sched_ule.c revision 241250
151852Sbp/*-
266539Sbp * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
351852Sbp * All rights reserved.
451852Sbp *
551852Sbp * Redistribution and use in source and binary forms, with or without
651852Sbp * modification, are permitted provided that the following conditions
751852Sbp * are met:
851852Sbp * 1. Redistributions of source code must retain the above copyright
951852Sbp *    notice unmodified, this list of conditions, and the following
1051852Sbp *    disclaimer.
1151852Sbp * 2. Redistributions in binary form must reproduce the above copyright
1251852Sbp *    notice, this list of conditions and the following disclaimer in the
1351852Sbp *    documentation and/or other materials provided with the distribution.
1451852Sbp *
1551852Sbp * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
1651852Sbp * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1751852Sbp * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
1851852Sbp * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
1951852Sbp * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
2051852Sbp * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2151852Sbp * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2251852Sbp * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2351852Sbp * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
2451852Sbp * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2551852Sbp */
2651852Sbp
2751852Sbp/*
2851852Sbp * This file implements the ULE scheduler.  ULE supports independent CPU
2951852Sbp * run queues and fine grain locking.  It has superior interactive
3051852Sbp * performance under load even on uni-processor systems.
3151852Sbp *
3251852Sbp * etymology:
3351852Sbp *   ULE is the last three letters in schedule.  It owes its name to a
3451852Sbp * generic user created for a scheduling system by Paul Mikesell at
3551852Sbp * Isilon Systems and a general lack of creativity on the part of the author.
3651852Sbp */
3751852Sbp
3851852Sbp#include <sys/cdefs.h>
3951852Sbp__FBSDID("$FreeBSD: stable/9/sys/kern/sched_ule.c 241250 2012-10-06 13:01:08Z mav $");
4051852Sbp
4151852Sbp#include "opt_hwpmc_hooks.h"
4251852Sbp#include "opt_kdtrace.h"
4351852Sbp#include "opt_sched.h"
4451852Sbp
4551852Sbp#include <sys/param.h>
4651852Sbp#include <sys/systm.h>
4751852Sbp#include <sys/kdb.h>
4860041Sphk#include <sys/kernel.h>
4951852Sbp#include <sys/ktr.h>
5051852Sbp#include <sys/lock.h>
5151852Sbp#include <sys/mutex.h>
5251852Sbp#include <sys/proc.h>
5351852Sbp#include <sys/resource.h>
5451852Sbp#include <sys/resourcevar.h>
5551852Sbp#include <sys/sched.h>
5651852Sbp#include <sys/sdt.h>
5777223Sru#include <sys/smp.h>
5877223Sru#include <sys/sx.h>
5977223Sru#include <sys/sysctl.h>
6051852Sbp#include <sys/sysproto.h>
6151852Sbp#include <sys/turnstile.h>
6251852Sbp#include <sys/umtx.h>
6351852Sbp#include <sys/vmmeter.h>
6451852Sbp#include <sys/cpuset.h>
6551852Sbp#include <sys/sbuf.h>
6651852Sbp
6751852Sbp#ifdef HWPMC_HOOKS
6851852Sbp#include <sys/pmckern.h>
6951852Sbp#endif
7059755Speter
7174637Sbp#ifdef KDTRACE_HOOKS
7259755Speter#include <sys/dtrace_bsd.h>
7366539Sbpint				dtrace_vtime_active;
7483366Sjuliandtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
7583366Sjulian#endif
7666539Sbp
7783366Sjulian#include <machine/cpu.h>
7883366Sjulian#include <machine/smp.h>
7983366Sjulian
8083366Sjulian#if defined(__powerpc__) && defined(E500)
8166539Sbp#error "This architecture is not currently compatible with ULE"
8266539Sbp#endif
8351852Sbp
8451852Sbp#define	KTR_ULE	0
8551852Sbp
8651852Sbp#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
8751852Sbp#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
8851852Sbp#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
8951852Sbp
9051852Sbp/*
9151852Sbp * Thread scheduler specific section.  All fields are protected
9251852Sbp * by the thread lock.
9351852Sbp */
9451852Sbpstruct td_sched {
9551852Sbp	struct runq	*ts_runq;	/* Run-queue we're queued on. */
9651852Sbp	short		ts_flags;	/* TSF_* flags. */
9754803Srwatson	u_char		ts_cpu;		/* CPU that we have affinity for. */
9854803Srwatson	int		ts_rltick;	/* Real last tick, for affinity. */
9951852Sbp	int		ts_slice;	/* Ticks of slice remaining. */
10051852Sbp	u_int		ts_slptime;	/* Number of ticks we vol. slept */
10151852Sbp	u_int		ts_runtime;	/* Number of ticks we were running */
10251852Sbp	int		ts_ltick;	/* Last tick that we were running on */
10351852Sbp	int		ts_ftick;	/* First tick that we were running on */
10451852Sbp	int		ts_ticks;	/* Tick count */
10551852Sbp#ifdef KTR
10651852Sbp	char		ts_name[TS_NAME_LEN];
10751852Sbp#endif
10851852Sbp};
10951852Sbp/* flags kept in ts_flags */
11051852Sbp#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
11151852Sbp#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
11251852Sbp
11351852Sbpstatic struct td_sched td_sched0;
11451852Sbp
11551852Sbp#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
11651852Sbp#define	THREAD_CAN_SCHED(td, cpu)	\
11751852Sbp    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
11851852Sbp
11951852Sbp/*
12051852Sbp * Priority ranges used for interactive and non-interactive timeshare
12151852Sbp * threads.  The timeshare priorities are split up into four ranges.
12252814Sarchie * The first range handles interactive threads.  The last three ranges
12352814Sarchie * (NHALF, x, and NHALF) handle non-interactive threads with the outer
12451852Sbp * ranges supporting nice values.
12551852Sbp */
12651852Sbp#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
12751852Sbp#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
12851852Sbp#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
12951852Sbp
13051852Sbp#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
13152814Sarchie#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
13252814Sarchie#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
13351852Sbp#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
13451852Sbp
13551852Sbp/*
13651852Sbp * Cpu percentage computation macros and defines.
13751852Sbp *
13851852Sbp * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
13951852Sbp * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
14051852Sbp * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
14151852Sbp * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
14251852Sbp * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
14351852Sbp * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
14451852Sbp */
14551852Sbp#define	SCHED_TICK_SECS		10
14651852Sbp#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
14783366Sjulian#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
14851852Sbp#define	SCHED_TICK_SHIFT	10
14951852Sbp#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
15051852Sbp#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
15151852Sbp
15251852Sbp/*
15351852Sbp * These macros determine priorities for non-interactive threads.  They are
15451852Sbp * assigned a priority based on their recent cpu utilization as expressed
15551852Sbp * by the ratio of ticks to the tick total.  NHALF priorities at the start
15651852Sbp * and end of the MIN to MAX timeshare range are only reachable with negative
15751852Sbp * or positive nice respectively.
15851852Sbp *
15951852Sbp * PRI_RANGE:	Priority range for utilization dependent priorities.
16051852Sbp * PRI_NRESV:	Number of nice values.
16151852Sbp * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
16251852Sbp * PRI_NICE:	Determines the part of the priority inherited from nice.
16351852Sbp */
16451852Sbp#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
16551852Sbp#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
16651852Sbp#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
16751852Sbp#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
16851852Sbp#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
16951852Sbp#define	SCHED_PRI_TICKS(ts)						\
17051852Sbp    (SCHED_TICK_HZ((ts)) /						\
17151852Sbp    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
17291406Sjhb#define	SCHED_PRI_NICE(nice)	(nice)
17351852Sbp
17451852Sbp/*
17551852Sbp * These determine the interactivity of a process.  Interactivity differs from
17651852Sbp * cpu utilization in that it expresses the voluntary time slept vs time ran
17751852Sbp * while cpu utilization includes all time not running.  This more accurately
17851852Sbp * models the intent of the thread.
17951852Sbp *
18051852Sbp * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
18151852Sbp *		before throttling back.
18283366Sjulian * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
18351852Sbp * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
18451852Sbp * INTERACT_THRESH:	Threshold for placement on the current runq.
18567895Sdwmalone */
18651852Sbp#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
18751852Sbp#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
18851852Sbp#define	SCHED_INTERACT_MAX	(100)
18951852Sbp#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
19051852Sbp#define	SCHED_INTERACT_THRESH	(30)
19151852Sbp
19251852Sbp/* Flags kept in td_flags. */
19351852Sbp#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
19451852Sbp
19551852Sbp/*
19651852Sbp * tickincr:		Converts a stathz tick into a hz domain scaled by
19751852Sbp *			the shift factor.  Without the shift the error rate
19851852Sbp *			due to rounding would be unacceptably high.
19951852Sbp * realstathz:		stathz is sometimes 0 and run off of hz.
20051852Sbp * sched_slice:		Runtime of each thread before rescheduling.
20151852Sbp * preempt_thresh:	Priority threshold for preemption and remote IPIs.
20251852Sbp */
20351852Sbpstatic int sched_interact = SCHED_INTERACT_THRESH;
20451852Sbpstatic int realstathz = 127;
20551852Sbpstatic int tickincr = 8 << SCHED_TICK_SHIFT;;
20651852Sbpstatic int sched_slice = 12;
20751852Sbp#ifdef PREEMPTION
20851852Sbp#ifdef FULL_PREEMPTION
20951852Sbpstatic int preempt_thresh = PRI_MAX_IDLE;
21051852Sbp#else
21151852Sbpstatic int preempt_thresh = PRI_MIN_KERN;
21251852Sbp#endif
21351852Sbp#else
21451852Sbpstatic int preempt_thresh = 0;
21551852Sbp#endif
21651852Sbpstatic int static_boost = PRI_MIN_BATCH;
21751852Sbpstatic int sched_idlespins = 10000;
21851852Sbpstatic int sched_idlespinthresh = -1;
21951852Sbp
22051852Sbp/*
22151852Sbp * tdq - per processor runqs and statistics.  All fields are protected by the
22251852Sbp * tdq_lock.  The load and lowpri may be accessed without to avoid excess
22383366Sjulian * locking in sched_pickcpu();
22451852Sbp */
22551852Sbpstruct tdq {
22651852Sbp	/* Ordered to improve efficiency of cpu_search() and switch(). */
22751852Sbp	struct mtx	tdq_lock;		/* run queue lock. */
22851852Sbp	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
22951852Sbp	volatile int	tdq_load;		/* Aggregate load. */
23051852Sbp	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
23151852Sbp	int		tdq_sysload;		/* For loadavg, !ITHD load. */
23251852Sbp	int		tdq_transferable;	/* Transferable thread count. */
23351852Sbp	short		tdq_switchcnt;		/* Switches this tick. */
23451852Sbp	short		tdq_oldswitchcnt;	/* Switches last tick. */
23551852Sbp	u_char		tdq_lowpri;		/* Lowest priority thread. */
23683366Sjulian	u_char		tdq_ipipending;		/* IPI pending. */
23751852Sbp	u_char		tdq_idx;		/* Current insert index. */
23851852Sbp	u_char		tdq_ridx;		/* Current removal index. */
23951852Sbp	struct runq	tdq_realtime;		/* real-time run queue. */
24051852Sbp	struct runq	tdq_timeshare;		/* timeshare run queue. */
24151852Sbp	struct runq	tdq_idle;		/* Queue of IDLE threads. */
24251852Sbp	char		tdq_name[TDQ_NAME_LEN];
24351852Sbp#ifdef KTR
24451852Sbp	char		tdq_loadname[TDQ_LOADNAME_LEN];
24551852Sbp#endif
24676688Siedowse} __aligned(64);
24776688Siedowse
24876688Siedowse/* Idle thread states and config. */
24951852Sbp#define	TDQ_RUNNING	1
25051852Sbp#define	TDQ_IDLE	2
25151852Sbp
25291406Sjhb#ifdef SMP
25374062Sbpstruct cpu_group *cpu_top;		/* CPU topology */
25483366Sjulian
25551852Sbp#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
25651852Sbp#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
25751852Sbp
25852814Sarchie/*
25951852Sbp * Run-time tunables.
26051852Sbp */
26151852Sbpstatic int rebalance = 1;
26251852Sbpstatic int balance_interval = 128;	/* Default set in sched_initticks(). */
26351852Sbpstatic int affinity;
26451852Sbpstatic int steal_idle = 1;
26551852Sbpstatic int steal_thresh = 2;
26651852Sbp
26751852Sbp/*
26851852Sbp * One thread queue per processor.
26951852Sbp */
27051852Sbpstatic struct tdq	tdq_cpu[MAXCPU];
27151852Sbpstatic struct tdq	*balance_tdq;
27283366Sjulianstatic int balance_ticks;
27391406Sjhbstatic DPCPU_DEFINE(uint32_t, randomval);
27451852Sbp
27551852Sbp#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
27651852Sbp#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
27751852Sbp#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
27851852Sbp#else	/* !SMP */
27951852Sbpstatic struct tdq	tdq_cpu;
28051852Sbp
28183366Sjulian#define	TDQ_ID(x)	(0)
28266540Sbp#define	TDQ_SELF()	(&tdq_cpu)
28351852Sbp#define	TDQ_CPU(x)	(&tdq_cpu)
28451852Sbp#endif
28551852Sbp
28683366Sjulian#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
28751852Sbp#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
28851852Sbp#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
28951852Sbp#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
29083366Sjulian#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
29151852Sbp
29251852Sbpstatic void sched_priority(struct thread *);
29351852Sbpstatic void sched_thread_priority(struct thread *, u_char);
29451852Sbpstatic int sched_interact_score(struct thread *);
29551852Sbpstatic void sched_interact_update(struct thread *);
29651852Sbpstatic void sched_interact_fork(struct thread *);
29751852Sbpstatic void sched_pctcpu_update(struct td_sched *, int);
29851852Sbp
29951852Sbp/* Operations on per processor queues */
30051852Sbpstatic struct thread *tdq_choose(struct tdq *);
30151852Sbpstatic void tdq_setup(struct tdq *);
30251852Sbpstatic void tdq_load_add(struct tdq *, struct thread *);
30351852Sbpstatic void tdq_load_rem(struct tdq *, struct thread *);
30451852Sbpstatic __inline void tdq_runq_add(struct tdq *, struct thread *, int);
30551852Sbpstatic __inline void tdq_runq_rem(struct tdq *, struct thread *);
30651852Sbpstatic inline int sched_shouldpreempt(int, int, int);
30751852Sbpvoid tdq_print(int cpu);
30851852Sbpstatic void runq_print(struct runq *rq);
30951852Sbpstatic void tdq_add(struct tdq *, struct thread *, int);
31051852Sbp#ifdef SMP
31151852Sbpstatic int tdq_move(struct tdq *, struct tdq *);
31251852Sbpstatic int tdq_idled(struct tdq *);
31351852Sbpstatic void tdq_notify(struct tdq *, struct thread *);
31451852Sbpstatic struct thread *tdq_steal(struct tdq *, int);
31551852Sbpstatic struct thread *runq_steal(struct runq *, int);
31683366Sjulianstatic int sched_pickcpu(struct thread *, int);
31751852Sbpstatic void sched_balance(void);
31851852Sbpstatic int sched_balance_pair(struct tdq *, struct tdq *);
31951852Sbpstatic inline struct tdq *sched_setcpu(struct thread *, int, int);
32051852Sbpstatic inline void thread_unblock_switch(struct thread *, struct mtx *);
32151852Sbpstatic struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
32251852Sbpstatic int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
32351852Sbpstatic int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
32483366Sjulian    struct cpu_group *cg, int indent);
32551852Sbp#endif
32651852Sbp
32751852Sbpstatic void sched_setup(void *dummy);
32851852SbpSYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
32951852Sbp
33051852Sbpstatic void sched_initticks(void *dummy);
33151852SbpSYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
33283366Sjulian    NULL);
33351852Sbp
33451852SbpSDT_PROVIDER_DEFINE(sched);
33551852Sbp
33651852SbpSDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
33774064Sbp    "struct proc *", "uint8_t");
33851852SbpSDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
33951852Sbp    "struct proc *", "void *");
34051852SbpSDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
34151852Sbp    "struct proc *", "void *", "int");
34251852SbpSDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
34351852Sbp    "struct proc *", "uint8_t", "struct thread *");
34451852SbpSDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
34551852SbpSDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
34651852Sbp    "struct proc *");
34751852SbpSDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
34883366SjulianSDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
34951852SbpSDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
35051852Sbp    "struct proc *");
35151852Sbp
35251852Sbp/*
35351852Sbp * Print the threads waiting on a run-queue.
35451852Sbp */
35551852Sbpstatic void
35651852Sbprunq_print(struct runq *rq)
35751852Sbp{
35851852Sbp	struct rqhead *rqh;
35951852Sbp	struct thread *td;
36051852Sbp	int pri;
36151852Sbp	int j;
36251852Sbp	int i;
36383366Sjulian
36451852Sbp	for (i = 0; i < RQB_LEN; i++) {
36551852Sbp		printf("\t\trunq bits %d 0x%zx\n",
36683366Sjulian		    i, rq->rq_status.rqb_bits[i]);
36751852Sbp		for (j = 0; j < RQB_BPW; j++)
36851852Sbp			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
36951852Sbp				pri = j + (i << RQB_L2BPW);
37051852Sbp				rqh = &rq->rq_queues[pri];
37151852Sbp				TAILQ_FOREACH(td, rqh, td_runq) {
37251852Sbp					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
37351852Sbp					    td, td->td_name, td->td_priority,
37451852Sbp					    td->td_rqindex, pri);
37551852Sbp				}
37651852Sbp			}
37783366Sjulian	}
37851852Sbp}
37951852Sbp
38051852Sbp/*
38151852Sbp * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
38283366Sjulian */
38351852Sbpvoid
38451852Sbptdq_print(int cpu)
38551852Sbp{
38651852Sbp	struct tdq *tdq;
38751852Sbp
38851852Sbp	tdq = TDQ_CPU(cpu);
38951852Sbp
39051852Sbp	printf("tdq %d:\n", TDQ_ID(tdq));
39151852Sbp	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
39256034Sbp	printf("\tLock name:      %s\n", tdq->tdq_name);
39356034Sbp	printf("\tload:           %d\n", tdq->tdq_load);
39456034Sbp	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
39551852Sbp	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
39656034Sbp	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
39756034Sbp	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
39883366Sjulian	printf("\tload transferable: %d\n", tdq->tdq_transferable);
39956034Sbp	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
40056034Sbp	printf("\trealtime runq:\n");
40156034Sbp	runq_print(&tdq->tdq_realtime);
40251852Sbp	printf("\ttimeshare runq:\n");
40351852Sbp	runq_print(&tdq->tdq_timeshare);
40451852Sbp	printf("\tidle runq:\n");
40551852Sbp	runq_print(&tdq->tdq_idle);
40651852Sbp}
40751852Sbp
40851852Sbpstatic inline int
40951852Sbpsched_shouldpreempt(int pri, int cpri, int remote)
41051852Sbp{
41151852Sbp	/*
41251852Sbp	 * If the new priority is not better than the current priority there is
41351852Sbp	 * nothing to do.
41451852Sbp	 */
41551852Sbp	if (pri >= cpri)
41651852Sbp		return (0);
41751852Sbp	/*
41851852Sbp	 * Always preempt idle.
41951852Sbp	 */
42051852Sbp	if (cpri >= PRI_MIN_IDLE)
42151852Sbp		return (1);
42283366Sjulian	/*
42351852Sbp	 * If preemption is disabled don't preempt others.
42466539Sbp	 */
42583366Sjulian	if (preempt_thresh == 0)
42651852Sbp		return (0);
42751852Sbp	/*
42851852Sbp	 * Preempt if we exceed the threshold.
42951852Sbp	 */
43051852Sbp	if (pri <= preempt_thresh)
43151852Sbp		return (1);
43251852Sbp	/*
43383366Sjulian	 * If we're interactive or better and there is non-interactive
43491406Sjhb	 * or worse running preempt only remote processors.
43551852Sbp	 */
43651852Sbp	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
43751852Sbp		return (1);
43851852Sbp	return (0);
43951852Sbp}
44051852Sbp
44151852Sbp/*
44251852Sbp * Add a thread to the actual run-queue.  Keeps transferable counts up to
44351852Sbp * date with what is actually on the run-queue.  Selects the correct
44451852Sbp * queue position for timeshare threads.
44551852Sbp */
44651852Sbpstatic __inline void
44751852Sbptdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
44851852Sbp{
44951852Sbp	struct td_sched *ts;
45051852Sbp	u_char pri;
45151852Sbp
45251852Sbp	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
45351852Sbp	THREAD_LOCK_ASSERT(td, MA_OWNED);
45451852Sbp
45551852Sbp	pri = td->td_priority;
45651852Sbp	ts = td->td_sched;
45751852Sbp	TD_SET_RUNQ(td);
45851852Sbp	if (THREAD_CAN_MIGRATE(td)) {
45951852Sbp		tdq->tdq_transferable++;
46051852Sbp		ts->ts_flags |= TSF_XFERABLE;
46151852Sbp	}
46251852Sbp	if (pri < PRI_MIN_BATCH) {
46351852Sbp		ts->ts_runq = &tdq->tdq_realtime;
46451852Sbp	} else if (pri <= PRI_MAX_BATCH) {
46551852Sbp		ts->ts_runq = &tdq->tdq_timeshare;
46651852Sbp		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
46751852Sbp			("Invalid priority %d on timeshare runq", pri));
46851852Sbp		/*
46983366Sjulian		 * This queue contains only priorities between MIN and MAX
47051852Sbp		 * realtime.  Use the whole queue to represent these values.
47151852Sbp		 */
47251852Sbp		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
47383366Sjulian			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
47451852Sbp			pri = (pri + tdq->tdq_idx) % RQ_NQS;
47578906Sjhb			/*
47651852Sbp			 * This effectively shortens the queue by one so we
47751852Sbp			 * can have a one slot difference between idx and
47851852Sbp			 * ridx while we wait for threads to drain.
47951852Sbp			 */
48078906Sjhb			if (tdq->tdq_ridx != tdq->tdq_idx &&
48151852Sbp			    pri == tdq->tdq_ridx)
48285339Sdillon				pri = (unsigned char)(pri - 1) % RQ_NQS;
48351852Sbp		} else
48478906Sjhb			pri = tdq->tdq_ridx;
48551852Sbp		runq_add_pri(ts->ts_runq, td, pri, flags);
48651852Sbp		return;
48751852Sbp	} else
48851852Sbp		ts->ts_runq = &tdq->tdq_idle;
48951852Sbp	runq_add(ts->ts_runq, td, flags);
49051852Sbp}
49185339Sdillon
49278906Sjhb/*
49378906Sjhb * Remove a thread from a run-queue.  This typically happens when a thread
49454444Seivind * is selected to run.  Running threads are not on the queue and the
49578906Sjhb * transferable count does not reflect them.
49678906Sjhb */
49778906Sjhbstatic __inline void
49851852Sbptdq_runq_rem(struct tdq *tdq, struct thread *td)
49978906Sjhb{
50083366Sjulian	struct td_sched *ts;
50178906Sjhb
50251852Sbp	ts = td->td_sched;
50378906Sjhb	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
50483366Sjulian	KASSERT(ts->ts_runq != NULL,
50551852Sbp	    ("tdq_runq_remove: thread %p null ts_runq", td));
50651852Sbp	if (ts->ts_flags & TSF_XFERABLE) {
50751852Sbp		tdq->tdq_transferable--;
50878906Sjhb		ts->ts_flags &= ~TSF_XFERABLE;
50951852Sbp	}
51078906Sjhb	if (ts->ts_runq == &tdq->tdq_timeshare) {
51151852Sbp		if (tdq->tdq_idx != tdq->tdq_ridx)
51251852Sbp			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
513		else
514			runq_remove_idx(ts->ts_runq, td, NULL);
515	} else
516		runq_remove(ts->ts_runq, td);
517}
518
519/*
520 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
521 * for this thread to the referenced thread queue.
522 */
523static void
524tdq_load_add(struct tdq *tdq, struct thread *td)
525{
526
527	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
528	THREAD_LOCK_ASSERT(td, MA_OWNED);
529
530	tdq->tdq_load++;
531	if ((td->td_flags & TDF_NOLOAD) == 0)
532		tdq->tdq_sysload++;
533	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
534	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
535}
536
537/*
538 * Remove the load from a thread that is transitioning to a sleep state or
539 * exiting.
540 */
541static void
542tdq_load_rem(struct tdq *tdq, struct thread *td)
543{
544
545	THREAD_LOCK_ASSERT(td, MA_OWNED);
546	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
547	KASSERT(tdq->tdq_load != 0,
548	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
549
550	tdq->tdq_load--;
551	if ((td->td_flags & TDF_NOLOAD) == 0)
552		tdq->tdq_sysload--;
553	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
554	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
555}
556
557/*
558 * Set lowpri to its exact value by searching the run-queue and
559 * evaluating curthread.  curthread may be passed as an optimization.
560 */
561static void
562tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
563{
564	struct thread *td;
565
566	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
567	if (ctd == NULL)
568		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
569	td = tdq_choose(tdq);
570	if (td == NULL || td->td_priority > ctd->td_priority)
571		tdq->tdq_lowpri = ctd->td_priority;
572	else
573		tdq->tdq_lowpri = td->td_priority;
574}
575
576#ifdef SMP
577struct cpu_search {
578	cpuset_t cs_mask;
579	u_int	cs_prefer;
580	int	cs_pri;		/* Min priority for low. */
581	int	cs_limit;	/* Max load for low, min load for high. */
582	int	cs_cpu;
583	int	cs_load;
584};
585
586#define	CPU_SEARCH_LOWEST	0x1
587#define	CPU_SEARCH_HIGHEST	0x2
588#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
589
590#define	CPUSET_FOREACH(cpu, mask)				\
591	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
592		if (CPU_ISSET(cpu, &mask))
593
594static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
595    struct cpu_search *high, const int match);
596int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
597int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
598int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
599    struct cpu_search *high);
600
601/*
602 * Search the tree of cpu_groups for the lowest or highest loaded cpu
603 * according to the match argument.  This routine actually compares the
604 * load on all paths through the tree and finds the least loaded cpu on
605 * the least loaded path, which may differ from the least loaded cpu in
606 * the system.  This balances work among caches and busses.
607 *
608 * This inline is instantiated in three forms below using constants for the
609 * match argument.  It is reduced to the minimum set for each case.  It is
610 * also recursive to the depth of the tree.
611 */
612static __inline int
613cpu_search(const struct cpu_group *cg, struct cpu_search *low,
614    struct cpu_search *high, const int match)
615{
616	struct cpu_search lgroup;
617	struct cpu_search hgroup;
618	cpuset_t cpumask;
619	struct cpu_group *child;
620	struct tdq *tdq;
621	int cpu, i, hload, lload, load, total, rnd, *rndptr;
622
623	total = 0;
624	cpumask = cg->cg_mask;
625	if (match & CPU_SEARCH_LOWEST) {
626		lload = INT_MAX;
627		lgroup = *low;
628	}
629	if (match & CPU_SEARCH_HIGHEST) {
630		hload = INT_MIN;
631		hgroup = *high;
632	}
633
634	/* Iterate through the child CPU groups and then remaining CPUs. */
635	for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
636		if (i == 0) {
637			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
638				cpu--;
639			if (cpu < 0)
640				break;
641			child = NULL;
642		} else
643			child = &cg->cg_child[i - 1];
644
645		if (match & CPU_SEARCH_LOWEST)
646			lgroup.cs_cpu = -1;
647		if (match & CPU_SEARCH_HIGHEST)
648			hgroup.cs_cpu = -1;
649		if (child) {			/* Handle child CPU group. */
650			CPU_NAND(&cpumask, &child->cg_mask);
651			switch (match) {
652			case CPU_SEARCH_LOWEST:
653				load = cpu_search_lowest(child, &lgroup);
654				break;
655			case CPU_SEARCH_HIGHEST:
656				load = cpu_search_highest(child, &hgroup);
657				break;
658			case CPU_SEARCH_BOTH:
659				load = cpu_search_both(child, &lgroup, &hgroup);
660				break;
661			}
662		} else {			/* Handle child CPU. */
663			tdq = TDQ_CPU(cpu);
664			load = tdq->tdq_load * 256;
665			rndptr = DPCPU_PTR(randomval);
666			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
667			if (match & CPU_SEARCH_LOWEST) {
668				if (cpu == low->cs_prefer)
669					load -= 64;
670				/* If that CPU is allowed and get data. */
671				if (tdq->tdq_lowpri > lgroup.cs_pri &&
672				    tdq->tdq_load <= lgroup.cs_limit &&
673				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
674					lgroup.cs_cpu = cpu;
675					lgroup.cs_load = load - rnd;
676				}
677			}
678			if (match & CPU_SEARCH_HIGHEST)
679				if (tdq->tdq_load >= hgroup.cs_limit &&
680				    tdq->tdq_transferable &&
681				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
682					hgroup.cs_cpu = cpu;
683					hgroup.cs_load = load - rnd;
684				}
685		}
686		total += load;
687
688		/* We have info about child item. Compare it. */
689		if (match & CPU_SEARCH_LOWEST) {
690			if (lgroup.cs_cpu >= 0 &&
691			    (load < lload ||
692			     (load == lload && lgroup.cs_load < low->cs_load))) {
693				lload = load;
694				low->cs_cpu = lgroup.cs_cpu;
695				low->cs_load = lgroup.cs_load;
696			}
697		}
698		if (match & CPU_SEARCH_HIGHEST)
699			if (hgroup.cs_cpu >= 0 &&
700			    (load > hload ||
701			     (load == hload && hgroup.cs_load > high->cs_load))) {
702				hload = load;
703				high->cs_cpu = hgroup.cs_cpu;
704				high->cs_load = hgroup.cs_load;
705			}
706		if (child) {
707			i--;
708			if (i == 0 && CPU_EMPTY(&cpumask))
709				break;
710		} else
711			cpu--;
712	}
713	return (total);
714}
715
716/*
717 * cpu_search instantiations must pass constants to maintain the inline
718 * optimization.
719 */
720int
721cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
722{
723	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
724}
725
726int
727cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
728{
729	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
730}
731
732int
733cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
734    struct cpu_search *high)
735{
736	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
737}
738
739/*
740 * Find the cpu with the least load via the least loaded path that has a
741 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
742 * acceptable.
743 */
744static inline int
745sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
746    int prefer)
747{
748	struct cpu_search low;
749
750	low.cs_cpu = -1;
751	low.cs_prefer = prefer;
752	low.cs_mask = mask;
753	low.cs_pri = pri;
754	low.cs_limit = maxload;
755	cpu_search_lowest(cg, &low);
756	return low.cs_cpu;
757}
758
759/*
760 * Find the cpu with the highest load via the highest loaded path.
761 */
762static inline int
763sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
764{
765	struct cpu_search high;
766
767	high.cs_cpu = -1;
768	high.cs_mask = mask;
769	high.cs_limit = minload;
770	cpu_search_highest(cg, &high);
771	return high.cs_cpu;
772}
773
774/*
775 * Simultaneously find the highest and lowest loaded cpu reachable via
776 * cg.
777 */
778static inline void
779sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
780{
781	struct cpu_search high;
782	struct cpu_search low;
783
784	low.cs_cpu = -1;
785	low.cs_prefer = -1;
786	low.cs_pri = -1;
787	low.cs_limit = INT_MAX;
788	low.cs_mask = mask;
789	high.cs_cpu = -1;
790	high.cs_limit = -1;
791	high.cs_mask = mask;
792	cpu_search_both(cg, &low, &high);
793	*lowcpu = low.cs_cpu;
794	*highcpu = high.cs_cpu;
795	return;
796}
797
798static void
799sched_balance_group(struct cpu_group *cg)
800{
801	cpuset_t hmask, lmask;
802	int high, low, anylow;
803
804	CPU_FILL(&hmask);
805	for (;;) {
806		high = sched_highest(cg, hmask, 1);
807		/* Stop if there is no more CPU with transferrable threads. */
808		if (high == -1)
809			break;
810		CPU_CLR(high, &hmask);
811		CPU_COPY(&hmask, &lmask);
812		/* Stop if there is no more CPU left for low. */
813		if (CPU_EMPTY(&lmask))
814			break;
815		anylow = 1;
816nextlow:
817		low = sched_lowest(cg, lmask, -1,
818		    TDQ_CPU(high)->tdq_load - 1, high);
819		/* Stop if we looked well and found no less loaded CPU. */
820		if (anylow && low == -1)
821			break;
822		/* Go to next high if we found no less loaded CPU. */
823		if (low == -1)
824			continue;
825		/* Transfer thread from high to low. */
826		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
827			/* CPU that got thread can no longer be a donor. */
828			CPU_CLR(low, &hmask);
829		} else {
830			/*
831			 * If failed, then there is no threads on high
832			 * that can run on this low. Drop low from low
833			 * mask and look for different one.
834			 */
835			CPU_CLR(low, &lmask);
836			anylow = 0;
837			goto nextlow;
838		}
839	}
840}
841
842static void
843sched_balance(void)
844{
845	struct tdq *tdq;
846
847	/*
848	 * Select a random time between .5 * balance_interval and
849	 * 1.5 * balance_interval.
850	 */
851	balance_ticks = max(balance_interval / 2, 1);
852	balance_ticks += random() % balance_interval;
853	if (smp_started == 0 || rebalance == 0)
854		return;
855	tdq = TDQ_SELF();
856	TDQ_UNLOCK(tdq);
857	sched_balance_group(cpu_top);
858	TDQ_LOCK(tdq);
859}
860
861/*
862 * Lock two thread queues using their address to maintain lock order.
863 */
864static void
865tdq_lock_pair(struct tdq *one, struct tdq *two)
866{
867	if (one < two) {
868		TDQ_LOCK(one);
869		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
870	} else {
871		TDQ_LOCK(two);
872		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
873	}
874}
875
876/*
877 * Unlock two thread queues.  Order is not important here.
878 */
879static void
880tdq_unlock_pair(struct tdq *one, struct tdq *two)
881{
882	TDQ_UNLOCK(one);
883	TDQ_UNLOCK(two);
884}
885
886/*
887 * Transfer load between two imbalanced thread queues.
888 */
889static int
890sched_balance_pair(struct tdq *high, struct tdq *low)
891{
892	int moved;
893	int cpu;
894
895	tdq_lock_pair(high, low);
896	moved = 0;
897	/*
898	 * Determine what the imbalance is and then adjust that to how many
899	 * threads we actually have to give up (transferable).
900	 */
901	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
902	    (moved = tdq_move(high, low)) > 0) {
903		/*
904		 * In case the target isn't the current cpu IPI it to force a
905		 * reschedule with the new workload.
906		 */
907		cpu = TDQ_ID(low);
908		sched_pin();
909		if (cpu != PCPU_GET(cpuid))
910			ipi_cpu(cpu, IPI_PREEMPT);
911		sched_unpin();
912	}
913	tdq_unlock_pair(high, low);
914	return (moved);
915}
916
917/*
918 * Move a thread from one thread queue to another.
919 */
920static int
921tdq_move(struct tdq *from, struct tdq *to)
922{
923	struct td_sched *ts;
924	struct thread *td;
925	struct tdq *tdq;
926	int cpu;
927
928	TDQ_LOCK_ASSERT(from, MA_OWNED);
929	TDQ_LOCK_ASSERT(to, MA_OWNED);
930
931	tdq = from;
932	cpu = TDQ_ID(to);
933	td = tdq_steal(tdq, cpu);
934	if (td == NULL)
935		return (0);
936	ts = td->td_sched;
937	/*
938	 * Although the run queue is locked the thread may be blocked.  Lock
939	 * it to clear this and acquire the run-queue lock.
940	 */
941	thread_lock(td);
942	/* Drop recursive lock on from acquired via thread_lock(). */
943	TDQ_UNLOCK(from);
944	sched_rem(td);
945	ts->ts_cpu = cpu;
946	td->td_lock = TDQ_LOCKPTR(to);
947	tdq_add(to, td, SRQ_YIELDING);
948	return (1);
949}
950
951/*
952 * This tdq has idled.  Try to steal a thread from another cpu and switch
953 * to it.
954 */
955static int
956tdq_idled(struct tdq *tdq)
957{
958	struct cpu_group *cg;
959	struct tdq *steal;
960	cpuset_t mask;
961	int thresh;
962	int cpu;
963
964	if (smp_started == 0 || steal_idle == 0)
965		return (1);
966	CPU_FILL(&mask);
967	CPU_CLR(PCPU_GET(cpuid), &mask);
968	/* We don't want to be preempted while we're iterating. */
969	spinlock_enter();
970	for (cg = tdq->tdq_cg; cg != NULL; ) {
971		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
972			thresh = steal_thresh;
973		else
974			thresh = 1;
975		cpu = sched_highest(cg, mask, thresh);
976		if (cpu == -1) {
977			cg = cg->cg_parent;
978			continue;
979		}
980		steal = TDQ_CPU(cpu);
981		CPU_CLR(cpu, &mask);
982		tdq_lock_pair(tdq, steal);
983		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
984			tdq_unlock_pair(tdq, steal);
985			continue;
986		}
987		/*
988		 * If a thread was added while interrupts were disabled don't
989		 * steal one here.  If we fail to acquire one due to affinity
990		 * restrictions loop again with this cpu removed from the
991		 * set.
992		 */
993		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
994			tdq_unlock_pair(tdq, steal);
995			continue;
996		}
997		spinlock_exit();
998		TDQ_UNLOCK(steal);
999		mi_switch(SW_VOL | SWT_IDLE, NULL);
1000		thread_unlock(curthread);
1001
1002		return (0);
1003	}
1004	spinlock_exit();
1005	return (1);
1006}
1007
1008/*
1009 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1010 */
1011static void
1012tdq_notify(struct tdq *tdq, struct thread *td)
1013{
1014	struct thread *ctd;
1015	int pri;
1016	int cpu;
1017
1018	if (tdq->tdq_ipipending)
1019		return;
1020	cpu = td->td_sched->ts_cpu;
1021	pri = td->td_priority;
1022	ctd = pcpu_find(cpu)->pc_curthread;
1023	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1024		return;
1025	if (TD_IS_IDLETHREAD(ctd)) {
1026		/*
1027		 * If the MD code has an idle wakeup routine try that before
1028		 * falling back to IPI.
1029		 */
1030		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1031			return;
1032	}
1033	tdq->tdq_ipipending = 1;
1034	ipi_cpu(cpu, IPI_PREEMPT);
1035}
1036
1037/*
1038 * Steals load from a timeshare queue.  Honors the rotating queue head
1039 * index.
1040 */
1041static struct thread *
1042runq_steal_from(struct runq *rq, int cpu, u_char start)
1043{
1044	struct rqbits *rqb;
1045	struct rqhead *rqh;
1046	struct thread *td, *first;
1047	int bit;
1048	int pri;
1049	int i;
1050
1051	rqb = &rq->rq_status;
1052	bit = start & (RQB_BPW -1);
1053	pri = 0;
1054	first = NULL;
1055again:
1056	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1057		if (rqb->rqb_bits[i] == 0)
1058			continue;
1059		if (bit != 0) {
1060			for (pri = bit; pri < RQB_BPW; pri++)
1061				if (rqb->rqb_bits[i] & (1ul << pri))
1062					break;
1063			if (pri >= RQB_BPW)
1064				continue;
1065		} else
1066			pri = RQB_FFS(rqb->rqb_bits[i]);
1067		pri += (i << RQB_L2BPW);
1068		rqh = &rq->rq_queues[pri];
1069		TAILQ_FOREACH(td, rqh, td_runq) {
1070			if (first && THREAD_CAN_MIGRATE(td) &&
1071			    THREAD_CAN_SCHED(td, cpu))
1072				return (td);
1073			first = td;
1074		}
1075	}
1076	if (start != 0) {
1077		start = 0;
1078		goto again;
1079	}
1080
1081	if (first && THREAD_CAN_MIGRATE(first) &&
1082	    THREAD_CAN_SCHED(first, cpu))
1083		return (first);
1084	return (NULL);
1085}
1086
1087/*
1088 * Steals load from a standard linear queue.
1089 */
1090static struct thread *
1091runq_steal(struct runq *rq, int cpu)
1092{
1093	struct rqhead *rqh;
1094	struct rqbits *rqb;
1095	struct thread *td;
1096	int word;
1097	int bit;
1098
1099	rqb = &rq->rq_status;
1100	for (word = 0; word < RQB_LEN; word++) {
1101		if (rqb->rqb_bits[word] == 0)
1102			continue;
1103		for (bit = 0; bit < RQB_BPW; bit++) {
1104			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1105				continue;
1106			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1107			TAILQ_FOREACH(td, rqh, td_runq)
1108				if (THREAD_CAN_MIGRATE(td) &&
1109				    THREAD_CAN_SCHED(td, cpu))
1110					return (td);
1111		}
1112	}
1113	return (NULL);
1114}
1115
1116/*
1117 * Attempt to steal a thread in priority order from a thread queue.
1118 */
1119static struct thread *
1120tdq_steal(struct tdq *tdq, int cpu)
1121{
1122	struct thread *td;
1123
1124	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1125	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1126		return (td);
1127	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1128	    cpu, tdq->tdq_ridx)) != NULL)
1129		return (td);
1130	return (runq_steal(&tdq->tdq_idle, cpu));
1131}
1132
1133/*
1134 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1135 * current lock and returns with the assigned queue locked.
1136 */
1137static inline struct tdq *
1138sched_setcpu(struct thread *td, int cpu, int flags)
1139{
1140
1141	struct tdq *tdq;
1142
1143	THREAD_LOCK_ASSERT(td, MA_OWNED);
1144	tdq = TDQ_CPU(cpu);
1145	td->td_sched->ts_cpu = cpu;
1146	/*
1147	 * If the lock matches just return the queue.
1148	 */
1149	if (td->td_lock == TDQ_LOCKPTR(tdq))
1150		return (tdq);
1151#ifdef notyet
1152	/*
1153	 * If the thread isn't running its lockptr is a
1154	 * turnstile or a sleepqueue.  We can just lock_set without
1155	 * blocking.
1156	 */
1157	if (TD_CAN_RUN(td)) {
1158		TDQ_LOCK(tdq);
1159		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1160		return (tdq);
1161	}
1162#endif
1163	/*
1164	 * The hard case, migration, we need to block the thread first to
1165	 * prevent order reversals with other cpus locks.
1166	 */
1167	spinlock_enter();
1168	thread_lock_block(td);
1169	TDQ_LOCK(tdq);
1170	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1171	spinlock_exit();
1172	return (tdq);
1173}
1174
1175SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1176SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1177SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1178SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1179SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1180SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1181
1182static int
1183sched_pickcpu(struct thread *td, int flags)
1184{
1185	struct cpu_group *cg, *ccg;
1186	struct td_sched *ts;
1187	struct tdq *tdq;
1188	cpuset_t mask;
1189	int cpu, pri, self;
1190
1191	self = PCPU_GET(cpuid);
1192	ts = td->td_sched;
1193	if (smp_started == 0)
1194		return (self);
1195	/*
1196	 * Don't migrate a running thread from sched_switch().
1197	 */
1198	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1199		return (ts->ts_cpu);
1200	/*
1201	 * Prefer to run interrupt threads on the processors that generate
1202	 * the interrupt.
1203	 */
1204	pri = td->td_priority;
1205	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1206	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1207		SCHED_STAT_INC(pickcpu_intrbind);
1208		ts->ts_cpu = self;
1209		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1210			SCHED_STAT_INC(pickcpu_affinity);
1211			return (ts->ts_cpu);
1212		}
1213	}
1214	/*
1215	 * If the thread can run on the last cpu and the affinity has not
1216	 * expired or it is idle run it there.
1217	 */
1218	tdq = TDQ_CPU(ts->ts_cpu);
1219	cg = tdq->tdq_cg;
1220	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1221	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1222	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1223		if (cg->cg_flags & CG_FLAG_THREAD) {
1224			CPUSET_FOREACH(cpu, cg->cg_mask) {
1225				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1226					break;
1227			}
1228		} else
1229			cpu = INT_MAX;
1230		if (cpu > mp_maxid) {
1231			SCHED_STAT_INC(pickcpu_idle_affinity);
1232			return (ts->ts_cpu);
1233		}
1234	}
1235	/*
1236	 * Search for the last level cache CPU group in the tree.
1237	 * Skip caches with expired affinity time and SMT groups.
1238	 * Affinity to higher level caches will be handled less aggressively.
1239	 */
1240	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1241		if (cg->cg_flags & CG_FLAG_THREAD)
1242			continue;
1243		if (!SCHED_AFFINITY(ts, cg->cg_level))
1244			continue;
1245		ccg = cg;
1246	}
1247	if (ccg != NULL)
1248		cg = ccg;
1249	cpu = -1;
1250	/* Search the group for the less loaded idle CPU we can run now. */
1251	mask = td->td_cpuset->cs_mask;
1252	if (cg != NULL && cg != cpu_top &&
1253	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1254		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1255		    INT_MAX, ts->ts_cpu);
1256	/* Search globally for the less loaded CPU we can run now. */
1257	if (cpu == -1)
1258		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1259	/* Search globally for the less loaded CPU. */
1260	if (cpu == -1)
1261		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1262	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1263	/*
1264	 * Compare the lowest loaded cpu to current cpu.
1265	 */
1266	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1267	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1268	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1269		SCHED_STAT_INC(pickcpu_local);
1270		cpu = self;
1271	} else
1272		SCHED_STAT_INC(pickcpu_lowest);
1273	if (cpu != ts->ts_cpu)
1274		SCHED_STAT_INC(pickcpu_migration);
1275	return (cpu);
1276}
1277#endif
1278
1279/*
1280 * Pick the highest priority task we have and return it.
1281 */
1282static struct thread *
1283tdq_choose(struct tdq *tdq)
1284{
1285	struct thread *td;
1286
1287	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1288	td = runq_choose(&tdq->tdq_realtime);
1289	if (td != NULL)
1290		return (td);
1291	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1292	if (td != NULL) {
1293		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1294		    ("tdq_choose: Invalid priority on timeshare queue %d",
1295		    td->td_priority));
1296		return (td);
1297	}
1298	td = runq_choose(&tdq->tdq_idle);
1299	if (td != NULL) {
1300		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1301		    ("tdq_choose: Invalid priority on idle queue %d",
1302		    td->td_priority));
1303		return (td);
1304	}
1305
1306	return (NULL);
1307}
1308
1309/*
1310 * Initialize a thread queue.
1311 */
1312static void
1313tdq_setup(struct tdq *tdq)
1314{
1315
1316	if (bootverbose)
1317		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1318	runq_init(&tdq->tdq_realtime);
1319	runq_init(&tdq->tdq_timeshare);
1320	runq_init(&tdq->tdq_idle);
1321	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1322	    "sched lock %d", (int)TDQ_ID(tdq));
1323	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1324	    MTX_SPIN | MTX_RECURSE);
1325#ifdef KTR
1326	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1327	    "CPU %d load", (int)TDQ_ID(tdq));
1328#endif
1329}
1330
1331#ifdef SMP
1332static void
1333sched_setup_smp(void)
1334{
1335	struct tdq *tdq;
1336	int i;
1337
1338	cpu_top = smp_topo();
1339	CPU_FOREACH(i) {
1340		tdq = TDQ_CPU(i);
1341		tdq_setup(tdq);
1342		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1343		if (tdq->tdq_cg == NULL)
1344			panic("Can't find cpu group for %d\n", i);
1345	}
1346	balance_tdq = TDQ_SELF();
1347	sched_balance();
1348}
1349#endif
1350
1351/*
1352 * Setup the thread queues and initialize the topology based on MD
1353 * information.
1354 */
1355static void
1356sched_setup(void *dummy)
1357{
1358	struct tdq *tdq;
1359
1360	tdq = TDQ_SELF();
1361#ifdef SMP
1362	sched_setup_smp();
1363#else
1364	tdq_setup(tdq);
1365#endif
1366
1367	/* Add thread0's load since it's running. */
1368	TDQ_LOCK(tdq);
1369	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1370	tdq_load_add(tdq, &thread0);
1371	tdq->tdq_lowpri = thread0.td_priority;
1372	TDQ_UNLOCK(tdq);
1373}
1374
1375/*
1376 * This routine determines time constants after stathz and hz are setup.
1377 */
1378/* ARGSUSED */
1379static void
1380sched_initticks(void *dummy)
1381{
1382	int incr;
1383
1384	realstathz = stathz ? stathz : hz;
1385	sched_slice = realstathz / 10;	/* ~100ms */
1386	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1387	    realstathz);
1388
1389	/*
1390	 * tickincr is shifted out by 10 to avoid rounding errors due to
1391	 * hz not being evenly divisible by stathz on all platforms.
1392	 */
1393	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1394	/*
1395	 * This does not work for values of stathz that are more than
1396	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1397	 */
1398	if (incr == 0)
1399		incr = 1;
1400	tickincr = incr;
1401#ifdef SMP
1402	/*
1403	 * Set the default balance interval now that we know
1404	 * what realstathz is.
1405	 */
1406	balance_interval = realstathz;
1407	affinity = SCHED_AFFINITY_DEFAULT;
1408#endif
1409	if (sched_idlespinthresh < 0)
1410		sched_idlespinthresh = imax(16, 2 * hz / realstathz);
1411}
1412
1413
1414/*
1415 * This is the core of the interactivity algorithm.  Determines a score based
1416 * on past behavior.  It is the ratio of sleep time to run time scaled to
1417 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1418 * differs from the cpu usage because it does not account for time spent
1419 * waiting on a run-queue.  Would be prettier if we had floating point.
1420 */
1421static int
1422sched_interact_score(struct thread *td)
1423{
1424	struct td_sched *ts;
1425	int div;
1426
1427	ts = td->td_sched;
1428	/*
1429	 * The score is only needed if this is likely to be an interactive
1430	 * task.  Don't go through the expense of computing it if there's
1431	 * no chance.
1432	 */
1433	if (sched_interact <= SCHED_INTERACT_HALF &&
1434		ts->ts_runtime >= ts->ts_slptime)
1435			return (SCHED_INTERACT_HALF);
1436
1437	if (ts->ts_runtime > ts->ts_slptime) {
1438		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1439		return (SCHED_INTERACT_HALF +
1440		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1441	}
1442	if (ts->ts_slptime > ts->ts_runtime) {
1443		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1444		return (ts->ts_runtime / div);
1445	}
1446	/* runtime == slptime */
1447	if (ts->ts_runtime)
1448		return (SCHED_INTERACT_HALF);
1449
1450	/*
1451	 * This can happen if slptime and runtime are 0.
1452	 */
1453	return (0);
1454
1455}
1456
1457/*
1458 * Scale the scheduling priority according to the "interactivity" of this
1459 * process.
1460 */
1461static void
1462sched_priority(struct thread *td)
1463{
1464	int score;
1465	int pri;
1466
1467	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1468		return;
1469	/*
1470	 * If the score is interactive we place the thread in the realtime
1471	 * queue with a priority that is less than kernel and interrupt
1472	 * priorities.  These threads are not subject to nice restrictions.
1473	 *
1474	 * Scores greater than this are placed on the normal timeshare queue
1475	 * where the priority is partially decided by the most recent cpu
1476	 * utilization and the rest is decided by nice value.
1477	 *
1478	 * The nice value of the process has a linear effect on the calculated
1479	 * score.  Negative nice values make it easier for a thread to be
1480	 * considered interactive.
1481	 */
1482	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1483	if (score < sched_interact) {
1484		pri = PRI_MIN_INTERACT;
1485		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1486		    sched_interact) * score;
1487		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1488		    ("sched_priority: invalid interactive priority %d score %d",
1489		    pri, score));
1490	} else {
1491		pri = SCHED_PRI_MIN;
1492		if (td->td_sched->ts_ticks)
1493			pri += min(SCHED_PRI_TICKS(td->td_sched),
1494			    SCHED_PRI_RANGE);
1495		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1496		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1497		    ("sched_priority: invalid priority %d: nice %d, "
1498		    "ticks %d ftick %d ltick %d tick pri %d",
1499		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1500		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1501		    SCHED_PRI_TICKS(td->td_sched)));
1502	}
1503	sched_user_prio(td, pri);
1504
1505	return;
1506}
1507
1508/*
1509 * This routine enforces a maximum limit on the amount of scheduling history
1510 * kept.  It is called after either the slptime or runtime is adjusted.  This
1511 * function is ugly due to integer math.
1512 */
1513static void
1514sched_interact_update(struct thread *td)
1515{
1516	struct td_sched *ts;
1517	u_int sum;
1518
1519	ts = td->td_sched;
1520	sum = ts->ts_runtime + ts->ts_slptime;
1521	if (sum < SCHED_SLP_RUN_MAX)
1522		return;
1523	/*
1524	 * This only happens from two places:
1525	 * 1) We have added an unusual amount of run time from fork_exit.
1526	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1527	 */
1528	if (sum > SCHED_SLP_RUN_MAX * 2) {
1529		if (ts->ts_runtime > ts->ts_slptime) {
1530			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1531			ts->ts_slptime = 1;
1532		} else {
1533			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1534			ts->ts_runtime = 1;
1535		}
1536		return;
1537	}
1538	/*
1539	 * If we have exceeded by more than 1/5th then the algorithm below
1540	 * will not bring us back into range.  Dividing by two here forces
1541	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1542	 */
1543	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1544		ts->ts_runtime /= 2;
1545		ts->ts_slptime /= 2;
1546		return;
1547	}
1548	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1549	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1550}
1551
1552/*
1553 * Scale back the interactivity history when a child thread is created.  The
1554 * history is inherited from the parent but the thread may behave totally
1555 * differently.  For example, a shell spawning a compiler process.  We want
1556 * to learn that the compiler is behaving badly very quickly.
1557 */
1558static void
1559sched_interact_fork(struct thread *td)
1560{
1561	int ratio;
1562	int sum;
1563
1564	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1565	if (sum > SCHED_SLP_RUN_FORK) {
1566		ratio = sum / SCHED_SLP_RUN_FORK;
1567		td->td_sched->ts_runtime /= ratio;
1568		td->td_sched->ts_slptime /= ratio;
1569	}
1570}
1571
1572/*
1573 * Called from proc0_init() to setup the scheduler fields.
1574 */
1575void
1576schedinit(void)
1577{
1578
1579	/*
1580	 * Set up the scheduler specific parts of proc0.
1581	 */
1582	proc0.p_sched = NULL; /* XXX */
1583	thread0.td_sched = &td_sched0;
1584	td_sched0.ts_ltick = ticks;
1585	td_sched0.ts_ftick = ticks;
1586	td_sched0.ts_slice = sched_slice;
1587}
1588
1589/*
1590 * This is only somewhat accurate since given many processes of the same
1591 * priority they will switch when their slices run out, which will be
1592 * at most sched_slice stathz ticks.
1593 */
1594int
1595sched_rr_interval(void)
1596{
1597
1598	/* Convert sched_slice from stathz to hz. */
1599	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1600}
1601
1602/*
1603 * Update the percent cpu tracking information when it is requested or
1604 * the total history exceeds the maximum.  We keep a sliding history of
1605 * tick counts that slowly decays.  This is less precise than the 4BSD
1606 * mechanism since it happens with less regular and frequent events.
1607 */
1608static void
1609sched_pctcpu_update(struct td_sched *ts, int run)
1610{
1611	int t = ticks;
1612
1613	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1614		ts->ts_ticks = 0;
1615		ts->ts_ftick = t - SCHED_TICK_TARG;
1616	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1617		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1618		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1619		ts->ts_ftick = t - SCHED_TICK_TARG;
1620	}
1621	if (run)
1622		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1623	ts->ts_ltick = t;
1624}
1625
1626/*
1627 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1628 * if necessary.  This is the back-end for several priority related
1629 * functions.
1630 */
1631static void
1632sched_thread_priority(struct thread *td, u_char prio)
1633{
1634	struct td_sched *ts;
1635	struct tdq *tdq;
1636	int oldpri;
1637
1638	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1639	    "prio:%d", td->td_priority, "new prio:%d", prio,
1640	    KTR_ATTR_LINKED, sched_tdname(curthread));
1641	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1642	if (td != curthread && prio < td->td_priority) {
1643		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1644		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1645		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1646		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1647		    curthread);
1648	}
1649	ts = td->td_sched;
1650	THREAD_LOCK_ASSERT(td, MA_OWNED);
1651	if (td->td_priority == prio)
1652		return;
1653	/*
1654	 * If the priority has been elevated due to priority
1655	 * propagation, we may have to move ourselves to a new
1656	 * queue.  This could be optimized to not re-add in some
1657	 * cases.
1658	 */
1659	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1660		sched_rem(td);
1661		td->td_priority = prio;
1662		sched_add(td, SRQ_BORROWING);
1663		return;
1664	}
1665	/*
1666	 * If the thread is currently running we may have to adjust the lowpri
1667	 * information so other cpus are aware of our current priority.
1668	 */
1669	if (TD_IS_RUNNING(td)) {
1670		tdq = TDQ_CPU(ts->ts_cpu);
1671		oldpri = td->td_priority;
1672		td->td_priority = prio;
1673		if (prio < tdq->tdq_lowpri)
1674			tdq->tdq_lowpri = prio;
1675		else if (tdq->tdq_lowpri == oldpri)
1676			tdq_setlowpri(tdq, td);
1677		return;
1678	}
1679	td->td_priority = prio;
1680}
1681
1682/*
1683 * Update a thread's priority when it is lent another thread's
1684 * priority.
1685 */
1686void
1687sched_lend_prio(struct thread *td, u_char prio)
1688{
1689
1690	td->td_flags |= TDF_BORROWING;
1691	sched_thread_priority(td, prio);
1692}
1693
1694/*
1695 * Restore a thread's priority when priority propagation is
1696 * over.  The prio argument is the minimum priority the thread
1697 * needs to have to satisfy other possible priority lending
1698 * requests.  If the thread's regular priority is less
1699 * important than prio, the thread will keep a priority boost
1700 * of prio.
1701 */
1702void
1703sched_unlend_prio(struct thread *td, u_char prio)
1704{
1705	u_char base_pri;
1706
1707	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1708	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1709		base_pri = td->td_user_pri;
1710	else
1711		base_pri = td->td_base_pri;
1712	if (prio >= base_pri) {
1713		td->td_flags &= ~TDF_BORROWING;
1714		sched_thread_priority(td, base_pri);
1715	} else
1716		sched_lend_prio(td, prio);
1717}
1718
1719/*
1720 * Standard entry for setting the priority to an absolute value.
1721 */
1722void
1723sched_prio(struct thread *td, u_char prio)
1724{
1725	u_char oldprio;
1726
1727	/* First, update the base priority. */
1728	td->td_base_pri = prio;
1729
1730	/*
1731	 * If the thread is borrowing another thread's priority, don't
1732	 * ever lower the priority.
1733	 */
1734	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1735		return;
1736
1737	/* Change the real priority. */
1738	oldprio = td->td_priority;
1739	sched_thread_priority(td, prio);
1740
1741	/*
1742	 * If the thread is on a turnstile, then let the turnstile update
1743	 * its state.
1744	 */
1745	if (TD_ON_LOCK(td) && oldprio != prio)
1746		turnstile_adjust(td, oldprio);
1747}
1748
1749/*
1750 * Set the base user priority, does not effect current running priority.
1751 */
1752void
1753sched_user_prio(struct thread *td, u_char prio)
1754{
1755
1756	td->td_base_user_pri = prio;
1757	if (td->td_lend_user_pri <= prio)
1758		return;
1759	td->td_user_pri = prio;
1760}
1761
1762void
1763sched_lend_user_prio(struct thread *td, u_char prio)
1764{
1765
1766	THREAD_LOCK_ASSERT(td, MA_OWNED);
1767	td->td_lend_user_pri = prio;
1768	td->td_user_pri = min(prio, td->td_base_user_pri);
1769	if (td->td_priority > td->td_user_pri)
1770		sched_prio(td, td->td_user_pri);
1771	else if (td->td_priority != td->td_user_pri)
1772		td->td_flags |= TDF_NEEDRESCHED;
1773}
1774
1775/*
1776 * Handle migration from sched_switch().  This happens only for
1777 * cpu binding.
1778 */
1779static struct mtx *
1780sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1781{
1782	struct tdq *tdn;
1783
1784	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1785#ifdef SMP
1786	tdq_load_rem(tdq, td);
1787	/*
1788	 * Do the lock dance required to avoid LOR.  We grab an extra
1789	 * spinlock nesting to prevent preemption while we're
1790	 * not holding either run-queue lock.
1791	 */
1792	spinlock_enter();
1793	thread_lock_block(td);	/* This releases the lock on tdq. */
1794
1795	/*
1796	 * Acquire both run-queue locks before placing the thread on the new
1797	 * run-queue to avoid deadlocks created by placing a thread with a
1798	 * blocked lock on the run-queue of a remote processor.  The deadlock
1799	 * occurs when a third processor attempts to lock the two queues in
1800	 * question while the target processor is spinning with its own
1801	 * run-queue lock held while waiting for the blocked lock to clear.
1802	 */
1803	tdq_lock_pair(tdn, tdq);
1804	tdq_add(tdn, td, flags);
1805	tdq_notify(tdn, td);
1806	TDQ_UNLOCK(tdn);
1807	spinlock_exit();
1808#endif
1809	return (TDQ_LOCKPTR(tdn));
1810}
1811
1812/*
1813 * Variadic version of thread_lock_unblock() that does not assume td_lock
1814 * is blocked.
1815 */
1816static inline void
1817thread_unblock_switch(struct thread *td, struct mtx *mtx)
1818{
1819	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1820	    (uintptr_t)mtx);
1821}
1822
1823/*
1824 * Switch threads.  This function has to handle threads coming in while
1825 * blocked for some reason, running, or idle.  It also must deal with
1826 * migrating a thread from one queue to another as running threads may
1827 * be assigned elsewhere via binding.
1828 */
1829void
1830sched_switch(struct thread *td, struct thread *newtd, int flags)
1831{
1832	struct tdq *tdq;
1833	struct td_sched *ts;
1834	struct mtx *mtx;
1835	int srqflag;
1836	int cpuid, preempted;
1837
1838	THREAD_LOCK_ASSERT(td, MA_OWNED);
1839	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1840
1841	cpuid = PCPU_GET(cpuid);
1842	tdq = TDQ_CPU(cpuid);
1843	ts = td->td_sched;
1844	mtx = td->td_lock;
1845	sched_pctcpu_update(ts, 1);
1846	ts->ts_rltick = ticks;
1847	td->td_lastcpu = td->td_oncpu;
1848	td->td_oncpu = NOCPU;
1849	preempted = !(td->td_flags & TDF_SLICEEND);
1850	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1851	td->td_owepreempt = 0;
1852	tdq->tdq_switchcnt++;
1853	/*
1854	 * The lock pointer in an idle thread should never change.  Reset it
1855	 * to CAN_RUN as well.
1856	 */
1857	if (TD_IS_IDLETHREAD(td)) {
1858		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1859		TD_SET_CAN_RUN(td);
1860	} else if (TD_IS_RUNNING(td)) {
1861		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1862		srqflag = preempted ?
1863		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1864		    SRQ_OURSELF|SRQ_YIELDING;
1865#ifdef SMP
1866		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1867			ts->ts_cpu = sched_pickcpu(td, 0);
1868#endif
1869		if (ts->ts_cpu == cpuid)
1870			tdq_runq_add(tdq, td, srqflag);
1871		else {
1872			KASSERT(THREAD_CAN_MIGRATE(td) ||
1873			    (ts->ts_flags & TSF_BOUND) != 0,
1874			    ("Thread %p shouldn't migrate", td));
1875			mtx = sched_switch_migrate(tdq, td, srqflag);
1876		}
1877	} else {
1878		/* This thread must be going to sleep. */
1879		TDQ_LOCK(tdq);
1880		mtx = thread_lock_block(td);
1881		tdq_load_rem(tdq, td);
1882	}
1883	/*
1884	 * We enter here with the thread blocked and assigned to the
1885	 * appropriate cpu run-queue or sleep-queue and with the current
1886	 * thread-queue locked.
1887	 */
1888	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1889	newtd = choosethread();
1890	/*
1891	 * Call the MD code to switch contexts if necessary.
1892	 */
1893	if (td != newtd) {
1894#ifdef	HWPMC_HOOKS
1895		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1896			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1897#endif
1898		SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
1899		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1900		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1901		sched_pctcpu_update(newtd->td_sched, 0);
1902
1903#ifdef KDTRACE_HOOKS
1904		/*
1905		 * If DTrace has set the active vtime enum to anything
1906		 * other than INACTIVE (0), then it should have set the
1907		 * function to call.
1908		 */
1909		if (dtrace_vtime_active)
1910			(*dtrace_vtime_switch_func)(newtd);
1911#endif
1912
1913		cpu_switch(td, newtd, mtx);
1914		/*
1915		 * We may return from cpu_switch on a different cpu.  However,
1916		 * we always return with td_lock pointing to the current cpu's
1917		 * run queue lock.
1918		 */
1919		cpuid = PCPU_GET(cpuid);
1920		tdq = TDQ_CPU(cpuid);
1921		lock_profile_obtain_lock_success(
1922		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1923
1924		SDT_PROBE0(sched, , , on_cpu);
1925#ifdef	HWPMC_HOOKS
1926		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1927			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1928#endif
1929	} else {
1930		thread_unblock_switch(td, mtx);
1931		SDT_PROBE0(sched, , , remain_cpu);
1932	}
1933	/*
1934	 * Assert that all went well and return.
1935	 */
1936	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1937	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1938	td->td_oncpu = cpuid;
1939}
1940
1941/*
1942 * Adjust thread priorities as a result of a nice request.
1943 */
1944void
1945sched_nice(struct proc *p, int nice)
1946{
1947	struct thread *td;
1948
1949	PROC_LOCK_ASSERT(p, MA_OWNED);
1950
1951	p->p_nice = nice;
1952	FOREACH_THREAD_IN_PROC(p, td) {
1953		thread_lock(td);
1954		sched_priority(td);
1955		sched_prio(td, td->td_base_user_pri);
1956		thread_unlock(td);
1957	}
1958}
1959
1960/*
1961 * Record the sleep time for the interactivity scorer.
1962 */
1963void
1964sched_sleep(struct thread *td, int prio)
1965{
1966
1967	THREAD_LOCK_ASSERT(td, MA_OWNED);
1968
1969	td->td_slptick = ticks;
1970	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1971		td->td_flags |= TDF_CANSWAP;
1972	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1973		return;
1974	if (static_boost == 1 && prio)
1975		sched_prio(td, prio);
1976	else if (static_boost && td->td_priority > static_boost)
1977		sched_prio(td, static_boost);
1978}
1979
1980/*
1981 * Schedule a thread to resume execution and record how long it voluntarily
1982 * slept.  We also update the pctcpu, interactivity, and priority.
1983 */
1984void
1985sched_wakeup(struct thread *td)
1986{
1987	struct td_sched *ts;
1988	int slptick;
1989
1990	THREAD_LOCK_ASSERT(td, MA_OWNED);
1991	ts = td->td_sched;
1992	td->td_flags &= ~TDF_CANSWAP;
1993	/*
1994	 * If we slept for more than a tick update our interactivity and
1995	 * priority.
1996	 */
1997	slptick = td->td_slptick;
1998	td->td_slptick = 0;
1999	if (slptick && slptick != ticks) {
2000		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2001		sched_interact_update(td);
2002		sched_pctcpu_update(ts, 0);
2003	}
2004	/* Reset the slice value after we sleep. */
2005	ts->ts_slice = sched_slice;
2006	sched_add(td, SRQ_BORING);
2007}
2008
2009/*
2010 * Penalize the parent for creating a new child and initialize the child's
2011 * priority.
2012 */
2013void
2014sched_fork(struct thread *td, struct thread *child)
2015{
2016	THREAD_LOCK_ASSERT(td, MA_OWNED);
2017	sched_pctcpu_update(td->td_sched, 1);
2018	sched_fork_thread(td, child);
2019	/*
2020	 * Penalize the parent and child for forking.
2021	 */
2022	sched_interact_fork(child);
2023	sched_priority(child);
2024	td->td_sched->ts_runtime += tickincr;
2025	sched_interact_update(td);
2026	sched_priority(td);
2027}
2028
2029/*
2030 * Fork a new thread, may be within the same process.
2031 */
2032void
2033sched_fork_thread(struct thread *td, struct thread *child)
2034{
2035	struct td_sched *ts;
2036	struct td_sched *ts2;
2037
2038	THREAD_LOCK_ASSERT(td, MA_OWNED);
2039	/*
2040	 * Initialize child.
2041	 */
2042	ts = td->td_sched;
2043	ts2 = child->td_sched;
2044	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2045	child->td_cpuset = cpuset_ref(td->td_cpuset);
2046	ts2->ts_cpu = ts->ts_cpu;
2047	ts2->ts_flags = 0;
2048	/*
2049	 * Grab our parents cpu estimation information.
2050	 */
2051	ts2->ts_ticks = ts->ts_ticks;
2052	ts2->ts_ltick = ts->ts_ltick;
2053	ts2->ts_ftick = ts->ts_ftick;
2054	/*
2055	 * Do not inherit any borrowed priority from the parent.
2056	 */
2057	child->td_priority = child->td_base_pri;
2058	/*
2059	 * And update interactivity score.
2060	 */
2061	ts2->ts_slptime = ts->ts_slptime;
2062	ts2->ts_runtime = ts->ts_runtime;
2063	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2064#ifdef KTR
2065	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2066#endif
2067}
2068
2069/*
2070 * Adjust the priority class of a thread.
2071 */
2072void
2073sched_class(struct thread *td, int class)
2074{
2075
2076	THREAD_LOCK_ASSERT(td, MA_OWNED);
2077	if (td->td_pri_class == class)
2078		return;
2079	td->td_pri_class = class;
2080}
2081
2082/*
2083 * Return some of the child's priority and interactivity to the parent.
2084 */
2085void
2086sched_exit(struct proc *p, struct thread *child)
2087{
2088	struct thread *td;
2089
2090	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2091	    "prio:%d", child->td_priority);
2092	PROC_LOCK_ASSERT(p, MA_OWNED);
2093	td = FIRST_THREAD_IN_PROC(p);
2094	sched_exit_thread(td, child);
2095}
2096
2097/*
2098 * Penalize another thread for the time spent on this one.  This helps to
2099 * worsen the priority and interactivity of processes which schedule batch
2100 * jobs such as make.  This has little effect on the make process itself but
2101 * causes new processes spawned by it to receive worse scores immediately.
2102 */
2103void
2104sched_exit_thread(struct thread *td, struct thread *child)
2105{
2106
2107	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2108	    "prio:%d", child->td_priority);
2109	/*
2110	 * Give the child's runtime to the parent without returning the
2111	 * sleep time as a penalty to the parent.  This causes shells that
2112	 * launch expensive things to mark their children as expensive.
2113	 */
2114	thread_lock(td);
2115	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2116	sched_interact_update(td);
2117	sched_priority(td);
2118	thread_unlock(td);
2119}
2120
2121void
2122sched_preempt(struct thread *td)
2123{
2124	struct tdq *tdq;
2125
2126	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2127
2128	thread_lock(td);
2129	tdq = TDQ_SELF();
2130	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2131	tdq->tdq_ipipending = 0;
2132	if (td->td_priority > tdq->tdq_lowpri) {
2133		int flags;
2134
2135		flags = SW_INVOL | SW_PREEMPT;
2136		if (td->td_critnest > 1)
2137			td->td_owepreempt = 1;
2138		else if (TD_IS_IDLETHREAD(td))
2139			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2140		else
2141			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2142	}
2143	thread_unlock(td);
2144}
2145
2146/*
2147 * Fix priorities on return to user-space.  Priorities may be elevated due
2148 * to static priorities in msleep() or similar.
2149 */
2150void
2151sched_userret(struct thread *td)
2152{
2153	/*
2154	 * XXX we cheat slightly on the locking here to avoid locking in
2155	 * the usual case.  Setting td_priority here is essentially an
2156	 * incomplete workaround for not setting it properly elsewhere.
2157	 * Now that some interrupt handlers are threads, not setting it
2158	 * properly elsewhere can clobber it in the window between setting
2159	 * it here and returning to user mode, so don't waste time setting
2160	 * it perfectly here.
2161	 */
2162	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2163	    ("thread with borrowed priority returning to userland"));
2164	if (td->td_priority != td->td_user_pri) {
2165		thread_lock(td);
2166		td->td_priority = td->td_user_pri;
2167		td->td_base_pri = td->td_user_pri;
2168		tdq_setlowpri(TDQ_SELF(), td);
2169		thread_unlock(td);
2170        }
2171}
2172
2173/*
2174 * Handle a stathz tick.  This is really only relevant for timeshare
2175 * threads.
2176 */
2177void
2178sched_clock(struct thread *td)
2179{
2180	struct tdq *tdq;
2181	struct td_sched *ts;
2182
2183	THREAD_LOCK_ASSERT(td, MA_OWNED);
2184	tdq = TDQ_SELF();
2185#ifdef SMP
2186	/*
2187	 * We run the long term load balancer infrequently on the first cpu.
2188	 */
2189	if (balance_tdq == tdq) {
2190		if (balance_ticks && --balance_ticks == 0)
2191			sched_balance();
2192	}
2193#endif
2194	/*
2195	 * Save the old switch count so we have a record of the last ticks
2196	 * activity.   Initialize the new switch count based on our load.
2197	 * If there is some activity seed it to reflect that.
2198	 */
2199	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2200	tdq->tdq_switchcnt = tdq->tdq_load;
2201	/*
2202	 * Advance the insert index once for each tick to ensure that all
2203	 * threads get a chance to run.
2204	 */
2205	if (tdq->tdq_idx == tdq->tdq_ridx) {
2206		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2207		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2208			tdq->tdq_ridx = tdq->tdq_idx;
2209	}
2210	ts = td->td_sched;
2211	sched_pctcpu_update(ts, 1);
2212	if (td->td_pri_class & PRI_FIFO_BIT)
2213		return;
2214	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2215		/*
2216		 * We used a tick; charge it to the thread so
2217		 * that we can compute our interactivity.
2218		 */
2219		td->td_sched->ts_runtime += tickincr;
2220		sched_interact_update(td);
2221		sched_priority(td);
2222	}
2223
2224	/*
2225	 * Force a context switch if the current thread has used up a full
2226	 * time slice (default is 100ms).
2227	 */
2228	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
2229		ts->ts_slice = sched_slice;
2230		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2231	}
2232}
2233
2234/*
2235 * Called once per hz tick.
2236 */
2237void
2238sched_tick(int cnt)
2239{
2240
2241}
2242
2243/*
2244 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2245 * cooperative idle threads.
2246 */
2247int
2248sched_runnable(void)
2249{
2250	struct tdq *tdq;
2251	int load;
2252
2253	load = 1;
2254
2255	tdq = TDQ_SELF();
2256	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2257		if (tdq->tdq_load > 0)
2258			goto out;
2259	} else
2260		if (tdq->tdq_load - 1 > 0)
2261			goto out;
2262	load = 0;
2263out:
2264	return (load);
2265}
2266
2267/*
2268 * Choose the highest priority thread to run.  The thread is removed from
2269 * the run-queue while running however the load remains.  For SMP we set
2270 * the tdq in the global idle bitmask if it idles here.
2271 */
2272struct thread *
2273sched_choose(void)
2274{
2275	struct thread *td;
2276	struct tdq *tdq;
2277
2278	tdq = TDQ_SELF();
2279	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2280	td = tdq_choose(tdq);
2281	if (td) {
2282		tdq_runq_rem(tdq, td);
2283		tdq->tdq_lowpri = td->td_priority;
2284		return (td);
2285	}
2286	tdq->tdq_lowpri = PRI_MAX_IDLE;
2287	return (PCPU_GET(idlethread));
2288}
2289
2290/*
2291 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2292 * we always request it once we exit a critical section.
2293 */
2294static inline void
2295sched_setpreempt(struct thread *td)
2296{
2297	struct thread *ctd;
2298	int cpri;
2299	int pri;
2300
2301	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2302
2303	ctd = curthread;
2304	pri = td->td_priority;
2305	cpri = ctd->td_priority;
2306	if (pri < cpri)
2307		ctd->td_flags |= TDF_NEEDRESCHED;
2308	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2309		return;
2310	if (!sched_shouldpreempt(pri, cpri, 0))
2311		return;
2312	ctd->td_owepreempt = 1;
2313}
2314
2315/*
2316 * Add a thread to a thread queue.  Select the appropriate runq and add the
2317 * thread to it.  This is the internal function called when the tdq is
2318 * predetermined.
2319 */
2320void
2321tdq_add(struct tdq *tdq, struct thread *td, int flags)
2322{
2323
2324	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2325	KASSERT((td->td_inhibitors == 0),
2326	    ("sched_add: trying to run inhibited thread"));
2327	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2328	    ("sched_add: bad thread state"));
2329	KASSERT(td->td_flags & TDF_INMEM,
2330	    ("sched_add: thread swapped out"));
2331
2332	if (td->td_priority < tdq->tdq_lowpri)
2333		tdq->tdq_lowpri = td->td_priority;
2334	tdq_runq_add(tdq, td, flags);
2335	tdq_load_add(tdq, td);
2336}
2337
2338/*
2339 * Select the target thread queue and add a thread to it.  Request
2340 * preemption or IPI a remote processor if required.
2341 */
2342void
2343sched_add(struct thread *td, int flags)
2344{
2345	struct tdq *tdq;
2346#ifdef SMP
2347	int cpu;
2348#endif
2349
2350	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2351	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2352	    sched_tdname(curthread));
2353	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2354	    KTR_ATTR_LINKED, sched_tdname(td));
2355	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2356	    flags & SRQ_PREEMPTED);
2357	THREAD_LOCK_ASSERT(td, MA_OWNED);
2358	/*
2359	 * Recalculate the priority before we select the target cpu or
2360	 * run-queue.
2361	 */
2362	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2363		sched_priority(td);
2364#ifdef SMP
2365	/*
2366	 * Pick the destination cpu and if it isn't ours transfer to the
2367	 * target cpu.
2368	 */
2369	cpu = sched_pickcpu(td, flags);
2370	tdq = sched_setcpu(td, cpu, flags);
2371	tdq_add(tdq, td, flags);
2372	if (cpu != PCPU_GET(cpuid)) {
2373		tdq_notify(tdq, td);
2374		return;
2375	}
2376#else
2377	tdq = TDQ_SELF();
2378	TDQ_LOCK(tdq);
2379	/*
2380	 * Now that the thread is moving to the run-queue, set the lock
2381	 * to the scheduler's lock.
2382	 */
2383	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2384	tdq_add(tdq, td, flags);
2385#endif
2386	if (!(flags & SRQ_YIELDING))
2387		sched_setpreempt(td);
2388}
2389
2390/*
2391 * Remove a thread from a run-queue without running it.  This is used
2392 * when we're stealing a thread from a remote queue.  Otherwise all threads
2393 * exit by calling sched_exit_thread() and sched_throw() themselves.
2394 */
2395void
2396sched_rem(struct thread *td)
2397{
2398	struct tdq *tdq;
2399
2400	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2401	    "prio:%d", td->td_priority);
2402	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2403	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2404	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2405	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2406	KASSERT(TD_ON_RUNQ(td),
2407	    ("sched_rem: thread not on run queue"));
2408	tdq_runq_rem(tdq, td);
2409	tdq_load_rem(tdq, td);
2410	TD_SET_CAN_RUN(td);
2411	if (td->td_priority == tdq->tdq_lowpri)
2412		tdq_setlowpri(tdq, NULL);
2413}
2414
2415/*
2416 * Fetch cpu utilization information.  Updates on demand.
2417 */
2418fixpt_t
2419sched_pctcpu(struct thread *td)
2420{
2421	fixpt_t pctcpu;
2422	struct td_sched *ts;
2423
2424	pctcpu = 0;
2425	ts = td->td_sched;
2426	if (ts == NULL)
2427		return (0);
2428
2429	THREAD_LOCK_ASSERT(td, MA_OWNED);
2430	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2431	if (ts->ts_ticks) {
2432		int rtick;
2433
2434		/* How many rtick per second ? */
2435		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2436		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2437	}
2438
2439	return (pctcpu);
2440}
2441
2442/*
2443 * Enforce affinity settings for a thread.  Called after adjustments to
2444 * cpumask.
2445 */
2446void
2447sched_affinity(struct thread *td)
2448{
2449#ifdef SMP
2450	struct td_sched *ts;
2451
2452	THREAD_LOCK_ASSERT(td, MA_OWNED);
2453	ts = td->td_sched;
2454	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2455		return;
2456	if (TD_ON_RUNQ(td)) {
2457		sched_rem(td);
2458		sched_add(td, SRQ_BORING);
2459		return;
2460	}
2461	if (!TD_IS_RUNNING(td))
2462		return;
2463	/*
2464	 * Force a switch before returning to userspace.  If the
2465	 * target thread is not running locally send an ipi to force
2466	 * the issue.
2467	 */
2468	td->td_flags |= TDF_NEEDRESCHED;
2469	if (td != curthread)
2470		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2471#endif
2472}
2473
2474/*
2475 * Bind a thread to a target cpu.
2476 */
2477void
2478sched_bind(struct thread *td, int cpu)
2479{
2480	struct td_sched *ts;
2481
2482	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2483	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2484	ts = td->td_sched;
2485	if (ts->ts_flags & TSF_BOUND)
2486		sched_unbind(td);
2487	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2488	ts->ts_flags |= TSF_BOUND;
2489	sched_pin();
2490	if (PCPU_GET(cpuid) == cpu)
2491		return;
2492	ts->ts_cpu = cpu;
2493	/* When we return from mi_switch we'll be on the correct cpu. */
2494	mi_switch(SW_VOL, NULL);
2495}
2496
2497/*
2498 * Release a bound thread.
2499 */
2500void
2501sched_unbind(struct thread *td)
2502{
2503	struct td_sched *ts;
2504
2505	THREAD_LOCK_ASSERT(td, MA_OWNED);
2506	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2507	ts = td->td_sched;
2508	if ((ts->ts_flags & TSF_BOUND) == 0)
2509		return;
2510	ts->ts_flags &= ~TSF_BOUND;
2511	sched_unpin();
2512}
2513
2514int
2515sched_is_bound(struct thread *td)
2516{
2517	THREAD_LOCK_ASSERT(td, MA_OWNED);
2518	return (td->td_sched->ts_flags & TSF_BOUND);
2519}
2520
2521/*
2522 * Basic yield call.
2523 */
2524void
2525sched_relinquish(struct thread *td)
2526{
2527	thread_lock(td);
2528	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2529	thread_unlock(td);
2530}
2531
2532/*
2533 * Return the total system load.
2534 */
2535int
2536sched_load(void)
2537{
2538#ifdef SMP
2539	int total;
2540	int i;
2541
2542	total = 0;
2543	CPU_FOREACH(i)
2544		total += TDQ_CPU(i)->tdq_sysload;
2545	return (total);
2546#else
2547	return (TDQ_SELF()->tdq_sysload);
2548#endif
2549}
2550
2551int
2552sched_sizeof_proc(void)
2553{
2554	return (sizeof(struct proc));
2555}
2556
2557int
2558sched_sizeof_thread(void)
2559{
2560	return (sizeof(struct thread) + sizeof(struct td_sched));
2561}
2562
2563#ifdef SMP
2564#define	TDQ_IDLESPIN(tdq)						\
2565    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2566#else
2567#define	TDQ_IDLESPIN(tdq)	1
2568#endif
2569
2570/*
2571 * The actual idle process.
2572 */
2573void
2574sched_idletd(void *dummy)
2575{
2576	struct thread *td;
2577	struct tdq *tdq;
2578	int switchcnt;
2579	int i;
2580
2581	mtx_assert(&Giant, MA_NOTOWNED);
2582	td = curthread;
2583	tdq = TDQ_SELF();
2584	for (;;) {
2585#ifdef SMP
2586		if (tdq_idled(tdq) == 0)
2587			continue;
2588#endif
2589		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2590		/*
2591		 * If we're switching very frequently, spin while checking
2592		 * for load rather than entering a low power state that
2593		 * may require an IPI.  However, don't do any busy
2594		 * loops while on SMT machines as this simply steals
2595		 * cycles from cores doing useful work.
2596		 */
2597		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2598			for (i = 0; i < sched_idlespins; i++) {
2599				if (tdq->tdq_load)
2600					break;
2601				cpu_spinwait();
2602			}
2603		}
2604		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2605		if (tdq->tdq_load == 0) {
2606			tdq->tdq_cpu_idle = 1;
2607			if (tdq->tdq_load == 0) {
2608				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2609				tdq->tdq_switchcnt++;
2610			}
2611			tdq->tdq_cpu_idle = 0;
2612		}
2613		if (tdq->tdq_load) {
2614			thread_lock(td);
2615			mi_switch(SW_VOL | SWT_IDLE, NULL);
2616			thread_unlock(td);
2617		}
2618	}
2619}
2620
2621/*
2622 * A CPU is entering for the first time or a thread is exiting.
2623 */
2624void
2625sched_throw(struct thread *td)
2626{
2627	struct thread *newtd;
2628	struct tdq *tdq;
2629
2630	tdq = TDQ_SELF();
2631	if (td == NULL) {
2632		/* Correct spinlock nesting and acquire the correct lock. */
2633		TDQ_LOCK(tdq);
2634		spinlock_exit();
2635		PCPU_SET(switchtime, cpu_ticks());
2636		PCPU_SET(switchticks, ticks);
2637	} else {
2638		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2639		tdq_load_rem(tdq, td);
2640		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2641	}
2642	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2643	newtd = choosethread();
2644	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2645	cpu_throw(td, newtd);		/* doesn't return */
2646}
2647
2648/*
2649 * This is called from fork_exit().  Just acquire the correct locks and
2650 * let fork do the rest of the work.
2651 */
2652void
2653sched_fork_exit(struct thread *td)
2654{
2655	struct td_sched *ts;
2656	struct tdq *tdq;
2657	int cpuid;
2658
2659	/*
2660	 * Finish setting up thread glue so that it begins execution in a
2661	 * non-nested critical section with the scheduler lock held.
2662	 */
2663	cpuid = PCPU_GET(cpuid);
2664	tdq = TDQ_CPU(cpuid);
2665	ts = td->td_sched;
2666	if (TD_IS_IDLETHREAD(td))
2667		td->td_lock = TDQ_LOCKPTR(tdq);
2668	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2669	td->td_oncpu = cpuid;
2670	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2671	lock_profile_obtain_lock_success(
2672	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2673}
2674
2675/*
2676 * Create on first use to catch odd startup conditons.
2677 */
2678char *
2679sched_tdname(struct thread *td)
2680{
2681#ifdef KTR
2682	struct td_sched *ts;
2683
2684	ts = td->td_sched;
2685	if (ts->ts_name[0] == '\0')
2686		snprintf(ts->ts_name, sizeof(ts->ts_name),
2687		    "%s tid %d", td->td_name, td->td_tid);
2688	return (ts->ts_name);
2689#else
2690	return (td->td_name);
2691#endif
2692}
2693
2694#ifdef KTR
2695void
2696sched_clear_tdname(struct thread *td)
2697{
2698	struct td_sched *ts;
2699
2700	ts = td->td_sched;
2701	ts->ts_name[0] = '\0';
2702}
2703#endif
2704
2705#ifdef SMP
2706
2707/*
2708 * Build the CPU topology dump string. Is recursively called to collect
2709 * the topology tree.
2710 */
2711static int
2712sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2713    int indent)
2714{
2715	char cpusetbuf[CPUSETBUFSIZ];
2716	int i, first;
2717
2718	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2719	    "", 1 + indent / 2, cg->cg_level);
2720	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2721	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2722	first = TRUE;
2723	for (i = 0; i < MAXCPU; i++) {
2724		if (CPU_ISSET(i, &cg->cg_mask)) {
2725			if (!first)
2726				sbuf_printf(sb, ", ");
2727			else
2728				first = FALSE;
2729			sbuf_printf(sb, "%d", i);
2730		}
2731	}
2732	sbuf_printf(sb, "</cpu>\n");
2733
2734	if (cg->cg_flags != 0) {
2735		sbuf_printf(sb, "%*s <flags>", indent, "");
2736		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2737			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2738		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2739			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2740		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2741			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2742		sbuf_printf(sb, "</flags>\n");
2743	}
2744
2745	if (cg->cg_children > 0) {
2746		sbuf_printf(sb, "%*s <children>\n", indent, "");
2747		for (i = 0; i < cg->cg_children; i++)
2748			sysctl_kern_sched_topology_spec_internal(sb,
2749			    &cg->cg_child[i], indent+2);
2750		sbuf_printf(sb, "%*s </children>\n", indent, "");
2751	}
2752	sbuf_printf(sb, "%*s</group>\n", indent, "");
2753	return (0);
2754}
2755
2756/*
2757 * Sysctl handler for retrieving topology dump. It's a wrapper for
2758 * the recursive sysctl_kern_smp_topology_spec_internal().
2759 */
2760static int
2761sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2762{
2763	struct sbuf *topo;
2764	int err;
2765
2766	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2767
2768	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2769	if (topo == NULL)
2770		return (ENOMEM);
2771
2772	sbuf_printf(topo, "<groups>\n");
2773	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2774	sbuf_printf(topo, "</groups>\n");
2775
2776	if (err == 0) {
2777		sbuf_finish(topo);
2778		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2779	}
2780	sbuf_delete(topo);
2781	return (err);
2782}
2783
2784#endif
2785
2786static int
2787sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2788{
2789	int error, new_val, period;
2790
2791	period = 1000000 / realstathz;
2792	new_val = period * sched_slice;
2793	error = sysctl_handle_int(oidp, &new_val, 0, req);
2794	if (error != 0 || req->newptr == NULL)
2795		return (error);
2796	if (new_val <= 0)
2797		return (EINVAL);
2798	sched_slice = imax(1, (new_val + period / 2) / period);
2799	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2800	    realstathz);
2801	return (0);
2802}
2803
2804SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2805SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2806    "Scheduler name");
2807SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2808    NULL, 0, sysctl_kern_quantum, "I",
2809    "Quantum for timeshare threads in microseconds");
2810SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2811    "Quantum for timeshare threads in stathz ticks");
2812SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2813    "Interactivity score threshold");
2814SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2815    &preempt_thresh, 0,
2816    "Maximal (lowest) priority for preemption");
2817SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2818    "Assign static kernel priorities to sleeping threads");
2819SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2820    "Number of times idle thread will spin waiting for new work");
2821SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2822    &sched_idlespinthresh, 0,
2823    "Threshold before we will permit idle thread spinning");
2824#ifdef SMP
2825SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2826    "Number of hz ticks to keep thread affinity for");
2827SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2828    "Enables the long-term load balancer");
2829SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2830    &balance_interval, 0,
2831    "Average period in stathz ticks to run the long-term balancer");
2832SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2833    "Attempts to steal work from other cores before idling");
2834SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2835    "Minimum load on remote CPU before we'll steal");
2836SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2837    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2838    "XML dump of detected CPU topology");
2839#endif
2840
2841/* ps compat.  All cpu percentages from ULE are weighted. */
2842static int ccpu = 0;
2843SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2844