sched_ule.c revision 241249
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/9/sys/kern/sched_ule.c 241249 2012-10-06 12:58:56Z mav $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#if defined(__powerpc__) && defined(E500)
81#error "This architecture is not currently compatible with ULE"
82#endif
83
84#define	KTR_ULE	0
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89
90/*
91 * Thread scheduler specific section.  All fields are protected
92 * by the thread lock.
93 */
94struct td_sched {
95	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96	short		ts_flags;	/* TSF_* flags. */
97	u_char		ts_cpu;		/* CPU that we have affinity for. */
98	int		ts_rltick;	/* Real last tick, for affinity. */
99	int		ts_slice;	/* Ticks of slice remaining. */
100	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101	u_int		ts_runtime;	/* Number of ticks we were running */
102	int		ts_ltick;	/* Last tick that we were running on */
103	int		ts_ftick;	/* First tick that we were running on */
104	int		ts_ticks;	/* Tick count */
105#ifdef KTR
106	char		ts_name[TS_NAME_LEN];
107#endif
108};
109/* flags kept in ts_flags */
110#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112
113static struct td_sched td_sched0;
114
115#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119/*
120 * Priority ranges used for interactive and non-interactive timeshare
121 * threads.  The timeshare priorities are split up into four ranges.
122 * The first range handles interactive threads.  The last three ranges
123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124 * ranges supporting nice values.
125 */
126#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129
130#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/* Flags kept in td_flags. */
193#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
194
195/*
196 * tickincr:		Converts a stathz tick into a hz domain scaled by
197 *			the shift factor.  Without the shift the error rate
198 *			due to rounding would be unacceptably high.
199 * realstathz:		stathz is sometimes 0 and run off of hz.
200 * sched_slice:		Runtime of each thread before rescheduling.
201 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
202 */
203static int sched_interact = SCHED_INTERACT_THRESH;
204static int realstathz = 127;
205static int tickincr = 8 << SCHED_TICK_SHIFT;;
206static int sched_slice = 12;
207#ifdef PREEMPTION
208#ifdef FULL_PREEMPTION
209static int preempt_thresh = PRI_MAX_IDLE;
210#else
211static int preempt_thresh = PRI_MIN_KERN;
212#endif
213#else
214static int preempt_thresh = 0;
215#endif
216static int static_boost = PRI_MIN_BATCH;
217static int sched_idlespins = 10000;
218static int sched_idlespinthresh = -1;
219
220/*
221 * tdq - per processor runqs and statistics.  All fields are protected by the
222 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
223 * locking in sched_pickcpu();
224 */
225struct tdq {
226	/* Ordered to improve efficiency of cpu_search() and switch(). */
227	struct mtx	tdq_lock;		/* run queue lock. */
228	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
229	volatile int	tdq_load;		/* Aggregate load. */
230	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
231	int		tdq_sysload;		/* For loadavg, !ITHD load. */
232	int		tdq_transferable;	/* Transferable thread count. */
233	short		tdq_switchcnt;		/* Switches this tick. */
234	short		tdq_oldswitchcnt;	/* Switches last tick. */
235	u_char		tdq_lowpri;		/* Lowest priority thread. */
236	u_char		tdq_ipipending;		/* IPI pending. */
237	u_char		tdq_idx;		/* Current insert index. */
238	u_char		tdq_ridx;		/* Current removal index. */
239	struct runq	tdq_realtime;		/* real-time run queue. */
240	struct runq	tdq_timeshare;		/* timeshare run queue. */
241	struct runq	tdq_idle;		/* Queue of IDLE threads. */
242	char		tdq_name[TDQ_NAME_LEN];
243#ifdef KTR
244	char		tdq_loadname[TDQ_LOADNAME_LEN];
245#endif
246} __aligned(64);
247
248/* Idle thread states and config. */
249#define	TDQ_RUNNING	1
250#define	TDQ_IDLE	2
251
252#ifdef SMP
253struct cpu_group *cpu_top;		/* CPU topology */
254
255#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
256#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
257
258/*
259 * Run-time tunables.
260 */
261static int rebalance = 1;
262static int balance_interval = 128;	/* Default set in sched_initticks(). */
263static int affinity;
264static int steal_idle = 1;
265static int steal_thresh = 2;
266
267/*
268 * One thread queue per processor.
269 */
270static struct tdq	tdq_cpu[MAXCPU];
271static struct tdq	*balance_tdq;
272static int balance_ticks;
273static DPCPU_DEFINE(uint32_t, randomval);
274
275#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
276#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
277#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
278#else	/* !SMP */
279static struct tdq	tdq_cpu;
280
281#define	TDQ_ID(x)	(0)
282#define	TDQ_SELF()	(&tdq_cpu)
283#define	TDQ_CPU(x)	(&tdq_cpu)
284#endif
285
286#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
287#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
288#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
289#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
290#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
291
292static void sched_priority(struct thread *);
293static void sched_thread_priority(struct thread *, u_char);
294static int sched_interact_score(struct thread *);
295static void sched_interact_update(struct thread *);
296static void sched_interact_fork(struct thread *);
297static void sched_pctcpu_update(struct td_sched *, int);
298
299/* Operations on per processor queues */
300static struct thread *tdq_choose(struct tdq *);
301static void tdq_setup(struct tdq *);
302static void tdq_load_add(struct tdq *, struct thread *);
303static void tdq_load_rem(struct tdq *, struct thread *);
304static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
305static __inline void tdq_runq_rem(struct tdq *, struct thread *);
306static inline int sched_shouldpreempt(int, int, int);
307void tdq_print(int cpu);
308static void runq_print(struct runq *rq);
309static void tdq_add(struct tdq *, struct thread *, int);
310#ifdef SMP
311static int tdq_move(struct tdq *, struct tdq *);
312static int tdq_idled(struct tdq *);
313static void tdq_notify(struct tdq *, struct thread *);
314static struct thread *tdq_steal(struct tdq *, int);
315static struct thread *runq_steal(struct runq *, int);
316static int sched_pickcpu(struct thread *, int);
317static void sched_balance(void);
318static int sched_balance_pair(struct tdq *, struct tdq *);
319static inline struct tdq *sched_setcpu(struct thread *, int, int);
320static inline void thread_unblock_switch(struct thread *, struct mtx *);
321static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
322static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
323static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
324    struct cpu_group *cg, int indent);
325#endif
326
327static void sched_setup(void *dummy);
328SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
329
330static void sched_initticks(void *dummy);
331SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
332    NULL);
333
334SDT_PROVIDER_DEFINE(sched);
335
336SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
337    "struct proc *", "uint8_t");
338SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
339    "struct proc *", "void *");
340SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
341    "struct proc *", "void *", "int");
342SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
343    "struct proc *", "uint8_t", "struct thread *");
344SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
345SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
346    "struct proc *");
347SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
348SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
349SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
350    "struct proc *");
351
352/*
353 * Print the threads waiting on a run-queue.
354 */
355static void
356runq_print(struct runq *rq)
357{
358	struct rqhead *rqh;
359	struct thread *td;
360	int pri;
361	int j;
362	int i;
363
364	for (i = 0; i < RQB_LEN; i++) {
365		printf("\t\trunq bits %d 0x%zx\n",
366		    i, rq->rq_status.rqb_bits[i]);
367		for (j = 0; j < RQB_BPW; j++)
368			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
369				pri = j + (i << RQB_L2BPW);
370				rqh = &rq->rq_queues[pri];
371				TAILQ_FOREACH(td, rqh, td_runq) {
372					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
373					    td, td->td_name, td->td_priority,
374					    td->td_rqindex, pri);
375				}
376			}
377	}
378}
379
380/*
381 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
382 */
383void
384tdq_print(int cpu)
385{
386	struct tdq *tdq;
387
388	tdq = TDQ_CPU(cpu);
389
390	printf("tdq %d:\n", TDQ_ID(tdq));
391	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
392	printf("\tLock name:      %s\n", tdq->tdq_name);
393	printf("\tload:           %d\n", tdq->tdq_load);
394	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
395	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
396	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
397	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
398	printf("\tload transferable: %d\n", tdq->tdq_transferable);
399	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
400	printf("\trealtime runq:\n");
401	runq_print(&tdq->tdq_realtime);
402	printf("\ttimeshare runq:\n");
403	runq_print(&tdq->tdq_timeshare);
404	printf("\tidle runq:\n");
405	runq_print(&tdq->tdq_idle);
406}
407
408static inline int
409sched_shouldpreempt(int pri, int cpri, int remote)
410{
411	/*
412	 * If the new priority is not better than the current priority there is
413	 * nothing to do.
414	 */
415	if (pri >= cpri)
416		return (0);
417	/*
418	 * Always preempt idle.
419	 */
420	if (cpri >= PRI_MIN_IDLE)
421		return (1);
422	/*
423	 * If preemption is disabled don't preempt others.
424	 */
425	if (preempt_thresh == 0)
426		return (0);
427	/*
428	 * Preempt if we exceed the threshold.
429	 */
430	if (pri <= preempt_thresh)
431		return (1);
432	/*
433	 * If we're interactive or better and there is non-interactive
434	 * or worse running preempt only remote processors.
435	 */
436	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
437		return (1);
438	return (0);
439}
440
441/*
442 * Add a thread to the actual run-queue.  Keeps transferable counts up to
443 * date with what is actually on the run-queue.  Selects the correct
444 * queue position for timeshare threads.
445 */
446static __inline void
447tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
448{
449	struct td_sched *ts;
450	u_char pri;
451
452	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
453	THREAD_LOCK_ASSERT(td, MA_OWNED);
454
455	pri = td->td_priority;
456	ts = td->td_sched;
457	TD_SET_RUNQ(td);
458	if (THREAD_CAN_MIGRATE(td)) {
459		tdq->tdq_transferable++;
460		ts->ts_flags |= TSF_XFERABLE;
461	}
462	if (pri < PRI_MIN_BATCH) {
463		ts->ts_runq = &tdq->tdq_realtime;
464	} else if (pri <= PRI_MAX_BATCH) {
465		ts->ts_runq = &tdq->tdq_timeshare;
466		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
467			("Invalid priority %d on timeshare runq", pri));
468		/*
469		 * This queue contains only priorities between MIN and MAX
470		 * realtime.  Use the whole queue to represent these values.
471		 */
472		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
473			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
474			pri = (pri + tdq->tdq_idx) % RQ_NQS;
475			/*
476			 * This effectively shortens the queue by one so we
477			 * can have a one slot difference between idx and
478			 * ridx while we wait for threads to drain.
479			 */
480			if (tdq->tdq_ridx != tdq->tdq_idx &&
481			    pri == tdq->tdq_ridx)
482				pri = (unsigned char)(pri - 1) % RQ_NQS;
483		} else
484			pri = tdq->tdq_ridx;
485		runq_add_pri(ts->ts_runq, td, pri, flags);
486		return;
487	} else
488		ts->ts_runq = &tdq->tdq_idle;
489	runq_add(ts->ts_runq, td, flags);
490}
491
492/*
493 * Remove a thread from a run-queue.  This typically happens when a thread
494 * is selected to run.  Running threads are not on the queue and the
495 * transferable count does not reflect them.
496 */
497static __inline void
498tdq_runq_rem(struct tdq *tdq, struct thread *td)
499{
500	struct td_sched *ts;
501
502	ts = td->td_sched;
503	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
504	KASSERT(ts->ts_runq != NULL,
505	    ("tdq_runq_remove: thread %p null ts_runq", td));
506	if (ts->ts_flags & TSF_XFERABLE) {
507		tdq->tdq_transferable--;
508		ts->ts_flags &= ~TSF_XFERABLE;
509	}
510	if (ts->ts_runq == &tdq->tdq_timeshare) {
511		if (tdq->tdq_idx != tdq->tdq_ridx)
512			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
513		else
514			runq_remove_idx(ts->ts_runq, td, NULL);
515	} else
516		runq_remove(ts->ts_runq, td);
517}
518
519/*
520 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
521 * for this thread to the referenced thread queue.
522 */
523static void
524tdq_load_add(struct tdq *tdq, struct thread *td)
525{
526
527	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
528	THREAD_LOCK_ASSERT(td, MA_OWNED);
529
530	tdq->tdq_load++;
531	if ((td->td_flags & TDF_NOLOAD) == 0)
532		tdq->tdq_sysload++;
533	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
534	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
535}
536
537/*
538 * Remove the load from a thread that is transitioning to a sleep state or
539 * exiting.
540 */
541static void
542tdq_load_rem(struct tdq *tdq, struct thread *td)
543{
544
545	THREAD_LOCK_ASSERT(td, MA_OWNED);
546	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
547	KASSERT(tdq->tdq_load != 0,
548	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
549
550	tdq->tdq_load--;
551	if ((td->td_flags & TDF_NOLOAD) == 0)
552		tdq->tdq_sysload--;
553	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
554	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
555}
556
557/*
558 * Set lowpri to its exact value by searching the run-queue and
559 * evaluating curthread.  curthread may be passed as an optimization.
560 */
561static void
562tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
563{
564	struct thread *td;
565
566	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
567	if (ctd == NULL)
568		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
569	td = tdq_choose(tdq);
570	if (td == NULL || td->td_priority > ctd->td_priority)
571		tdq->tdq_lowpri = ctd->td_priority;
572	else
573		tdq->tdq_lowpri = td->td_priority;
574}
575
576#ifdef SMP
577struct cpu_search {
578	cpuset_t cs_mask;
579	u_int	cs_prefer;
580	int	cs_pri;		/* Min priority for low. */
581	int	cs_limit;	/* Max load for low, min load for high. */
582	int	cs_cpu;
583	int	cs_load;
584};
585
586#define	CPU_SEARCH_LOWEST	0x1
587#define	CPU_SEARCH_HIGHEST	0x2
588#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
589
590#define	CPUSET_FOREACH(cpu, mask)				\
591	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
592		if (CPU_ISSET(cpu, &mask))
593
594static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
595    struct cpu_search *high, const int match);
596int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
597int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
598int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
599    struct cpu_search *high);
600
601/*
602 * Search the tree of cpu_groups for the lowest or highest loaded cpu
603 * according to the match argument.  This routine actually compares the
604 * load on all paths through the tree and finds the least loaded cpu on
605 * the least loaded path, which may differ from the least loaded cpu in
606 * the system.  This balances work among caches and busses.
607 *
608 * This inline is instantiated in three forms below using constants for the
609 * match argument.  It is reduced to the minimum set for each case.  It is
610 * also recursive to the depth of the tree.
611 */
612static __inline int
613cpu_search(const struct cpu_group *cg, struct cpu_search *low,
614    struct cpu_search *high, const int match)
615{
616	struct cpu_search lgroup;
617	struct cpu_search hgroup;
618	cpuset_t cpumask;
619	struct cpu_group *child;
620	struct tdq *tdq;
621	int cpu, i, hload, lload, load, total, rnd, *rndptr;
622
623	total = 0;
624	cpumask = cg->cg_mask;
625	if (match & CPU_SEARCH_LOWEST) {
626		lload = INT_MAX;
627		lgroup = *low;
628	}
629	if (match & CPU_SEARCH_HIGHEST) {
630		hload = INT_MIN;
631		hgroup = *high;
632	}
633
634	/* Iterate through the child CPU groups and then remaining CPUs. */
635	for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
636		if (i == 0) {
637			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
638				cpu--;
639			if (cpu < 0)
640				break;
641			child = NULL;
642		} else
643			child = &cg->cg_child[i - 1];
644
645		if (match & CPU_SEARCH_LOWEST)
646			lgroup.cs_cpu = -1;
647		if (match & CPU_SEARCH_HIGHEST)
648			hgroup.cs_cpu = -1;
649		if (child) {			/* Handle child CPU group. */
650			CPU_NAND(&cpumask, &child->cg_mask);
651			switch (match) {
652			case CPU_SEARCH_LOWEST:
653				load = cpu_search_lowest(child, &lgroup);
654				break;
655			case CPU_SEARCH_HIGHEST:
656				load = cpu_search_highest(child, &hgroup);
657				break;
658			case CPU_SEARCH_BOTH:
659				load = cpu_search_both(child, &lgroup, &hgroup);
660				break;
661			}
662		} else {			/* Handle child CPU. */
663			tdq = TDQ_CPU(cpu);
664			load = tdq->tdq_load * 256;
665			rndptr = DPCPU_PTR(randomval);
666			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
667			if (match & CPU_SEARCH_LOWEST) {
668				if (cpu == low->cs_prefer)
669					load -= 64;
670				/* If that CPU is allowed and get data. */
671				if (tdq->tdq_lowpri > lgroup.cs_pri &&
672				    tdq->tdq_load <= lgroup.cs_limit &&
673				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
674					lgroup.cs_cpu = cpu;
675					lgroup.cs_load = load - rnd;
676				}
677			}
678			if (match & CPU_SEARCH_HIGHEST)
679				if (tdq->tdq_load >= hgroup.cs_limit &&
680				    tdq->tdq_transferable &&
681				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
682					hgroup.cs_cpu = cpu;
683					hgroup.cs_load = load - rnd;
684				}
685		}
686		total += load;
687
688		/* We have info about child item. Compare it. */
689		if (match & CPU_SEARCH_LOWEST) {
690			if (lgroup.cs_cpu >= 0 &&
691			    (load < lload ||
692			     (load == lload && lgroup.cs_load < low->cs_load))) {
693				lload = load;
694				low->cs_cpu = lgroup.cs_cpu;
695				low->cs_load = lgroup.cs_load;
696			}
697		}
698		if (match & CPU_SEARCH_HIGHEST)
699			if (hgroup.cs_cpu >= 0 &&
700			    (load > hload ||
701			     (load == hload && hgroup.cs_load > high->cs_load))) {
702				hload = load;
703				high->cs_cpu = hgroup.cs_cpu;
704				high->cs_load = hgroup.cs_load;
705			}
706		if (child) {
707			i--;
708			if (i == 0 && CPU_EMPTY(&cpumask))
709				break;
710		} else
711			cpu--;
712	}
713	return (total);
714}
715
716/*
717 * cpu_search instantiations must pass constants to maintain the inline
718 * optimization.
719 */
720int
721cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
722{
723	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
724}
725
726int
727cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
728{
729	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
730}
731
732int
733cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
734    struct cpu_search *high)
735{
736	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
737}
738
739/*
740 * Find the cpu with the least load via the least loaded path that has a
741 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
742 * acceptable.
743 */
744static inline int
745sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
746    int prefer)
747{
748	struct cpu_search low;
749
750	low.cs_cpu = -1;
751	low.cs_prefer = prefer;
752	low.cs_mask = mask;
753	low.cs_pri = pri;
754	low.cs_limit = maxload;
755	cpu_search_lowest(cg, &low);
756	return low.cs_cpu;
757}
758
759/*
760 * Find the cpu with the highest load via the highest loaded path.
761 */
762static inline int
763sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
764{
765	struct cpu_search high;
766
767	high.cs_cpu = -1;
768	high.cs_mask = mask;
769	high.cs_limit = minload;
770	cpu_search_highest(cg, &high);
771	return high.cs_cpu;
772}
773
774/*
775 * Simultaneously find the highest and lowest loaded cpu reachable via
776 * cg.
777 */
778static inline void
779sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
780{
781	struct cpu_search high;
782	struct cpu_search low;
783
784	low.cs_cpu = -1;
785	low.cs_prefer = -1;
786	low.cs_pri = -1;
787	low.cs_limit = INT_MAX;
788	low.cs_mask = mask;
789	high.cs_cpu = -1;
790	high.cs_limit = -1;
791	high.cs_mask = mask;
792	cpu_search_both(cg, &low, &high);
793	*lowcpu = low.cs_cpu;
794	*highcpu = high.cs_cpu;
795	return;
796}
797
798static void
799sched_balance_group(struct cpu_group *cg)
800{
801	cpuset_t hmask, lmask;
802	int high, low, anylow;
803
804	CPU_FILL(&hmask);
805	for (;;) {
806		high = sched_highest(cg, hmask, 1);
807		/* Stop if there is no more CPU with transferrable threads. */
808		if (high == -1)
809			break;
810		CPU_CLR(high, &hmask);
811		CPU_COPY(&hmask, &lmask);
812		/* Stop if there is no more CPU left for low. */
813		if (CPU_EMPTY(&lmask))
814			break;
815		anylow = 1;
816nextlow:
817		low = sched_lowest(cg, lmask, -1,
818		    TDQ_CPU(high)->tdq_load - 1, high);
819		/* Stop if we looked well and found no less loaded CPU. */
820		if (anylow && low == -1)
821			break;
822		/* Go to next high if we found no less loaded CPU. */
823		if (low == -1)
824			continue;
825		/* Transfer thread from high to low. */
826		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
827			/* CPU that got thread can no longer be a donor. */
828			CPU_CLR(low, &hmask);
829		} else {
830			/*
831			 * If failed, then there is no threads on high
832			 * that can run on this low. Drop low from low
833			 * mask and look for different one.
834			 */
835			CPU_CLR(low, &lmask);
836			anylow = 0;
837			goto nextlow;
838		}
839	}
840}
841
842static void
843sched_balance(void)
844{
845	struct tdq *tdq;
846
847	/*
848	 * Select a random time between .5 * balance_interval and
849	 * 1.5 * balance_interval.
850	 */
851	balance_ticks = max(balance_interval / 2, 1);
852	balance_ticks += random() % balance_interval;
853	if (smp_started == 0 || rebalance == 0)
854		return;
855	tdq = TDQ_SELF();
856	TDQ_UNLOCK(tdq);
857	sched_balance_group(cpu_top);
858	TDQ_LOCK(tdq);
859}
860
861/*
862 * Lock two thread queues using their address to maintain lock order.
863 */
864static void
865tdq_lock_pair(struct tdq *one, struct tdq *two)
866{
867	if (one < two) {
868		TDQ_LOCK(one);
869		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
870	} else {
871		TDQ_LOCK(two);
872		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
873	}
874}
875
876/*
877 * Unlock two thread queues.  Order is not important here.
878 */
879static void
880tdq_unlock_pair(struct tdq *one, struct tdq *two)
881{
882	TDQ_UNLOCK(one);
883	TDQ_UNLOCK(two);
884}
885
886/*
887 * Transfer load between two imbalanced thread queues.
888 */
889static int
890sched_balance_pair(struct tdq *high, struct tdq *low)
891{
892	int moved;
893	int cpu;
894
895	tdq_lock_pair(high, low);
896	moved = 0;
897	/*
898	 * Determine what the imbalance is and then adjust that to how many
899	 * threads we actually have to give up (transferable).
900	 */
901	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
902	    (moved = tdq_move(high, low)) > 0) {
903		/*
904		 * In case the target isn't the current cpu IPI it to force a
905		 * reschedule with the new workload.
906		 */
907		cpu = TDQ_ID(low);
908		sched_pin();
909		if (cpu != PCPU_GET(cpuid))
910			ipi_cpu(cpu, IPI_PREEMPT);
911		sched_unpin();
912	}
913	tdq_unlock_pair(high, low);
914	return (moved);
915}
916
917/*
918 * Move a thread from one thread queue to another.
919 */
920static int
921tdq_move(struct tdq *from, struct tdq *to)
922{
923	struct td_sched *ts;
924	struct thread *td;
925	struct tdq *tdq;
926	int cpu;
927
928	TDQ_LOCK_ASSERT(from, MA_OWNED);
929	TDQ_LOCK_ASSERT(to, MA_OWNED);
930
931	tdq = from;
932	cpu = TDQ_ID(to);
933	td = tdq_steal(tdq, cpu);
934	if (td == NULL)
935		return (0);
936	ts = td->td_sched;
937	/*
938	 * Although the run queue is locked the thread may be blocked.  Lock
939	 * it to clear this and acquire the run-queue lock.
940	 */
941	thread_lock(td);
942	/* Drop recursive lock on from acquired via thread_lock(). */
943	TDQ_UNLOCK(from);
944	sched_rem(td);
945	ts->ts_cpu = cpu;
946	td->td_lock = TDQ_LOCKPTR(to);
947	tdq_add(to, td, SRQ_YIELDING);
948	return (1);
949}
950
951/*
952 * This tdq has idled.  Try to steal a thread from another cpu and switch
953 * to it.
954 */
955static int
956tdq_idled(struct tdq *tdq)
957{
958	struct cpu_group *cg;
959	struct tdq *steal;
960	cpuset_t mask;
961	int thresh;
962	int cpu;
963
964	if (smp_started == 0 || steal_idle == 0)
965		return (1);
966	CPU_FILL(&mask);
967	CPU_CLR(PCPU_GET(cpuid), &mask);
968	/* We don't want to be preempted while we're iterating. */
969	spinlock_enter();
970	for (cg = tdq->tdq_cg; cg != NULL; ) {
971		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
972			thresh = steal_thresh;
973		else
974			thresh = 1;
975		cpu = sched_highest(cg, mask, thresh);
976		if (cpu == -1) {
977			cg = cg->cg_parent;
978			continue;
979		}
980		steal = TDQ_CPU(cpu);
981		CPU_CLR(cpu, &mask);
982		tdq_lock_pair(tdq, steal);
983		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
984			tdq_unlock_pair(tdq, steal);
985			continue;
986		}
987		/*
988		 * If a thread was added while interrupts were disabled don't
989		 * steal one here.  If we fail to acquire one due to affinity
990		 * restrictions loop again with this cpu removed from the
991		 * set.
992		 */
993		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
994			tdq_unlock_pair(tdq, steal);
995			continue;
996		}
997		spinlock_exit();
998		TDQ_UNLOCK(steal);
999		mi_switch(SW_VOL | SWT_IDLE, NULL);
1000		thread_unlock(curthread);
1001
1002		return (0);
1003	}
1004	spinlock_exit();
1005	return (1);
1006}
1007
1008/*
1009 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1010 */
1011static void
1012tdq_notify(struct tdq *tdq, struct thread *td)
1013{
1014	struct thread *ctd;
1015	int pri;
1016	int cpu;
1017
1018	if (tdq->tdq_ipipending)
1019		return;
1020	cpu = td->td_sched->ts_cpu;
1021	pri = td->td_priority;
1022	ctd = pcpu_find(cpu)->pc_curthread;
1023	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1024		return;
1025	if (TD_IS_IDLETHREAD(ctd)) {
1026		/*
1027		 * If the MD code has an idle wakeup routine try that before
1028		 * falling back to IPI.
1029		 */
1030		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1031			return;
1032	}
1033	tdq->tdq_ipipending = 1;
1034	ipi_cpu(cpu, IPI_PREEMPT);
1035}
1036
1037/*
1038 * Steals load from a timeshare queue.  Honors the rotating queue head
1039 * index.
1040 */
1041static struct thread *
1042runq_steal_from(struct runq *rq, int cpu, u_char start)
1043{
1044	struct rqbits *rqb;
1045	struct rqhead *rqh;
1046	struct thread *td, *first;
1047	int bit;
1048	int pri;
1049	int i;
1050
1051	rqb = &rq->rq_status;
1052	bit = start & (RQB_BPW -1);
1053	pri = 0;
1054	first = NULL;
1055again:
1056	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1057		if (rqb->rqb_bits[i] == 0)
1058			continue;
1059		if (bit != 0) {
1060			for (pri = bit; pri < RQB_BPW; pri++)
1061				if (rqb->rqb_bits[i] & (1ul << pri))
1062					break;
1063			if (pri >= RQB_BPW)
1064				continue;
1065		} else
1066			pri = RQB_FFS(rqb->rqb_bits[i]);
1067		pri += (i << RQB_L2BPW);
1068		rqh = &rq->rq_queues[pri];
1069		TAILQ_FOREACH(td, rqh, td_runq) {
1070			if (first && THREAD_CAN_MIGRATE(td) &&
1071			    THREAD_CAN_SCHED(td, cpu))
1072				return (td);
1073			first = td;
1074		}
1075	}
1076	if (start != 0) {
1077		start = 0;
1078		goto again;
1079	}
1080
1081	if (first && THREAD_CAN_MIGRATE(first) &&
1082	    THREAD_CAN_SCHED(first, cpu))
1083		return (first);
1084	return (NULL);
1085}
1086
1087/*
1088 * Steals load from a standard linear queue.
1089 */
1090static struct thread *
1091runq_steal(struct runq *rq, int cpu)
1092{
1093	struct rqhead *rqh;
1094	struct rqbits *rqb;
1095	struct thread *td;
1096	int word;
1097	int bit;
1098
1099	rqb = &rq->rq_status;
1100	for (word = 0; word < RQB_LEN; word++) {
1101		if (rqb->rqb_bits[word] == 0)
1102			continue;
1103		for (bit = 0; bit < RQB_BPW; bit++) {
1104			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1105				continue;
1106			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1107			TAILQ_FOREACH(td, rqh, td_runq)
1108				if (THREAD_CAN_MIGRATE(td) &&
1109				    THREAD_CAN_SCHED(td, cpu))
1110					return (td);
1111		}
1112	}
1113	return (NULL);
1114}
1115
1116/*
1117 * Attempt to steal a thread in priority order from a thread queue.
1118 */
1119static struct thread *
1120tdq_steal(struct tdq *tdq, int cpu)
1121{
1122	struct thread *td;
1123
1124	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1125	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1126		return (td);
1127	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1128	    cpu, tdq->tdq_ridx)) != NULL)
1129		return (td);
1130	return (runq_steal(&tdq->tdq_idle, cpu));
1131}
1132
1133/*
1134 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1135 * current lock and returns with the assigned queue locked.
1136 */
1137static inline struct tdq *
1138sched_setcpu(struct thread *td, int cpu, int flags)
1139{
1140
1141	struct tdq *tdq;
1142
1143	THREAD_LOCK_ASSERT(td, MA_OWNED);
1144	tdq = TDQ_CPU(cpu);
1145	td->td_sched->ts_cpu = cpu;
1146	/*
1147	 * If the lock matches just return the queue.
1148	 */
1149	if (td->td_lock == TDQ_LOCKPTR(tdq))
1150		return (tdq);
1151#ifdef notyet
1152	/*
1153	 * If the thread isn't running its lockptr is a
1154	 * turnstile or a sleepqueue.  We can just lock_set without
1155	 * blocking.
1156	 */
1157	if (TD_CAN_RUN(td)) {
1158		TDQ_LOCK(tdq);
1159		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1160		return (tdq);
1161	}
1162#endif
1163	/*
1164	 * The hard case, migration, we need to block the thread first to
1165	 * prevent order reversals with other cpus locks.
1166	 */
1167	spinlock_enter();
1168	thread_lock_block(td);
1169	TDQ_LOCK(tdq);
1170	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1171	spinlock_exit();
1172	return (tdq);
1173}
1174
1175SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1176SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1177SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1178SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1179SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1180SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1181
1182static int
1183sched_pickcpu(struct thread *td, int flags)
1184{
1185	struct cpu_group *cg, *ccg;
1186	struct td_sched *ts;
1187	struct tdq *tdq;
1188	cpuset_t mask;
1189	int cpu, pri, self;
1190
1191	self = PCPU_GET(cpuid);
1192	ts = td->td_sched;
1193	if (smp_started == 0)
1194		return (self);
1195	/*
1196	 * Don't migrate a running thread from sched_switch().
1197	 */
1198	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1199		return (ts->ts_cpu);
1200	/*
1201	 * Prefer to run interrupt threads on the processors that generate
1202	 * the interrupt.
1203	 */
1204	pri = td->td_priority;
1205	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1206	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1207		SCHED_STAT_INC(pickcpu_intrbind);
1208		ts->ts_cpu = self;
1209		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1210			SCHED_STAT_INC(pickcpu_affinity);
1211			return (ts->ts_cpu);
1212		}
1213	}
1214	/*
1215	 * If the thread can run on the last cpu and the affinity has not
1216	 * expired or it is idle run it there.
1217	 */
1218	tdq = TDQ_CPU(ts->ts_cpu);
1219	cg = tdq->tdq_cg;
1220	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1221	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1222	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1223		if (cg->cg_flags & CG_FLAG_THREAD) {
1224			CPUSET_FOREACH(cpu, cg->cg_mask) {
1225				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1226					break;
1227			}
1228		} else
1229			cpu = INT_MAX;
1230		if (cpu > mp_maxid) {
1231			SCHED_STAT_INC(pickcpu_idle_affinity);
1232			return (ts->ts_cpu);
1233		}
1234	}
1235	/*
1236	 * Search for the last level cache CPU group in the tree.
1237	 * Skip caches with expired affinity time and SMT groups.
1238	 * Affinity to higher level caches will be handled less aggressively.
1239	 */
1240	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1241		if (cg->cg_flags & CG_FLAG_THREAD)
1242			continue;
1243		if (!SCHED_AFFINITY(ts, cg->cg_level))
1244			continue;
1245		ccg = cg;
1246	}
1247	if (ccg != NULL)
1248		cg = ccg;
1249	cpu = -1;
1250	/* Search the group for the less loaded idle CPU we can run now. */
1251	mask = td->td_cpuset->cs_mask;
1252	if (cg != NULL && cg != cpu_top &&
1253	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1254		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1255		    INT_MAX, ts->ts_cpu);
1256	/* Search globally for the less loaded CPU we can run now. */
1257	if (cpu == -1)
1258		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1259	/* Search globally for the less loaded CPU. */
1260	if (cpu == -1)
1261		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1262	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1263	/*
1264	 * Compare the lowest loaded cpu to current cpu.
1265	 */
1266	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1267	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1268	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1269		SCHED_STAT_INC(pickcpu_local);
1270		cpu = self;
1271	} else
1272		SCHED_STAT_INC(pickcpu_lowest);
1273	if (cpu != ts->ts_cpu)
1274		SCHED_STAT_INC(pickcpu_migration);
1275	return (cpu);
1276}
1277#endif
1278
1279/*
1280 * Pick the highest priority task we have and return it.
1281 */
1282static struct thread *
1283tdq_choose(struct tdq *tdq)
1284{
1285	struct thread *td;
1286
1287	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1288	td = runq_choose(&tdq->tdq_realtime);
1289	if (td != NULL)
1290		return (td);
1291	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1292	if (td != NULL) {
1293		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1294		    ("tdq_choose: Invalid priority on timeshare queue %d",
1295		    td->td_priority));
1296		return (td);
1297	}
1298	td = runq_choose(&tdq->tdq_idle);
1299	if (td != NULL) {
1300		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1301		    ("tdq_choose: Invalid priority on idle queue %d",
1302		    td->td_priority));
1303		return (td);
1304	}
1305
1306	return (NULL);
1307}
1308
1309/*
1310 * Initialize a thread queue.
1311 */
1312static void
1313tdq_setup(struct tdq *tdq)
1314{
1315
1316	if (bootverbose)
1317		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1318	runq_init(&tdq->tdq_realtime);
1319	runq_init(&tdq->tdq_timeshare);
1320	runq_init(&tdq->tdq_idle);
1321	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1322	    "sched lock %d", (int)TDQ_ID(tdq));
1323	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1324	    MTX_SPIN | MTX_RECURSE);
1325#ifdef KTR
1326	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1327	    "CPU %d load", (int)TDQ_ID(tdq));
1328#endif
1329}
1330
1331#ifdef SMP
1332static void
1333sched_setup_smp(void)
1334{
1335	struct tdq *tdq;
1336	int i;
1337
1338	cpu_top = smp_topo();
1339	CPU_FOREACH(i) {
1340		tdq = TDQ_CPU(i);
1341		tdq_setup(tdq);
1342		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1343		if (tdq->tdq_cg == NULL)
1344			panic("Can't find cpu group for %d\n", i);
1345	}
1346	balance_tdq = TDQ_SELF();
1347	sched_balance();
1348}
1349#endif
1350
1351/*
1352 * Setup the thread queues and initialize the topology based on MD
1353 * information.
1354 */
1355static void
1356sched_setup(void *dummy)
1357{
1358	struct tdq *tdq;
1359
1360	tdq = TDQ_SELF();
1361#ifdef SMP
1362	sched_setup_smp();
1363#else
1364	tdq_setup(tdq);
1365#endif
1366
1367	/* Add thread0's load since it's running. */
1368	TDQ_LOCK(tdq);
1369	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1370	tdq_load_add(tdq, &thread0);
1371	tdq->tdq_lowpri = thread0.td_priority;
1372	TDQ_UNLOCK(tdq);
1373}
1374
1375/*
1376 * This routine determines time constants after stathz and hz are setup.
1377 */
1378/* ARGSUSED */
1379static void
1380sched_initticks(void *dummy)
1381{
1382	int incr;
1383
1384	realstathz = stathz ? stathz : hz;
1385	sched_slice = realstathz / 10;	/* ~100ms */
1386	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1387	    realstathz);
1388
1389	/*
1390	 * tickincr is shifted out by 10 to avoid rounding errors due to
1391	 * hz not being evenly divisible by stathz on all platforms.
1392	 */
1393	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1394	/*
1395	 * This does not work for values of stathz that are more than
1396	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1397	 */
1398	if (incr == 0)
1399		incr = 1;
1400	tickincr = incr;
1401#ifdef SMP
1402	/*
1403	 * Set the default balance interval now that we know
1404	 * what realstathz is.
1405	 */
1406	balance_interval = realstathz;
1407	/*
1408	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1409	 * This prevents excess thrashing on large machines and excess idle
1410	 * on smaller machines.
1411	 */
1412	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1413	affinity = SCHED_AFFINITY_DEFAULT;
1414#endif
1415	if (sched_idlespinthresh < 0)
1416		sched_idlespinthresh = imax(16, 2 * hz / realstathz);
1417}
1418
1419
1420/*
1421 * This is the core of the interactivity algorithm.  Determines a score based
1422 * on past behavior.  It is the ratio of sleep time to run time scaled to
1423 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1424 * differs from the cpu usage because it does not account for time spent
1425 * waiting on a run-queue.  Would be prettier if we had floating point.
1426 */
1427static int
1428sched_interact_score(struct thread *td)
1429{
1430	struct td_sched *ts;
1431	int div;
1432
1433	ts = td->td_sched;
1434	/*
1435	 * The score is only needed if this is likely to be an interactive
1436	 * task.  Don't go through the expense of computing it if there's
1437	 * no chance.
1438	 */
1439	if (sched_interact <= SCHED_INTERACT_HALF &&
1440		ts->ts_runtime >= ts->ts_slptime)
1441			return (SCHED_INTERACT_HALF);
1442
1443	if (ts->ts_runtime > ts->ts_slptime) {
1444		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1445		return (SCHED_INTERACT_HALF +
1446		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1447	}
1448	if (ts->ts_slptime > ts->ts_runtime) {
1449		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1450		return (ts->ts_runtime / div);
1451	}
1452	/* runtime == slptime */
1453	if (ts->ts_runtime)
1454		return (SCHED_INTERACT_HALF);
1455
1456	/*
1457	 * This can happen if slptime and runtime are 0.
1458	 */
1459	return (0);
1460
1461}
1462
1463/*
1464 * Scale the scheduling priority according to the "interactivity" of this
1465 * process.
1466 */
1467static void
1468sched_priority(struct thread *td)
1469{
1470	int score;
1471	int pri;
1472
1473	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1474		return;
1475	/*
1476	 * If the score is interactive we place the thread in the realtime
1477	 * queue with a priority that is less than kernel and interrupt
1478	 * priorities.  These threads are not subject to nice restrictions.
1479	 *
1480	 * Scores greater than this are placed on the normal timeshare queue
1481	 * where the priority is partially decided by the most recent cpu
1482	 * utilization and the rest is decided by nice value.
1483	 *
1484	 * The nice value of the process has a linear effect on the calculated
1485	 * score.  Negative nice values make it easier for a thread to be
1486	 * considered interactive.
1487	 */
1488	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1489	if (score < sched_interact) {
1490		pri = PRI_MIN_INTERACT;
1491		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1492		    sched_interact) * score;
1493		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1494		    ("sched_priority: invalid interactive priority %d score %d",
1495		    pri, score));
1496	} else {
1497		pri = SCHED_PRI_MIN;
1498		if (td->td_sched->ts_ticks)
1499			pri += min(SCHED_PRI_TICKS(td->td_sched),
1500			    SCHED_PRI_RANGE);
1501		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1502		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1503		    ("sched_priority: invalid priority %d: nice %d, "
1504		    "ticks %d ftick %d ltick %d tick pri %d",
1505		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1506		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1507		    SCHED_PRI_TICKS(td->td_sched)));
1508	}
1509	sched_user_prio(td, pri);
1510
1511	return;
1512}
1513
1514/*
1515 * This routine enforces a maximum limit on the amount of scheduling history
1516 * kept.  It is called after either the slptime or runtime is adjusted.  This
1517 * function is ugly due to integer math.
1518 */
1519static void
1520sched_interact_update(struct thread *td)
1521{
1522	struct td_sched *ts;
1523	u_int sum;
1524
1525	ts = td->td_sched;
1526	sum = ts->ts_runtime + ts->ts_slptime;
1527	if (sum < SCHED_SLP_RUN_MAX)
1528		return;
1529	/*
1530	 * This only happens from two places:
1531	 * 1) We have added an unusual amount of run time from fork_exit.
1532	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1533	 */
1534	if (sum > SCHED_SLP_RUN_MAX * 2) {
1535		if (ts->ts_runtime > ts->ts_slptime) {
1536			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1537			ts->ts_slptime = 1;
1538		} else {
1539			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1540			ts->ts_runtime = 1;
1541		}
1542		return;
1543	}
1544	/*
1545	 * If we have exceeded by more than 1/5th then the algorithm below
1546	 * will not bring us back into range.  Dividing by two here forces
1547	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1548	 */
1549	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1550		ts->ts_runtime /= 2;
1551		ts->ts_slptime /= 2;
1552		return;
1553	}
1554	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1555	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1556}
1557
1558/*
1559 * Scale back the interactivity history when a child thread is created.  The
1560 * history is inherited from the parent but the thread may behave totally
1561 * differently.  For example, a shell spawning a compiler process.  We want
1562 * to learn that the compiler is behaving badly very quickly.
1563 */
1564static void
1565sched_interact_fork(struct thread *td)
1566{
1567	int ratio;
1568	int sum;
1569
1570	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1571	if (sum > SCHED_SLP_RUN_FORK) {
1572		ratio = sum / SCHED_SLP_RUN_FORK;
1573		td->td_sched->ts_runtime /= ratio;
1574		td->td_sched->ts_slptime /= ratio;
1575	}
1576}
1577
1578/*
1579 * Called from proc0_init() to setup the scheduler fields.
1580 */
1581void
1582schedinit(void)
1583{
1584
1585	/*
1586	 * Set up the scheduler specific parts of proc0.
1587	 */
1588	proc0.p_sched = NULL; /* XXX */
1589	thread0.td_sched = &td_sched0;
1590	td_sched0.ts_ltick = ticks;
1591	td_sched0.ts_ftick = ticks;
1592	td_sched0.ts_slice = sched_slice;
1593}
1594
1595/*
1596 * This is only somewhat accurate since given many processes of the same
1597 * priority they will switch when their slices run out, which will be
1598 * at most sched_slice stathz ticks.
1599 */
1600int
1601sched_rr_interval(void)
1602{
1603
1604	/* Convert sched_slice from stathz to hz. */
1605	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1606}
1607
1608/*
1609 * Update the percent cpu tracking information when it is requested or
1610 * the total history exceeds the maximum.  We keep a sliding history of
1611 * tick counts that slowly decays.  This is less precise than the 4BSD
1612 * mechanism since it happens with less regular and frequent events.
1613 */
1614static void
1615sched_pctcpu_update(struct td_sched *ts, int run)
1616{
1617	int t = ticks;
1618
1619	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1620		ts->ts_ticks = 0;
1621		ts->ts_ftick = t - SCHED_TICK_TARG;
1622	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1623		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1624		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1625		ts->ts_ftick = t - SCHED_TICK_TARG;
1626	}
1627	if (run)
1628		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1629	ts->ts_ltick = t;
1630}
1631
1632/*
1633 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1634 * if necessary.  This is the back-end for several priority related
1635 * functions.
1636 */
1637static void
1638sched_thread_priority(struct thread *td, u_char prio)
1639{
1640	struct td_sched *ts;
1641	struct tdq *tdq;
1642	int oldpri;
1643
1644	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1645	    "prio:%d", td->td_priority, "new prio:%d", prio,
1646	    KTR_ATTR_LINKED, sched_tdname(curthread));
1647	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1648	if (td != curthread && prio < td->td_priority) {
1649		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1650		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1651		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1652		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1653		    curthread);
1654	}
1655	ts = td->td_sched;
1656	THREAD_LOCK_ASSERT(td, MA_OWNED);
1657	if (td->td_priority == prio)
1658		return;
1659	/*
1660	 * If the priority has been elevated due to priority
1661	 * propagation, we may have to move ourselves to a new
1662	 * queue.  This could be optimized to not re-add in some
1663	 * cases.
1664	 */
1665	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1666		sched_rem(td);
1667		td->td_priority = prio;
1668		sched_add(td, SRQ_BORROWING);
1669		return;
1670	}
1671	/*
1672	 * If the thread is currently running we may have to adjust the lowpri
1673	 * information so other cpus are aware of our current priority.
1674	 */
1675	if (TD_IS_RUNNING(td)) {
1676		tdq = TDQ_CPU(ts->ts_cpu);
1677		oldpri = td->td_priority;
1678		td->td_priority = prio;
1679		if (prio < tdq->tdq_lowpri)
1680			tdq->tdq_lowpri = prio;
1681		else if (tdq->tdq_lowpri == oldpri)
1682			tdq_setlowpri(tdq, td);
1683		return;
1684	}
1685	td->td_priority = prio;
1686}
1687
1688/*
1689 * Update a thread's priority when it is lent another thread's
1690 * priority.
1691 */
1692void
1693sched_lend_prio(struct thread *td, u_char prio)
1694{
1695
1696	td->td_flags |= TDF_BORROWING;
1697	sched_thread_priority(td, prio);
1698}
1699
1700/*
1701 * Restore a thread's priority when priority propagation is
1702 * over.  The prio argument is the minimum priority the thread
1703 * needs to have to satisfy other possible priority lending
1704 * requests.  If the thread's regular priority is less
1705 * important than prio, the thread will keep a priority boost
1706 * of prio.
1707 */
1708void
1709sched_unlend_prio(struct thread *td, u_char prio)
1710{
1711	u_char base_pri;
1712
1713	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1714	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1715		base_pri = td->td_user_pri;
1716	else
1717		base_pri = td->td_base_pri;
1718	if (prio >= base_pri) {
1719		td->td_flags &= ~TDF_BORROWING;
1720		sched_thread_priority(td, base_pri);
1721	} else
1722		sched_lend_prio(td, prio);
1723}
1724
1725/*
1726 * Standard entry for setting the priority to an absolute value.
1727 */
1728void
1729sched_prio(struct thread *td, u_char prio)
1730{
1731	u_char oldprio;
1732
1733	/* First, update the base priority. */
1734	td->td_base_pri = prio;
1735
1736	/*
1737	 * If the thread is borrowing another thread's priority, don't
1738	 * ever lower the priority.
1739	 */
1740	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1741		return;
1742
1743	/* Change the real priority. */
1744	oldprio = td->td_priority;
1745	sched_thread_priority(td, prio);
1746
1747	/*
1748	 * If the thread is on a turnstile, then let the turnstile update
1749	 * its state.
1750	 */
1751	if (TD_ON_LOCK(td) && oldprio != prio)
1752		turnstile_adjust(td, oldprio);
1753}
1754
1755/*
1756 * Set the base user priority, does not effect current running priority.
1757 */
1758void
1759sched_user_prio(struct thread *td, u_char prio)
1760{
1761
1762	td->td_base_user_pri = prio;
1763	if (td->td_lend_user_pri <= prio)
1764		return;
1765	td->td_user_pri = prio;
1766}
1767
1768void
1769sched_lend_user_prio(struct thread *td, u_char prio)
1770{
1771
1772	THREAD_LOCK_ASSERT(td, MA_OWNED);
1773	td->td_lend_user_pri = prio;
1774	td->td_user_pri = min(prio, td->td_base_user_pri);
1775	if (td->td_priority > td->td_user_pri)
1776		sched_prio(td, td->td_user_pri);
1777	else if (td->td_priority != td->td_user_pri)
1778		td->td_flags |= TDF_NEEDRESCHED;
1779}
1780
1781/*
1782 * Handle migration from sched_switch().  This happens only for
1783 * cpu binding.
1784 */
1785static struct mtx *
1786sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1787{
1788	struct tdq *tdn;
1789
1790	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1791#ifdef SMP
1792	tdq_load_rem(tdq, td);
1793	/*
1794	 * Do the lock dance required to avoid LOR.  We grab an extra
1795	 * spinlock nesting to prevent preemption while we're
1796	 * not holding either run-queue lock.
1797	 */
1798	spinlock_enter();
1799	thread_lock_block(td);	/* This releases the lock on tdq. */
1800
1801	/*
1802	 * Acquire both run-queue locks before placing the thread on the new
1803	 * run-queue to avoid deadlocks created by placing a thread with a
1804	 * blocked lock on the run-queue of a remote processor.  The deadlock
1805	 * occurs when a third processor attempts to lock the two queues in
1806	 * question while the target processor is spinning with its own
1807	 * run-queue lock held while waiting for the blocked lock to clear.
1808	 */
1809	tdq_lock_pair(tdn, tdq);
1810	tdq_add(tdn, td, flags);
1811	tdq_notify(tdn, td);
1812	TDQ_UNLOCK(tdn);
1813	spinlock_exit();
1814#endif
1815	return (TDQ_LOCKPTR(tdn));
1816}
1817
1818/*
1819 * Variadic version of thread_lock_unblock() that does not assume td_lock
1820 * is blocked.
1821 */
1822static inline void
1823thread_unblock_switch(struct thread *td, struct mtx *mtx)
1824{
1825	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1826	    (uintptr_t)mtx);
1827}
1828
1829/*
1830 * Switch threads.  This function has to handle threads coming in while
1831 * blocked for some reason, running, or idle.  It also must deal with
1832 * migrating a thread from one queue to another as running threads may
1833 * be assigned elsewhere via binding.
1834 */
1835void
1836sched_switch(struct thread *td, struct thread *newtd, int flags)
1837{
1838	struct tdq *tdq;
1839	struct td_sched *ts;
1840	struct mtx *mtx;
1841	int srqflag;
1842	int cpuid, preempted;
1843
1844	THREAD_LOCK_ASSERT(td, MA_OWNED);
1845	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1846
1847	cpuid = PCPU_GET(cpuid);
1848	tdq = TDQ_CPU(cpuid);
1849	ts = td->td_sched;
1850	mtx = td->td_lock;
1851	sched_pctcpu_update(ts, 1);
1852	ts->ts_rltick = ticks;
1853	td->td_lastcpu = td->td_oncpu;
1854	td->td_oncpu = NOCPU;
1855	preempted = !(td->td_flags & TDF_SLICEEND);
1856	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1857	td->td_owepreempt = 0;
1858	tdq->tdq_switchcnt++;
1859	/*
1860	 * The lock pointer in an idle thread should never change.  Reset it
1861	 * to CAN_RUN as well.
1862	 */
1863	if (TD_IS_IDLETHREAD(td)) {
1864		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1865		TD_SET_CAN_RUN(td);
1866	} else if (TD_IS_RUNNING(td)) {
1867		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1868		srqflag = preempted ?
1869		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1870		    SRQ_OURSELF|SRQ_YIELDING;
1871#ifdef SMP
1872		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1873			ts->ts_cpu = sched_pickcpu(td, 0);
1874#endif
1875		if (ts->ts_cpu == cpuid)
1876			tdq_runq_add(tdq, td, srqflag);
1877		else {
1878			KASSERT(THREAD_CAN_MIGRATE(td) ||
1879			    (ts->ts_flags & TSF_BOUND) != 0,
1880			    ("Thread %p shouldn't migrate", td));
1881			mtx = sched_switch_migrate(tdq, td, srqflag);
1882		}
1883	} else {
1884		/* This thread must be going to sleep. */
1885		TDQ_LOCK(tdq);
1886		mtx = thread_lock_block(td);
1887		tdq_load_rem(tdq, td);
1888	}
1889	/*
1890	 * We enter here with the thread blocked and assigned to the
1891	 * appropriate cpu run-queue or sleep-queue and with the current
1892	 * thread-queue locked.
1893	 */
1894	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1895	newtd = choosethread();
1896	/*
1897	 * Call the MD code to switch contexts if necessary.
1898	 */
1899	if (td != newtd) {
1900#ifdef	HWPMC_HOOKS
1901		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1902			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1903#endif
1904		SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
1905		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1906		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1907		sched_pctcpu_update(newtd->td_sched, 0);
1908
1909#ifdef KDTRACE_HOOKS
1910		/*
1911		 * If DTrace has set the active vtime enum to anything
1912		 * other than INACTIVE (0), then it should have set the
1913		 * function to call.
1914		 */
1915		if (dtrace_vtime_active)
1916			(*dtrace_vtime_switch_func)(newtd);
1917#endif
1918
1919		cpu_switch(td, newtd, mtx);
1920		/*
1921		 * We may return from cpu_switch on a different cpu.  However,
1922		 * we always return with td_lock pointing to the current cpu's
1923		 * run queue lock.
1924		 */
1925		cpuid = PCPU_GET(cpuid);
1926		tdq = TDQ_CPU(cpuid);
1927		lock_profile_obtain_lock_success(
1928		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1929
1930		SDT_PROBE0(sched, , , on_cpu);
1931#ifdef	HWPMC_HOOKS
1932		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1933			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1934#endif
1935	} else {
1936		thread_unblock_switch(td, mtx);
1937		SDT_PROBE0(sched, , , remain_cpu);
1938	}
1939	/*
1940	 * Assert that all went well and return.
1941	 */
1942	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1943	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1944	td->td_oncpu = cpuid;
1945}
1946
1947/*
1948 * Adjust thread priorities as a result of a nice request.
1949 */
1950void
1951sched_nice(struct proc *p, int nice)
1952{
1953	struct thread *td;
1954
1955	PROC_LOCK_ASSERT(p, MA_OWNED);
1956
1957	p->p_nice = nice;
1958	FOREACH_THREAD_IN_PROC(p, td) {
1959		thread_lock(td);
1960		sched_priority(td);
1961		sched_prio(td, td->td_base_user_pri);
1962		thread_unlock(td);
1963	}
1964}
1965
1966/*
1967 * Record the sleep time for the interactivity scorer.
1968 */
1969void
1970sched_sleep(struct thread *td, int prio)
1971{
1972
1973	THREAD_LOCK_ASSERT(td, MA_OWNED);
1974
1975	td->td_slptick = ticks;
1976	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1977		td->td_flags |= TDF_CANSWAP;
1978	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1979		return;
1980	if (static_boost == 1 && prio)
1981		sched_prio(td, prio);
1982	else if (static_boost && td->td_priority > static_boost)
1983		sched_prio(td, static_boost);
1984}
1985
1986/*
1987 * Schedule a thread to resume execution and record how long it voluntarily
1988 * slept.  We also update the pctcpu, interactivity, and priority.
1989 */
1990void
1991sched_wakeup(struct thread *td)
1992{
1993	struct td_sched *ts;
1994	int slptick;
1995
1996	THREAD_LOCK_ASSERT(td, MA_OWNED);
1997	ts = td->td_sched;
1998	td->td_flags &= ~TDF_CANSWAP;
1999	/*
2000	 * If we slept for more than a tick update our interactivity and
2001	 * priority.
2002	 */
2003	slptick = td->td_slptick;
2004	td->td_slptick = 0;
2005	if (slptick && slptick != ticks) {
2006		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2007		sched_interact_update(td);
2008		sched_pctcpu_update(ts, 0);
2009	}
2010	/* Reset the slice value after we sleep. */
2011	ts->ts_slice = sched_slice;
2012	sched_add(td, SRQ_BORING);
2013}
2014
2015/*
2016 * Penalize the parent for creating a new child and initialize the child's
2017 * priority.
2018 */
2019void
2020sched_fork(struct thread *td, struct thread *child)
2021{
2022	THREAD_LOCK_ASSERT(td, MA_OWNED);
2023	sched_pctcpu_update(td->td_sched, 1);
2024	sched_fork_thread(td, child);
2025	/*
2026	 * Penalize the parent and child for forking.
2027	 */
2028	sched_interact_fork(child);
2029	sched_priority(child);
2030	td->td_sched->ts_runtime += tickincr;
2031	sched_interact_update(td);
2032	sched_priority(td);
2033}
2034
2035/*
2036 * Fork a new thread, may be within the same process.
2037 */
2038void
2039sched_fork_thread(struct thread *td, struct thread *child)
2040{
2041	struct td_sched *ts;
2042	struct td_sched *ts2;
2043
2044	THREAD_LOCK_ASSERT(td, MA_OWNED);
2045	/*
2046	 * Initialize child.
2047	 */
2048	ts = td->td_sched;
2049	ts2 = child->td_sched;
2050	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2051	child->td_cpuset = cpuset_ref(td->td_cpuset);
2052	ts2->ts_cpu = ts->ts_cpu;
2053	ts2->ts_flags = 0;
2054	/*
2055	 * Grab our parents cpu estimation information.
2056	 */
2057	ts2->ts_ticks = ts->ts_ticks;
2058	ts2->ts_ltick = ts->ts_ltick;
2059	ts2->ts_ftick = ts->ts_ftick;
2060	/*
2061	 * Do not inherit any borrowed priority from the parent.
2062	 */
2063	child->td_priority = child->td_base_pri;
2064	/*
2065	 * And update interactivity score.
2066	 */
2067	ts2->ts_slptime = ts->ts_slptime;
2068	ts2->ts_runtime = ts->ts_runtime;
2069	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2070#ifdef KTR
2071	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2072#endif
2073}
2074
2075/*
2076 * Adjust the priority class of a thread.
2077 */
2078void
2079sched_class(struct thread *td, int class)
2080{
2081
2082	THREAD_LOCK_ASSERT(td, MA_OWNED);
2083	if (td->td_pri_class == class)
2084		return;
2085	td->td_pri_class = class;
2086}
2087
2088/*
2089 * Return some of the child's priority and interactivity to the parent.
2090 */
2091void
2092sched_exit(struct proc *p, struct thread *child)
2093{
2094	struct thread *td;
2095
2096	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2097	    "prio:%d", child->td_priority);
2098	PROC_LOCK_ASSERT(p, MA_OWNED);
2099	td = FIRST_THREAD_IN_PROC(p);
2100	sched_exit_thread(td, child);
2101}
2102
2103/*
2104 * Penalize another thread for the time spent on this one.  This helps to
2105 * worsen the priority and interactivity of processes which schedule batch
2106 * jobs such as make.  This has little effect on the make process itself but
2107 * causes new processes spawned by it to receive worse scores immediately.
2108 */
2109void
2110sched_exit_thread(struct thread *td, struct thread *child)
2111{
2112
2113	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2114	    "prio:%d", child->td_priority);
2115	/*
2116	 * Give the child's runtime to the parent without returning the
2117	 * sleep time as a penalty to the parent.  This causes shells that
2118	 * launch expensive things to mark their children as expensive.
2119	 */
2120	thread_lock(td);
2121	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2122	sched_interact_update(td);
2123	sched_priority(td);
2124	thread_unlock(td);
2125}
2126
2127void
2128sched_preempt(struct thread *td)
2129{
2130	struct tdq *tdq;
2131
2132	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2133
2134	thread_lock(td);
2135	tdq = TDQ_SELF();
2136	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2137	tdq->tdq_ipipending = 0;
2138	if (td->td_priority > tdq->tdq_lowpri) {
2139		int flags;
2140
2141		flags = SW_INVOL | SW_PREEMPT;
2142		if (td->td_critnest > 1)
2143			td->td_owepreempt = 1;
2144		else if (TD_IS_IDLETHREAD(td))
2145			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2146		else
2147			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2148	}
2149	thread_unlock(td);
2150}
2151
2152/*
2153 * Fix priorities on return to user-space.  Priorities may be elevated due
2154 * to static priorities in msleep() or similar.
2155 */
2156void
2157sched_userret(struct thread *td)
2158{
2159	/*
2160	 * XXX we cheat slightly on the locking here to avoid locking in
2161	 * the usual case.  Setting td_priority here is essentially an
2162	 * incomplete workaround for not setting it properly elsewhere.
2163	 * Now that some interrupt handlers are threads, not setting it
2164	 * properly elsewhere can clobber it in the window between setting
2165	 * it here and returning to user mode, so don't waste time setting
2166	 * it perfectly here.
2167	 */
2168	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2169	    ("thread with borrowed priority returning to userland"));
2170	if (td->td_priority != td->td_user_pri) {
2171		thread_lock(td);
2172		td->td_priority = td->td_user_pri;
2173		td->td_base_pri = td->td_user_pri;
2174		tdq_setlowpri(TDQ_SELF(), td);
2175		thread_unlock(td);
2176        }
2177}
2178
2179/*
2180 * Handle a stathz tick.  This is really only relevant for timeshare
2181 * threads.
2182 */
2183void
2184sched_clock(struct thread *td)
2185{
2186	struct tdq *tdq;
2187	struct td_sched *ts;
2188
2189	THREAD_LOCK_ASSERT(td, MA_OWNED);
2190	tdq = TDQ_SELF();
2191#ifdef SMP
2192	/*
2193	 * We run the long term load balancer infrequently on the first cpu.
2194	 */
2195	if (balance_tdq == tdq) {
2196		if (balance_ticks && --balance_ticks == 0)
2197			sched_balance();
2198	}
2199#endif
2200	/*
2201	 * Save the old switch count so we have a record of the last ticks
2202	 * activity.   Initialize the new switch count based on our load.
2203	 * If there is some activity seed it to reflect that.
2204	 */
2205	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2206	tdq->tdq_switchcnt = tdq->tdq_load;
2207	/*
2208	 * Advance the insert index once for each tick to ensure that all
2209	 * threads get a chance to run.
2210	 */
2211	if (tdq->tdq_idx == tdq->tdq_ridx) {
2212		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2213		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2214			tdq->tdq_ridx = tdq->tdq_idx;
2215	}
2216	ts = td->td_sched;
2217	sched_pctcpu_update(ts, 1);
2218	if (td->td_pri_class & PRI_FIFO_BIT)
2219		return;
2220	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2221		/*
2222		 * We used a tick; charge it to the thread so
2223		 * that we can compute our interactivity.
2224		 */
2225		td->td_sched->ts_runtime += tickincr;
2226		sched_interact_update(td);
2227		sched_priority(td);
2228	}
2229
2230	/*
2231	 * Force a context switch if the current thread has used up a full
2232	 * time slice (default is 100ms).
2233	 */
2234	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
2235		ts->ts_slice = sched_slice;
2236		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2237	}
2238}
2239
2240/*
2241 * Called once per hz tick.
2242 */
2243void
2244sched_tick(int cnt)
2245{
2246
2247}
2248
2249/*
2250 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2251 * cooperative idle threads.
2252 */
2253int
2254sched_runnable(void)
2255{
2256	struct tdq *tdq;
2257	int load;
2258
2259	load = 1;
2260
2261	tdq = TDQ_SELF();
2262	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2263		if (tdq->tdq_load > 0)
2264			goto out;
2265	} else
2266		if (tdq->tdq_load - 1 > 0)
2267			goto out;
2268	load = 0;
2269out:
2270	return (load);
2271}
2272
2273/*
2274 * Choose the highest priority thread to run.  The thread is removed from
2275 * the run-queue while running however the load remains.  For SMP we set
2276 * the tdq in the global idle bitmask if it idles here.
2277 */
2278struct thread *
2279sched_choose(void)
2280{
2281	struct thread *td;
2282	struct tdq *tdq;
2283
2284	tdq = TDQ_SELF();
2285	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2286	td = tdq_choose(tdq);
2287	if (td) {
2288		tdq_runq_rem(tdq, td);
2289		tdq->tdq_lowpri = td->td_priority;
2290		return (td);
2291	}
2292	tdq->tdq_lowpri = PRI_MAX_IDLE;
2293	return (PCPU_GET(idlethread));
2294}
2295
2296/*
2297 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2298 * we always request it once we exit a critical section.
2299 */
2300static inline void
2301sched_setpreempt(struct thread *td)
2302{
2303	struct thread *ctd;
2304	int cpri;
2305	int pri;
2306
2307	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2308
2309	ctd = curthread;
2310	pri = td->td_priority;
2311	cpri = ctd->td_priority;
2312	if (pri < cpri)
2313		ctd->td_flags |= TDF_NEEDRESCHED;
2314	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2315		return;
2316	if (!sched_shouldpreempt(pri, cpri, 0))
2317		return;
2318	ctd->td_owepreempt = 1;
2319}
2320
2321/*
2322 * Add a thread to a thread queue.  Select the appropriate runq and add the
2323 * thread to it.  This is the internal function called when the tdq is
2324 * predetermined.
2325 */
2326void
2327tdq_add(struct tdq *tdq, struct thread *td, int flags)
2328{
2329
2330	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2331	KASSERT((td->td_inhibitors == 0),
2332	    ("sched_add: trying to run inhibited thread"));
2333	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2334	    ("sched_add: bad thread state"));
2335	KASSERT(td->td_flags & TDF_INMEM,
2336	    ("sched_add: thread swapped out"));
2337
2338	if (td->td_priority < tdq->tdq_lowpri)
2339		tdq->tdq_lowpri = td->td_priority;
2340	tdq_runq_add(tdq, td, flags);
2341	tdq_load_add(tdq, td);
2342}
2343
2344/*
2345 * Select the target thread queue and add a thread to it.  Request
2346 * preemption or IPI a remote processor if required.
2347 */
2348void
2349sched_add(struct thread *td, int flags)
2350{
2351	struct tdq *tdq;
2352#ifdef SMP
2353	int cpu;
2354#endif
2355
2356	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2357	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2358	    sched_tdname(curthread));
2359	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2360	    KTR_ATTR_LINKED, sched_tdname(td));
2361	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2362	    flags & SRQ_PREEMPTED);
2363	THREAD_LOCK_ASSERT(td, MA_OWNED);
2364	/*
2365	 * Recalculate the priority before we select the target cpu or
2366	 * run-queue.
2367	 */
2368	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2369		sched_priority(td);
2370#ifdef SMP
2371	/*
2372	 * Pick the destination cpu and if it isn't ours transfer to the
2373	 * target cpu.
2374	 */
2375	cpu = sched_pickcpu(td, flags);
2376	tdq = sched_setcpu(td, cpu, flags);
2377	tdq_add(tdq, td, flags);
2378	if (cpu != PCPU_GET(cpuid)) {
2379		tdq_notify(tdq, td);
2380		return;
2381	}
2382#else
2383	tdq = TDQ_SELF();
2384	TDQ_LOCK(tdq);
2385	/*
2386	 * Now that the thread is moving to the run-queue, set the lock
2387	 * to the scheduler's lock.
2388	 */
2389	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2390	tdq_add(tdq, td, flags);
2391#endif
2392	if (!(flags & SRQ_YIELDING))
2393		sched_setpreempt(td);
2394}
2395
2396/*
2397 * Remove a thread from a run-queue without running it.  This is used
2398 * when we're stealing a thread from a remote queue.  Otherwise all threads
2399 * exit by calling sched_exit_thread() and sched_throw() themselves.
2400 */
2401void
2402sched_rem(struct thread *td)
2403{
2404	struct tdq *tdq;
2405
2406	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2407	    "prio:%d", td->td_priority);
2408	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2409	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2410	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2411	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2412	KASSERT(TD_ON_RUNQ(td),
2413	    ("sched_rem: thread not on run queue"));
2414	tdq_runq_rem(tdq, td);
2415	tdq_load_rem(tdq, td);
2416	TD_SET_CAN_RUN(td);
2417	if (td->td_priority == tdq->tdq_lowpri)
2418		tdq_setlowpri(tdq, NULL);
2419}
2420
2421/*
2422 * Fetch cpu utilization information.  Updates on demand.
2423 */
2424fixpt_t
2425sched_pctcpu(struct thread *td)
2426{
2427	fixpt_t pctcpu;
2428	struct td_sched *ts;
2429
2430	pctcpu = 0;
2431	ts = td->td_sched;
2432	if (ts == NULL)
2433		return (0);
2434
2435	THREAD_LOCK_ASSERT(td, MA_OWNED);
2436	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2437	if (ts->ts_ticks) {
2438		int rtick;
2439
2440		/* How many rtick per second ? */
2441		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2442		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2443	}
2444
2445	return (pctcpu);
2446}
2447
2448/*
2449 * Enforce affinity settings for a thread.  Called after adjustments to
2450 * cpumask.
2451 */
2452void
2453sched_affinity(struct thread *td)
2454{
2455#ifdef SMP
2456	struct td_sched *ts;
2457
2458	THREAD_LOCK_ASSERT(td, MA_OWNED);
2459	ts = td->td_sched;
2460	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2461		return;
2462	if (TD_ON_RUNQ(td)) {
2463		sched_rem(td);
2464		sched_add(td, SRQ_BORING);
2465		return;
2466	}
2467	if (!TD_IS_RUNNING(td))
2468		return;
2469	/*
2470	 * Force a switch before returning to userspace.  If the
2471	 * target thread is not running locally send an ipi to force
2472	 * the issue.
2473	 */
2474	td->td_flags |= TDF_NEEDRESCHED;
2475	if (td != curthread)
2476		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2477#endif
2478}
2479
2480/*
2481 * Bind a thread to a target cpu.
2482 */
2483void
2484sched_bind(struct thread *td, int cpu)
2485{
2486	struct td_sched *ts;
2487
2488	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2489	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2490	ts = td->td_sched;
2491	if (ts->ts_flags & TSF_BOUND)
2492		sched_unbind(td);
2493	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2494	ts->ts_flags |= TSF_BOUND;
2495	sched_pin();
2496	if (PCPU_GET(cpuid) == cpu)
2497		return;
2498	ts->ts_cpu = cpu;
2499	/* When we return from mi_switch we'll be on the correct cpu. */
2500	mi_switch(SW_VOL, NULL);
2501}
2502
2503/*
2504 * Release a bound thread.
2505 */
2506void
2507sched_unbind(struct thread *td)
2508{
2509	struct td_sched *ts;
2510
2511	THREAD_LOCK_ASSERT(td, MA_OWNED);
2512	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2513	ts = td->td_sched;
2514	if ((ts->ts_flags & TSF_BOUND) == 0)
2515		return;
2516	ts->ts_flags &= ~TSF_BOUND;
2517	sched_unpin();
2518}
2519
2520int
2521sched_is_bound(struct thread *td)
2522{
2523	THREAD_LOCK_ASSERT(td, MA_OWNED);
2524	return (td->td_sched->ts_flags & TSF_BOUND);
2525}
2526
2527/*
2528 * Basic yield call.
2529 */
2530void
2531sched_relinquish(struct thread *td)
2532{
2533	thread_lock(td);
2534	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2535	thread_unlock(td);
2536}
2537
2538/*
2539 * Return the total system load.
2540 */
2541int
2542sched_load(void)
2543{
2544#ifdef SMP
2545	int total;
2546	int i;
2547
2548	total = 0;
2549	CPU_FOREACH(i)
2550		total += TDQ_CPU(i)->tdq_sysload;
2551	return (total);
2552#else
2553	return (TDQ_SELF()->tdq_sysload);
2554#endif
2555}
2556
2557int
2558sched_sizeof_proc(void)
2559{
2560	return (sizeof(struct proc));
2561}
2562
2563int
2564sched_sizeof_thread(void)
2565{
2566	return (sizeof(struct thread) + sizeof(struct td_sched));
2567}
2568
2569#ifdef SMP
2570#define	TDQ_IDLESPIN(tdq)						\
2571    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2572#else
2573#define	TDQ_IDLESPIN(tdq)	1
2574#endif
2575
2576/*
2577 * The actual idle process.
2578 */
2579void
2580sched_idletd(void *dummy)
2581{
2582	struct thread *td;
2583	struct tdq *tdq;
2584	int switchcnt;
2585	int i;
2586
2587	mtx_assert(&Giant, MA_NOTOWNED);
2588	td = curthread;
2589	tdq = TDQ_SELF();
2590	for (;;) {
2591#ifdef SMP
2592		if (tdq_idled(tdq) == 0)
2593			continue;
2594#endif
2595		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2596		/*
2597		 * If we're switching very frequently, spin while checking
2598		 * for load rather than entering a low power state that
2599		 * may require an IPI.  However, don't do any busy
2600		 * loops while on SMT machines as this simply steals
2601		 * cycles from cores doing useful work.
2602		 */
2603		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2604			for (i = 0; i < sched_idlespins; i++) {
2605				if (tdq->tdq_load)
2606					break;
2607				cpu_spinwait();
2608			}
2609		}
2610		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2611		if (tdq->tdq_load == 0) {
2612			tdq->tdq_cpu_idle = 1;
2613			if (tdq->tdq_load == 0) {
2614				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2615				tdq->tdq_switchcnt++;
2616			}
2617			tdq->tdq_cpu_idle = 0;
2618		}
2619		if (tdq->tdq_load) {
2620			thread_lock(td);
2621			mi_switch(SW_VOL | SWT_IDLE, NULL);
2622			thread_unlock(td);
2623		}
2624	}
2625}
2626
2627/*
2628 * A CPU is entering for the first time or a thread is exiting.
2629 */
2630void
2631sched_throw(struct thread *td)
2632{
2633	struct thread *newtd;
2634	struct tdq *tdq;
2635
2636	tdq = TDQ_SELF();
2637	if (td == NULL) {
2638		/* Correct spinlock nesting and acquire the correct lock. */
2639		TDQ_LOCK(tdq);
2640		spinlock_exit();
2641		PCPU_SET(switchtime, cpu_ticks());
2642		PCPU_SET(switchticks, ticks);
2643	} else {
2644		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2645		tdq_load_rem(tdq, td);
2646		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2647	}
2648	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2649	newtd = choosethread();
2650	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2651	cpu_throw(td, newtd);		/* doesn't return */
2652}
2653
2654/*
2655 * This is called from fork_exit().  Just acquire the correct locks and
2656 * let fork do the rest of the work.
2657 */
2658void
2659sched_fork_exit(struct thread *td)
2660{
2661	struct td_sched *ts;
2662	struct tdq *tdq;
2663	int cpuid;
2664
2665	/*
2666	 * Finish setting up thread glue so that it begins execution in a
2667	 * non-nested critical section with the scheduler lock held.
2668	 */
2669	cpuid = PCPU_GET(cpuid);
2670	tdq = TDQ_CPU(cpuid);
2671	ts = td->td_sched;
2672	if (TD_IS_IDLETHREAD(td))
2673		td->td_lock = TDQ_LOCKPTR(tdq);
2674	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2675	td->td_oncpu = cpuid;
2676	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2677	lock_profile_obtain_lock_success(
2678	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2679}
2680
2681/*
2682 * Create on first use to catch odd startup conditons.
2683 */
2684char *
2685sched_tdname(struct thread *td)
2686{
2687#ifdef KTR
2688	struct td_sched *ts;
2689
2690	ts = td->td_sched;
2691	if (ts->ts_name[0] == '\0')
2692		snprintf(ts->ts_name, sizeof(ts->ts_name),
2693		    "%s tid %d", td->td_name, td->td_tid);
2694	return (ts->ts_name);
2695#else
2696	return (td->td_name);
2697#endif
2698}
2699
2700#ifdef KTR
2701void
2702sched_clear_tdname(struct thread *td)
2703{
2704	struct td_sched *ts;
2705
2706	ts = td->td_sched;
2707	ts->ts_name[0] = '\0';
2708}
2709#endif
2710
2711#ifdef SMP
2712
2713/*
2714 * Build the CPU topology dump string. Is recursively called to collect
2715 * the topology tree.
2716 */
2717static int
2718sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2719    int indent)
2720{
2721	char cpusetbuf[CPUSETBUFSIZ];
2722	int i, first;
2723
2724	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2725	    "", 1 + indent / 2, cg->cg_level);
2726	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2727	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2728	first = TRUE;
2729	for (i = 0; i < MAXCPU; i++) {
2730		if (CPU_ISSET(i, &cg->cg_mask)) {
2731			if (!first)
2732				sbuf_printf(sb, ", ");
2733			else
2734				first = FALSE;
2735			sbuf_printf(sb, "%d", i);
2736		}
2737	}
2738	sbuf_printf(sb, "</cpu>\n");
2739
2740	if (cg->cg_flags != 0) {
2741		sbuf_printf(sb, "%*s <flags>", indent, "");
2742		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2743			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2744		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2745			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2746		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2747			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2748		sbuf_printf(sb, "</flags>\n");
2749	}
2750
2751	if (cg->cg_children > 0) {
2752		sbuf_printf(sb, "%*s <children>\n", indent, "");
2753		for (i = 0; i < cg->cg_children; i++)
2754			sysctl_kern_sched_topology_spec_internal(sb,
2755			    &cg->cg_child[i], indent+2);
2756		sbuf_printf(sb, "%*s </children>\n", indent, "");
2757	}
2758	sbuf_printf(sb, "%*s</group>\n", indent, "");
2759	return (0);
2760}
2761
2762/*
2763 * Sysctl handler for retrieving topology dump. It's a wrapper for
2764 * the recursive sysctl_kern_smp_topology_spec_internal().
2765 */
2766static int
2767sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2768{
2769	struct sbuf *topo;
2770	int err;
2771
2772	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2773
2774	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2775	if (topo == NULL)
2776		return (ENOMEM);
2777
2778	sbuf_printf(topo, "<groups>\n");
2779	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2780	sbuf_printf(topo, "</groups>\n");
2781
2782	if (err == 0) {
2783		sbuf_finish(topo);
2784		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2785	}
2786	sbuf_delete(topo);
2787	return (err);
2788}
2789
2790#endif
2791
2792static int
2793sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2794{
2795	int error, new_val, period;
2796
2797	period = 1000000 / realstathz;
2798	new_val = period * sched_slice;
2799	error = sysctl_handle_int(oidp, &new_val, 0, req);
2800	if (error != 0 || req->newptr == NULL)
2801		return (error);
2802	if (new_val <= 0)
2803		return (EINVAL);
2804	sched_slice = imax(1, (new_val + period / 2) / period);
2805	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2806	    realstathz);
2807	return (0);
2808}
2809
2810SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2811SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2812    "Scheduler name");
2813SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2814    NULL, 0, sysctl_kern_quantum, "I",
2815    "Quantum for timeshare threads in microseconds");
2816SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2817    "Quantum for timeshare threads in stathz ticks");
2818SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2819    "Interactivity score threshold");
2820SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2821    &preempt_thresh, 0,
2822    "Maximal (lowest) priority for preemption");
2823SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2824    "Assign static kernel priorities to sleeping threads");
2825SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2826    "Number of times idle thread will spin waiting for new work");
2827SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2828    &sched_idlespinthresh, 0,
2829    "Threshold before we will permit idle thread spinning");
2830#ifdef SMP
2831SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2832    "Number of hz ticks to keep thread affinity for");
2833SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2834    "Enables the long-term load balancer");
2835SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2836    &balance_interval, 0,
2837    "Average period in stathz ticks to run the long-term balancer");
2838SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2839    "Attempts to steal work from other cores before idling");
2840SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2841    "Minimum load on remote CPU before we'll steal");
2842SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2843    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2844    "XML dump of detected CPU topology");
2845#endif
2846
2847/* ps compat.  All cpu percentages from ULE are weighted. */
2848static int ccpu = 0;
2849SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2850