sched_ule.c revision 241248
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/9/sys/kern/sched_ule.c 241248 2012-10-06 12:51:16Z mav $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#if defined(__powerpc__) && defined(E500)
81#error "This architecture is not currently compatible with ULE"
82#endif
83
84#define	KTR_ULE	0
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89
90/*
91 * Thread scheduler specific section.  All fields are protected
92 * by the thread lock.
93 */
94struct td_sched {
95	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96	short		ts_flags;	/* TSF_* flags. */
97	u_char		ts_cpu;		/* CPU that we have affinity for. */
98	int		ts_rltick;	/* Real last tick, for affinity. */
99	int		ts_slice;	/* Ticks of slice remaining. */
100	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101	u_int		ts_runtime;	/* Number of ticks we were running */
102	int		ts_ltick;	/* Last tick that we were running on */
103	int		ts_ftick;	/* First tick that we were running on */
104	int		ts_ticks;	/* Tick count */
105#ifdef KTR
106	char		ts_name[TS_NAME_LEN];
107#endif
108};
109/* flags kept in ts_flags */
110#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112
113static struct td_sched td_sched0;
114
115#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119/*
120 * Priority ranges used for interactive and non-interactive timeshare
121 * threads.  The timeshare priorities are split up into four ranges.
122 * The first range handles interactive threads.  The last three ranges
123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124 * ranges supporting nice values.
125 */
126#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129
130#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/* Flags kept in td_flags. */
193#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
194
195/*
196 * tickincr:		Converts a stathz tick into a hz domain scaled by
197 *			the shift factor.  Without the shift the error rate
198 *			due to rounding would be unacceptably high.
199 * realstathz:		stathz is sometimes 0 and run off of hz.
200 * sched_slice:		Runtime of each thread before rescheduling.
201 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
202 */
203static int sched_interact = SCHED_INTERACT_THRESH;
204static int realstathz;
205static int tickincr;
206static int sched_slice = 1;
207#ifdef PREEMPTION
208#ifdef FULL_PREEMPTION
209static int preempt_thresh = PRI_MAX_IDLE;
210#else
211static int preempt_thresh = PRI_MIN_KERN;
212#endif
213#else
214static int preempt_thresh = 0;
215#endif
216static int static_boost = PRI_MIN_BATCH;
217static int sched_idlespins = 10000;
218static int sched_idlespinthresh = -1;
219
220/*
221 * tdq - per processor runqs and statistics.  All fields are protected by the
222 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
223 * locking in sched_pickcpu();
224 */
225struct tdq {
226	/* Ordered to improve efficiency of cpu_search() and switch(). */
227	struct mtx	tdq_lock;		/* run queue lock. */
228	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
229	volatile int	tdq_load;		/* Aggregate load. */
230	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
231	int		tdq_sysload;		/* For loadavg, !ITHD load. */
232	int		tdq_transferable;	/* Transferable thread count. */
233	short		tdq_switchcnt;		/* Switches this tick. */
234	short		tdq_oldswitchcnt;	/* Switches last tick. */
235	u_char		tdq_lowpri;		/* Lowest priority thread. */
236	u_char		tdq_ipipending;		/* IPI pending. */
237	u_char		tdq_idx;		/* Current insert index. */
238	u_char		tdq_ridx;		/* Current removal index. */
239	struct runq	tdq_realtime;		/* real-time run queue. */
240	struct runq	tdq_timeshare;		/* timeshare run queue. */
241	struct runq	tdq_idle;		/* Queue of IDLE threads. */
242	char		tdq_name[TDQ_NAME_LEN];
243#ifdef KTR
244	char		tdq_loadname[TDQ_LOADNAME_LEN];
245#endif
246} __aligned(64);
247
248/* Idle thread states and config. */
249#define	TDQ_RUNNING	1
250#define	TDQ_IDLE	2
251
252#ifdef SMP
253struct cpu_group *cpu_top;		/* CPU topology */
254
255#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
256#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
257
258/*
259 * Run-time tunables.
260 */
261static int rebalance = 1;
262static int balance_interval = 128;	/* Default set in sched_initticks(). */
263static int affinity;
264static int steal_idle = 1;
265static int steal_thresh = 2;
266
267/*
268 * One thread queue per processor.
269 */
270static struct tdq	tdq_cpu[MAXCPU];
271static struct tdq	*balance_tdq;
272static int balance_ticks;
273static DPCPU_DEFINE(uint32_t, randomval);
274
275#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
276#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
277#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
278#else	/* !SMP */
279static struct tdq	tdq_cpu;
280
281#define	TDQ_ID(x)	(0)
282#define	TDQ_SELF()	(&tdq_cpu)
283#define	TDQ_CPU(x)	(&tdq_cpu)
284#endif
285
286#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
287#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
288#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
289#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
290#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
291
292static void sched_priority(struct thread *);
293static void sched_thread_priority(struct thread *, u_char);
294static int sched_interact_score(struct thread *);
295static void sched_interact_update(struct thread *);
296static void sched_interact_fork(struct thread *);
297static void sched_pctcpu_update(struct td_sched *, int);
298
299/* Operations on per processor queues */
300static struct thread *tdq_choose(struct tdq *);
301static void tdq_setup(struct tdq *);
302static void tdq_load_add(struct tdq *, struct thread *);
303static void tdq_load_rem(struct tdq *, struct thread *);
304static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
305static __inline void tdq_runq_rem(struct tdq *, struct thread *);
306static inline int sched_shouldpreempt(int, int, int);
307void tdq_print(int cpu);
308static void runq_print(struct runq *rq);
309static void tdq_add(struct tdq *, struct thread *, int);
310#ifdef SMP
311static int tdq_move(struct tdq *, struct tdq *);
312static int tdq_idled(struct tdq *);
313static void tdq_notify(struct tdq *, struct thread *);
314static struct thread *tdq_steal(struct tdq *, int);
315static struct thread *runq_steal(struct runq *, int);
316static int sched_pickcpu(struct thread *, int);
317static void sched_balance(void);
318static int sched_balance_pair(struct tdq *, struct tdq *);
319static inline struct tdq *sched_setcpu(struct thread *, int, int);
320static inline void thread_unblock_switch(struct thread *, struct mtx *);
321static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
322static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
323static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
324    struct cpu_group *cg, int indent);
325#endif
326
327static void sched_setup(void *dummy);
328SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
329
330static void sched_initticks(void *dummy);
331SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
332    NULL);
333
334SDT_PROVIDER_DEFINE(sched);
335
336SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
337    "struct proc *", "uint8_t");
338SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
339    "struct proc *", "void *");
340SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
341    "struct proc *", "void *", "int");
342SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
343    "struct proc *", "uint8_t", "struct thread *");
344SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
345SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
346    "struct proc *");
347SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
348SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
349SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
350    "struct proc *");
351
352/*
353 * Print the threads waiting on a run-queue.
354 */
355static void
356runq_print(struct runq *rq)
357{
358	struct rqhead *rqh;
359	struct thread *td;
360	int pri;
361	int j;
362	int i;
363
364	for (i = 0; i < RQB_LEN; i++) {
365		printf("\t\trunq bits %d 0x%zx\n",
366		    i, rq->rq_status.rqb_bits[i]);
367		for (j = 0; j < RQB_BPW; j++)
368			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
369				pri = j + (i << RQB_L2BPW);
370				rqh = &rq->rq_queues[pri];
371				TAILQ_FOREACH(td, rqh, td_runq) {
372					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
373					    td, td->td_name, td->td_priority,
374					    td->td_rqindex, pri);
375				}
376			}
377	}
378}
379
380/*
381 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
382 */
383void
384tdq_print(int cpu)
385{
386	struct tdq *tdq;
387
388	tdq = TDQ_CPU(cpu);
389
390	printf("tdq %d:\n", TDQ_ID(tdq));
391	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
392	printf("\tLock name:      %s\n", tdq->tdq_name);
393	printf("\tload:           %d\n", tdq->tdq_load);
394	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
395	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
396	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
397	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
398	printf("\tload transferable: %d\n", tdq->tdq_transferable);
399	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
400	printf("\trealtime runq:\n");
401	runq_print(&tdq->tdq_realtime);
402	printf("\ttimeshare runq:\n");
403	runq_print(&tdq->tdq_timeshare);
404	printf("\tidle runq:\n");
405	runq_print(&tdq->tdq_idle);
406}
407
408static inline int
409sched_shouldpreempt(int pri, int cpri, int remote)
410{
411	/*
412	 * If the new priority is not better than the current priority there is
413	 * nothing to do.
414	 */
415	if (pri >= cpri)
416		return (0);
417	/*
418	 * Always preempt idle.
419	 */
420	if (cpri >= PRI_MIN_IDLE)
421		return (1);
422	/*
423	 * If preemption is disabled don't preempt others.
424	 */
425	if (preempt_thresh == 0)
426		return (0);
427	/*
428	 * Preempt if we exceed the threshold.
429	 */
430	if (pri <= preempt_thresh)
431		return (1);
432	/*
433	 * If we're interactive or better and there is non-interactive
434	 * or worse running preempt only remote processors.
435	 */
436	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
437		return (1);
438	return (0);
439}
440
441/*
442 * Add a thread to the actual run-queue.  Keeps transferable counts up to
443 * date with what is actually on the run-queue.  Selects the correct
444 * queue position for timeshare threads.
445 */
446static __inline void
447tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
448{
449	struct td_sched *ts;
450	u_char pri;
451
452	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
453	THREAD_LOCK_ASSERT(td, MA_OWNED);
454
455	pri = td->td_priority;
456	ts = td->td_sched;
457	TD_SET_RUNQ(td);
458	if (THREAD_CAN_MIGRATE(td)) {
459		tdq->tdq_transferable++;
460		ts->ts_flags |= TSF_XFERABLE;
461	}
462	if (pri < PRI_MIN_BATCH) {
463		ts->ts_runq = &tdq->tdq_realtime;
464	} else if (pri <= PRI_MAX_BATCH) {
465		ts->ts_runq = &tdq->tdq_timeshare;
466		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
467			("Invalid priority %d on timeshare runq", pri));
468		/*
469		 * This queue contains only priorities between MIN and MAX
470		 * realtime.  Use the whole queue to represent these values.
471		 */
472		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
473			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
474			pri = (pri + tdq->tdq_idx) % RQ_NQS;
475			/*
476			 * This effectively shortens the queue by one so we
477			 * can have a one slot difference between idx and
478			 * ridx while we wait for threads to drain.
479			 */
480			if (tdq->tdq_ridx != tdq->tdq_idx &&
481			    pri == tdq->tdq_ridx)
482				pri = (unsigned char)(pri - 1) % RQ_NQS;
483		} else
484			pri = tdq->tdq_ridx;
485		runq_add_pri(ts->ts_runq, td, pri, flags);
486		return;
487	} else
488		ts->ts_runq = &tdq->tdq_idle;
489	runq_add(ts->ts_runq, td, flags);
490}
491
492/*
493 * Remove a thread from a run-queue.  This typically happens when a thread
494 * is selected to run.  Running threads are not on the queue and the
495 * transferable count does not reflect them.
496 */
497static __inline void
498tdq_runq_rem(struct tdq *tdq, struct thread *td)
499{
500	struct td_sched *ts;
501
502	ts = td->td_sched;
503	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
504	KASSERT(ts->ts_runq != NULL,
505	    ("tdq_runq_remove: thread %p null ts_runq", td));
506	if (ts->ts_flags & TSF_XFERABLE) {
507		tdq->tdq_transferable--;
508		ts->ts_flags &= ~TSF_XFERABLE;
509	}
510	if (ts->ts_runq == &tdq->tdq_timeshare) {
511		if (tdq->tdq_idx != tdq->tdq_ridx)
512			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
513		else
514			runq_remove_idx(ts->ts_runq, td, NULL);
515	} else
516		runq_remove(ts->ts_runq, td);
517}
518
519/*
520 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
521 * for this thread to the referenced thread queue.
522 */
523static void
524tdq_load_add(struct tdq *tdq, struct thread *td)
525{
526
527	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
528	THREAD_LOCK_ASSERT(td, MA_OWNED);
529
530	tdq->tdq_load++;
531	if ((td->td_flags & TDF_NOLOAD) == 0)
532		tdq->tdq_sysload++;
533	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
534	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
535}
536
537/*
538 * Remove the load from a thread that is transitioning to a sleep state or
539 * exiting.
540 */
541static void
542tdq_load_rem(struct tdq *tdq, struct thread *td)
543{
544
545	THREAD_LOCK_ASSERT(td, MA_OWNED);
546	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
547	KASSERT(tdq->tdq_load != 0,
548	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
549
550	tdq->tdq_load--;
551	if ((td->td_flags & TDF_NOLOAD) == 0)
552		tdq->tdq_sysload--;
553	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
554	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
555}
556
557/*
558 * Set lowpri to its exact value by searching the run-queue and
559 * evaluating curthread.  curthread may be passed as an optimization.
560 */
561static void
562tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
563{
564	struct thread *td;
565
566	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
567	if (ctd == NULL)
568		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
569	td = tdq_choose(tdq);
570	if (td == NULL || td->td_priority > ctd->td_priority)
571		tdq->tdq_lowpri = ctd->td_priority;
572	else
573		tdq->tdq_lowpri = td->td_priority;
574}
575
576#ifdef SMP
577struct cpu_search {
578	cpuset_t cs_mask;
579	u_int	cs_prefer;
580	int	cs_pri;		/* Min priority for low. */
581	int	cs_limit;	/* Max load for low, min load for high. */
582	int	cs_cpu;
583	int	cs_load;
584};
585
586#define	CPU_SEARCH_LOWEST	0x1
587#define	CPU_SEARCH_HIGHEST	0x2
588#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
589
590#define	CPUSET_FOREACH(cpu, mask)				\
591	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
592		if (CPU_ISSET(cpu, &mask))
593
594static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
595    struct cpu_search *high, const int match);
596int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
597int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
598int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
599    struct cpu_search *high);
600
601/*
602 * Search the tree of cpu_groups for the lowest or highest loaded cpu
603 * according to the match argument.  This routine actually compares the
604 * load on all paths through the tree and finds the least loaded cpu on
605 * the least loaded path, which may differ from the least loaded cpu in
606 * the system.  This balances work among caches and busses.
607 *
608 * This inline is instantiated in three forms below using constants for the
609 * match argument.  It is reduced to the minimum set for each case.  It is
610 * also recursive to the depth of the tree.
611 */
612static __inline int
613cpu_search(const struct cpu_group *cg, struct cpu_search *low,
614    struct cpu_search *high, const int match)
615{
616	struct cpu_search lgroup;
617	struct cpu_search hgroup;
618	cpuset_t cpumask;
619	struct cpu_group *child;
620	struct tdq *tdq;
621	int cpu, i, hload, lload, load, total, rnd, *rndptr;
622
623	total = 0;
624	cpumask = cg->cg_mask;
625	if (match & CPU_SEARCH_LOWEST) {
626		lload = INT_MAX;
627		lgroup = *low;
628	}
629	if (match & CPU_SEARCH_HIGHEST) {
630		hload = INT_MIN;
631		hgroup = *high;
632	}
633
634	/* Iterate through the child CPU groups and then remaining CPUs. */
635	for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
636		if (i == 0) {
637			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
638				cpu--;
639			if (cpu < 0)
640				break;
641			child = NULL;
642		} else
643			child = &cg->cg_child[i - 1];
644
645		if (match & CPU_SEARCH_LOWEST)
646			lgroup.cs_cpu = -1;
647		if (match & CPU_SEARCH_HIGHEST)
648			hgroup.cs_cpu = -1;
649		if (child) {			/* Handle child CPU group. */
650			CPU_NAND(&cpumask, &child->cg_mask);
651			switch (match) {
652			case CPU_SEARCH_LOWEST:
653				load = cpu_search_lowest(child, &lgroup);
654				break;
655			case CPU_SEARCH_HIGHEST:
656				load = cpu_search_highest(child, &hgroup);
657				break;
658			case CPU_SEARCH_BOTH:
659				load = cpu_search_both(child, &lgroup, &hgroup);
660				break;
661			}
662		} else {			/* Handle child CPU. */
663			tdq = TDQ_CPU(cpu);
664			load = tdq->tdq_load * 256;
665			rndptr = DPCPU_PTR(randomval);
666			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
667			if (match & CPU_SEARCH_LOWEST) {
668				if (cpu == low->cs_prefer)
669					load -= 64;
670				/* If that CPU is allowed and get data. */
671				if (tdq->tdq_lowpri > lgroup.cs_pri &&
672				    tdq->tdq_load <= lgroup.cs_limit &&
673				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
674					lgroup.cs_cpu = cpu;
675					lgroup.cs_load = load - rnd;
676				}
677			}
678			if (match & CPU_SEARCH_HIGHEST)
679				if (tdq->tdq_load >= hgroup.cs_limit &&
680				    tdq->tdq_transferable &&
681				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
682					hgroup.cs_cpu = cpu;
683					hgroup.cs_load = load - rnd;
684				}
685		}
686		total += load;
687
688		/* We have info about child item. Compare it. */
689		if (match & CPU_SEARCH_LOWEST) {
690			if (lgroup.cs_cpu >= 0 &&
691			    (load < lload ||
692			     (load == lload && lgroup.cs_load < low->cs_load))) {
693				lload = load;
694				low->cs_cpu = lgroup.cs_cpu;
695				low->cs_load = lgroup.cs_load;
696			}
697		}
698		if (match & CPU_SEARCH_HIGHEST)
699			if (hgroup.cs_cpu >= 0 &&
700			    (load > hload ||
701			     (load == hload && hgroup.cs_load > high->cs_load))) {
702				hload = load;
703				high->cs_cpu = hgroup.cs_cpu;
704				high->cs_load = hgroup.cs_load;
705			}
706		if (child) {
707			i--;
708			if (i == 0 && CPU_EMPTY(&cpumask))
709				break;
710		} else
711			cpu--;
712	}
713	return (total);
714}
715
716/*
717 * cpu_search instantiations must pass constants to maintain the inline
718 * optimization.
719 */
720int
721cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
722{
723	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
724}
725
726int
727cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
728{
729	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
730}
731
732int
733cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
734    struct cpu_search *high)
735{
736	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
737}
738
739/*
740 * Find the cpu with the least load via the least loaded path that has a
741 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
742 * acceptable.
743 */
744static inline int
745sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
746    int prefer)
747{
748	struct cpu_search low;
749
750	low.cs_cpu = -1;
751	low.cs_prefer = prefer;
752	low.cs_mask = mask;
753	low.cs_pri = pri;
754	low.cs_limit = maxload;
755	cpu_search_lowest(cg, &low);
756	return low.cs_cpu;
757}
758
759/*
760 * Find the cpu with the highest load via the highest loaded path.
761 */
762static inline int
763sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
764{
765	struct cpu_search high;
766
767	high.cs_cpu = -1;
768	high.cs_mask = mask;
769	high.cs_limit = minload;
770	cpu_search_highest(cg, &high);
771	return high.cs_cpu;
772}
773
774/*
775 * Simultaneously find the highest and lowest loaded cpu reachable via
776 * cg.
777 */
778static inline void
779sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
780{
781	struct cpu_search high;
782	struct cpu_search low;
783
784	low.cs_cpu = -1;
785	low.cs_prefer = -1;
786	low.cs_pri = -1;
787	low.cs_limit = INT_MAX;
788	low.cs_mask = mask;
789	high.cs_cpu = -1;
790	high.cs_limit = -1;
791	high.cs_mask = mask;
792	cpu_search_both(cg, &low, &high);
793	*lowcpu = low.cs_cpu;
794	*highcpu = high.cs_cpu;
795	return;
796}
797
798static void
799sched_balance_group(struct cpu_group *cg)
800{
801	cpuset_t hmask, lmask;
802	int high, low, anylow;
803
804	CPU_FILL(&hmask);
805	for (;;) {
806		high = sched_highest(cg, hmask, 1);
807		/* Stop if there is no more CPU with transferrable threads. */
808		if (high == -1)
809			break;
810		CPU_CLR(high, &hmask);
811		CPU_COPY(&hmask, &lmask);
812		/* Stop if there is no more CPU left for low. */
813		if (CPU_EMPTY(&lmask))
814			break;
815		anylow = 1;
816nextlow:
817		low = sched_lowest(cg, lmask, -1,
818		    TDQ_CPU(high)->tdq_load - 1, high);
819		/* Stop if we looked well and found no less loaded CPU. */
820		if (anylow && low == -1)
821			break;
822		/* Go to next high if we found no less loaded CPU. */
823		if (low == -1)
824			continue;
825		/* Transfer thread from high to low. */
826		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
827			/* CPU that got thread can no longer be a donor. */
828			CPU_CLR(low, &hmask);
829		} else {
830			/*
831			 * If failed, then there is no threads on high
832			 * that can run on this low. Drop low from low
833			 * mask and look for different one.
834			 */
835			CPU_CLR(low, &lmask);
836			anylow = 0;
837			goto nextlow;
838		}
839	}
840}
841
842static void
843sched_balance(void)
844{
845	struct tdq *tdq;
846
847	/*
848	 * Select a random time between .5 * balance_interval and
849	 * 1.5 * balance_interval.
850	 */
851	balance_ticks = max(balance_interval / 2, 1);
852	balance_ticks += random() % balance_interval;
853	if (smp_started == 0 || rebalance == 0)
854		return;
855	tdq = TDQ_SELF();
856	TDQ_UNLOCK(tdq);
857	sched_balance_group(cpu_top);
858	TDQ_LOCK(tdq);
859}
860
861/*
862 * Lock two thread queues using their address to maintain lock order.
863 */
864static void
865tdq_lock_pair(struct tdq *one, struct tdq *two)
866{
867	if (one < two) {
868		TDQ_LOCK(one);
869		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
870	} else {
871		TDQ_LOCK(two);
872		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
873	}
874}
875
876/*
877 * Unlock two thread queues.  Order is not important here.
878 */
879static void
880tdq_unlock_pair(struct tdq *one, struct tdq *two)
881{
882	TDQ_UNLOCK(one);
883	TDQ_UNLOCK(two);
884}
885
886/*
887 * Transfer load between two imbalanced thread queues.
888 */
889static int
890sched_balance_pair(struct tdq *high, struct tdq *low)
891{
892	int moved;
893	int cpu;
894
895	tdq_lock_pair(high, low);
896	moved = 0;
897	/*
898	 * Determine what the imbalance is and then adjust that to how many
899	 * threads we actually have to give up (transferable).
900	 */
901	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
902	    (moved = tdq_move(high, low)) > 0) {
903		/*
904		 * In case the target isn't the current cpu IPI it to force a
905		 * reschedule with the new workload.
906		 */
907		cpu = TDQ_ID(low);
908		sched_pin();
909		if (cpu != PCPU_GET(cpuid))
910			ipi_cpu(cpu, IPI_PREEMPT);
911		sched_unpin();
912	}
913	tdq_unlock_pair(high, low);
914	return (moved);
915}
916
917/*
918 * Move a thread from one thread queue to another.
919 */
920static int
921tdq_move(struct tdq *from, struct tdq *to)
922{
923	struct td_sched *ts;
924	struct thread *td;
925	struct tdq *tdq;
926	int cpu;
927
928	TDQ_LOCK_ASSERT(from, MA_OWNED);
929	TDQ_LOCK_ASSERT(to, MA_OWNED);
930
931	tdq = from;
932	cpu = TDQ_ID(to);
933	td = tdq_steal(tdq, cpu);
934	if (td == NULL)
935		return (0);
936	ts = td->td_sched;
937	/*
938	 * Although the run queue is locked the thread may be blocked.  Lock
939	 * it to clear this and acquire the run-queue lock.
940	 */
941	thread_lock(td);
942	/* Drop recursive lock on from acquired via thread_lock(). */
943	TDQ_UNLOCK(from);
944	sched_rem(td);
945	ts->ts_cpu = cpu;
946	td->td_lock = TDQ_LOCKPTR(to);
947	tdq_add(to, td, SRQ_YIELDING);
948	return (1);
949}
950
951/*
952 * This tdq has idled.  Try to steal a thread from another cpu and switch
953 * to it.
954 */
955static int
956tdq_idled(struct tdq *tdq)
957{
958	struct cpu_group *cg;
959	struct tdq *steal;
960	cpuset_t mask;
961	int thresh;
962	int cpu;
963
964	if (smp_started == 0 || steal_idle == 0)
965		return (1);
966	CPU_FILL(&mask);
967	CPU_CLR(PCPU_GET(cpuid), &mask);
968	/* We don't want to be preempted while we're iterating. */
969	spinlock_enter();
970	for (cg = tdq->tdq_cg; cg != NULL; ) {
971		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
972			thresh = steal_thresh;
973		else
974			thresh = 1;
975		cpu = sched_highest(cg, mask, thresh);
976		if (cpu == -1) {
977			cg = cg->cg_parent;
978			continue;
979		}
980		steal = TDQ_CPU(cpu);
981		CPU_CLR(cpu, &mask);
982		tdq_lock_pair(tdq, steal);
983		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
984			tdq_unlock_pair(tdq, steal);
985			continue;
986		}
987		/*
988		 * If a thread was added while interrupts were disabled don't
989		 * steal one here.  If we fail to acquire one due to affinity
990		 * restrictions loop again with this cpu removed from the
991		 * set.
992		 */
993		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
994			tdq_unlock_pair(tdq, steal);
995			continue;
996		}
997		spinlock_exit();
998		TDQ_UNLOCK(steal);
999		mi_switch(SW_VOL | SWT_IDLE, NULL);
1000		thread_unlock(curthread);
1001
1002		return (0);
1003	}
1004	spinlock_exit();
1005	return (1);
1006}
1007
1008/*
1009 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1010 */
1011static void
1012tdq_notify(struct tdq *tdq, struct thread *td)
1013{
1014	struct thread *ctd;
1015	int pri;
1016	int cpu;
1017
1018	if (tdq->tdq_ipipending)
1019		return;
1020	cpu = td->td_sched->ts_cpu;
1021	pri = td->td_priority;
1022	ctd = pcpu_find(cpu)->pc_curthread;
1023	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1024		return;
1025	if (TD_IS_IDLETHREAD(ctd)) {
1026		/*
1027		 * If the MD code has an idle wakeup routine try that before
1028		 * falling back to IPI.
1029		 */
1030		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1031			return;
1032	}
1033	tdq->tdq_ipipending = 1;
1034	ipi_cpu(cpu, IPI_PREEMPT);
1035}
1036
1037/*
1038 * Steals load from a timeshare queue.  Honors the rotating queue head
1039 * index.
1040 */
1041static struct thread *
1042runq_steal_from(struct runq *rq, int cpu, u_char start)
1043{
1044	struct rqbits *rqb;
1045	struct rqhead *rqh;
1046	struct thread *td, *first;
1047	int bit;
1048	int pri;
1049	int i;
1050
1051	rqb = &rq->rq_status;
1052	bit = start & (RQB_BPW -1);
1053	pri = 0;
1054	first = NULL;
1055again:
1056	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1057		if (rqb->rqb_bits[i] == 0)
1058			continue;
1059		if (bit != 0) {
1060			for (pri = bit; pri < RQB_BPW; pri++)
1061				if (rqb->rqb_bits[i] & (1ul << pri))
1062					break;
1063			if (pri >= RQB_BPW)
1064				continue;
1065		} else
1066			pri = RQB_FFS(rqb->rqb_bits[i]);
1067		pri += (i << RQB_L2BPW);
1068		rqh = &rq->rq_queues[pri];
1069		TAILQ_FOREACH(td, rqh, td_runq) {
1070			if (first && THREAD_CAN_MIGRATE(td) &&
1071			    THREAD_CAN_SCHED(td, cpu))
1072				return (td);
1073			first = td;
1074		}
1075	}
1076	if (start != 0) {
1077		start = 0;
1078		goto again;
1079	}
1080
1081	if (first && THREAD_CAN_MIGRATE(first) &&
1082	    THREAD_CAN_SCHED(first, cpu))
1083		return (first);
1084	return (NULL);
1085}
1086
1087/*
1088 * Steals load from a standard linear queue.
1089 */
1090static struct thread *
1091runq_steal(struct runq *rq, int cpu)
1092{
1093	struct rqhead *rqh;
1094	struct rqbits *rqb;
1095	struct thread *td;
1096	int word;
1097	int bit;
1098
1099	rqb = &rq->rq_status;
1100	for (word = 0; word < RQB_LEN; word++) {
1101		if (rqb->rqb_bits[word] == 0)
1102			continue;
1103		for (bit = 0; bit < RQB_BPW; bit++) {
1104			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1105				continue;
1106			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1107			TAILQ_FOREACH(td, rqh, td_runq)
1108				if (THREAD_CAN_MIGRATE(td) &&
1109				    THREAD_CAN_SCHED(td, cpu))
1110					return (td);
1111		}
1112	}
1113	return (NULL);
1114}
1115
1116/*
1117 * Attempt to steal a thread in priority order from a thread queue.
1118 */
1119static struct thread *
1120tdq_steal(struct tdq *tdq, int cpu)
1121{
1122	struct thread *td;
1123
1124	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1125	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1126		return (td);
1127	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1128	    cpu, tdq->tdq_ridx)) != NULL)
1129		return (td);
1130	return (runq_steal(&tdq->tdq_idle, cpu));
1131}
1132
1133/*
1134 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1135 * current lock and returns with the assigned queue locked.
1136 */
1137static inline struct tdq *
1138sched_setcpu(struct thread *td, int cpu, int flags)
1139{
1140
1141	struct tdq *tdq;
1142
1143	THREAD_LOCK_ASSERT(td, MA_OWNED);
1144	tdq = TDQ_CPU(cpu);
1145	td->td_sched->ts_cpu = cpu;
1146	/*
1147	 * If the lock matches just return the queue.
1148	 */
1149	if (td->td_lock == TDQ_LOCKPTR(tdq))
1150		return (tdq);
1151#ifdef notyet
1152	/*
1153	 * If the thread isn't running its lockptr is a
1154	 * turnstile or a sleepqueue.  We can just lock_set without
1155	 * blocking.
1156	 */
1157	if (TD_CAN_RUN(td)) {
1158		TDQ_LOCK(tdq);
1159		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1160		return (tdq);
1161	}
1162#endif
1163	/*
1164	 * The hard case, migration, we need to block the thread first to
1165	 * prevent order reversals with other cpus locks.
1166	 */
1167	spinlock_enter();
1168	thread_lock_block(td);
1169	TDQ_LOCK(tdq);
1170	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1171	spinlock_exit();
1172	return (tdq);
1173}
1174
1175SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1176SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1177SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1178SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1179SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1180SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1181
1182static int
1183sched_pickcpu(struct thread *td, int flags)
1184{
1185	struct cpu_group *cg, *ccg;
1186	struct td_sched *ts;
1187	struct tdq *tdq;
1188	cpuset_t mask;
1189	int cpu, pri, self;
1190
1191	self = PCPU_GET(cpuid);
1192	ts = td->td_sched;
1193	if (smp_started == 0)
1194		return (self);
1195	/*
1196	 * Don't migrate a running thread from sched_switch().
1197	 */
1198	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1199		return (ts->ts_cpu);
1200	/*
1201	 * Prefer to run interrupt threads on the processors that generate
1202	 * the interrupt.
1203	 */
1204	pri = td->td_priority;
1205	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1206	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1207		SCHED_STAT_INC(pickcpu_intrbind);
1208		ts->ts_cpu = self;
1209		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1210			SCHED_STAT_INC(pickcpu_affinity);
1211			return (ts->ts_cpu);
1212		}
1213	}
1214	/*
1215	 * If the thread can run on the last cpu and the affinity has not
1216	 * expired or it is idle run it there.
1217	 */
1218	tdq = TDQ_CPU(ts->ts_cpu);
1219	cg = tdq->tdq_cg;
1220	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1221	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1222	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1223		if (cg->cg_flags & CG_FLAG_THREAD) {
1224			CPUSET_FOREACH(cpu, cg->cg_mask) {
1225				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1226					break;
1227			}
1228		} else
1229			cpu = INT_MAX;
1230		if (cpu > mp_maxid) {
1231			SCHED_STAT_INC(pickcpu_idle_affinity);
1232			return (ts->ts_cpu);
1233		}
1234	}
1235	/*
1236	 * Search for the last level cache CPU group in the tree.
1237	 * Skip caches with expired affinity time and SMT groups.
1238	 * Affinity to higher level caches will be handled less aggressively.
1239	 */
1240	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1241		if (cg->cg_flags & CG_FLAG_THREAD)
1242			continue;
1243		if (!SCHED_AFFINITY(ts, cg->cg_level))
1244			continue;
1245		ccg = cg;
1246	}
1247	if (ccg != NULL)
1248		cg = ccg;
1249	cpu = -1;
1250	/* Search the group for the less loaded idle CPU we can run now. */
1251	mask = td->td_cpuset->cs_mask;
1252	if (cg != NULL && cg != cpu_top &&
1253	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1254		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1255		    INT_MAX, ts->ts_cpu);
1256	/* Search globally for the less loaded CPU we can run now. */
1257	if (cpu == -1)
1258		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1259	/* Search globally for the less loaded CPU. */
1260	if (cpu == -1)
1261		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1262	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1263	/*
1264	 * Compare the lowest loaded cpu to current cpu.
1265	 */
1266	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1267	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1268	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1269		SCHED_STAT_INC(pickcpu_local);
1270		cpu = self;
1271	} else
1272		SCHED_STAT_INC(pickcpu_lowest);
1273	if (cpu != ts->ts_cpu)
1274		SCHED_STAT_INC(pickcpu_migration);
1275	return (cpu);
1276}
1277#endif
1278
1279/*
1280 * Pick the highest priority task we have and return it.
1281 */
1282static struct thread *
1283tdq_choose(struct tdq *tdq)
1284{
1285	struct thread *td;
1286
1287	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1288	td = runq_choose(&tdq->tdq_realtime);
1289	if (td != NULL)
1290		return (td);
1291	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1292	if (td != NULL) {
1293		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1294		    ("tdq_choose: Invalid priority on timeshare queue %d",
1295		    td->td_priority));
1296		return (td);
1297	}
1298	td = runq_choose(&tdq->tdq_idle);
1299	if (td != NULL) {
1300		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1301		    ("tdq_choose: Invalid priority on idle queue %d",
1302		    td->td_priority));
1303		return (td);
1304	}
1305
1306	return (NULL);
1307}
1308
1309/*
1310 * Initialize a thread queue.
1311 */
1312static void
1313tdq_setup(struct tdq *tdq)
1314{
1315
1316	if (bootverbose)
1317		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1318	runq_init(&tdq->tdq_realtime);
1319	runq_init(&tdq->tdq_timeshare);
1320	runq_init(&tdq->tdq_idle);
1321	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1322	    "sched lock %d", (int)TDQ_ID(tdq));
1323	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1324	    MTX_SPIN | MTX_RECURSE);
1325#ifdef KTR
1326	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1327	    "CPU %d load", (int)TDQ_ID(tdq));
1328#endif
1329}
1330
1331#ifdef SMP
1332static void
1333sched_setup_smp(void)
1334{
1335	struct tdq *tdq;
1336	int i;
1337
1338	cpu_top = smp_topo();
1339	CPU_FOREACH(i) {
1340		tdq = TDQ_CPU(i);
1341		tdq_setup(tdq);
1342		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1343		if (tdq->tdq_cg == NULL)
1344			panic("Can't find cpu group for %d\n", i);
1345	}
1346	balance_tdq = TDQ_SELF();
1347	sched_balance();
1348}
1349#endif
1350
1351/*
1352 * Setup the thread queues and initialize the topology based on MD
1353 * information.
1354 */
1355static void
1356sched_setup(void *dummy)
1357{
1358	struct tdq *tdq;
1359
1360	tdq = TDQ_SELF();
1361#ifdef SMP
1362	sched_setup_smp();
1363#else
1364	tdq_setup(tdq);
1365#endif
1366	/*
1367	 * To avoid divide-by-zero, we set realstathz a dummy value
1368	 * in case which sched_clock() called before sched_initticks().
1369	 */
1370	realstathz = hz;
1371	sched_slice = (realstathz/10);	/* ~100ms */
1372	tickincr = 1 << SCHED_TICK_SHIFT;
1373
1374	/* Add thread0's load since it's running. */
1375	TDQ_LOCK(tdq);
1376	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1377	tdq_load_add(tdq, &thread0);
1378	tdq->tdq_lowpri = thread0.td_priority;
1379	TDQ_UNLOCK(tdq);
1380}
1381
1382/*
1383 * This routine determines the tickincr after stathz and hz are setup.
1384 */
1385/* ARGSUSED */
1386static void
1387sched_initticks(void *dummy)
1388{
1389	int incr;
1390
1391	realstathz = stathz ? stathz : hz;
1392	sched_slice = (realstathz/10);	/* ~100ms */
1393
1394	/*
1395	 * tickincr is shifted out by 10 to avoid rounding errors due to
1396	 * hz not being evenly divisible by stathz on all platforms.
1397	 */
1398	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1399	/*
1400	 * This does not work for values of stathz that are more than
1401	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1402	 */
1403	if (incr == 0)
1404		incr = 1;
1405	tickincr = incr;
1406#ifdef SMP
1407	/*
1408	 * Set the default balance interval now that we know
1409	 * what realstathz is.
1410	 */
1411	balance_interval = realstathz;
1412	/*
1413	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1414	 * This prevents excess thrashing on large machines and excess idle
1415	 * on smaller machines.
1416	 */
1417	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1418	affinity = SCHED_AFFINITY_DEFAULT;
1419#endif
1420	if (sched_idlespinthresh < 0)
1421		sched_idlespinthresh = max(16, 2 * hz / realstathz);
1422}
1423
1424
1425/*
1426 * This is the core of the interactivity algorithm.  Determines a score based
1427 * on past behavior.  It is the ratio of sleep time to run time scaled to
1428 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1429 * differs from the cpu usage because it does not account for time spent
1430 * waiting on a run-queue.  Would be prettier if we had floating point.
1431 */
1432static int
1433sched_interact_score(struct thread *td)
1434{
1435	struct td_sched *ts;
1436	int div;
1437
1438	ts = td->td_sched;
1439	/*
1440	 * The score is only needed if this is likely to be an interactive
1441	 * task.  Don't go through the expense of computing it if there's
1442	 * no chance.
1443	 */
1444	if (sched_interact <= SCHED_INTERACT_HALF &&
1445		ts->ts_runtime >= ts->ts_slptime)
1446			return (SCHED_INTERACT_HALF);
1447
1448	if (ts->ts_runtime > ts->ts_slptime) {
1449		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1450		return (SCHED_INTERACT_HALF +
1451		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1452	}
1453	if (ts->ts_slptime > ts->ts_runtime) {
1454		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1455		return (ts->ts_runtime / div);
1456	}
1457	/* runtime == slptime */
1458	if (ts->ts_runtime)
1459		return (SCHED_INTERACT_HALF);
1460
1461	/*
1462	 * This can happen if slptime and runtime are 0.
1463	 */
1464	return (0);
1465
1466}
1467
1468/*
1469 * Scale the scheduling priority according to the "interactivity" of this
1470 * process.
1471 */
1472static void
1473sched_priority(struct thread *td)
1474{
1475	int score;
1476	int pri;
1477
1478	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1479		return;
1480	/*
1481	 * If the score is interactive we place the thread in the realtime
1482	 * queue with a priority that is less than kernel and interrupt
1483	 * priorities.  These threads are not subject to nice restrictions.
1484	 *
1485	 * Scores greater than this are placed on the normal timeshare queue
1486	 * where the priority is partially decided by the most recent cpu
1487	 * utilization and the rest is decided by nice value.
1488	 *
1489	 * The nice value of the process has a linear effect on the calculated
1490	 * score.  Negative nice values make it easier for a thread to be
1491	 * considered interactive.
1492	 */
1493	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1494	if (score < sched_interact) {
1495		pri = PRI_MIN_INTERACT;
1496		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1497		    sched_interact) * score;
1498		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1499		    ("sched_priority: invalid interactive priority %d score %d",
1500		    pri, score));
1501	} else {
1502		pri = SCHED_PRI_MIN;
1503		if (td->td_sched->ts_ticks)
1504			pri += min(SCHED_PRI_TICKS(td->td_sched),
1505			    SCHED_PRI_RANGE);
1506		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1507		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1508		    ("sched_priority: invalid priority %d: nice %d, "
1509		    "ticks %d ftick %d ltick %d tick pri %d",
1510		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1511		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1512		    SCHED_PRI_TICKS(td->td_sched)));
1513	}
1514	sched_user_prio(td, pri);
1515
1516	return;
1517}
1518
1519/*
1520 * This routine enforces a maximum limit on the amount of scheduling history
1521 * kept.  It is called after either the slptime or runtime is adjusted.  This
1522 * function is ugly due to integer math.
1523 */
1524static void
1525sched_interact_update(struct thread *td)
1526{
1527	struct td_sched *ts;
1528	u_int sum;
1529
1530	ts = td->td_sched;
1531	sum = ts->ts_runtime + ts->ts_slptime;
1532	if (sum < SCHED_SLP_RUN_MAX)
1533		return;
1534	/*
1535	 * This only happens from two places:
1536	 * 1) We have added an unusual amount of run time from fork_exit.
1537	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1538	 */
1539	if (sum > SCHED_SLP_RUN_MAX * 2) {
1540		if (ts->ts_runtime > ts->ts_slptime) {
1541			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1542			ts->ts_slptime = 1;
1543		} else {
1544			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1545			ts->ts_runtime = 1;
1546		}
1547		return;
1548	}
1549	/*
1550	 * If we have exceeded by more than 1/5th then the algorithm below
1551	 * will not bring us back into range.  Dividing by two here forces
1552	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1553	 */
1554	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1555		ts->ts_runtime /= 2;
1556		ts->ts_slptime /= 2;
1557		return;
1558	}
1559	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1560	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1561}
1562
1563/*
1564 * Scale back the interactivity history when a child thread is created.  The
1565 * history is inherited from the parent but the thread may behave totally
1566 * differently.  For example, a shell spawning a compiler process.  We want
1567 * to learn that the compiler is behaving badly very quickly.
1568 */
1569static void
1570sched_interact_fork(struct thread *td)
1571{
1572	int ratio;
1573	int sum;
1574
1575	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1576	if (sum > SCHED_SLP_RUN_FORK) {
1577		ratio = sum / SCHED_SLP_RUN_FORK;
1578		td->td_sched->ts_runtime /= ratio;
1579		td->td_sched->ts_slptime /= ratio;
1580	}
1581}
1582
1583/*
1584 * Called from proc0_init() to setup the scheduler fields.
1585 */
1586void
1587schedinit(void)
1588{
1589
1590	/*
1591	 * Set up the scheduler specific parts of proc0.
1592	 */
1593	proc0.p_sched = NULL; /* XXX */
1594	thread0.td_sched = &td_sched0;
1595	td_sched0.ts_ltick = ticks;
1596	td_sched0.ts_ftick = ticks;
1597	td_sched0.ts_slice = sched_slice;
1598}
1599
1600/*
1601 * This is only somewhat accurate since given many processes of the same
1602 * priority they will switch when their slices run out, which will be
1603 * at most sched_slice stathz ticks.
1604 */
1605int
1606sched_rr_interval(void)
1607{
1608
1609	/* Convert sched_slice to hz */
1610	return (hz/(realstathz/sched_slice));
1611}
1612
1613/*
1614 * Update the percent cpu tracking information when it is requested or
1615 * the total history exceeds the maximum.  We keep a sliding history of
1616 * tick counts that slowly decays.  This is less precise than the 4BSD
1617 * mechanism since it happens with less regular and frequent events.
1618 */
1619static void
1620sched_pctcpu_update(struct td_sched *ts, int run)
1621{
1622	int t = ticks;
1623
1624	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1625		ts->ts_ticks = 0;
1626		ts->ts_ftick = t - SCHED_TICK_TARG;
1627	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1628		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1629		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1630		ts->ts_ftick = t - SCHED_TICK_TARG;
1631	}
1632	if (run)
1633		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1634	ts->ts_ltick = t;
1635}
1636
1637/*
1638 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1639 * if necessary.  This is the back-end for several priority related
1640 * functions.
1641 */
1642static void
1643sched_thread_priority(struct thread *td, u_char prio)
1644{
1645	struct td_sched *ts;
1646	struct tdq *tdq;
1647	int oldpri;
1648
1649	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1650	    "prio:%d", td->td_priority, "new prio:%d", prio,
1651	    KTR_ATTR_LINKED, sched_tdname(curthread));
1652	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1653	if (td != curthread && prio < td->td_priority) {
1654		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1655		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1656		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1657		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1658		    curthread);
1659	}
1660	ts = td->td_sched;
1661	THREAD_LOCK_ASSERT(td, MA_OWNED);
1662	if (td->td_priority == prio)
1663		return;
1664	/*
1665	 * If the priority has been elevated due to priority
1666	 * propagation, we may have to move ourselves to a new
1667	 * queue.  This could be optimized to not re-add in some
1668	 * cases.
1669	 */
1670	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1671		sched_rem(td);
1672		td->td_priority = prio;
1673		sched_add(td, SRQ_BORROWING);
1674		return;
1675	}
1676	/*
1677	 * If the thread is currently running we may have to adjust the lowpri
1678	 * information so other cpus are aware of our current priority.
1679	 */
1680	if (TD_IS_RUNNING(td)) {
1681		tdq = TDQ_CPU(ts->ts_cpu);
1682		oldpri = td->td_priority;
1683		td->td_priority = prio;
1684		if (prio < tdq->tdq_lowpri)
1685			tdq->tdq_lowpri = prio;
1686		else if (tdq->tdq_lowpri == oldpri)
1687			tdq_setlowpri(tdq, td);
1688		return;
1689	}
1690	td->td_priority = prio;
1691}
1692
1693/*
1694 * Update a thread's priority when it is lent another thread's
1695 * priority.
1696 */
1697void
1698sched_lend_prio(struct thread *td, u_char prio)
1699{
1700
1701	td->td_flags |= TDF_BORROWING;
1702	sched_thread_priority(td, prio);
1703}
1704
1705/*
1706 * Restore a thread's priority when priority propagation is
1707 * over.  The prio argument is the minimum priority the thread
1708 * needs to have to satisfy other possible priority lending
1709 * requests.  If the thread's regular priority is less
1710 * important than prio, the thread will keep a priority boost
1711 * of prio.
1712 */
1713void
1714sched_unlend_prio(struct thread *td, u_char prio)
1715{
1716	u_char base_pri;
1717
1718	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1719	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1720		base_pri = td->td_user_pri;
1721	else
1722		base_pri = td->td_base_pri;
1723	if (prio >= base_pri) {
1724		td->td_flags &= ~TDF_BORROWING;
1725		sched_thread_priority(td, base_pri);
1726	} else
1727		sched_lend_prio(td, prio);
1728}
1729
1730/*
1731 * Standard entry for setting the priority to an absolute value.
1732 */
1733void
1734sched_prio(struct thread *td, u_char prio)
1735{
1736	u_char oldprio;
1737
1738	/* First, update the base priority. */
1739	td->td_base_pri = prio;
1740
1741	/*
1742	 * If the thread is borrowing another thread's priority, don't
1743	 * ever lower the priority.
1744	 */
1745	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1746		return;
1747
1748	/* Change the real priority. */
1749	oldprio = td->td_priority;
1750	sched_thread_priority(td, prio);
1751
1752	/*
1753	 * If the thread is on a turnstile, then let the turnstile update
1754	 * its state.
1755	 */
1756	if (TD_ON_LOCK(td) && oldprio != prio)
1757		turnstile_adjust(td, oldprio);
1758}
1759
1760/*
1761 * Set the base user priority, does not effect current running priority.
1762 */
1763void
1764sched_user_prio(struct thread *td, u_char prio)
1765{
1766
1767	td->td_base_user_pri = prio;
1768	if (td->td_lend_user_pri <= prio)
1769		return;
1770	td->td_user_pri = prio;
1771}
1772
1773void
1774sched_lend_user_prio(struct thread *td, u_char prio)
1775{
1776
1777	THREAD_LOCK_ASSERT(td, MA_OWNED);
1778	td->td_lend_user_pri = prio;
1779	td->td_user_pri = min(prio, td->td_base_user_pri);
1780	if (td->td_priority > td->td_user_pri)
1781		sched_prio(td, td->td_user_pri);
1782	else if (td->td_priority != td->td_user_pri)
1783		td->td_flags |= TDF_NEEDRESCHED;
1784}
1785
1786/*
1787 * Handle migration from sched_switch().  This happens only for
1788 * cpu binding.
1789 */
1790static struct mtx *
1791sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1792{
1793	struct tdq *tdn;
1794
1795	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1796#ifdef SMP
1797	tdq_load_rem(tdq, td);
1798	/*
1799	 * Do the lock dance required to avoid LOR.  We grab an extra
1800	 * spinlock nesting to prevent preemption while we're
1801	 * not holding either run-queue lock.
1802	 */
1803	spinlock_enter();
1804	thread_lock_block(td);	/* This releases the lock on tdq. */
1805
1806	/*
1807	 * Acquire both run-queue locks before placing the thread on the new
1808	 * run-queue to avoid deadlocks created by placing a thread with a
1809	 * blocked lock on the run-queue of a remote processor.  The deadlock
1810	 * occurs when a third processor attempts to lock the two queues in
1811	 * question while the target processor is spinning with its own
1812	 * run-queue lock held while waiting for the blocked lock to clear.
1813	 */
1814	tdq_lock_pair(tdn, tdq);
1815	tdq_add(tdn, td, flags);
1816	tdq_notify(tdn, td);
1817	TDQ_UNLOCK(tdn);
1818	spinlock_exit();
1819#endif
1820	return (TDQ_LOCKPTR(tdn));
1821}
1822
1823/*
1824 * Variadic version of thread_lock_unblock() that does not assume td_lock
1825 * is blocked.
1826 */
1827static inline void
1828thread_unblock_switch(struct thread *td, struct mtx *mtx)
1829{
1830	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1831	    (uintptr_t)mtx);
1832}
1833
1834/*
1835 * Switch threads.  This function has to handle threads coming in while
1836 * blocked for some reason, running, or idle.  It also must deal with
1837 * migrating a thread from one queue to another as running threads may
1838 * be assigned elsewhere via binding.
1839 */
1840void
1841sched_switch(struct thread *td, struct thread *newtd, int flags)
1842{
1843	struct tdq *tdq;
1844	struct td_sched *ts;
1845	struct mtx *mtx;
1846	int srqflag;
1847	int cpuid, preempted;
1848
1849	THREAD_LOCK_ASSERT(td, MA_OWNED);
1850	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1851
1852	cpuid = PCPU_GET(cpuid);
1853	tdq = TDQ_CPU(cpuid);
1854	ts = td->td_sched;
1855	mtx = td->td_lock;
1856	sched_pctcpu_update(ts, 1);
1857	ts->ts_rltick = ticks;
1858	td->td_lastcpu = td->td_oncpu;
1859	td->td_oncpu = NOCPU;
1860	preempted = !(td->td_flags & TDF_SLICEEND);
1861	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1862	td->td_owepreempt = 0;
1863	tdq->tdq_switchcnt++;
1864	/*
1865	 * The lock pointer in an idle thread should never change.  Reset it
1866	 * to CAN_RUN as well.
1867	 */
1868	if (TD_IS_IDLETHREAD(td)) {
1869		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1870		TD_SET_CAN_RUN(td);
1871	} else if (TD_IS_RUNNING(td)) {
1872		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1873		srqflag = preempted ?
1874		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1875		    SRQ_OURSELF|SRQ_YIELDING;
1876#ifdef SMP
1877		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1878			ts->ts_cpu = sched_pickcpu(td, 0);
1879#endif
1880		if (ts->ts_cpu == cpuid)
1881			tdq_runq_add(tdq, td, srqflag);
1882		else {
1883			KASSERT(THREAD_CAN_MIGRATE(td) ||
1884			    (ts->ts_flags & TSF_BOUND) != 0,
1885			    ("Thread %p shouldn't migrate", td));
1886			mtx = sched_switch_migrate(tdq, td, srqflag);
1887		}
1888	} else {
1889		/* This thread must be going to sleep. */
1890		TDQ_LOCK(tdq);
1891		mtx = thread_lock_block(td);
1892		tdq_load_rem(tdq, td);
1893	}
1894	/*
1895	 * We enter here with the thread blocked and assigned to the
1896	 * appropriate cpu run-queue or sleep-queue and with the current
1897	 * thread-queue locked.
1898	 */
1899	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1900	newtd = choosethread();
1901	/*
1902	 * Call the MD code to switch contexts if necessary.
1903	 */
1904	if (td != newtd) {
1905#ifdef	HWPMC_HOOKS
1906		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1907			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1908#endif
1909		SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
1910		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1911		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1912		sched_pctcpu_update(newtd->td_sched, 0);
1913
1914#ifdef KDTRACE_HOOKS
1915		/*
1916		 * If DTrace has set the active vtime enum to anything
1917		 * other than INACTIVE (0), then it should have set the
1918		 * function to call.
1919		 */
1920		if (dtrace_vtime_active)
1921			(*dtrace_vtime_switch_func)(newtd);
1922#endif
1923
1924		cpu_switch(td, newtd, mtx);
1925		/*
1926		 * We may return from cpu_switch on a different cpu.  However,
1927		 * we always return with td_lock pointing to the current cpu's
1928		 * run queue lock.
1929		 */
1930		cpuid = PCPU_GET(cpuid);
1931		tdq = TDQ_CPU(cpuid);
1932		lock_profile_obtain_lock_success(
1933		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1934
1935		SDT_PROBE0(sched, , , on_cpu);
1936#ifdef	HWPMC_HOOKS
1937		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1938			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1939#endif
1940	} else {
1941		thread_unblock_switch(td, mtx);
1942		SDT_PROBE0(sched, , , remain_cpu);
1943	}
1944	/*
1945	 * Assert that all went well and return.
1946	 */
1947	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1948	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1949	td->td_oncpu = cpuid;
1950}
1951
1952/*
1953 * Adjust thread priorities as a result of a nice request.
1954 */
1955void
1956sched_nice(struct proc *p, int nice)
1957{
1958	struct thread *td;
1959
1960	PROC_LOCK_ASSERT(p, MA_OWNED);
1961
1962	p->p_nice = nice;
1963	FOREACH_THREAD_IN_PROC(p, td) {
1964		thread_lock(td);
1965		sched_priority(td);
1966		sched_prio(td, td->td_base_user_pri);
1967		thread_unlock(td);
1968	}
1969}
1970
1971/*
1972 * Record the sleep time for the interactivity scorer.
1973 */
1974void
1975sched_sleep(struct thread *td, int prio)
1976{
1977
1978	THREAD_LOCK_ASSERT(td, MA_OWNED);
1979
1980	td->td_slptick = ticks;
1981	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1982		td->td_flags |= TDF_CANSWAP;
1983	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1984		return;
1985	if (static_boost == 1 && prio)
1986		sched_prio(td, prio);
1987	else if (static_boost && td->td_priority > static_boost)
1988		sched_prio(td, static_boost);
1989}
1990
1991/*
1992 * Schedule a thread to resume execution and record how long it voluntarily
1993 * slept.  We also update the pctcpu, interactivity, and priority.
1994 */
1995void
1996sched_wakeup(struct thread *td)
1997{
1998	struct td_sched *ts;
1999	int slptick;
2000
2001	THREAD_LOCK_ASSERT(td, MA_OWNED);
2002	ts = td->td_sched;
2003	td->td_flags &= ~TDF_CANSWAP;
2004	/*
2005	 * If we slept for more than a tick update our interactivity and
2006	 * priority.
2007	 */
2008	slptick = td->td_slptick;
2009	td->td_slptick = 0;
2010	if (slptick && slptick != ticks) {
2011		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2012		sched_interact_update(td);
2013		sched_pctcpu_update(ts, 0);
2014	}
2015	/* Reset the slice value after we sleep. */
2016	ts->ts_slice = sched_slice;
2017	sched_add(td, SRQ_BORING);
2018}
2019
2020/*
2021 * Penalize the parent for creating a new child and initialize the child's
2022 * priority.
2023 */
2024void
2025sched_fork(struct thread *td, struct thread *child)
2026{
2027	THREAD_LOCK_ASSERT(td, MA_OWNED);
2028	sched_pctcpu_update(td->td_sched, 1);
2029	sched_fork_thread(td, child);
2030	/*
2031	 * Penalize the parent and child for forking.
2032	 */
2033	sched_interact_fork(child);
2034	sched_priority(child);
2035	td->td_sched->ts_runtime += tickincr;
2036	sched_interact_update(td);
2037	sched_priority(td);
2038}
2039
2040/*
2041 * Fork a new thread, may be within the same process.
2042 */
2043void
2044sched_fork_thread(struct thread *td, struct thread *child)
2045{
2046	struct td_sched *ts;
2047	struct td_sched *ts2;
2048
2049	THREAD_LOCK_ASSERT(td, MA_OWNED);
2050	/*
2051	 * Initialize child.
2052	 */
2053	ts = td->td_sched;
2054	ts2 = child->td_sched;
2055	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2056	child->td_cpuset = cpuset_ref(td->td_cpuset);
2057	ts2->ts_cpu = ts->ts_cpu;
2058	ts2->ts_flags = 0;
2059	/*
2060	 * Grab our parents cpu estimation information.
2061	 */
2062	ts2->ts_ticks = ts->ts_ticks;
2063	ts2->ts_ltick = ts->ts_ltick;
2064	ts2->ts_ftick = ts->ts_ftick;
2065	/*
2066	 * Do not inherit any borrowed priority from the parent.
2067	 */
2068	child->td_priority = child->td_base_pri;
2069	/*
2070	 * And update interactivity score.
2071	 */
2072	ts2->ts_slptime = ts->ts_slptime;
2073	ts2->ts_runtime = ts->ts_runtime;
2074	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2075#ifdef KTR
2076	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2077#endif
2078}
2079
2080/*
2081 * Adjust the priority class of a thread.
2082 */
2083void
2084sched_class(struct thread *td, int class)
2085{
2086
2087	THREAD_LOCK_ASSERT(td, MA_OWNED);
2088	if (td->td_pri_class == class)
2089		return;
2090	td->td_pri_class = class;
2091}
2092
2093/*
2094 * Return some of the child's priority and interactivity to the parent.
2095 */
2096void
2097sched_exit(struct proc *p, struct thread *child)
2098{
2099	struct thread *td;
2100
2101	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2102	    "prio:%d", child->td_priority);
2103	PROC_LOCK_ASSERT(p, MA_OWNED);
2104	td = FIRST_THREAD_IN_PROC(p);
2105	sched_exit_thread(td, child);
2106}
2107
2108/*
2109 * Penalize another thread for the time spent on this one.  This helps to
2110 * worsen the priority and interactivity of processes which schedule batch
2111 * jobs such as make.  This has little effect on the make process itself but
2112 * causes new processes spawned by it to receive worse scores immediately.
2113 */
2114void
2115sched_exit_thread(struct thread *td, struct thread *child)
2116{
2117
2118	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2119	    "prio:%d", child->td_priority);
2120	/*
2121	 * Give the child's runtime to the parent without returning the
2122	 * sleep time as a penalty to the parent.  This causes shells that
2123	 * launch expensive things to mark their children as expensive.
2124	 */
2125	thread_lock(td);
2126	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2127	sched_interact_update(td);
2128	sched_priority(td);
2129	thread_unlock(td);
2130}
2131
2132void
2133sched_preempt(struct thread *td)
2134{
2135	struct tdq *tdq;
2136
2137	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2138
2139	thread_lock(td);
2140	tdq = TDQ_SELF();
2141	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2142	tdq->tdq_ipipending = 0;
2143	if (td->td_priority > tdq->tdq_lowpri) {
2144		int flags;
2145
2146		flags = SW_INVOL | SW_PREEMPT;
2147		if (td->td_critnest > 1)
2148			td->td_owepreempt = 1;
2149		else if (TD_IS_IDLETHREAD(td))
2150			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2151		else
2152			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2153	}
2154	thread_unlock(td);
2155}
2156
2157/*
2158 * Fix priorities on return to user-space.  Priorities may be elevated due
2159 * to static priorities in msleep() or similar.
2160 */
2161void
2162sched_userret(struct thread *td)
2163{
2164	/*
2165	 * XXX we cheat slightly on the locking here to avoid locking in
2166	 * the usual case.  Setting td_priority here is essentially an
2167	 * incomplete workaround for not setting it properly elsewhere.
2168	 * Now that some interrupt handlers are threads, not setting it
2169	 * properly elsewhere can clobber it in the window between setting
2170	 * it here and returning to user mode, so don't waste time setting
2171	 * it perfectly here.
2172	 */
2173	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2174	    ("thread with borrowed priority returning to userland"));
2175	if (td->td_priority != td->td_user_pri) {
2176		thread_lock(td);
2177		td->td_priority = td->td_user_pri;
2178		td->td_base_pri = td->td_user_pri;
2179		tdq_setlowpri(TDQ_SELF(), td);
2180		thread_unlock(td);
2181        }
2182}
2183
2184/*
2185 * Handle a stathz tick.  This is really only relevant for timeshare
2186 * threads.
2187 */
2188void
2189sched_clock(struct thread *td)
2190{
2191	struct tdq *tdq;
2192	struct td_sched *ts;
2193
2194	THREAD_LOCK_ASSERT(td, MA_OWNED);
2195	tdq = TDQ_SELF();
2196#ifdef SMP
2197	/*
2198	 * We run the long term load balancer infrequently on the first cpu.
2199	 */
2200	if (balance_tdq == tdq) {
2201		if (balance_ticks && --balance_ticks == 0)
2202			sched_balance();
2203	}
2204#endif
2205	/*
2206	 * Save the old switch count so we have a record of the last ticks
2207	 * activity.   Initialize the new switch count based on our load.
2208	 * If there is some activity seed it to reflect that.
2209	 */
2210	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2211	tdq->tdq_switchcnt = tdq->tdq_load;
2212	/*
2213	 * Advance the insert index once for each tick to ensure that all
2214	 * threads get a chance to run.
2215	 */
2216	if (tdq->tdq_idx == tdq->tdq_ridx) {
2217		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2218		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2219			tdq->tdq_ridx = tdq->tdq_idx;
2220	}
2221	ts = td->td_sched;
2222	sched_pctcpu_update(ts, 1);
2223	if (td->td_pri_class & PRI_FIFO_BIT)
2224		return;
2225	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2226		/*
2227		 * We used a tick; charge it to the thread so
2228		 * that we can compute our interactivity.
2229		 */
2230		td->td_sched->ts_runtime += tickincr;
2231		sched_interact_update(td);
2232		sched_priority(td);
2233	}
2234	/*
2235	 * We used up one time slice.
2236	 */
2237	if (--ts->ts_slice > 0)
2238		return;
2239	/*
2240	 * We're out of time, force a requeue at userret().
2241	 */
2242	ts->ts_slice = sched_slice;
2243	td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2244}
2245
2246/*
2247 * Called once per hz tick.
2248 */
2249void
2250sched_tick(int cnt)
2251{
2252
2253}
2254
2255/*
2256 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2257 * cooperative idle threads.
2258 */
2259int
2260sched_runnable(void)
2261{
2262	struct tdq *tdq;
2263	int load;
2264
2265	load = 1;
2266
2267	tdq = TDQ_SELF();
2268	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2269		if (tdq->tdq_load > 0)
2270			goto out;
2271	} else
2272		if (tdq->tdq_load - 1 > 0)
2273			goto out;
2274	load = 0;
2275out:
2276	return (load);
2277}
2278
2279/*
2280 * Choose the highest priority thread to run.  The thread is removed from
2281 * the run-queue while running however the load remains.  For SMP we set
2282 * the tdq in the global idle bitmask if it idles here.
2283 */
2284struct thread *
2285sched_choose(void)
2286{
2287	struct thread *td;
2288	struct tdq *tdq;
2289
2290	tdq = TDQ_SELF();
2291	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2292	td = tdq_choose(tdq);
2293	if (td) {
2294		tdq_runq_rem(tdq, td);
2295		tdq->tdq_lowpri = td->td_priority;
2296		return (td);
2297	}
2298	tdq->tdq_lowpri = PRI_MAX_IDLE;
2299	return (PCPU_GET(idlethread));
2300}
2301
2302/*
2303 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2304 * we always request it once we exit a critical section.
2305 */
2306static inline void
2307sched_setpreempt(struct thread *td)
2308{
2309	struct thread *ctd;
2310	int cpri;
2311	int pri;
2312
2313	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2314
2315	ctd = curthread;
2316	pri = td->td_priority;
2317	cpri = ctd->td_priority;
2318	if (pri < cpri)
2319		ctd->td_flags |= TDF_NEEDRESCHED;
2320	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2321		return;
2322	if (!sched_shouldpreempt(pri, cpri, 0))
2323		return;
2324	ctd->td_owepreempt = 1;
2325}
2326
2327/*
2328 * Add a thread to a thread queue.  Select the appropriate runq and add the
2329 * thread to it.  This is the internal function called when the tdq is
2330 * predetermined.
2331 */
2332void
2333tdq_add(struct tdq *tdq, struct thread *td, int flags)
2334{
2335
2336	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2337	KASSERT((td->td_inhibitors == 0),
2338	    ("sched_add: trying to run inhibited thread"));
2339	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2340	    ("sched_add: bad thread state"));
2341	KASSERT(td->td_flags & TDF_INMEM,
2342	    ("sched_add: thread swapped out"));
2343
2344	if (td->td_priority < tdq->tdq_lowpri)
2345		tdq->tdq_lowpri = td->td_priority;
2346	tdq_runq_add(tdq, td, flags);
2347	tdq_load_add(tdq, td);
2348}
2349
2350/*
2351 * Select the target thread queue and add a thread to it.  Request
2352 * preemption or IPI a remote processor if required.
2353 */
2354void
2355sched_add(struct thread *td, int flags)
2356{
2357	struct tdq *tdq;
2358#ifdef SMP
2359	int cpu;
2360#endif
2361
2362	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2363	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2364	    sched_tdname(curthread));
2365	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2366	    KTR_ATTR_LINKED, sched_tdname(td));
2367	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2368	    flags & SRQ_PREEMPTED);
2369	THREAD_LOCK_ASSERT(td, MA_OWNED);
2370	/*
2371	 * Recalculate the priority before we select the target cpu or
2372	 * run-queue.
2373	 */
2374	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2375		sched_priority(td);
2376#ifdef SMP
2377	/*
2378	 * Pick the destination cpu and if it isn't ours transfer to the
2379	 * target cpu.
2380	 */
2381	cpu = sched_pickcpu(td, flags);
2382	tdq = sched_setcpu(td, cpu, flags);
2383	tdq_add(tdq, td, flags);
2384	if (cpu != PCPU_GET(cpuid)) {
2385		tdq_notify(tdq, td);
2386		return;
2387	}
2388#else
2389	tdq = TDQ_SELF();
2390	TDQ_LOCK(tdq);
2391	/*
2392	 * Now that the thread is moving to the run-queue, set the lock
2393	 * to the scheduler's lock.
2394	 */
2395	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2396	tdq_add(tdq, td, flags);
2397#endif
2398	if (!(flags & SRQ_YIELDING))
2399		sched_setpreempt(td);
2400}
2401
2402/*
2403 * Remove a thread from a run-queue without running it.  This is used
2404 * when we're stealing a thread from a remote queue.  Otherwise all threads
2405 * exit by calling sched_exit_thread() and sched_throw() themselves.
2406 */
2407void
2408sched_rem(struct thread *td)
2409{
2410	struct tdq *tdq;
2411
2412	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2413	    "prio:%d", td->td_priority);
2414	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2415	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2416	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2417	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2418	KASSERT(TD_ON_RUNQ(td),
2419	    ("sched_rem: thread not on run queue"));
2420	tdq_runq_rem(tdq, td);
2421	tdq_load_rem(tdq, td);
2422	TD_SET_CAN_RUN(td);
2423	if (td->td_priority == tdq->tdq_lowpri)
2424		tdq_setlowpri(tdq, NULL);
2425}
2426
2427/*
2428 * Fetch cpu utilization information.  Updates on demand.
2429 */
2430fixpt_t
2431sched_pctcpu(struct thread *td)
2432{
2433	fixpt_t pctcpu;
2434	struct td_sched *ts;
2435
2436	pctcpu = 0;
2437	ts = td->td_sched;
2438	if (ts == NULL)
2439		return (0);
2440
2441	THREAD_LOCK_ASSERT(td, MA_OWNED);
2442	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2443	if (ts->ts_ticks) {
2444		int rtick;
2445
2446		/* How many rtick per second ? */
2447		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2448		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2449	}
2450
2451	return (pctcpu);
2452}
2453
2454/*
2455 * Enforce affinity settings for a thread.  Called after adjustments to
2456 * cpumask.
2457 */
2458void
2459sched_affinity(struct thread *td)
2460{
2461#ifdef SMP
2462	struct td_sched *ts;
2463
2464	THREAD_LOCK_ASSERT(td, MA_OWNED);
2465	ts = td->td_sched;
2466	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2467		return;
2468	if (TD_ON_RUNQ(td)) {
2469		sched_rem(td);
2470		sched_add(td, SRQ_BORING);
2471		return;
2472	}
2473	if (!TD_IS_RUNNING(td))
2474		return;
2475	/*
2476	 * Force a switch before returning to userspace.  If the
2477	 * target thread is not running locally send an ipi to force
2478	 * the issue.
2479	 */
2480	td->td_flags |= TDF_NEEDRESCHED;
2481	if (td != curthread)
2482		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2483#endif
2484}
2485
2486/*
2487 * Bind a thread to a target cpu.
2488 */
2489void
2490sched_bind(struct thread *td, int cpu)
2491{
2492	struct td_sched *ts;
2493
2494	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2495	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2496	ts = td->td_sched;
2497	if (ts->ts_flags & TSF_BOUND)
2498		sched_unbind(td);
2499	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2500	ts->ts_flags |= TSF_BOUND;
2501	sched_pin();
2502	if (PCPU_GET(cpuid) == cpu)
2503		return;
2504	ts->ts_cpu = cpu;
2505	/* When we return from mi_switch we'll be on the correct cpu. */
2506	mi_switch(SW_VOL, NULL);
2507}
2508
2509/*
2510 * Release a bound thread.
2511 */
2512void
2513sched_unbind(struct thread *td)
2514{
2515	struct td_sched *ts;
2516
2517	THREAD_LOCK_ASSERT(td, MA_OWNED);
2518	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2519	ts = td->td_sched;
2520	if ((ts->ts_flags & TSF_BOUND) == 0)
2521		return;
2522	ts->ts_flags &= ~TSF_BOUND;
2523	sched_unpin();
2524}
2525
2526int
2527sched_is_bound(struct thread *td)
2528{
2529	THREAD_LOCK_ASSERT(td, MA_OWNED);
2530	return (td->td_sched->ts_flags & TSF_BOUND);
2531}
2532
2533/*
2534 * Basic yield call.
2535 */
2536void
2537sched_relinquish(struct thread *td)
2538{
2539	thread_lock(td);
2540	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2541	thread_unlock(td);
2542}
2543
2544/*
2545 * Return the total system load.
2546 */
2547int
2548sched_load(void)
2549{
2550#ifdef SMP
2551	int total;
2552	int i;
2553
2554	total = 0;
2555	CPU_FOREACH(i)
2556		total += TDQ_CPU(i)->tdq_sysload;
2557	return (total);
2558#else
2559	return (TDQ_SELF()->tdq_sysload);
2560#endif
2561}
2562
2563int
2564sched_sizeof_proc(void)
2565{
2566	return (sizeof(struct proc));
2567}
2568
2569int
2570sched_sizeof_thread(void)
2571{
2572	return (sizeof(struct thread) + sizeof(struct td_sched));
2573}
2574
2575#ifdef SMP
2576#define	TDQ_IDLESPIN(tdq)						\
2577    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2578#else
2579#define	TDQ_IDLESPIN(tdq)	1
2580#endif
2581
2582/*
2583 * The actual idle process.
2584 */
2585void
2586sched_idletd(void *dummy)
2587{
2588	struct thread *td;
2589	struct tdq *tdq;
2590	int switchcnt;
2591	int i;
2592
2593	mtx_assert(&Giant, MA_NOTOWNED);
2594	td = curthread;
2595	tdq = TDQ_SELF();
2596	for (;;) {
2597#ifdef SMP
2598		if (tdq_idled(tdq) == 0)
2599			continue;
2600#endif
2601		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2602		/*
2603		 * If we're switching very frequently, spin while checking
2604		 * for load rather than entering a low power state that
2605		 * may require an IPI.  However, don't do any busy
2606		 * loops while on SMT machines as this simply steals
2607		 * cycles from cores doing useful work.
2608		 */
2609		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2610			for (i = 0; i < sched_idlespins; i++) {
2611				if (tdq->tdq_load)
2612					break;
2613				cpu_spinwait();
2614			}
2615		}
2616		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2617		if (tdq->tdq_load == 0) {
2618			tdq->tdq_cpu_idle = 1;
2619			if (tdq->tdq_load == 0) {
2620				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2621				tdq->tdq_switchcnt++;
2622			}
2623			tdq->tdq_cpu_idle = 0;
2624		}
2625		if (tdq->tdq_load) {
2626			thread_lock(td);
2627			mi_switch(SW_VOL | SWT_IDLE, NULL);
2628			thread_unlock(td);
2629		}
2630	}
2631}
2632
2633/*
2634 * A CPU is entering for the first time or a thread is exiting.
2635 */
2636void
2637sched_throw(struct thread *td)
2638{
2639	struct thread *newtd;
2640	struct tdq *tdq;
2641
2642	tdq = TDQ_SELF();
2643	if (td == NULL) {
2644		/* Correct spinlock nesting and acquire the correct lock. */
2645		TDQ_LOCK(tdq);
2646		spinlock_exit();
2647		PCPU_SET(switchtime, cpu_ticks());
2648		PCPU_SET(switchticks, ticks);
2649	} else {
2650		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2651		tdq_load_rem(tdq, td);
2652		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2653	}
2654	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2655	newtd = choosethread();
2656	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2657	cpu_throw(td, newtd);		/* doesn't return */
2658}
2659
2660/*
2661 * This is called from fork_exit().  Just acquire the correct locks and
2662 * let fork do the rest of the work.
2663 */
2664void
2665sched_fork_exit(struct thread *td)
2666{
2667	struct td_sched *ts;
2668	struct tdq *tdq;
2669	int cpuid;
2670
2671	/*
2672	 * Finish setting up thread glue so that it begins execution in a
2673	 * non-nested critical section with the scheduler lock held.
2674	 */
2675	cpuid = PCPU_GET(cpuid);
2676	tdq = TDQ_CPU(cpuid);
2677	ts = td->td_sched;
2678	if (TD_IS_IDLETHREAD(td))
2679		td->td_lock = TDQ_LOCKPTR(tdq);
2680	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2681	td->td_oncpu = cpuid;
2682	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2683	lock_profile_obtain_lock_success(
2684	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2685}
2686
2687/*
2688 * Create on first use to catch odd startup conditons.
2689 */
2690char *
2691sched_tdname(struct thread *td)
2692{
2693#ifdef KTR
2694	struct td_sched *ts;
2695
2696	ts = td->td_sched;
2697	if (ts->ts_name[0] == '\0')
2698		snprintf(ts->ts_name, sizeof(ts->ts_name),
2699		    "%s tid %d", td->td_name, td->td_tid);
2700	return (ts->ts_name);
2701#else
2702	return (td->td_name);
2703#endif
2704}
2705
2706#ifdef KTR
2707void
2708sched_clear_tdname(struct thread *td)
2709{
2710	struct td_sched *ts;
2711
2712	ts = td->td_sched;
2713	ts->ts_name[0] = '\0';
2714}
2715#endif
2716
2717#ifdef SMP
2718
2719/*
2720 * Build the CPU topology dump string. Is recursively called to collect
2721 * the topology tree.
2722 */
2723static int
2724sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2725    int indent)
2726{
2727	char cpusetbuf[CPUSETBUFSIZ];
2728	int i, first;
2729
2730	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2731	    "", 1 + indent / 2, cg->cg_level);
2732	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2733	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2734	first = TRUE;
2735	for (i = 0; i < MAXCPU; i++) {
2736		if (CPU_ISSET(i, &cg->cg_mask)) {
2737			if (!first)
2738				sbuf_printf(sb, ", ");
2739			else
2740				first = FALSE;
2741			sbuf_printf(sb, "%d", i);
2742		}
2743	}
2744	sbuf_printf(sb, "</cpu>\n");
2745
2746	if (cg->cg_flags != 0) {
2747		sbuf_printf(sb, "%*s <flags>", indent, "");
2748		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2749			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2750		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2751			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2752		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2753			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2754		sbuf_printf(sb, "</flags>\n");
2755	}
2756
2757	if (cg->cg_children > 0) {
2758		sbuf_printf(sb, "%*s <children>\n", indent, "");
2759		for (i = 0; i < cg->cg_children; i++)
2760			sysctl_kern_sched_topology_spec_internal(sb,
2761			    &cg->cg_child[i], indent+2);
2762		sbuf_printf(sb, "%*s </children>\n", indent, "");
2763	}
2764	sbuf_printf(sb, "%*s</group>\n", indent, "");
2765	return (0);
2766}
2767
2768/*
2769 * Sysctl handler for retrieving topology dump. It's a wrapper for
2770 * the recursive sysctl_kern_smp_topology_spec_internal().
2771 */
2772static int
2773sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2774{
2775	struct sbuf *topo;
2776	int err;
2777
2778	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2779
2780	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2781	if (topo == NULL)
2782		return (ENOMEM);
2783
2784	sbuf_printf(topo, "<groups>\n");
2785	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2786	sbuf_printf(topo, "</groups>\n");
2787
2788	if (err == 0) {
2789		sbuf_finish(topo);
2790		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2791	}
2792	sbuf_delete(topo);
2793	return (err);
2794}
2795
2796#endif
2797
2798SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2799SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2800    "Scheduler name");
2801SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2802    "Slice size for timeshare threads");
2803SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2804     "Interactivity score threshold");
2805SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2806     0,"Min priority for preemption, lower priorities have greater precedence");
2807SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2808     0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2809SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2810     0,"Number of times idle will spin waiting for new work.");
2811SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2812     0,"Threshold before we will permit idle spinning.");
2813#ifdef SMP
2814SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2815    "Number of hz ticks to keep thread affinity for");
2816SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2817    "Enables the long-term load balancer");
2818SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2819    &balance_interval, 0,
2820    "Average frequency in stathz ticks to run the long-term balancer");
2821SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2822    "Attempts to steal work from other cores before idling");
2823SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2824    "Minimum load on remote cpu before we'll steal");
2825
2826/* Retrieve SMP topology */
2827SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2828    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2829    "XML dump of detected CPU topology");
2830
2831#endif
2832
2833/* ps compat.  All cpu percentages from ULE are weighted. */
2834static int ccpu = 0;
2835SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2836