);
389
390	printf("tdq %d:\n", TDQ_ID(tdq));
391	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
392	printf("\tLock name:      %s\n", tdq->tdq_name);
393	printf("\tload:           %d\n", tdq->tdq_load);
394	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
395	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
396	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
397	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
398	printf("\tload transferable: %d\n", tdq->tdq_transferable);
399	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
400	printf("\trealtime runq:\n");
401	runq_print(&tdq->tdq_realtime);
402	printf("\ttimeshare runq:\n");
403	runq_print(&tdq->tdq_timeshare);
404	printf("\tidle runq:\n");
405	runq_print(&tdq->tdq_idle);
406}
407
408static inline int
409sched_shouldpreempt(int pri, int cpri, int remote)
410{
411	/*
412	 * If the new priority is not better than the current priority there is
413	 * nothing to do.
414	 */
415	if (pri >= cpri)
416		return (0);
417	/*
418	 * Always preempt idle.
419	 */
420	if (cpri >= PRI_MIN_IDLE)
421		return (1);
422	/*
423	 * If preemption is disabled don't preempt others.
424	 */
425	if (preempt_thresh == 0)
426		return (0);
427	/*
428	 * Preempt if we exceed the threshold.
429	 */
430	if (pri <= preempt_thresh)
431		return (1);
432	/*
433	 * If we're interactive or better and there is non-interactive
434	 * or worse running preempt only remote processors.
435	 */
436	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
437		return (1);
438	return (0);
439}
440
441/*
442 * Add a thread to the actual run-queue.  Keeps transferable counts up to
443 * date with what is actually on the run-queue.  Selects the correct
444 * queue position for timeshare threads.
445 */
446static __inline void
447tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
448{
449	struct td_sched *ts;
450	u_char pri;
451
452	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
453	THREAD_LOCK_ASSERT(td, MA_OWNED);
454
455	pri = td->td_priority;
456	ts = td->td_sched;
457	TD_SET_RUNQ(td);
458	if (THREAD_CAN_MIGRATE(td)) {
459		tdq->tdq_transferable++;
460		ts->ts_flags |= TSF_XFERABLE;
461	}
462	if (pri < PRI_MIN_BATCH) {
463		ts->ts_runq = &tdq->tdq_realtime;
464	} else if (pri <= PRI_MAX_BATCH) {
465		ts->ts_runq = &tdq->tdq_timeshare;
466		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
467			("Invalid priority %d on timeshare runq", pri));
468		/*
469		 * This queue contains only priorities between MIN and MAX
470		 * realtime.  Use the whole queue to represent these values.
471		 */
472		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
473			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
474			pri = (pri + tdq->tdq_idx) % RQ_NQS;
475			/*
476			 * This effectively shortens the queue by one so we
477			 * can have a one slot difference between idx and
478			 * ridx while we wait for threads to drain.
479			 */
480			if (tdq->tdq_ridx != tdq->tdq_idx &&
481			    pri == tdq->tdq_ridx)
482				pri = (unsigned char)(pri - 1) % RQ_NQS;
483		} else
484			pri = tdq->tdq_ridx;
485		runq_add_pri(ts->ts_runq, td, pri, flags);
486		return;
487	} else
488		ts->ts_runq = &tdq->tdq_idle;
489	runq_add(ts->ts_runq, td, flags);
490}
491
492/*
493 * Remove a thread from a run-queue.  This typically happens when a thread
494 * is selected to run.  Running threads are not on the queue and the
495 * transferable count does not reflect them.
496 */
497static __inline void
498tdq_runq_rem(struct tdq *tdq, struct thread *td)
499{
500	struct td_sched *ts;
501
502	ts = td->td_sched;
503	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
504	KASSERT(ts->ts_runq != NULL,
505	    ("tdq_runq_remove: thread %p null ts_runq", td));
506	if (ts->ts_flags & TSF_XFERABLE) {
507		tdq->tdq_transferable--;
508		ts->ts_flags &= ~TSF_XFERABLE;
509	}
510	if (ts->ts_runq == &tdq->tdq_timeshare) {
511		if (tdq->tdq_idx != tdq->tdq_ridx)
512			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
513		else
514			runq_remove_idx(ts->ts_runq, td, NULL);
515	} else
516		runq_remove(ts->ts_runq, td);
517}
518
519/*
520 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
521 * for this thread to the referenced thread queue.
522 */
523static void
524tdq_load_add(struct tdq *tdq, struct thread *td)
525{
526
527	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
528	THREAD_LOCK_ASSERT(td, MA_OWNED);
529
530	tdq->tdq_load++;
531	if ((td->td_flags & TDF_NOLOAD) == 0)
532		tdq->tdq_sysload++;
533	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
534	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
535}
536
537/*
538 * Remove the load from a thread that is transitioning to a sleep state or
539 * exiting.
540 */
541static void
542tdq_load_rem(struct tdq *tdq, struct thread *td)
543{
544
545	THREAD_LOCK_ASSERT(td, MA_OWNED);
546	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
547	KASSERT(tdq->tdq_load != 0,
548	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
549
550	tdq->tdq_load--;
551	if ((td->td_flags & TDF_NOLOAD) == 0)
552		tdq->tdq_sysload--;
553	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
554	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
555}
556
557/*
558 * Set lowpri to its exact value by searching the run-queue and
559 * evaluating curthread.  curthread may be passed as an optimization.
560 */
561static void
562tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
563{
564	struct thread *td;
565
566	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
567	if (ctd == NULL)
568		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
569	td = tdq_choose(tdq);
570	if (td == NULL || td->td_priority > ctd->td_priority)
571		tdq->tdq_lowpri = ctd->td_priority;
572	else
573		tdq->tdq_lowpri = td->td_priority;
574}
575
576#ifdef SMP
577struct cpu_search {
578	cpuset_t cs_mask;
579	u_int	cs_prefer;
580	int	cs_pri;		/* Min priority for low. */
581	int	cs_limit;	/* Max load for low, min load for high. */
582	int	cs_cpu;
583	int	cs_load;
584};
585
586#define	CPU_SEARCH_LOWEST	0x1
587#define	CPU_SEARCH_HIGHEST	0x2
588#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
589
590#define	CPUSET_FOREACH(cpu, mask)				\
591	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
592		if (CPU_ISSET(cpu, &mask))
593
594static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
595    struct cpu_search *high, const int match);
596int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
597int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
598int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
599    struct cpu_search *high);
600
601/*
602 * Search the tree of cpu_groups for the lowest or highest loaded cpu
603 * according to the match argument.  This routine actually compares the
604 * load on all paths through the tree and finds the least loaded cpu on
605 * the least loaded path, which may differ from the least loaded cpu in
606 * the system.  This balances work among caches and busses.
607 *
608 * This inline is instantiated in three forms below using constants for the
609 * match argument.  It is reduced to the minimum set for each case.  It is
610 * also recursive to the depth of the tree.
611 */
612static __inline int
613cpu_search(const struct cpu_group *cg, struct cpu_search *low,
614    struct cpu_search *high, const int match)
615{
616	struct cpu_search lgroup;
617	struct cpu_search hgroup;
618	cpuset_t cpumask;
619	struct cpu_group *child;
620	struct tdq *tdq;
621	int cpu, i, hload, lload, load, total, rnd, *rndptr;
622
623	total = 0;
624	cpumask = cg->cg_mask;
625	if (match & CPU_SEARCH_LOWEST) {
626		lload = INT_MAX;
627		lgroup = *low;
628	}
629	if (match & CPU_SEARCH_HIGHEST) {
630		hload = INT_MIN;
631		hgroup = *high;
632	}
633
634	/* Iterate through the child CPU groups and then remaining CPUs. */
635	for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
636		if (i == 0) {
637			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
638				cpu--;
639			if (cpu < 0)
640				break;
641			child = NULL;
642		} else
643			child = &cg->cg_child[i - 1];
644
645		if (match & CPU_SEARCH_LOWEST)
646			lgroup.cs_cpu = -1;
647		if (match & CPU_SEARCH_HIGHEST)
648			hgroup.cs_cpu = -1;
649		if (child) {			/* Handle child CPU group. */
650			CPU_NAND(&cpumask, &child->cg_mask);
651			switch (match) {
652			case CPU_SEARCH_LOWEST:
653				load = cpu_search_lowest(child, &lgroup);
654				break;
655			case CPU_SEARCH_HIGHEST:
656				load = cpu_search_highest(child, &hgroup);
657				break;
658			case CPU_SEARCH_BOTH:
659				load = cpu_search_both(child, &lgroup, &hgroup);
660				break;
661			}
662		} else {			/* Handle child CPU. */
663			tdq = TDQ_CPU(cpu);
664			load = tdq->tdq_load * 256;
665			rndptr = DPCPU_PTR(randomval);
666			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
667			if (match & CPU_SEARCH_LOWEST) {
668				if (cpu == low->cs_prefer)
669					load -= 64;
670				/* If that CPU is allowed and get data. */
671				if (tdq->tdq_lowpri > lgroup.cs_pri &&
672				    tdq->tdq_load <= lgroup.cs_limit &&
673				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
674					lgroup.cs_cpu = cpu;
675					lgroup.cs_load = load - rnd;
676				}
677			}
678			if (match & CPU_SEARCH_HIGHEST)
679				if (tdq->tdq_load >= hgroup.cs_limit &&
680				    tdq->tdq_transferable &&
681				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
682					hgroup.cs_cpu = cpu;
683					hgroup.cs_load = load - rnd;
684				}
685		}
686		total += load;
687
688		/* We have info about child item. Compare it. */
689		if (match & CPU_SEARCH_LOWEST) {
690			if (lgroup.cs_cpu >= 0 &&
691			    (load < lload ||
692			     (load == lload && lgroup.cs_load < low->cs_load))) {
693				lload = load;
694				low->cs_cpu = lgroup.cs_cpu;
695				low->cs_load = lgroup.cs_load;
696			}
697		}
698		if (match & CPU_SEARCH_HIGHEST)
699			if (hgroup.cs_cpu >= 0 &&
700			    (load > hload ||
701			     (load == hload && hgroup.cs_load > high->cs_load))) {
702				hload = load;
703				high->cs_cpu = hgroup.cs_cpu;
704				high->cs_load = hgroup.cs_load;
705			}
706		if (child) {
707			i--;
708			if (i == 0 && CPU_EMPTY(&cpumask))
709				break;
710		} else
711			cpu--;
712	}
713	return (total);
714}
715
716/*
717 * cpu_search instantiations must pass constants to maintain the inline
718 * optimization.
719 */
720int
721cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
722{
723	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
724}
725
726int
727cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
728{
729	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
730}
731
732int
733cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
734    struct cpu_search *high)
735{
736	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
737}
738
739/*
740 * Find the cpu with the least load via the least loaded path that has a
741 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
742 * acceptable.
743 */
744static inline int
745sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
746    int prefer)
747{
748	struct cpu_search low;
749
750	low.cs_cpu = -1;
751	low.cs_prefer = prefer;
752	low.cs_mask = mask;
753	low.cs_pri = pri;
754	low.cs_limit = maxload;
755	cpu_search_lowest(cg, &low);
756	return low.cs_cpu;
757}
758
759/*
760 * Find the cpu with the highest load via the highest loaded path.
761 */
762static inline int
763sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
764{
765	struct cpu_search high;
766
767	high.cs_cpu = -1;
768	high.cs_mask = mask;
769	high.cs_limit = minload;
770	cpu_search_highest(cg, &high);
771	return high.cs_cpu;
772}
773
774/*
775 * Simultaneously find the highest and lowest loaded cpu reachable via
776 * cg.
777 */
778static inline void
779sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
780{
781	struct cpu_search high;
782	struct cpu_search low;
783
784	low.cs_cpu = -1;
785	low.cs_prefer = -1;
786	low.cs_pri = -1;
787	low.cs_limit = INT_MAX;
788	low.cs_mask = mask;
789	high.cs_cpu = -1;
790	high.cs_limit = -1;
791	high.cs_mask = mask;
792	cpu_search_both(cg, &low, &high);
793	*lowcpu = low.cs_cpu;
794	*highcpu = high.cs_cpu;
795	return;
796}
797
798static void
799sched_balance_group(struct cpu_group *cg)
800{
801	cpuset_t hmask, lmask;
802	int high, low, anylow;
803
804	CPU_FILL(&hmask);
805	for (;;) {
806		high = sched_highest(cg, hmask, 1);
807		/* Stop if there is no more CPU with transferrable threads. */
808		if (high == -1)
809			break;
810		CPU_CLR(high, &hmask);
811		CPU_COPY(&hmask, &lmask);
812		/* Stop if there is no more CPU left for low. */
813		if (CPU_EMPTY(&lmask))
814			break;
815		anylow = 1;
816nextlow:
817		low = sched_lowest(cg, lmask, -1,
818		    TDQ_CPU(high)->tdq_load - 1, high);
819		/* Stop if we looked well and found no less loaded CPU. */
820		if (anylow && low == -1)
821			break;
822		/* Go to next high if we found no less loaded CPU. */
823		if (low == -1)
824			continue;
825		/* Transfer thread from high to low. */
826		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
827			/* CPU that got thread can no longer be a donor. */
828			CPU_CLR(low, &hmask);
829		} else {
830			/*
831			 * If failed, then there is no threads on high
832			 * that can run on this low. Drop low from low
833			 * mask and look for different one.
834			 */
835			CPU_CLR(low, &lmask);
836			anylow = 0;
837			goto nextlow;
838		}
839	}
840}
841
842static void
843sched_balance(void)
844{
845	struct tdq *tdq;
846
847	/*
848	 * Select a random time between .5 * balance_interval and
849	 * 1.5 * balance_interval.
850	 */
851	balance_ticks = max(balance_interval / 2, 1);
852	balance_ticks += random() % balance_interval;
853	if (smp_started == 0 || rebalance == 0)
854		return;
855	tdq = TDQ_SELF();
856	TDQ_UNLOCK(tdq);
857	sched_balance_group(cpu_top);
858	TDQ_LOCK(tdq);
859}
860
861/*
862 * Lock two thread queues using their address to maintain lock order.
863 */
864static void
865tdq_lock_pair(struct tdq *one, struct tdq *two)
866{
867	if (one < two) {
868		TDQ_LOCK(one);
869		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
870	} else {
871		TDQ_LOCK(two);
872		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
873	}
874}
875
876/*
877 * Unlock two thread queues.  Order is not important here.
878 */
879static void
880tdq_unlock_pair(struct tdq *one, struct tdq *two)
881{
882	TDQ_UNLOCK(one);
883	TDQ_UNLOCK(two);
884}
885
886/*
887 * Transfer load between two imbalanced thread queues.
888 */
889static int
890sched_balance_pair(struct tdq *high, struct tdq *low)
891{
892	int moved;
893	int cpu;
894
895	tdq_lock_pair(high, low);
896	moved = 0;
897	/*
898	 * Determine what the imbalance is and then adjust that to how many
899	 * threads we actually have to give up (transferable).
900	 */
901	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
902	    (moved = tdq_move(high, low)) > 0) {
903		/*
904		 * In case the target isn't the current cpu IPI it to force a
905		 * reschedule with the new workload.
906		 */
907		cpu = TDQ_ID(low);
908		sched_pin();
909		if (cpu != PCPU_GET(cpuid))
910			ipi_cpu(cpu, IPI_PREEMPT);
911		sched_unpin();
912	}
913	tdq_unlock_pair(high, low);
914	return (moved);
915}
916
917/*
918 * Move a thread from one thread queue to another.
919 */
920static int
921tdq_move(struct tdq *from, struct tdq *to)
922{
923	struct td_sched *ts;
924	struct thread *td;
925	struct tdq *tdq;
926	int cpu;
927
928	TDQ_LOCK_ASSERT(from, MA_OWNED);
929	TDQ_LOCK_ASSERT(to, MA_OWNED);
930
931	tdq = from;
932	cpu = TDQ_ID(to);
933	td = tdq_steal(tdq, cpu);
934	if (td == NULL)
935		return (0);
936	ts = td->td_sched;
937	/*
938	 * Although the run queue is locked the thread may be blocked.  Lock
939	 * it to clear this and acquire the run-queue lock.
940	 */
941	thread_lock(td);
942	/* Drop recursive lock on from acquired via thread_lock(). */
943	TDQ_UNLOCK(from);
944	sched_rem(td);
945	ts->ts_cpu = cpu;
946	td->td_lock = TDQ_LOCKPTR(to);
947	tdq_add(to, td, SRQ_YIELDING);
948	return (1);
949}
950
951/*
952 * This tdq has idled.  Try to steal a thread from another cpu and switch
953 * to it.
954 */
955static int
956tdq_idled(struct tdq *tdq)
957{
958	struct cpu_group *cg;
959	struct tdq *steal;
960	cpuset_t mask;
961	int thresh;
962	int cpu;
963
964	if (smp_started == 0 || steal_idle == 0)
965		return (1);
966	CPU_FILL(&mask);
967	CPU_CLR(PCPU_GET(cpuid), &mask);
968	/* We don't want to be preempted while we're iterating. */
969	spinlock_enter();
970	for (cg = tdq->tdq_cg; cg != NULL; ) {
971		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
972			thresh = steal_thresh;
973		else
974			thresh = 1;
975		cpu = sched_highest(cg, mask, thresh);
976		if (cpu == -1) {
977			cg = cg->cg_parent;
978			continue;
979		}
980		steal = TDQ_CPU(cpu);
981		CPU_CLR(cpu, &mask);
982		tdq_lock_pair(tdq, steal);
983		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
984			tdq_unlock_pair(tdq, steal);
985			continue;
986		}
987		/*
988		 * If a thread was added while interrupts were disabled don't
989		 * steal one here.  If we fail to acquire one due to affinity
990		 * restrictions loop again with this cpu removed from the
991		 * set.
992		 */
993		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
994			tdq_unlock_pair(tdq, steal);
995			continue;
996		}
997		spinlock_exit();
998		TDQ_UNLOCK(steal);
999		mi_switch(SW_VOL | SWT_IDLE, NULL);
1000		thread_unlock(curthread);
1001
1002		return (0);
1003	}
1004	spinlock_exit();
1005	return (1);
1006}
1007
1008/*
1009 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1010 */
1011static void
1012tdq_notify(struct tdq *tdq, struct thread *td)
1013{
1014	struct thread *ctd;
1015	int pri;
1016	int cpu;
1017
1018	if (tdq->tdq_ipipending)
1019		return;
1020	cpu = td->td_sched->ts_cpu;
1021	pri = td->td_priority;
1022	ctd = pcpu_find(cpu)->pc_curthread;
1023	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1024		return;
1025	if (TD_IS_IDLETHREAD(ctd)) {
1026		/*
1027		 * If the MD code has an idle wakeup routine try that before
1028		 * falling back to IPI.
1029		 */
1030		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1031			return;
1032	}
1033	tdq->tdq_ipipending = 1;
1034	ipi_cpu(cpu, IPI_PREEMPT);
1035}
1036
1037/*
1038 * Steals load from a timeshare queue.  Honors the rotating queue head
1039 * index.
1040 */
1041static struct thread *
1042runq_steal_from(struct runq *rq, int cpu, u_char start)
1043{
1044	struct rqbits *rqb;
1045	struct rqhead *rqh;
1046	struct thread *td, *first;
1047	int bit;
1048	int pri;
1049	int i;
1050
1051	rqb = &rq->rq_status;
1052	bit = start & (RQB_BPW -1);
1053	pri = 0;
1054	first = NULL;
1055again:
1056	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1057		if (rqb->rqb_bits[i] == 0)
1058			continue;
1059		if (bit != 0) {
1060			for (pri = bit; pri < RQB_BPW; pri++)
1061				if (rqb->rqb_bits[i] & (1ul << pri))
1062					break;
1063			if (pri >= RQB_BPW)
1064				continue;
1065		} else
1066			pri = RQB_FFS(rqb->rqb_bits[i]);
1067		pri += (i << RQB_L2BPW);
1068		rqh = &rq->rq_queues[pri];
1069		TAILQ_FOREACH(td, rqh, td_runq) {
1070			if (first && THREAD_CAN_MIGRATE(td) &&
1071			    THREAD_CAN_SCHED(td, cpu))
1072				return (td);
1073			first = td;
1074		}
1075	}
1076	if (start != 0) {
1077		start = 0;
1078		goto again;
1079	}
1080
1081	if (first && THREAD_CAN_MIGRATE(first) &&
1082	    THREAD_CAN_SCHED(first, cpu))
1083		return (first);
1084	return (NULL);
1085}
1086
1087/*
1088 * Steals load from a standard linear queue.
1089 */
1090static struct thread *
1091runq_steal(struct runq *rq, int cpu)
1092{
1093	struct rqhead *rqh;
1094	struct rqbits *rqb;
1095	struct thread *td;
1096	int word;
1097	int bit;
1098
1099	rqb = &rq->rq_status;
1100	for (word = 0; word < RQB_LEN; word++) {
1101		if (rqb->rqb_bits[word] == 0)
1102			continue;
1103		for (bit = 0; bit < RQB_BPW; bit++) {
1104			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1105				continue;
1106			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1107			TAILQ_FOREACH(td, rqh, td_runq)
1108				if (THREAD_CAN_MIGRATE(td) &&
1109				    THREAD_CAN_SCHED(td, cpu))
1110					return (td);
1111		}
1112	}
1113	return (NULL);
1114}
1115
1116/*
1117 * Attempt to steal a thread in priority order from a thread queue.
1118 */
1119static struct thread *
1120tdq_steal(struct tdq *tdq, int cpu)
1121{
1122	struct thread *td;
1123
1124	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1125	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1126		return (td);
1127	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1128	    cpu, tdq->tdq_ridx)) != NULL)
1129		return (td);
1130	return (runq_steal(&tdq->tdq_idle, cpu));
1131}
1132
1133/*
1134 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1135 * current lock and returns with the assigned queue locked.
1136 */
1137static inline struct tdq *
1138sched_setcpu(struct thread *td, int cpu, int flags)
1139{
1140
1141	struct tdq *tdq;
1142
1143	THREAD_LOCK_ASSERT(td, MA_OWNED);
1144	tdq = TDQ_CPU(cpu);
1145	td->td_sched->ts_cpu = cpu;
1146	/*
1147	 * If the lock matches just return the queue.
1148	 */
1149	if (td->td_lock == TDQ_LOCKPTR(tdq))
1150		return (tdq);
1151#ifdef notyet
1152	/*
1153	 * If the thread isn't running its lockptr is a
1154	 * turnstile or a sleepqueue.  We can just lock_set without
1155	 * blocking.
1156	 */
1157	if (TD_CAN_RUN(td)) {
1158		TDQ_LOCK(tdq);
1159		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1160		return (tdq);
1161	}
1162#endif
1163	/*
1164	 * The hard case, migration, we need to block the thread first to
1165	 * prevent order reversals with other cpus locks.
1166	 */
1167	spinlock_enter();
1168	thread_lock_block(td);
1169	TDQ_LOCK(tdq);
1170	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1171	spinlock_exit();
1172	return (tdq);
1173}
1174
1175SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1176SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1177SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1178SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1179SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1180SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1181
1182static int
1183sched_pickcpu(struct thread *td, int flags)
1184{
1185	struct cpu_group *cg, *ccg;
1186	struct td_sched *ts;
1187	struct tdq *tdq;
1188	cpuset_t mask;
1189	int cpu, pri, self;
1190
1191	self = PCPU_GET(cpuid);
1192	ts = td->td_sched;
1193	if (smp_started == 0)
1194		return (self);
1195	/*
1196	 * Don't migrate a running thread from sched_switch().
1197	 */
1198	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1199		return (ts->ts_cpu);
1200	/*
1201	 * Prefer to run interrupt threads on the processors that generate
1202	 * the interrupt.
1203	 */
1204	pri = td->td_priority;
1205	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1206	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1207		SCHED_STAT_INC(pickcpu_intrbind);
1208		ts->ts_cpu = self;
1209		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1210			SCHED_STAT_INC(pickcpu_affinity);
1211			return (ts->ts_cpu);
1212		}
1213	}
1214	/*
1215	 * If the thread can run on the last cpu and the affinity has not
1216	 * expired or it is idle run it there.
1217	 */
1218	tdq = TDQ_CPU(ts->ts_cpu);
1219	cg = tdq->tdq_cg;
1220	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1221	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1222	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1223		if (cg->cg_flags & CG_FLAG_THREAD) {
1224			CPUSET_FOREACH(cpu, cg->cg_mask) {
1225				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1226					break;
1227			}
1228		} else
1229			cpu = INT_MAX;
1230		if (cpu > mp_maxid) {
1231			SCHED_STAT_INC(pickcpu_idle_affinity);
1232			return (ts->ts_cpu);
1233		}
1234	}
1235	/*
1236	 * Search for the last level cache CPU group in the tree.
1237	 * Skip caches with expired affinity time and SMT groups.
1238	 * Affinity to higher level caches will be handled less aggressively.
1239	 */
1240	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1241		if (cg->cg_flags & CG_FLAG_THREAD)
1242			continue;
1243		if (!SCHED_AFFINITY(ts, cg->cg_level))
1244			continue;
1245		ccg = cg;
1246	}
1247	if (ccg != NULL)
1248		cg = ccg;
1249	cpu = -1;
1250	/* Search the group for the less loaded idle CPU we can run now. */
1251	mask = td->td_cpuset->cs_mask;
1252	if (cg != NULL && cg != cpu_top &&
1253	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1254		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1255		    INT_MAX, ts->ts_cpu);
1256	/* Search globally for the less loaded CPU we can run now. */
1257	if (cpu == -1)
1258		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1259	/* Search globally for the less loaded CPU. */
1260	if (cpu == -1)
1261		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1262	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1263	/*
1264	 * Compare the lowest loaded cpu to current cpu.
1265	 */
1266	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1267	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1268	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1269		SCHED_STAT_INC(pickcpu_local);
1270		cpu = self;
1271	} else
1272		SCHED_STAT_INC(pickcpu_lowest);
1273	if (cpu != ts->ts_cpu)
1274		SCHED_STAT_INC(pickcpu_migration);
1275	return (cpu);
1276}
1277#endif
1278
1279/*
1280 * Pick the highest priority task we have and return it.
1281 */
1282static struct thread *
1283tdq_choose(struct tdq *tdq)
1284{
1285	struct thread *td;
1286
1287	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1288	td = runq_choose(&tdq->tdq_realtime);
1289	if (td != NULL)
1290		return (td);
1291	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1292	if (td != NULL) {
1293		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1294		    ("tdq_choose: Invalid priority on timeshare queue %d",
1295		    td->td_priority));
1296		return (td);
1297	}
1298	td = runq_choose(&tdq->tdq_idle);
1299	if (td != NULL) {
1300		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1301		    ("tdq_choose: Invalid priority on idle queue %d",
1302		    td->td_priority));
1303		return (td);
1304	}
1305
1306	return (NULL);
1307}
1308
1309/*
1310 * Initialize a thread queue.
1311 */
1312static void
1313tdq_setup(struct tdq *tdq)
1314{
1315
1316	if (bootverbose)
1317		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1318	runq_init(&tdq->tdq_realtime);
1319	runq_init(&tdq->tdq_timeshare);
1320	runq_init(&tdq->tdq_idle);
1321	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1322	    "sched lock %d", (int)TDQ_ID(tdq));
1323	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1324	    MTX_SPIN | MTX_RECURSE);
1325#ifdef KTR
1326	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1327	    "CPU %d load", (int)TDQ_ID(tdq));
1328#endif
1329}
1330
1331#ifdef SMP
1332static void
1333sched_setup_smp(void)
1334{
1335	struct tdq *tdq;
1336	int i;
1337
1338	cpu_top = smp_topo();
1339	CPU_FOREACH(i) {
1340		tdq = TDQ_CPU(i);
1341		tdq_setup(tdq);
1342		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1343		if (tdq->tdq_cg == NULL)
1344			panic("Can't find cpu group for %d\n", i);
1345	}
1346	balance_tdq = TDQ_SELF();
1347	sched_balance();
1348}
1349#endif
1350
1351/*
1352 * Setup the thread queues and initialize the topology based on MD
1353 * information.
1354 */
1355static void
1356sched_setup(void *dummy)
1357{
1358	struct tdq *tdq;
1359
1360	tdq = TDQ_SELF();
1361#ifdef SMP
1362	sched_setup_smp();
1363#else
1364	tdq_setup(tdq);
1365#endif
1366
1367	/* Add thread0's load since it's running. */
1368	TDQ_LOCK(tdq);
1369	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1370	tdq_load_add(tdq, &thread0);
1371	tdq->tdq_lowpri = thread0.td_priority;
1372	TDQ_UNLOCK(tdq);
1373}
1374
1375/*
1376 * This routine determines time constants after stathz and hz are setup.
1377 */
1378/* ARGSUSED */
1379static void
1380sched_initticks(void *dummy)
1381{
1382	int incr;
1383
1384	realstathz = stathz ? stathz : hz;
1385	sched_slice = realstathz / 10;	/* ~100ms */
1386	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1387	    realstathz);
1388
1389	/*
1390	 * tickincr is shifted out by 10 to avoid rounding errors due to
1391	 * hz not being evenly divisible by stathz on all platforms.
1392	 */
1393	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1394	/*
1395	 * This does not work for values of stathz that are more than
1396	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1397	 */
1398	if (incr == 0)
1399		incr = 1;
1400	tickincr = incr;
1401#ifdef SMP
1402	/*
1403	 * Set the default balance interval now that we know
1404	 * what realstathz is.
1405	 */
1406	balance_interval = realstathz;
1407	affinity = SCHED_AFFINITY_DEFAULT;
1408#endif
1409	if (sched_idlespinthresh < 0)
1410		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1411}
1412
1413
1414/*
1415 * This is the core of the interactivity algorithm.  Determines a score based
1416 * on past behavior.  It is the ratio of sleep time to run time scaled to
1417 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1418 * differs from the cpu usage because it does not account for time spent
1419 * waiting on a run-queue.  Would be prettier if we had floating point.
1420 */
1421static int
1422sched_interact_score(struct thread *td)
1423{
1424	struct td_sched *ts;
1425	int div;
1426
1427	ts = td->td_sched;
1428	/*
1429	 * The score is only needed if this is likely to be an interactive
1430	 * task.  Don't go through the expense of computing it if there's
1431	 * no chance.
1432	 */
1433	if (sched_interact <= SCHED_INTERACT_HALF &&
1434		ts->ts_runtime >= ts->ts_slptime)
1435			return (SCHED_INTERACT_HALF);
1436
1437	if (ts->ts_runtime > ts->ts_slptime) {
1438		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1439		return (SCHED_INTERACT_HALF +
1440		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1441	}
1442	if (ts->ts_slptime > ts->ts_runtime) {
1443		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1444		return (ts->ts_runtime / div);
1445	}
1446	/* runtime == slptime */
1447	if (ts->ts_runtime)
1448		return (SCHED_INTERACT_HALF);
1449
1450	/*
1451	 * This can happen if slptime and runtime are 0.
1452	 */
1453	return (0);
1454
1455}
1456
1457/*
1458 * Scale the scheduling priority according to the "interactivity" of this
1459 * process.
1460 */
1461static void
1462sched_priority(struct thread *td)
1463{
1464	int score;
1465	int pri;
1466
1467	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1468		return;
1469	/*
1470	 * If the score is interactive we place the thread in the realtime
1471	 * queue with a priority that is less than kernel and interrupt
1472	 * priorities.  These threads are not subject to nice restrictions.
1473	 *
1474	 * Scores greater than this are placed on the normal timeshare queue
1475	 * where the priority is partially decided by the most recent cpu
1476	 * utilization and the rest is decided by nice value.
1477	 *
1478	 * The nice value of the process has a linear effect on the calculated
1479	 * score.  Negative nice values make it easier for a thread to be
1480	 * considered interactive.
1481	 */
1482	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1483	if (score < sched_interact) {
1484		pri = PRI_MIN_INTERACT;
1485		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1486		    sched_interact) * score;
1487		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1488		    ("sched_priority: invalid interactive priority %d score %d",
1489		    pri, score));
1490	} else {
1491		pri = SCHED_PRI_MIN;
1492		if (td->td_sched->ts_ticks)
1493			pri += min(SCHED_PRI_TICKS(td->td_sched),
1494			    SCHED_PRI_RANGE);
1495		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1496		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1497		    ("sched_priority: invalid priority %d: nice %d, "
1498		    "ticks %d ftick %d ltick %d tick pri %d",
1499		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1500		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1501		    SCHED_PRI_TICKS(td->td_sched)));
1502	}
1503	sched_user_prio(td, pri);
1504
1505	return;
1506}
1507
1508/*
1509 * This routine enforces a maximum limit on the amount of scheduling history
1510 * kept.  It is called after either the slptime or runtime is adjusted.  This
1511 * function is ugly due to integer math.
1512 */
1513static void
1514sched_interact_update(struct thread *td)
1515{
1516	struct td_sched *ts;
1517	u_int sum;
1518
1519	ts = td->td_sched;
1520	sum = ts->ts_runtime + ts->ts_slptime;
1521	if (sum < SCHED_SLP_RUN_MAX)
1522		return;
1523	/*
1524	 * This only happens from two places:
1525	 * 1) We have added an unusual amount of run time from fork_exit.
1526	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1527	 */
1528	if (sum > SCHED_SLP_RUN_MAX * 2) {
1529		if (ts->ts_runtime > ts->ts_slptime) {
1530			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1531			ts->ts_slptime = 1;
1532		} else {
1533			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1534			ts->ts_runtime = 1;
1535		}
1536		return;
1537	}
1538	/*
1539	 * If we have exceeded by more than 1/5th then the algorithm below
1540	 * will not bring us back into range.  Dividing by two here forces
1541	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1542	 */
1543	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1544		ts->ts_runtime /= 2;
1545		ts->ts_slptime /= 2;
1546		return;
1547	}
1548	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1549	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1550}
1551
1552/*
1553 * Scale back the interactivity history when a child thread is created.  The
1554 * history is inherited from the parent but the thread may behave totally
1555 * differently.  For example, a shell spawning a compiler process.  We want
1556 * to learn that the compiler is behaving badly very quickly.
1557 */
1558static void
1559sched_interact_fork(struct thread *td)
1560{
1561	int ratio;
1562	int sum;
1563
1564	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1565	if (sum > SCHED_SLP_RUN_FORK) {
1566		ratio = sum / SCHED_SLP_RUN_FORK;
1567		td->td_sched->ts_runtime /= ratio;
1568		td->td_sched->ts_slptime /= ratio;
1569	}
1570}
1571
1572/*
1573 * Called from proc0_init() to setup the scheduler fields.
1574 */
1575void
1576schedinit(void)
1577{
1578
1579	/*
1580	 * Set up the scheduler specific parts of proc0.
1581	 */
1582	proc0.p_sched = NULL; /* XXX */
1583	thread0.td_sched = &td_sched0;
1584	td_sched0.ts_ltick = ticks;
1585	td_sched0.ts_ftick = ticks;
1586	td_sched0.ts_slice = sched_slice;
1587}
1588
1589/*
1590 * This is only somewhat accurate since given many processes of the same
1591 * priority they will switch when their slices run out, which will be
1592 * at most sched_slice stathz ticks.
1593 */
1594int
1595sched_rr_interval(void)
1596{
1597
1598	/* Convert sched_slice from stathz to hz. */
1599	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1600}
1601
1602/*
1603 * Update the percent cpu tracking information when it is requested or
1604 * the total history exceeds the maximum.  We keep a sliding history of
1605 * tick counts that slowly decays.  This is less precise than the 4BSD
1606 * mechanism since it happens with less regular and frequent events.
1607 */
1608static void
1609sched_pctcpu_update(struct td_sched *ts, int run)
1610{
1611	int t = ticks;
1612
1613	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1614		ts->ts_ticks = 0;
1615		ts->ts_ftick = t - SCHED_TICK_TARG;
1616	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1617		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1618		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1619		ts->ts_ftick = t - SCHED_TICK_TARG;
1620	}
1621	if (run)
1622		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1623	ts->ts_ltick = t;
1624}
1625
1626/*
1627 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1628 * if necessary.  This is the back-end for several priority related
1629 * functions.
1630 */
1631static void
1632sched_thread_priority(struct thread *td, u_char prio)
1633{
1634	struct td_sched *ts;
1635	struct tdq *tdq;
1636	int oldpri;
1637
1638	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1639	    "prio:%d", td->td_priority, "new prio:%d", prio,
1640	    KTR_ATTR_LINKED, sched_tdname(curthread));
1641	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1642	if (td != curthread && prio < td->td_priority) {
1643		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1644		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1645		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1646		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1647		    curthread);
1648	}
1649	ts = td->td_sched;
1650	THREAD_LOCK_ASSERT(td, MA_OWNED);
1651	if (td->td_priority == prio)
1652		return;
1653	/*
1654	 * If the priority has been elevated due to priority
1655	 * propagation, we may have to move ourselves to a new
1656	 * queue.  This could be optimized to not re-add in some
1657	 * cases.
1658	 */
1659	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1660		sched_rem(td);
1661		td->td_priority = prio;
1662		sched_add(td, SRQ_BORROWING);
1663		return;
1664	}
1665	/*
1666	 * If the thread is currently running we may have to adjust the lowpri
1667	 * information so other cpus are aware of our current priority.
1668	 */
1669	if (TD_IS_RUNNING(td)) {
1670		tdq = TDQ_CPU(ts->ts_cpu);
1671		oldpri = td->td_priority;
1672		td->td_priority = prio;
1673		if (prio < tdq->tdq_lowpri)
1674			tdq->tdq_lowpri = prio;
1675		else if (tdq->tdq_lowpri == oldpri)
1676			tdq_setlowpri(tdq, td);
1677		return;
1678	}
1679	td->td_priority = prio;
1680}
1681
1682/*
1683 * Update a thread's priority when it is lent another thread's
1684 * priority.
1685 */
1686void
1687sched_lend_prio(struct thread *td, u_char prio)
1688{
1689
1690	td->td_flags |= TDF_BORROWING;
1691	sched_thread_priority(td, prio);
1692}
1693
1694/*
1695 * Restore a thread's priority when priority propagation is
1696 * over.  The prio argument is the minimum priority the thread
1697 * needs to have to satisfy other possible priority lending
1698 * requests.  If the thread's regular priority is less
1699 * important than prio, the thread will keep a priority boost
1700 * of prio.
1701 */
1702void
1703sched_unlend_prio(struct thread *td, u_char prio)
1704{
1705	u_char base_pri;
1706
1707	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1708	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1709		base_pri = td->td_user_pri;
1710	else
1711		base_pri = td->td_base_pri;
1712	if (prio >= base_pri) {
1713		td->td_flags &= ~TDF_BORROWING;
1714		sched_thread_priority(td, base_pri);
1715	} else
1716		sched_lend_prio(td, prio);
1717}
1718
1719/*
1720 * Standard entry for setting the priority to an absolute value.
1721 */
1722void
1723sched_prio(struct thread *td, u_char prio)
1724{
1725	u_char oldprio;
1726
1727	/* First, update the base priority. */
1728	td->td_base_pri = prio;
1729
1730	/*
1731	 * If the thread is borrowing another thread's priority, don't
1732	 * ever lower the priority.
1733	 */
1734	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1735		return;
1736
1737	/* Change the real priority. */
1738	oldprio = td->td_priority;
1739	sched_thread_priority(td, prio);
1740
1741	/*
1742	 * If the thread is on a turnstile, then let the turnstile update
1743	 * its state.
1744	 */
1745	if (TD_ON_LOCK(td) && oldprio != prio)
1746		turnstile_adjust(td, oldprio);
1747}
1748
1749/*
1750 * Set the base user priority, does not effect current running priority.
1751 */
1752void
1753sched_user_prio(struct thread *td, u_char prio)
1754{
1755
1756	td->td_base_user_pri = prio;
1757	if (td->td_lend_user_pri <= prio)
1758		return;
1759	td->td_user_pri = prio;
1760}
1761
1762void
1763sched_lend_user_prio(struct thread *td, u_char prio)
1764{
1765
1766	THREAD_LOCK_ASSERT(td, MA_OWNED);
1767	td->td_lend_user_pri = prio;
1768	td->td_user_pri = min(prio, td->td_base_user_pri);
1769	if (td->td_priority > td->td_user_pri)
1770		sched_prio(td, td->td_user_pri);
1771	else if (td->td_priority != td->td_user_pri)
1772		td->td_flags |= TDF_NEEDRESCHED;
1773}
1774
1775/*
1776 * Handle migration from sched_switch().  This happens only for
1777 * cpu binding.
1778 */
1779static struct mtx *
1780sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1781{
1782	struct tdq *tdn;
1783
1784	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1785#ifdef SMP
1786	tdq_load_rem(tdq, td);
1787	/*
1788	 * Do the lock dance required to avoid LOR.  We grab an extra
1789	 * spinlock nesting to prevent preemption while we're
1790	 * not holding either run-queue lock.
1791	 */
1792	spinlock_enter();
1793	thread_lock_block(td);	/* This releases the lock on tdq. */
1794
1795	/*
1796	 * Acquire both run-queue locks before placing the thread on the new
1797	 * run-queue to avoid deadlocks created by placing a thread with a
1798	 * blocked lock on the run-queue of a remote processor.  The deadlock
1799	 * occurs when a third processor attempts to lock the two queues in
1800	 * question while the target processor is spinning with its own
1801	 * run-queue lock held while waiting for the blocked lock to clear.
1802	 */
1803	tdq_lock_pair(tdn, tdq);
1804	tdq_add(tdn, td, flags);
1805	tdq_notify(tdn, td);
1806	TDQ_UNLOCK(tdn);
1807	spinlock_exit();
1808#endif
1809	return (TDQ_LOCKPTR(tdn));
1810}
1811
1812/*
1813 * Variadic version of thread_lock_unblock() that does not assume td_lock
1814 * is blocked.
1815 */
1816static inline void
1817thread_unblock_switch(struct thread *td, struct mtx *mtx)
1818{
1819	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1820	    (uintptr_t)mtx);
1821}
1822
1823/*
1824 * Switch threads.  This function has to handle threads coming in while
1825 * blocked for some reason, running, or idle.  It also must deal with
1826 * migrating a thread from one queue to another as running threads may
1827 * be assigned elsewhere via binding.
1828 */
1829void
1830sched_switch(struct thread *td, struct thread *newtd, int flags)
1831{
1832	struct tdq *tdq;
1833	struct td_sched *ts;
1834	struct mtx *mtx;
1835	int srqflag;
1836	int cpuid, preempted;
1837
1838	THREAD_LOCK_ASSERT(td, MA_OWNED);
1839	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1840
1841	cpuid = PCPU_GET(cpuid);
1842	tdq = TDQ_CPU(cpuid);
1843	ts = td->td_sched;
1844	mtx = td->td_lock;
1845	sched_pctcpu_update(ts, 1);
1846	ts->ts_rltick = ticks;
1847	td->td_lastcpu = td->td_oncpu;
1848	td->td_oncpu = NOCPU;
1849	preempted = !(td->td_flags & TDF_SLICEEND);
1850	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1851	td->td_owepreempt = 0;
1852	if (!TD_IS_IDLETHREAD(td))
1853		tdq->tdq_switchcnt++;
1854	/*
1855	 * The lock pointer in an idle thread should never change.  Reset it
1856	 * to CAN_RUN as well.
1857	 */
1858	if (TD_IS_IDLETHREAD(td)) {
1859		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1860		TD_SET_CAN_RUN(td);
1861	} else if (TD_IS_RUNNING(td)) {
1862		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1863		srqflag = preempted ?
1864		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1865		    SRQ_OURSELF|SRQ_YIELDING;
1866#ifdef SMP
1867		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1868			ts->ts_cpu = sched_pickcpu(td, 0);
1869#endif
1870		if (ts->ts_cpu == cpuid)
1871			tdq_runq_add(tdq, td, srqflag);
1872		else {
1873			KASSERT(THREAD_CAN_MIGRATE(td) ||
1874			    (ts->ts_flags & TSF_BOUND) != 0,
1875			    ("Thread %p shouldn't migrate", td));
1876			mtx = sched_switch_migrate(tdq, td, srqflag);
1877		}
1878	} else {
1879		/* This thread must be going to sleep. */
1880		TDQ_LOCK(tdq);
1881		mtx = thread_lock_block(td);
1882		tdq_load_rem(tdq, td);
1883	}
1884	/*
1885	 * We enter here with the thread blocked and assigned to the
1886	 * appropriate cpu run-queue or sleep-queue and with the current
1887	 * thread-queue locked.
1888	 */
1889	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1890	newtd = choosethread();
1891	/*
1892	 * Call the MD code to switch contexts if necessary.
1893	 */
1894	if (td != newtd) {
1895#ifdef	HWPMC_HOOKS
1896		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1897			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1898#endif
1899		SDT_PROBE2(sched, , , off_cpu, newtd, newtd->td_proc);
1900		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1901		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1902		sched_pctcpu_update(newtd->td_sched, 0);
1903
1904#ifdef KDTRACE_HOOKS
1905		/*
1906		 * If DTrace has set the active vtime enum to anything
1907		 * other than INACTIVE (0), then it should have set the
1908		 * function to call.
1909		 */
1910		if (dtrace_vtime_active)
1911			(*dtrace_vtime_switch_func)(newtd);
1912#endif
1913
1914		cpu_switch(td, newtd, mtx);
1915		/*
1916		 * We may return from cpu_switch on a different cpu.  However,
1917		 * we always return with td_lock pointing to the current cpu's
1918		 * run queue lock.
1919		 */
1920		cpuid = PCPU_GET(cpuid);
1921		tdq = TDQ_CPU(cpuid);
1922		lock_profile_obtain_lock_success(
1923		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1924
1925		SDT_PROBE0(sched, , , on_cpu);
1926#ifdef	HWPMC_HOOKS
1927		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1928			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1929#endif
1930	} else {
1931		thread_unblock_switch(td, mtx);
1932		SDT_PROBE0(sched, , , remain_cpu);
1933	}
1934	/*
1935	 * Assert that all went well and return.
1936	 */
1937	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1938	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1939	td->td_oncpu = cpuid;
1940}
1941
1942/*
1943 * Adjust thread priorities as a result of a nice request.
1944 */
1945void
1946sched_nice(struct proc *p, int nice)
1947{
1948	struct thread *td;
1949
1950	PROC_LOCK_ASSERT(p, MA_OWNED);
1951
1952	p->p_nice = nice;
1953	FOREACH_THREAD_IN_PROC(p, td) {
1954		thread_lock(td);
1955		sched_priority(td);
1956		sched_prio(td, td->td_base_user_pri);
1957		thread_unlock(td);
1958	}
1959}
1960
1961/*
1962 * Record the sleep time for the interactivity scorer.
1963 */
1964void
1965sched_sleep(struct thread *td, int prio)
1966{
1967
1968	THREAD_LOCK_ASSERT(td, MA_OWNED);
1969
1970	td->td_slptick = ticks;
1971	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1972		td->td_flags |= TDF_CANSWAP;
1973	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1974		return;
1975	if (static_boost == 1 && prio)
1976		sched_prio(td, prio);
1977	else if (static_boost && td->td_priority > static_boost)
1978		sched_prio(td, static_boost);
1979}
1980
1981/*
1982 * Schedule a thread to resume execution and record how long it voluntarily
1983 * slept.  We also update the pctcpu, interactivity, and priority.
1984 */
1985void
1986sched_wakeup(struct thread *td)
1987{
1988	struct td_sched *ts;
1989	int slptick;
1990
1991	THREAD_LOCK_ASSERT(td, MA_OWNED);
1992	ts = td->td_sched;
1993	td->td_flags &= ~TDF_CANSWAP;
1994	/*
1995	 * If we slept for more than a tick update our interactivity and
1996	 * priority.
1997	 */
1998	slptick = td->td_slptick;
1999	td->td_slptick = 0;
2000	if (slptick && slptick != ticks) {
2001		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2002		sched_interact_update(td);
2003		sched_pctcpu_update(ts, 0);
2004	}
2005	/* Reset the slice value after we sleep. */
2006	ts->ts_slice = sched_slice;
2007	sched_add(td, SRQ_BORING);
2008}
2009
2010/*
2011 * Penalize the parent for creating a new child and initialize the child's
2012 * priority.
2013 */
2014void
2015sched_fork(struct thread *td, struct thread *child)
2016{
2017	THREAD_LOCK_ASSERT(td, MA_OWNED);
2018	sched_pctcpu_update(td->td_sched, 1);
2019	sched_fork_thread(td, child);
2020	/*
2021	 * Penalize the parent and child for forking.
2022	 */
2023	sched_interact_fork(child);
2024	sched_priority(child);
2025	td->td_sched->ts_runtime += tickincr;
2026	sched_interact_update(td);
2027	sched_priority(td);
2028}
2029
2030/*
2031 * Fork a new thread, may be within the same process.
2032 */
2033void
2034sched_fork_thread(struct thread *td, struct thread *child)
2035{
2036	struct td_sched *ts;
2037	struct td_sched *ts2;
2038
2039	THREAD_LOCK_ASSERT(td, MA_OWNED);
2040	/*
2041	 * Initialize child.
2042	 */
2043	ts = td->td_sched;
2044	ts2 = child->td_sched;
2045	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2046	child->td_cpuset = cpuset_ref(td->td_cpuset);
2047	ts2->ts_cpu = ts->ts_cpu;
2048	ts2->ts_flags = 0;
2049	/*
2050	 * Grab our parents cpu estimation information.
2051	 */
2052	ts2->ts_ticks = ts->ts_ticks;
2053	ts2->ts_ltick = ts->ts_ltick;
2054	ts2->ts_ftick = ts->ts_ftick;
2055	/*
2056	 * Do not inherit any borrowed priority from the parent.
2057	 */
2058	child->td_priority = child->td_base_pri;
2059	/*
2060	 * And update interactivity score.
2061	 */
2062	ts2->ts_slptime = ts->ts_slptime;
2063	ts2->ts_runtime = ts->ts_runtime;
2064	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2065#ifdef KTR
2066	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2067#endif
2068}
2069
2070/*
2071 * Adjust the priority class of a thread.
2072 */
2073void
2074sched_class(struct thread *td, int class)
2075{
2076
2077	THREAD_LOCK_ASSERT(td, MA_OWNED);
2078	if (td->td_pri_class == class)
2079		return;
2080	td->td_pri_class = class;
2081}
2082
2083/*
2084 * Return some of the child's priority and interactivity to the parent.
2085 */
2086void
2087sched_exit(struct proc *p, struct thread *child)
2088{
2089	struct thread *td;
2090
2091	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2092	    "prio:%d", child->td_priority);
2093	PROC_LOCK_ASSERT(p, MA_OWNED);
2094	td = FIRST_THREAD_IN_PROC(p);
2095	sched_exit_thread(td, child);
2096}
2097
2098/*
2099 * Penalize another thread for the time spent on this one.  This helps to
2100 * worsen the priority and interactivity of processes which schedule batch
2101 * jobs such as make.  This has little effect on the make process itself but
2102 * causes new processes spawned by it to receive worse scores immediately.
2103 */
2104void
2105sched_exit_thread(struct thread *td, struct thread *child)
2106{
2107
2108	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2109	    "prio:%d", child->td_priority);
2110	/*
2111	 * Give the child's runtime to the parent without returning the
2112	 * sleep time as a penalty to the parent.  This causes shells that
2113	 * launch expensive things to mark their children as expensive.
2114	 */
2115	thread_lock(td);
2116	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2117	sched_interact_update(td);
2118	sched_priority(td);
2119	thread_unlock(td);
2120}
2121
2122void
2123sched_preempt(struct thread *td)
2124{
2125	struct tdq *tdq;
2126
2127	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2128
2129	thread_lock(td);
2130	tdq = TDQ_SELF();
2131	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2132	tdq->tdq_ipipending = 0;
2133	if (td->td_priority > tdq->tdq_lowpri) {
2134		int flags;
2135
2136		flags = SW_INVOL | SW_PREEMPT;
2137		if (td->td_critnest > 1)
2138			td->td_owepreempt = 1;
2139		else if (TD_IS_IDLETHREAD(td))
2140			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2141		else
2142			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2143	}
2144	thread_unlock(td);
2145}
2146
2147/*
2148 * Fix priorities on return to user-space.  Priorities may be elevated due
2149 * to static priorities in msleep() or similar.
2150 */
2151void
2152sched_userret(struct thread *td)
2153{
2154	/*
2155	 * XXX we cheat slightly on the locking here to avoid locking in
2156	 * the usual case.  Setting td_priority here is essentially an
2157	 * incomplete workaround for not setting it properly elsewhere.
2158	 * Now that some interrupt handlers are threads, not setting it
2159	 * properly elsewhere can clobber it in the window between setting
2160	 * it here and returning to user mode, so don't waste time setting
2161	 * it perfectly here.
2162	 */
2163	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2164	    ("thread with borrowed priority returning to userland"));
2165	if (td->td_priority != td->td_user_pri) {
2166		thread_lock(td);
2167		td->td_priority = td->td_user_pri;
2168		td->td_base_pri = td->td_user_pri;
2169		tdq_setlowpri(TDQ_SELF(), td);
2170		thread_unlock(td);
2171        }
2172}
2173
2174/*
2175 * Handle a stathz tick.  This is really only relevant for timeshare
2176 * threads.
2177 */
2178void
2179sched_clock(struct thread *td)
2180{
2181	struct tdq *tdq;
2182	struct td_sched *ts;
2183
2184	THREAD_LOCK_ASSERT(td, MA_OWNED);
2185	tdq = TDQ_SELF();
2186#ifdef SMP
2187	/*
2188	 * We run the long term load balancer infrequently on the first cpu.
2189	 */
2190	if (balance_tdq == tdq) {
2191		if (balance_ticks && --balance_ticks == 0)
2192			sched_balance();
2193	}
2194#endif
2195	/*
2196	 * Save the old switch count so we have a record of the last ticks
2197	 * activity.   Initialize the new switch count based on our load.
2198	 * If there is some activity seed it to reflect that.
2199	 */
2200	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2201	tdq->tdq_switchcnt = tdq->tdq_load;
2202	/*
2203	 * Advance the insert index once for each tick to ensure that all
2204	 * threads get a chance to run.
2205	 */
2206	if (tdq->tdq_idx == tdq->tdq_ridx) {
2207		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2208		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2209			tdq->tdq_ridx = tdq->tdq_idx;
2210	}
2211	ts = td->td_sched;
2212	sched_pctcpu_update(ts, 1);
2213	if (td->td_pri_class & PRI_FIFO_BIT)
2214		return;
2215	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2216		/*
2217		 * We used a tick; charge it to the thread so
2218		 * that we can compute our interactivity.
2219		 */
2220		td->td_sched->ts_runtime += tickincr;
2221		sched_interact_update(td);
2222		sched_priority(td);
2223	}
2224
2225	/*
2226	 * Force a context switch if the current thread has used up a full
2227	 * time slice (default is 100ms).
2228	 */
2229	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
2230		ts->ts_slice = sched_slice;
2231		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2232	}
2233}
2234
2235/*
2236 * Called once per hz tick.
2237 */
2238void
2239sched_tick(int cnt)
2240{
2241
2242}
2243
2244/*
2245 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2246 * cooperative idle threads.
2247 */
2248int
2249sched_runnable(void)
2250{
2251	struct tdq *tdq;
2252	int load;
2253
2254	load = 1;
2255
2256	tdq = TDQ_SELF();
2257	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2258		if (tdq->tdq_load > 0)
2259			goto out;
2260	} else
2261		if (tdq->tdq_load - 1 > 0)
2262			goto out;
2263	load = 0;
2264out:
2265	return (load);
2266}
2267
2268/*
2269 * Choose the highest priority thread to run.  The thread is removed from
2270 * the run-queue while running however the load remains.  For SMP we set
2271 * the tdq in the global idle bitmask if it idles here.
2272 */
2273struct thread *
2274sched_choose(void)
2275{
2276	struct thread *td;
2277	struct tdq *tdq;
2278
2279	tdq = TDQ_SELF();
2280	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2281	td = tdq_choose(tdq);
2282	if (td) {
2283		tdq_runq_rem(tdq, td);
2284		tdq->tdq_lowpri = td->td_priority;
2285		return (td);
2286	}
2287	tdq->tdq_lowpri = PRI_MAX_IDLE;
2288	return (PCPU_GET(idlethread));
2289}
2290
2291/*
2292 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2293 * we always request it once we exit a critical section.
2294 */
2295static inline void
2296sched_setpreempt(struct thread *td)
2297{
2298	struct thread *ctd;
2299	int cpri;
2300	int pri;
2301
2302	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2303
2304	ctd = curthread;
2305	pri = td->td_priority;
2306	cpri = ctd->td_priority;
2307	if (pri < cpri)
2308		ctd->td_flags |= TDF_NEEDRESCHED;
2309	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2310		return;
2311	if (!sched_shouldpreempt(pri, cpri, 0))
2312		return;
2313	ctd->td_owepreempt = 1;
2314}
2315
2316/*
2317 * Add a thread to a thread queue.  Select the appropriate runq and add the
2318 * thread to it.  This is the internal function called when the tdq is
2319 * predetermined.
2320 */
2321void
2322tdq_add(struct tdq *tdq, struct thread *td, int flags)
2323{
2324
2325	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2326	KASSERT((td->td_inhibitors == 0),
2327	    ("sched_add: trying to run inhibited thread"));
2328	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2329	    ("sched_add: bad thread state"));
2330	KASSERT(td->td_flags & TDF_INMEM,
2331	    ("sched_add: thread swapped out"));
2332
2333	if (td->td_priority < tdq->tdq_lowpri)
2334		tdq->tdq_lowpri = td->td_priority;
2335	tdq_runq_add(tdq, td, flags);
2336	tdq_load_add(tdq, td);
2337}
2338
2339/*
2340 * Select the target thread queue and add a thread to it.  Request
2341 * preemption or IPI a remote processor if required.
2342 */
2343void
2344sched_add(struct thread *td, int flags)
2345{
2346	struct tdq *tdq;
2347#ifdef SMP
2348	int cpu;
2349#endif
2350
2351	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2352	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2353	    sched_tdname(curthread));
2354	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2355	    KTR_ATTR_LINKED, sched_tdname(td));
2356	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2357	    flags & SRQ_PREEMPTED);
2358	THREAD_LOCK_ASSERT(td, MA_OWNED);
2359	/*
2360	 * Recalculate the priority before we select the target cpu or
2361	 * run-queue.
2362	 */
2363	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2364		sched_priority(td);
2365#ifdef SMP
2366	/*
2367	 * Pick the destination cpu and if it isn't ours transfer to the
2368	 * target cpu.
2369	 */
2370	cpu = sched_pickcpu(td, flags);
2371	tdq = sched_setcpu(td, cpu, flags);
2372	tdq_add(tdq, td, flags);
2373	if (cpu != PCPU_GET(cpuid)) {
2374		tdq_notify(tdq, td);
2375		return;
2376	}
2377#else
2378	tdq = TDQ_SELF();
2379	TDQ_LOCK(tdq);
2380	/*
2381	 * Now that the thread is moving to the run-queue, set the lock
2382	 * to the scheduler's lock.
2383	 */
2384	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2385	tdq_add(tdq, td, flags);
2386#endif
2387	if (!(flags & SRQ_YIELDING))
2388		sched_setpreempt(td);
2389}
2390
2391/*
2392 * Remove a thread from a run-queue without running it.  This is used
2393 * when we're stealing a thread from a remote queue.  Otherwise all threads
2394 * exit by calling sched_exit_thread() and sched_throw() themselves.
2395 */
2396void
2397sched_rem(struct thread *td)
2398{
2399	struct tdq *tdq;
2400
2401	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2402	    "prio:%d", td->td_priority);
2403	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2404	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2405	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2406	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2407	KASSERT(TD_ON_RUNQ(td),
2408	    ("sched_rem: thread not on run queue"));
2409	tdq_runq_rem(tdq, td);
2410	tdq_load_rem(tdq, td);
2411	TD_SET_CAN_RUN(td);
2412	if (td->td_priority == tdq->tdq_lowpri)
2413		tdq_setlowpri(tdq, NULL);
2414}
2415
2416/*
2417 * Fetch cpu utilization information.  Updates on demand.
2418 */
2419fixpt_t
2420sched_pctcpu(struct thread *td)
2421{
2422	fixpt_t pctcpu;
2423	struct td_sched *ts;
2424
2425	pctcpu = 0;
2426	ts = td->td_sched;
2427	if (ts == NULL)
2428		return (0);
2429
2430	THREAD_LOCK_ASSERT(td, MA_OWNED);
2431	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2432	if (ts->ts_ticks) {
2433		int rtick;
2434
2435		/* How many rtick per second ? */
2436		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2437		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2438	}
2439
2440	return (pctcpu);
2441}
2442
2443/*
2444 * Enforce affinity settings for a thread.  Called after adjustments to
2445 * cpumask.
2446 */
2447void
2448sched_affinity(struct thread *td)
2449{
2450#ifdef SMP
2451	struct td_sched *ts;
2452
2453	THREAD_LOCK_ASSERT(td, MA_OWNED);
2454	ts = td->td_sched;
2455	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2456		return;
2457	if (TD_ON_RUNQ(td)) {
2458		sched_rem(td);
2459		sched_add(td, SRQ_BORING);
2460		return;
2461	}
2462	if (!TD_IS_RUNNING(td))
2463		return;
2464	/*
2465	 * Force a switch before returning to userspace.  If the
2466	 * target thread is not running locally send an ipi to force
2467	 * the issue.
2468	 */
2469	td->td_flags |= TDF_NEEDRESCHED;
2470	if (td != curthread)
2471		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2472#endif
2473}
2474
2475/*
2476 * Bind a thread to a target cpu.
2477 */
2478void
2479sched_bind(struct thread *td, int cpu)
2480{
2481	struct td_sched *ts;
2482
2483	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2484	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2485	ts = td->td_sched;
2486	if (ts->ts_flags & TSF_BOUND)
2487		sched_unbind(td);
2488	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2489	ts->ts_flags |= TSF_BOUND;
2490	sched_pin();
2491	if (PCPU_GET(cpuid) == cpu)
2492		return;
2493	ts->ts_cpu = cpu;
2494	/* When we return from mi_switch we'll be on the correct cpu. */
2495	mi_switch(SW_VOL, NULL);
2496}
2497
2498/*
2499 * Release a bound thread.
2500 */
2501void
2502sched_unbind(struct thread *td)
2503{
2504	struct td_sched *ts;
2505
2506	THREAD_LOCK_ASSERT(td, MA_OWNED);
2507	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2508	ts = td->td_sched;
2509	if ((ts->ts_flags & TSF_BOUND) == 0)
2510		return;
2511	ts->ts_flags &= ~TSF_BOUND;
2512	sched_unpin();
2513}
2514
2515int
2516sched_is_bound(struct thread *td)
2517{
2518	THREAD_LOCK_ASSERT(td, MA_OWNED);
2519	return (td->td_sched->ts_flags & TSF_BOUND);
2520}
2521
2522/*
2523 * Basic yield call.
2524 */
2525void
2526sched_relinquish(struct thread *td)
2527{
2528	thread_lock(td);
2529	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2530	thread_unlock(td);
2531}
2532
2533/*
2534 * Return the total system load.
2535 */
2536int
2537sched_load(void)
2538{
2539#ifdef SMP
2540	int total;
2541	int i;
2542
2543	total = 0;
2544	CPU_FOREACH(i)
2545		total += TDQ_CPU(i)->tdq_sysload;
2546	return (total);
2547#else
2548	return (TDQ_SELF()->tdq_sysload);
2549#endif
2550}
2551
2552int
2553sched_sizeof_proc(void)
2554{
2555	return (sizeof(struct proc));
2556}
2557
2558int
2559sched_sizeof_thread(void)
2560{
2561	return (sizeof(struct thread) + sizeof(struct td_sched));
2562}
2563
2564#ifdef SMP
2565#define	TDQ_IDLESPIN(tdq)						\
2566    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2567#else
2568#define	TDQ_IDLESPIN(tdq)	1
2569#endif
2570
2571/*
2572 * The actual idle process.
2573 */
2574void
2575sched_idletd(void *dummy)
2576{
2577	struct thread *td;
2578	struct tdq *tdq;
2579	int oldswitchcnt, switchcnt;
2580	int i;
2581
2582	mtx_assert(&Giant, MA_NOTOWNED);
2583	td = curthread;
2584	tdq = TDQ_SELF();
2585	oldswitchcnt = -1;
2586	for (;;) {
2587		if (tdq->tdq_load) {
2588			thread_lock(td);
2589			mi_switch(SW_VOL | SWT_IDLE, NULL);
2590			thread_unlock(td);
2591		}
2592		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2593#ifdef SMP
2594		if (switchcnt != oldswitchcnt) {
2595			oldswitchcnt = switchcnt;
2596			if (tdq_idled(tdq) == 0)
2597				continue;
2598		}
2599		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2600#else
2601		oldswitchcnt = switchcnt;
2602#endif
2603		/*
2604		 * If we're switching very frequently, spin while checking
2605		 * for load rather than entering a low power state that
2606		 * may require an IPI.  However, don't do any busy
2607		 * loops while on SMT machines as this simply steals
2608		 * cycles from cores doing useful work.
2609		 */
2610		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2611			for (i = 0; i < sched_idlespins; i++) {
2612				if (tdq->tdq_load)
2613					break;
2614				cpu_spinwait();
2615			}
2616		}
2617
2618		/* If there was context switch during spin, restart it. */
2619		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2620		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
2621			continue;
2622
2623		/* Run main MD idle handler. */
2624		tdq->tdq_cpu_idle = 1;
2625		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
2626		tdq->tdq_cpu_idle = 0;
2627
2628		/*
2629		 * Account thread-less hardware interrupts and
2630		 * other wakeup reasons equal to context switches.
2631		 */
2632		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2633		if (switchcnt != oldswitchcnt)
2634			continue;
2635		tdq->tdq_switchcnt++;
2636		oldswitchcnt++;
2637	}
2638}
2639
2640/*
2641 * A CPU is entering for the first time or a thread is exiting.
2642 */
2643void
2644sched_throw(struct thread *td)
2645{
2646	struct thread *newtd;
2647	struct tdq *tdq;
2648
2649	tdq = TDQ_SELF();
2650	if (td == NULL) {
2651		/* Correct spinlock nesting and acquire the correct lock. */
2652		TDQ_LOCK(tdq);
2653		spinlock_exit();
2654		PCPU_SET(switchtime, cpu_ticks());
2655		PCPU_SET(switchticks, ticks);
2656	} else {
2657		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2658		tdq_load_rem(tdq, td);
2659		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2660	}
2661	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2662	newtd = choosethread();
2663	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2664	cpu_throw(td, newtd);		/* doesn't return */
2665}
2666
2667/*
2668 * This is called from fork_exit().  Just acquire the correct locks and
2669 * let fork do the rest of the work.
2670 */
2671void
2672sched_fork_exit(struct thread *td)
2673{
2674	struct td_sched *ts;
2675	struct tdq *tdq;
2676	int cpuid;
2677
2678	/*
2679	 * Finish setting up thread glue so that it begins execution in a
2680	 * non-nested critical section with the scheduler lock held.
2681	 */
2682	cpuid = PCPU_GET(cpuid);
2683	tdq = TDQ_CPU(cpuid);
2684	ts = td->td_sched;
2685	if (TD_IS_IDLETHREAD(td))
2686		td->td_lock = TDQ_LOCKPTR(tdq);
2687	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2688	td->td_oncpu = cpuid;
2689	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2690	lock_profile_obtain_lock_success(
2691	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2692}
2693
2694/*
2695 * Create on first use to catch odd startup conditons.
2696 */
2697char *
2698sched_tdname(struct thread *td)
2699{
2700#ifdef KTR
2701	struct td_sched *ts;
2702
2703	ts = td->td_sched;
2704	if (ts->ts_name[0] == '\0')
2705		snprintf(ts->ts_name, sizeof(ts->ts_name),
2706		    "%s tid %d", td->td_name, td->td_tid);
2707	return (ts->ts_name);
2708#else
2709	return (td->td_name);
2710#endif
2711}
2712
2713#ifdef KTR
2714void
2715sched_clear_tdname(struct thread *td)
2716{
2717	struct td_sched *ts;
2718
2719	ts = td->td_sched;
2720	ts->ts_name[0] = '\0';
2721}
2722#endif
2723
2724#ifdef SMP
2725
2726/*
2727 * Build the CPU topology dump string. Is recursively called to collect
2728 * the topology tree.
2729 */
2730static int
2731sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2732    int indent)
2733{
2734	char cpusetbuf[CPUSETBUFSIZ];
2735	int i, first;
2736
2737	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2738	    "", 1 + indent / 2, cg->cg_level);
2739	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2740	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2741	first = TRUE;
2742	for (i = 0; i < MAXCPU; i++) {
2743		if (CPU_ISSET(i, &cg->cg_mask)) {
2744			if (!first)
2745				sbuf_printf(sb, ", ");
2746			else
2747				first = FALSE;
2748			sbuf_printf(sb, "%d", i);
2749		}
2750	}
2751	sbuf_printf(sb, "</cpu>\n");
2752
2753	if (cg->cg_flags != 0) {
2754		sbuf_printf(sb, "%*s <flags>", indent, "");
2755		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2756			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2757		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2758			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2759		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2760			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2761		sbuf_printf(sb, "</flags>\n");
2762	}
2763
2764	if (cg->cg_children > 0) {
2765		sbuf_printf(sb, "%*s <children>\n", indent, "");
2766		for (i = 0; i < cg->cg_children; i++)
2767			sysctl_kern_sched_topology_spec_internal(sb,
2768			    &cg->cg_child[i], indent+2);
2769		sbuf_printf(sb, "%*s </children>\n", indent, "");
2770	}
2771	sbuf_printf(sb, "%*s</group>\n", indent, "");
2772	return (0);
2773}
2774
2775/*
2776 * Sysctl handler for retrieving topology dump. It's a wrapper for
2777 * the recursive sysctl_kern_smp_topology_spec_internal().
2778 */
2779static int
2780sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2781{
2782	struct sbuf *topo;
2783	int err;
2784
2785	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2786
2787	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2788	if (topo == NULL)
2789		return (ENOMEM);
2790
2791	sbuf_printf(topo, "<groups>\n");
2792	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2793	sbuf_printf(topo, "</groups>\n");
2794
2795	if (err == 0) {
2796		sbuf_finish(topo);
2797		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2798	}
2799	sbuf_delete(topo);
2800	return (err);
2801}
2802
2803#endif
2804
2805static int
2806sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2807{
2808	int error, new_val, period;
2809
2810	period = 1000000 / realstathz;
2811	new_val = period * sched_slice;
2812	error = sysctl_handle_int(oidp, &new_val, 0, req);
2813	if (error != 0 || req->newptr == NULL)
2814		return (error);
2815	if (new_val <= 0)
2816		return (EINVAL);
2817	sched_slice = imax(1, (new_val + period / 2) / period);
2818	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2819	    realstathz);
2820	return (0);
2821}
2822
2823SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2824SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2825    "Scheduler name");
2826SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2827    NULL, 0, sysctl_kern_quantum, "I",
2828    "Quantum for timeshare threads in microseconds");
2829SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2830    "Quantum for timeshare threads in stathz ticks");
2831SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2832    "Interactivity score threshold");
2833SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2834    &preempt_thresh, 0,
2835    "Maximal (lowest) priority for preemption");
2836SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2837    "Assign static kernel priorities to sleeping threads");
2838SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2839    "Number of times idle thread will spin waiting for new work");
2840SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2841    &sched_idlespinthresh, 0,
2842    "Threshold before we will permit idle thread spinning");
2843#ifdef SMP
2844SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2845    "Number of hz ticks to keep thread affinity for");
2846SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2847    "Enables the long-term load balancer");
2848SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2849    &balance_interval, 0,
2850    "Average period in stathz ticks to run the long-term balancer");
2851SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2852    "Attempts to steal work from other cores before idling");
2853SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2854    "Minimum load on remote CPU before we'll steal");
2855SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2856    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2857    "XML dump of detected CPU topology");
2858#endif
2859
2860/* ps compat.  All cpu percentages from ULE are weighted. */
2861static int ccpu = 0;
2862SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2863