sched_ule.c revision 236547
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/9/sys/kern/sched_ule.c 236547 2012-06-04 07:16:12Z mav $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#if defined(__powerpc__) && defined(E500)
81#error "This architecture is not currently compatible with ULE"
82#endif
83
84#define	KTR_ULE	0
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89
90/*
91 * Thread scheduler specific section.  All fields are protected
92 * by the thread lock.
93 */
94struct td_sched {
95	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96	short		ts_flags;	/* TSF_* flags. */
97	u_char		ts_cpu;		/* CPU that we have affinity for. */
98	int		ts_rltick;	/* Real last tick, for affinity. */
99	int		ts_slice;	/* Ticks of slice remaining. */
100	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101	u_int		ts_runtime;	/* Number of ticks we were running */
102	int		ts_ltick;	/* Last tick that we were running on */
103	int		ts_ftick;	/* First tick that we were running on */
104	int		ts_ticks;	/* Tick count */
105#ifdef KTR
106	char		ts_name[TS_NAME_LEN];
107#endif
108};
109/* flags kept in ts_flags */
110#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112
113static struct td_sched td_sched0;
114
115#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119/*
120 * Priority ranges used for interactive and non-interactive timeshare
121 * threads.  The timeshare priorities are split up into four ranges.
122 * The first range handles interactive threads.  The last three ranges
123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124 * ranges supporting nice values.
125 */
126#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129
130#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/*
193 * tickincr:		Converts a stathz tick into a hz domain scaled by
194 *			the shift factor.  Without the shift the error rate
195 *			due to rounding would be unacceptably high.
196 * realstathz:		stathz is sometimes 0 and run off of hz.
197 * sched_slice:		Runtime of each thread before rescheduling.
198 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
199 */
200static int sched_interact = SCHED_INTERACT_THRESH;
201static int realstathz;
202static int tickincr;
203static int sched_slice = 1;
204#ifdef PREEMPTION
205#ifdef FULL_PREEMPTION
206static int preempt_thresh = PRI_MAX_IDLE;
207#else
208static int preempt_thresh = PRI_MIN_KERN;
209#endif
210#else
211static int preempt_thresh = 0;
212#endif
213static int static_boost = PRI_MIN_BATCH;
214static int sched_idlespins = 10000;
215static int sched_idlespinthresh = -1;
216
217/*
218 * tdq - per processor runqs and statistics.  All fields are protected by the
219 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
220 * locking in sched_pickcpu();
221 */
222struct tdq {
223	/* Ordered to improve efficiency of cpu_search() and switch(). */
224	struct mtx	tdq_lock;		/* run queue lock. */
225	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
226	volatile int	tdq_load;		/* Aggregate load. */
227	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
228	int		tdq_sysload;		/* For loadavg, !ITHD load. */
229	int		tdq_transferable;	/* Transferable thread count. */
230	short		tdq_switchcnt;		/* Switches this tick. */
231	short		tdq_oldswitchcnt;	/* Switches last tick. */
232	u_char		tdq_lowpri;		/* Lowest priority thread. */
233	u_char		tdq_ipipending;		/* IPI pending. */
234	u_char		tdq_idx;		/* Current insert index. */
235	u_char		tdq_ridx;		/* Current removal index. */
236	struct runq	tdq_realtime;		/* real-time run queue. */
237	struct runq	tdq_timeshare;		/* timeshare run queue. */
238	struct runq	tdq_idle;		/* Queue of IDLE threads. */
239	char		tdq_name[TDQ_NAME_LEN];
240#ifdef KTR
241	char		tdq_loadname[TDQ_LOADNAME_LEN];
242#endif
243} __aligned(64);
244
245/* Idle thread states and config. */
246#define	TDQ_RUNNING	1
247#define	TDQ_IDLE	2
248
249#ifdef SMP
250struct cpu_group *cpu_top;		/* CPU topology */
251
252#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
253#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
254
255/*
256 * Run-time tunables.
257 */
258static int rebalance = 1;
259static int balance_interval = 128;	/* Default set in sched_initticks(). */
260static int affinity;
261static int steal_idle = 1;
262static int steal_thresh = 2;
263
264/*
265 * One thread queue per processor.
266 */
267static struct tdq	tdq_cpu[MAXCPU];
268static struct tdq	*balance_tdq;
269static int balance_ticks;
270static DPCPU_DEFINE(uint32_t, randomval);
271
272#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
273#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
274#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
275#else	/* !SMP */
276static struct tdq	tdq_cpu;
277
278#define	TDQ_ID(x)	(0)
279#define	TDQ_SELF()	(&tdq_cpu)
280#define	TDQ_CPU(x)	(&tdq_cpu)
281#endif
282
283#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
284#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
285#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
286#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
287#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
288
289static void sched_priority(struct thread *);
290static void sched_thread_priority(struct thread *, u_char);
291static int sched_interact_score(struct thread *);
292static void sched_interact_update(struct thread *);
293static void sched_interact_fork(struct thread *);
294static void sched_pctcpu_update(struct td_sched *, int);
295
296/* Operations on per processor queues */
297static struct thread *tdq_choose(struct tdq *);
298static void tdq_setup(struct tdq *);
299static void tdq_load_add(struct tdq *, struct thread *);
300static void tdq_load_rem(struct tdq *, struct thread *);
301static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
302static __inline void tdq_runq_rem(struct tdq *, struct thread *);
303static inline int sched_shouldpreempt(int, int, int);
304void tdq_print(int cpu);
305static void runq_print(struct runq *rq);
306static void tdq_add(struct tdq *, struct thread *, int);
307#ifdef SMP
308static int tdq_move(struct tdq *, struct tdq *);
309static int tdq_idled(struct tdq *);
310static void tdq_notify(struct tdq *, struct thread *);
311static struct thread *tdq_steal(struct tdq *, int);
312static struct thread *runq_steal(struct runq *, int);
313static int sched_pickcpu(struct thread *, int);
314static void sched_balance(void);
315static int sched_balance_pair(struct tdq *, struct tdq *);
316static inline struct tdq *sched_setcpu(struct thread *, int, int);
317static inline void thread_unblock_switch(struct thread *, struct mtx *);
318static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
319static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
320static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
321    struct cpu_group *cg, int indent);
322#endif
323
324static void sched_setup(void *dummy);
325SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
326
327static void sched_initticks(void *dummy);
328SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
329    NULL);
330
331SDT_PROVIDER_DEFINE(sched);
332
333SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
334    "struct proc *", "uint8_t");
335SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
336    "struct proc *", "void *");
337SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
338    "struct proc *", "void *", "int");
339SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
340    "struct proc *", "uint8_t", "struct thread *");
341SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
342SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
343    "struct proc *");
344SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
345SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
346SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
347    "struct proc *");
348
349/*
350 * Print the threads waiting on a run-queue.
351 */
352static void
353runq_print(struct runq *rq)
354{
355	struct rqhead *rqh;
356	struct thread *td;
357	int pri;
358	int j;
359	int i;
360
361	for (i = 0; i < RQB_LEN; i++) {
362		printf("\t\trunq bits %d 0x%zx\n",
363		    i, rq->rq_status.rqb_bits[i]);
364		for (j = 0; j < RQB_BPW; j++)
365			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
366				pri = j + (i << RQB_L2BPW);
367				rqh = &rq->rq_queues[pri];
368				TAILQ_FOREACH(td, rqh, td_runq) {
369					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
370					    td, td->td_name, td->td_priority,
371					    td->td_rqindex, pri);
372				}
373			}
374	}
375}
376
377/*
378 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
379 */
380void
381tdq_print(int cpu)
382{
383	struct tdq *tdq;
384
385	tdq = TDQ_CPU(cpu);
386
387	printf("tdq %d:\n", TDQ_ID(tdq));
388	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
389	printf("\tLock name:      %s\n", tdq->tdq_name);
390	printf("\tload:           %d\n", tdq->tdq_load);
391	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
392	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
393	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
394	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
395	printf("\tload transferable: %d\n", tdq->tdq_transferable);
396	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
397	printf("\trealtime runq:\n");
398	runq_print(&tdq->tdq_realtime);
399	printf("\ttimeshare runq:\n");
400	runq_print(&tdq->tdq_timeshare);
401	printf("\tidle runq:\n");
402	runq_print(&tdq->tdq_idle);
403}
404
405static inline int
406sched_shouldpreempt(int pri, int cpri, int remote)
407{
408	/*
409	 * If the new priority is not better than the current priority there is
410	 * nothing to do.
411	 */
412	if (pri >= cpri)
413		return (0);
414	/*
415	 * Always preempt idle.
416	 */
417	if (cpri >= PRI_MIN_IDLE)
418		return (1);
419	/*
420	 * If preemption is disabled don't preempt others.
421	 */
422	if (preempt_thresh == 0)
423		return (0);
424	/*
425	 * Preempt if we exceed the threshold.
426	 */
427	if (pri <= preempt_thresh)
428		return (1);
429	/*
430	 * If we're interactive or better and there is non-interactive
431	 * or worse running preempt only remote processors.
432	 */
433	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
434		return (1);
435	return (0);
436}
437
438/*
439 * Add a thread to the actual run-queue.  Keeps transferable counts up to
440 * date with what is actually on the run-queue.  Selects the correct
441 * queue position for timeshare threads.
442 */
443static __inline void
444tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
445{
446	struct td_sched *ts;
447	u_char pri;
448
449	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
450	THREAD_LOCK_ASSERT(td, MA_OWNED);
451
452	pri = td->td_priority;
453	ts = td->td_sched;
454	TD_SET_RUNQ(td);
455	if (THREAD_CAN_MIGRATE(td)) {
456		tdq->tdq_transferable++;
457		ts->ts_flags |= TSF_XFERABLE;
458	}
459	if (pri < PRI_MIN_BATCH) {
460		ts->ts_runq = &tdq->tdq_realtime;
461	} else if (pri <= PRI_MAX_BATCH) {
462		ts->ts_runq = &tdq->tdq_timeshare;
463		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
464			("Invalid priority %d on timeshare runq", pri));
465		/*
466		 * This queue contains only priorities between MIN and MAX
467		 * realtime.  Use the whole queue to represent these values.
468		 */
469		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
470			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
471			pri = (pri + tdq->tdq_idx) % RQ_NQS;
472			/*
473			 * This effectively shortens the queue by one so we
474			 * can have a one slot difference between idx and
475			 * ridx while we wait for threads to drain.
476			 */
477			if (tdq->tdq_ridx != tdq->tdq_idx &&
478			    pri == tdq->tdq_ridx)
479				pri = (unsigned char)(pri - 1) % RQ_NQS;
480		} else
481			pri = tdq->tdq_ridx;
482		runq_add_pri(ts->ts_runq, td, pri, flags);
483		return;
484	} else
485		ts->ts_runq = &tdq->tdq_idle;
486	runq_add(ts->ts_runq, td, flags);
487}
488
489/*
490 * Remove a thread from a run-queue.  This typically happens when a thread
491 * is selected to run.  Running threads are not on the queue and the
492 * transferable count does not reflect them.
493 */
494static __inline void
495tdq_runq_rem(struct tdq *tdq, struct thread *td)
496{
497	struct td_sched *ts;
498
499	ts = td->td_sched;
500	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
501	KASSERT(ts->ts_runq != NULL,
502	    ("tdq_runq_remove: thread %p null ts_runq", td));
503	if (ts->ts_flags & TSF_XFERABLE) {
504		tdq->tdq_transferable--;
505		ts->ts_flags &= ~TSF_XFERABLE;
506	}
507	if (ts->ts_runq == &tdq->tdq_timeshare) {
508		if (tdq->tdq_idx != tdq->tdq_ridx)
509			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
510		else
511			runq_remove_idx(ts->ts_runq, td, NULL);
512	} else
513		runq_remove(ts->ts_runq, td);
514}
515
516/*
517 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
518 * for this thread to the referenced thread queue.
519 */
520static void
521tdq_load_add(struct tdq *tdq, struct thread *td)
522{
523
524	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
525	THREAD_LOCK_ASSERT(td, MA_OWNED);
526
527	tdq->tdq_load++;
528	if ((td->td_flags & TDF_NOLOAD) == 0)
529		tdq->tdq_sysload++;
530	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
531	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
532}
533
534/*
535 * Remove the load from a thread that is transitioning to a sleep state or
536 * exiting.
537 */
538static void
539tdq_load_rem(struct tdq *tdq, struct thread *td)
540{
541
542	THREAD_LOCK_ASSERT(td, MA_OWNED);
543	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
544	KASSERT(tdq->tdq_load != 0,
545	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
546
547	tdq->tdq_load--;
548	if ((td->td_flags & TDF_NOLOAD) == 0)
549		tdq->tdq_sysload--;
550	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
551	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
552}
553
554/*
555 * Set lowpri to its exact value by searching the run-queue and
556 * evaluating curthread.  curthread may be passed as an optimization.
557 */
558static void
559tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
560{
561	struct thread *td;
562
563	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
564	if (ctd == NULL)
565		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
566	td = tdq_choose(tdq);
567	if (td == NULL || td->td_priority > ctd->td_priority)
568		tdq->tdq_lowpri = ctd->td_priority;
569	else
570		tdq->tdq_lowpri = td->td_priority;
571}
572
573#ifdef SMP
574struct cpu_search {
575	cpuset_t cs_mask;
576	u_int	cs_prefer;
577	int	cs_pri;		/* Min priority for low. */
578	int	cs_limit;	/* Max load for low, min load for high. */
579	int	cs_cpu;
580	int	cs_load;
581};
582
583#define	CPU_SEARCH_LOWEST	0x1
584#define	CPU_SEARCH_HIGHEST	0x2
585#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
586
587#define	CPUSET_FOREACH(cpu, mask)				\
588	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
589		if (CPU_ISSET(cpu, &mask))
590
591static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
592    struct cpu_search *high, const int match);
593int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
594int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
595int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
596    struct cpu_search *high);
597
598/*
599 * Search the tree of cpu_groups for the lowest or highest loaded cpu
600 * according to the match argument.  This routine actually compares the
601 * load on all paths through the tree and finds the least loaded cpu on
602 * the least loaded path, which may differ from the least loaded cpu in
603 * the system.  This balances work among caches and busses.
604 *
605 * This inline is instantiated in three forms below using constants for the
606 * match argument.  It is reduced to the minimum set for each case.  It is
607 * also recursive to the depth of the tree.
608 */
609static __inline int
610cpu_search(const struct cpu_group *cg, struct cpu_search *low,
611    struct cpu_search *high, const int match)
612{
613	struct cpu_search lgroup;
614	struct cpu_search hgroup;
615	cpuset_t cpumask;
616	struct cpu_group *child;
617	struct tdq *tdq;
618	int cpu, i, hload, lload, load, total, rnd, *rndptr;
619
620	total = 0;
621	cpumask = cg->cg_mask;
622	if (match & CPU_SEARCH_LOWEST) {
623		lload = INT_MAX;
624		lgroup = *low;
625	}
626	if (match & CPU_SEARCH_HIGHEST) {
627		hload = INT_MIN;
628		hgroup = *high;
629	}
630
631	/* Iterate through the child CPU groups and then remaining CPUs. */
632	for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
633		if (i == 0) {
634			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
635				cpu--;
636			if (cpu < 0)
637				break;
638			child = NULL;
639		} else
640			child = &cg->cg_child[i - 1];
641
642		if (match & CPU_SEARCH_LOWEST)
643			lgroup.cs_cpu = -1;
644		if (match & CPU_SEARCH_HIGHEST)
645			hgroup.cs_cpu = -1;
646		if (child) {			/* Handle child CPU group. */
647			CPU_NAND(&cpumask, &child->cg_mask);
648			switch (match) {
649			case CPU_SEARCH_LOWEST:
650				load = cpu_search_lowest(child, &lgroup);
651				break;
652			case CPU_SEARCH_HIGHEST:
653				load = cpu_search_highest(child, &hgroup);
654				break;
655			case CPU_SEARCH_BOTH:
656				load = cpu_search_both(child, &lgroup, &hgroup);
657				break;
658			}
659		} else {			/* Handle child CPU. */
660			tdq = TDQ_CPU(cpu);
661			load = tdq->tdq_load * 256;
662			rndptr = DPCPU_PTR(randomval);
663			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
664			if (match & CPU_SEARCH_LOWEST) {
665				if (cpu == low->cs_prefer)
666					load -= 64;
667				/* If that CPU is allowed and get data. */
668				if (tdq->tdq_lowpri > lgroup.cs_pri &&
669				    tdq->tdq_load <= lgroup.cs_limit &&
670				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
671					lgroup.cs_cpu = cpu;
672					lgroup.cs_load = load - rnd;
673				}
674			}
675			if (match & CPU_SEARCH_HIGHEST)
676				if (tdq->tdq_load >= hgroup.cs_limit &&
677				    tdq->tdq_transferable &&
678				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
679					hgroup.cs_cpu = cpu;
680					hgroup.cs_load = load - rnd;
681				}
682		}
683		total += load;
684
685		/* We have info about child item. Compare it. */
686		if (match & CPU_SEARCH_LOWEST) {
687			if (lgroup.cs_cpu >= 0 &&
688			    (load < lload ||
689			     (load == lload && lgroup.cs_load < low->cs_load))) {
690				lload = load;
691				low->cs_cpu = lgroup.cs_cpu;
692				low->cs_load = lgroup.cs_load;
693			}
694		}
695		if (match & CPU_SEARCH_HIGHEST)
696			if (hgroup.cs_cpu >= 0 &&
697			    (load > hload ||
698			     (load == hload && hgroup.cs_load > high->cs_load))) {
699				hload = load;
700				high->cs_cpu = hgroup.cs_cpu;
701				high->cs_load = hgroup.cs_load;
702			}
703		if (child) {
704			i--;
705			if (i == 0 && CPU_EMPTY(&cpumask))
706				break;
707		} else
708			cpu--;
709	}
710	return (total);
711}
712
713/*
714 * cpu_search instantiations must pass constants to maintain the inline
715 * optimization.
716 */
717int
718cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
719{
720	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
721}
722
723int
724cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
725{
726	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
727}
728
729int
730cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
731    struct cpu_search *high)
732{
733	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
734}
735
736/*
737 * Find the cpu with the least load via the least loaded path that has a
738 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
739 * acceptable.
740 */
741static inline int
742sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
743    int prefer)
744{
745	struct cpu_search low;
746
747	low.cs_cpu = -1;
748	low.cs_prefer = prefer;
749	low.cs_mask = mask;
750	low.cs_pri = pri;
751	low.cs_limit = maxload;
752	cpu_search_lowest(cg, &low);
753	return low.cs_cpu;
754}
755
756/*
757 * Find the cpu with the highest load via the highest loaded path.
758 */
759static inline int
760sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
761{
762	struct cpu_search high;
763
764	high.cs_cpu = -1;
765	high.cs_mask = mask;
766	high.cs_limit = minload;
767	cpu_search_highest(cg, &high);
768	return high.cs_cpu;
769}
770
771/*
772 * Simultaneously find the highest and lowest loaded cpu reachable via
773 * cg.
774 */
775static inline void
776sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
777{
778	struct cpu_search high;
779	struct cpu_search low;
780
781	low.cs_cpu = -1;
782	low.cs_prefer = -1;
783	low.cs_pri = -1;
784	low.cs_limit = INT_MAX;
785	low.cs_mask = mask;
786	high.cs_cpu = -1;
787	high.cs_limit = -1;
788	high.cs_mask = mask;
789	cpu_search_both(cg, &low, &high);
790	*lowcpu = low.cs_cpu;
791	*highcpu = high.cs_cpu;
792	return;
793}
794
795static void
796sched_balance_group(struct cpu_group *cg)
797{
798	cpuset_t hmask, lmask;
799	int high, low, anylow;
800
801	CPU_FILL(&hmask);
802	for (;;) {
803		high = sched_highest(cg, hmask, 1);
804		/* Stop if there is no more CPU with transferrable threads. */
805		if (high == -1)
806			break;
807		CPU_CLR(high, &hmask);
808		CPU_COPY(&hmask, &lmask);
809		/* Stop if there is no more CPU left for low. */
810		if (CPU_EMPTY(&lmask))
811			break;
812		anylow = 1;
813nextlow:
814		low = sched_lowest(cg, lmask, -1,
815		    TDQ_CPU(high)->tdq_load - 1, high);
816		/* Stop if we looked well and found no less loaded CPU. */
817		if (anylow && low == -1)
818			break;
819		/* Go to next high if we found no less loaded CPU. */
820		if (low == -1)
821			continue;
822		/* Transfer thread from high to low. */
823		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
824			/* CPU that got thread can no longer be a donor. */
825			CPU_CLR(low, &hmask);
826		} else {
827			/*
828			 * If failed, then there is no threads on high
829			 * that can run on this low. Drop low from low
830			 * mask and look for different one.
831			 */
832			CPU_CLR(low, &lmask);
833			anylow = 0;
834			goto nextlow;
835		}
836	}
837}
838
839static void
840sched_balance(void)
841{
842	struct tdq *tdq;
843
844	/*
845	 * Select a random time between .5 * balance_interval and
846	 * 1.5 * balance_interval.
847	 */
848	balance_ticks = max(balance_interval / 2, 1);
849	balance_ticks += random() % balance_interval;
850	if (smp_started == 0 || rebalance == 0)
851		return;
852	tdq = TDQ_SELF();
853	TDQ_UNLOCK(tdq);
854	sched_balance_group(cpu_top);
855	TDQ_LOCK(tdq);
856}
857
858/*
859 * Lock two thread queues using their address to maintain lock order.
860 */
861static void
862tdq_lock_pair(struct tdq *one, struct tdq *two)
863{
864	if (one < two) {
865		TDQ_LOCK(one);
866		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
867	} else {
868		TDQ_LOCK(two);
869		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
870	}
871}
872
873/*
874 * Unlock two thread queues.  Order is not important here.
875 */
876static void
877tdq_unlock_pair(struct tdq *one, struct tdq *two)
878{
879	TDQ_UNLOCK(one);
880	TDQ_UNLOCK(two);
881}
882
883/*
884 * Transfer load between two imbalanced thread queues.
885 */
886static int
887sched_balance_pair(struct tdq *high, struct tdq *low)
888{
889	int moved;
890	int cpu;
891
892	tdq_lock_pair(high, low);
893	moved = 0;
894	/*
895	 * Determine what the imbalance is and then adjust that to how many
896	 * threads we actually have to give up (transferable).
897	 */
898	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
899	    (moved = tdq_move(high, low)) > 0) {
900		/*
901		 * In case the target isn't the current cpu IPI it to force a
902		 * reschedule with the new workload.
903		 */
904		cpu = TDQ_ID(low);
905		sched_pin();
906		if (cpu != PCPU_GET(cpuid))
907			ipi_cpu(cpu, IPI_PREEMPT);
908		sched_unpin();
909	}
910	tdq_unlock_pair(high, low);
911	return (moved);
912}
913
914/*
915 * Move a thread from one thread queue to another.
916 */
917static int
918tdq_move(struct tdq *from, struct tdq *to)
919{
920	struct td_sched *ts;
921	struct thread *td;
922	struct tdq *tdq;
923	int cpu;
924
925	TDQ_LOCK_ASSERT(from, MA_OWNED);
926	TDQ_LOCK_ASSERT(to, MA_OWNED);
927
928	tdq = from;
929	cpu = TDQ_ID(to);
930	td = tdq_steal(tdq, cpu);
931	if (td == NULL)
932		return (0);
933	ts = td->td_sched;
934	/*
935	 * Although the run queue is locked the thread may be blocked.  Lock
936	 * it to clear this and acquire the run-queue lock.
937	 */
938	thread_lock(td);
939	/* Drop recursive lock on from acquired via thread_lock(). */
940	TDQ_UNLOCK(from);
941	sched_rem(td);
942	ts->ts_cpu = cpu;
943	td->td_lock = TDQ_LOCKPTR(to);
944	tdq_add(to, td, SRQ_YIELDING);
945	return (1);
946}
947
948/*
949 * This tdq has idled.  Try to steal a thread from another cpu and switch
950 * to it.
951 */
952static int
953tdq_idled(struct tdq *tdq)
954{
955	struct cpu_group *cg;
956	struct tdq *steal;
957	cpuset_t mask;
958	int thresh;
959	int cpu;
960
961	if (smp_started == 0 || steal_idle == 0)
962		return (1);
963	CPU_FILL(&mask);
964	CPU_CLR(PCPU_GET(cpuid), &mask);
965	/* We don't want to be preempted while we're iterating. */
966	spinlock_enter();
967	for (cg = tdq->tdq_cg; cg != NULL; ) {
968		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
969			thresh = steal_thresh;
970		else
971			thresh = 1;
972		cpu = sched_highest(cg, mask, thresh);
973		if (cpu == -1) {
974			cg = cg->cg_parent;
975			continue;
976		}
977		steal = TDQ_CPU(cpu);
978		CPU_CLR(cpu, &mask);
979		tdq_lock_pair(tdq, steal);
980		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
981			tdq_unlock_pair(tdq, steal);
982			continue;
983		}
984		/*
985		 * If a thread was added while interrupts were disabled don't
986		 * steal one here.  If we fail to acquire one due to affinity
987		 * restrictions loop again with this cpu removed from the
988		 * set.
989		 */
990		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
991			tdq_unlock_pair(tdq, steal);
992			continue;
993		}
994		spinlock_exit();
995		TDQ_UNLOCK(steal);
996		mi_switch(SW_VOL | SWT_IDLE, NULL);
997		thread_unlock(curthread);
998
999		return (0);
1000	}
1001	spinlock_exit();
1002	return (1);
1003}
1004
1005/*
1006 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1007 */
1008static void
1009tdq_notify(struct tdq *tdq, struct thread *td)
1010{
1011	struct thread *ctd;
1012	int pri;
1013	int cpu;
1014
1015	if (tdq->tdq_ipipending)
1016		return;
1017	cpu = td->td_sched->ts_cpu;
1018	pri = td->td_priority;
1019	ctd = pcpu_find(cpu)->pc_curthread;
1020	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1021		return;
1022	if (TD_IS_IDLETHREAD(ctd)) {
1023		/*
1024		 * If the MD code has an idle wakeup routine try that before
1025		 * falling back to IPI.
1026		 */
1027		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1028			return;
1029	}
1030	tdq->tdq_ipipending = 1;
1031	ipi_cpu(cpu, IPI_PREEMPT);
1032}
1033
1034/*
1035 * Steals load from a timeshare queue.  Honors the rotating queue head
1036 * index.
1037 */
1038static struct thread *
1039runq_steal_from(struct runq *rq, int cpu, u_char start)
1040{
1041	struct rqbits *rqb;
1042	struct rqhead *rqh;
1043	struct thread *td, *first;
1044	int bit;
1045	int pri;
1046	int i;
1047
1048	rqb = &rq->rq_status;
1049	bit = start & (RQB_BPW -1);
1050	pri = 0;
1051	first = NULL;
1052again:
1053	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1054		if (rqb->rqb_bits[i] == 0)
1055			continue;
1056		if (bit != 0) {
1057			for (pri = bit; pri < RQB_BPW; pri++)
1058				if (rqb->rqb_bits[i] & (1ul << pri))
1059					break;
1060			if (pri >= RQB_BPW)
1061				continue;
1062		} else
1063			pri = RQB_FFS(rqb->rqb_bits[i]);
1064		pri += (i << RQB_L2BPW);
1065		rqh = &rq->rq_queues[pri];
1066		TAILQ_FOREACH(td, rqh, td_runq) {
1067			if (first && THREAD_CAN_MIGRATE(td) &&
1068			    THREAD_CAN_SCHED(td, cpu))
1069				return (td);
1070			first = td;
1071		}
1072	}
1073	if (start != 0) {
1074		start = 0;
1075		goto again;
1076	}
1077
1078	if (first && THREAD_CAN_MIGRATE(first) &&
1079	    THREAD_CAN_SCHED(first, cpu))
1080		return (first);
1081	return (NULL);
1082}
1083
1084/*
1085 * Steals load from a standard linear queue.
1086 */
1087static struct thread *
1088runq_steal(struct runq *rq, int cpu)
1089{
1090	struct rqhead *rqh;
1091	struct rqbits *rqb;
1092	struct thread *td;
1093	int word;
1094	int bit;
1095
1096	rqb = &rq->rq_status;
1097	for (word = 0; word < RQB_LEN; word++) {
1098		if (rqb->rqb_bits[word] == 0)
1099			continue;
1100		for (bit = 0; bit < RQB_BPW; bit++) {
1101			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1102				continue;
1103			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1104			TAILQ_FOREACH(td, rqh, td_runq)
1105				if (THREAD_CAN_MIGRATE(td) &&
1106				    THREAD_CAN_SCHED(td, cpu))
1107					return (td);
1108		}
1109	}
1110	return (NULL);
1111}
1112
1113/*
1114 * Attempt to steal a thread in priority order from a thread queue.
1115 */
1116static struct thread *
1117tdq_steal(struct tdq *tdq, int cpu)
1118{
1119	struct thread *td;
1120
1121	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1122	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1123		return (td);
1124	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1125	    cpu, tdq->tdq_ridx)) != NULL)
1126		return (td);
1127	return (runq_steal(&tdq->tdq_idle, cpu));
1128}
1129
1130/*
1131 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1132 * current lock and returns with the assigned queue locked.
1133 */
1134static inline struct tdq *
1135sched_setcpu(struct thread *td, int cpu, int flags)
1136{
1137
1138	struct tdq *tdq;
1139
1140	THREAD_LOCK_ASSERT(td, MA_OWNED);
1141	tdq = TDQ_CPU(cpu);
1142	td->td_sched->ts_cpu = cpu;
1143	/*
1144	 * If the lock matches just return the queue.
1145	 */
1146	if (td->td_lock == TDQ_LOCKPTR(tdq))
1147		return (tdq);
1148#ifdef notyet
1149	/*
1150	 * If the thread isn't running its lockptr is a
1151	 * turnstile or a sleepqueue.  We can just lock_set without
1152	 * blocking.
1153	 */
1154	if (TD_CAN_RUN(td)) {
1155		TDQ_LOCK(tdq);
1156		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1157		return (tdq);
1158	}
1159#endif
1160	/*
1161	 * The hard case, migration, we need to block the thread first to
1162	 * prevent order reversals with other cpus locks.
1163	 */
1164	spinlock_enter();
1165	thread_lock_block(td);
1166	TDQ_LOCK(tdq);
1167	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1168	spinlock_exit();
1169	return (tdq);
1170}
1171
1172SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1173SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1174SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1175SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1176SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1177SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1178
1179static int
1180sched_pickcpu(struct thread *td, int flags)
1181{
1182	struct cpu_group *cg, *ccg;
1183	struct td_sched *ts;
1184	struct tdq *tdq;
1185	cpuset_t mask;
1186	int cpu, pri, self;
1187
1188	self = PCPU_GET(cpuid);
1189	ts = td->td_sched;
1190	if (smp_started == 0)
1191		return (self);
1192	/*
1193	 * Don't migrate a running thread from sched_switch().
1194	 */
1195	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1196		return (ts->ts_cpu);
1197	/*
1198	 * Prefer to run interrupt threads on the processors that generate
1199	 * the interrupt.
1200	 */
1201	pri = td->td_priority;
1202	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1203	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1204		SCHED_STAT_INC(pickcpu_intrbind);
1205		ts->ts_cpu = self;
1206		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1207			SCHED_STAT_INC(pickcpu_affinity);
1208			return (ts->ts_cpu);
1209		}
1210	}
1211	/*
1212	 * If the thread can run on the last cpu and the affinity has not
1213	 * expired or it is idle run it there.
1214	 */
1215	tdq = TDQ_CPU(ts->ts_cpu);
1216	cg = tdq->tdq_cg;
1217	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1218	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1219	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1220		if (cg->cg_flags & CG_FLAG_THREAD) {
1221			CPUSET_FOREACH(cpu, cg->cg_mask) {
1222				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1223					break;
1224			}
1225		} else
1226			cpu = INT_MAX;
1227		if (cpu > mp_maxid) {
1228			SCHED_STAT_INC(pickcpu_idle_affinity);
1229			return (ts->ts_cpu);
1230		}
1231	}
1232	/*
1233	 * Search for the last level cache CPU group in the tree.
1234	 * Skip caches with expired affinity time and SMT groups.
1235	 * Affinity to higher level caches will be handled less aggressively.
1236	 */
1237	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1238		if (cg->cg_flags & CG_FLAG_THREAD)
1239			continue;
1240		if (!SCHED_AFFINITY(ts, cg->cg_level))
1241			continue;
1242		ccg = cg;
1243	}
1244	if (ccg != NULL)
1245		cg = ccg;
1246	cpu = -1;
1247	/* Search the group for the less loaded idle CPU we can run now. */
1248	mask = td->td_cpuset->cs_mask;
1249	if (cg != NULL && cg != cpu_top &&
1250	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1251		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1252		    INT_MAX, ts->ts_cpu);
1253	/* Search globally for the less loaded CPU we can run now. */
1254	if (cpu == -1)
1255		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1256	/* Search globally for the less loaded CPU. */
1257	if (cpu == -1)
1258		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1259	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1260	/*
1261	 * Compare the lowest loaded cpu to current cpu.
1262	 */
1263	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1264	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1265	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1266		SCHED_STAT_INC(pickcpu_local);
1267		cpu = self;
1268	} else
1269		SCHED_STAT_INC(pickcpu_lowest);
1270	if (cpu != ts->ts_cpu)
1271		SCHED_STAT_INC(pickcpu_migration);
1272	return (cpu);
1273}
1274#endif
1275
1276/*
1277 * Pick the highest priority task we have and return it.
1278 */
1279static struct thread *
1280tdq_choose(struct tdq *tdq)
1281{
1282	struct thread *td;
1283
1284	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1285	td = runq_choose(&tdq->tdq_realtime);
1286	if (td != NULL)
1287		return (td);
1288	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1289	if (td != NULL) {
1290		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1291		    ("tdq_choose: Invalid priority on timeshare queue %d",
1292		    td->td_priority));
1293		return (td);
1294	}
1295	td = runq_choose(&tdq->tdq_idle);
1296	if (td != NULL) {
1297		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1298		    ("tdq_choose: Invalid priority on idle queue %d",
1299		    td->td_priority));
1300		return (td);
1301	}
1302
1303	return (NULL);
1304}
1305
1306/*
1307 * Initialize a thread queue.
1308 */
1309static void
1310tdq_setup(struct tdq *tdq)
1311{
1312
1313	if (bootverbose)
1314		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1315	runq_init(&tdq->tdq_realtime);
1316	runq_init(&tdq->tdq_timeshare);
1317	runq_init(&tdq->tdq_idle);
1318	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1319	    "sched lock %d", (int)TDQ_ID(tdq));
1320	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1321	    MTX_SPIN | MTX_RECURSE);
1322#ifdef KTR
1323	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1324	    "CPU %d load", (int)TDQ_ID(tdq));
1325#endif
1326}
1327
1328#ifdef SMP
1329static void
1330sched_setup_smp(void)
1331{
1332	struct tdq *tdq;
1333	int i;
1334
1335	cpu_top = smp_topo();
1336	CPU_FOREACH(i) {
1337		tdq = TDQ_CPU(i);
1338		tdq_setup(tdq);
1339		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1340		if (tdq->tdq_cg == NULL)
1341			panic("Can't find cpu group for %d\n", i);
1342	}
1343	balance_tdq = TDQ_SELF();
1344	sched_balance();
1345}
1346#endif
1347
1348/*
1349 * Setup the thread queues and initialize the topology based on MD
1350 * information.
1351 */
1352static void
1353sched_setup(void *dummy)
1354{
1355	struct tdq *tdq;
1356
1357	tdq = TDQ_SELF();
1358#ifdef SMP
1359	sched_setup_smp();
1360#else
1361	tdq_setup(tdq);
1362#endif
1363	/*
1364	 * To avoid divide-by-zero, we set realstathz a dummy value
1365	 * in case which sched_clock() called before sched_initticks().
1366	 */
1367	realstathz = hz;
1368	sched_slice = (realstathz/10);	/* ~100ms */
1369	tickincr = 1 << SCHED_TICK_SHIFT;
1370
1371	/* Add thread0's load since it's running. */
1372	TDQ_LOCK(tdq);
1373	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1374	tdq_load_add(tdq, &thread0);
1375	tdq->tdq_lowpri = thread0.td_priority;
1376	TDQ_UNLOCK(tdq);
1377}
1378
1379/*
1380 * This routine determines the tickincr after stathz and hz are setup.
1381 */
1382/* ARGSUSED */
1383static void
1384sched_initticks(void *dummy)
1385{
1386	int incr;
1387
1388	realstathz = stathz ? stathz : hz;
1389	sched_slice = (realstathz/10);	/* ~100ms */
1390
1391	/*
1392	 * tickincr is shifted out by 10 to avoid rounding errors due to
1393	 * hz not being evenly divisible by stathz on all platforms.
1394	 */
1395	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1396	/*
1397	 * This does not work for values of stathz that are more than
1398	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1399	 */
1400	if (incr == 0)
1401		incr = 1;
1402	tickincr = incr;
1403#ifdef SMP
1404	/*
1405	 * Set the default balance interval now that we know
1406	 * what realstathz is.
1407	 */
1408	balance_interval = realstathz;
1409	/*
1410	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1411	 * This prevents excess thrashing on large machines and excess idle
1412	 * on smaller machines.
1413	 */
1414	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1415	affinity = SCHED_AFFINITY_DEFAULT;
1416#endif
1417	if (sched_idlespinthresh < 0)
1418		sched_idlespinthresh = max(16, 2 * hz / realstathz);
1419}
1420
1421
1422/*
1423 * This is the core of the interactivity algorithm.  Determines a score based
1424 * on past behavior.  It is the ratio of sleep time to run time scaled to
1425 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1426 * differs from the cpu usage because it does not account for time spent
1427 * waiting on a run-queue.  Would be prettier if we had floating point.
1428 */
1429static int
1430sched_interact_score(struct thread *td)
1431{
1432	struct td_sched *ts;
1433	int div;
1434
1435	ts = td->td_sched;
1436	/*
1437	 * The score is only needed if this is likely to be an interactive
1438	 * task.  Don't go through the expense of computing it if there's
1439	 * no chance.
1440	 */
1441	if (sched_interact <= SCHED_INTERACT_HALF &&
1442		ts->ts_runtime >= ts->ts_slptime)
1443			return (SCHED_INTERACT_HALF);
1444
1445	if (ts->ts_runtime > ts->ts_slptime) {
1446		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1447		return (SCHED_INTERACT_HALF +
1448		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1449	}
1450	if (ts->ts_slptime > ts->ts_runtime) {
1451		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1452		return (ts->ts_runtime / div);
1453	}
1454	/* runtime == slptime */
1455	if (ts->ts_runtime)
1456		return (SCHED_INTERACT_HALF);
1457
1458	/*
1459	 * This can happen if slptime and runtime are 0.
1460	 */
1461	return (0);
1462
1463}
1464
1465/*
1466 * Scale the scheduling priority according to the "interactivity" of this
1467 * process.
1468 */
1469static void
1470sched_priority(struct thread *td)
1471{
1472	int score;
1473	int pri;
1474
1475	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1476		return;
1477	/*
1478	 * If the score is interactive we place the thread in the realtime
1479	 * queue with a priority that is less than kernel and interrupt
1480	 * priorities.  These threads are not subject to nice restrictions.
1481	 *
1482	 * Scores greater than this are placed on the normal timeshare queue
1483	 * where the priority is partially decided by the most recent cpu
1484	 * utilization and the rest is decided by nice value.
1485	 *
1486	 * The nice value of the process has a linear effect on the calculated
1487	 * score.  Negative nice values make it easier for a thread to be
1488	 * considered interactive.
1489	 */
1490	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1491	if (score < sched_interact) {
1492		pri = PRI_MIN_INTERACT;
1493		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1494		    sched_interact) * score;
1495		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1496		    ("sched_priority: invalid interactive priority %d score %d",
1497		    pri, score));
1498	} else {
1499		pri = SCHED_PRI_MIN;
1500		if (td->td_sched->ts_ticks)
1501			pri += min(SCHED_PRI_TICKS(td->td_sched),
1502			    SCHED_PRI_RANGE);
1503		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1504		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1505		    ("sched_priority: invalid priority %d: nice %d, "
1506		    "ticks %d ftick %d ltick %d tick pri %d",
1507		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1508		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1509		    SCHED_PRI_TICKS(td->td_sched)));
1510	}
1511	sched_user_prio(td, pri);
1512
1513	return;
1514}
1515
1516/*
1517 * This routine enforces a maximum limit on the amount of scheduling history
1518 * kept.  It is called after either the slptime or runtime is adjusted.  This
1519 * function is ugly due to integer math.
1520 */
1521static void
1522sched_interact_update(struct thread *td)
1523{
1524	struct td_sched *ts;
1525	u_int sum;
1526
1527	ts = td->td_sched;
1528	sum = ts->ts_runtime + ts->ts_slptime;
1529	if (sum < SCHED_SLP_RUN_MAX)
1530		return;
1531	/*
1532	 * This only happens from two places:
1533	 * 1) We have added an unusual amount of run time from fork_exit.
1534	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1535	 */
1536	if (sum > SCHED_SLP_RUN_MAX * 2) {
1537		if (ts->ts_runtime > ts->ts_slptime) {
1538			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1539			ts->ts_slptime = 1;
1540		} else {
1541			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1542			ts->ts_runtime = 1;
1543		}
1544		return;
1545	}
1546	/*
1547	 * If we have exceeded by more than 1/5th then the algorithm below
1548	 * will not bring us back into range.  Dividing by two here forces
1549	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1550	 */
1551	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1552		ts->ts_runtime /= 2;
1553		ts->ts_slptime /= 2;
1554		return;
1555	}
1556	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1557	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1558}
1559
1560/*
1561 * Scale back the interactivity history when a child thread is created.  The
1562 * history is inherited from the parent but the thread may behave totally
1563 * differently.  For example, a shell spawning a compiler process.  We want
1564 * to learn that the compiler is behaving badly very quickly.
1565 */
1566static void
1567sched_interact_fork(struct thread *td)
1568{
1569	int ratio;
1570	int sum;
1571
1572	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1573	if (sum > SCHED_SLP_RUN_FORK) {
1574		ratio = sum / SCHED_SLP_RUN_FORK;
1575		td->td_sched->ts_runtime /= ratio;
1576		td->td_sched->ts_slptime /= ratio;
1577	}
1578}
1579
1580/*
1581 * Called from proc0_init() to setup the scheduler fields.
1582 */
1583void
1584schedinit(void)
1585{
1586
1587	/*
1588	 * Set up the scheduler specific parts of proc0.
1589	 */
1590	proc0.p_sched = NULL; /* XXX */
1591	thread0.td_sched = &td_sched0;
1592	td_sched0.ts_ltick = ticks;
1593	td_sched0.ts_ftick = ticks;
1594	td_sched0.ts_slice = sched_slice;
1595}
1596
1597/*
1598 * This is only somewhat accurate since given many processes of the same
1599 * priority they will switch when their slices run out, which will be
1600 * at most sched_slice stathz ticks.
1601 */
1602int
1603sched_rr_interval(void)
1604{
1605
1606	/* Convert sched_slice to hz */
1607	return (hz/(realstathz/sched_slice));
1608}
1609
1610/*
1611 * Update the percent cpu tracking information when it is requested or
1612 * the total history exceeds the maximum.  We keep a sliding history of
1613 * tick counts that slowly decays.  This is less precise than the 4BSD
1614 * mechanism since it happens with less regular and frequent events.
1615 */
1616static void
1617sched_pctcpu_update(struct td_sched *ts, int run)
1618{
1619	int t = ticks;
1620
1621	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1622		ts->ts_ticks = 0;
1623		ts->ts_ftick = t - SCHED_TICK_TARG;
1624	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1625		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1626		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1627		ts->ts_ftick = t - SCHED_TICK_TARG;
1628	}
1629	if (run)
1630		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1631	ts->ts_ltick = t;
1632}
1633
1634/*
1635 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1636 * if necessary.  This is the back-end for several priority related
1637 * functions.
1638 */
1639static void
1640sched_thread_priority(struct thread *td, u_char prio)
1641{
1642	struct td_sched *ts;
1643	struct tdq *tdq;
1644	int oldpri;
1645
1646	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1647	    "prio:%d", td->td_priority, "new prio:%d", prio,
1648	    KTR_ATTR_LINKED, sched_tdname(curthread));
1649	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1650	if (td != curthread && prio > td->td_priority) {
1651		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1652		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1653		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1654		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1655		    curthread);
1656	}
1657	ts = td->td_sched;
1658	THREAD_LOCK_ASSERT(td, MA_OWNED);
1659	if (td->td_priority == prio)
1660		return;
1661	/*
1662	 * If the priority has been elevated due to priority
1663	 * propagation, we may have to move ourselves to a new
1664	 * queue.  This could be optimized to not re-add in some
1665	 * cases.
1666	 */
1667	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1668		sched_rem(td);
1669		td->td_priority = prio;
1670		sched_add(td, SRQ_BORROWING);
1671		return;
1672	}
1673	/*
1674	 * If the thread is currently running we may have to adjust the lowpri
1675	 * information so other cpus are aware of our current priority.
1676	 */
1677	if (TD_IS_RUNNING(td)) {
1678		tdq = TDQ_CPU(ts->ts_cpu);
1679		oldpri = td->td_priority;
1680		td->td_priority = prio;
1681		if (prio < tdq->tdq_lowpri)
1682			tdq->tdq_lowpri = prio;
1683		else if (tdq->tdq_lowpri == oldpri)
1684			tdq_setlowpri(tdq, td);
1685		return;
1686	}
1687	td->td_priority = prio;
1688}
1689
1690/*
1691 * Update a thread's priority when it is lent another thread's
1692 * priority.
1693 */
1694void
1695sched_lend_prio(struct thread *td, u_char prio)
1696{
1697
1698	td->td_flags |= TDF_BORROWING;
1699	sched_thread_priority(td, prio);
1700}
1701
1702/*
1703 * Restore a thread's priority when priority propagation is
1704 * over.  The prio argument is the minimum priority the thread
1705 * needs to have to satisfy other possible priority lending
1706 * requests.  If the thread's regular priority is less
1707 * important than prio, the thread will keep a priority boost
1708 * of prio.
1709 */
1710void
1711sched_unlend_prio(struct thread *td, u_char prio)
1712{
1713	u_char base_pri;
1714
1715	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1716	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1717		base_pri = td->td_user_pri;
1718	else
1719		base_pri = td->td_base_pri;
1720	if (prio >= base_pri) {
1721		td->td_flags &= ~TDF_BORROWING;
1722		sched_thread_priority(td, base_pri);
1723	} else
1724		sched_lend_prio(td, prio);
1725}
1726
1727/*
1728 * Standard entry for setting the priority to an absolute value.
1729 */
1730void
1731sched_prio(struct thread *td, u_char prio)
1732{
1733	u_char oldprio;
1734
1735	/* First, update the base priority. */
1736	td->td_base_pri = prio;
1737
1738	/*
1739	 * If the thread is borrowing another thread's priority, don't
1740	 * ever lower the priority.
1741	 */
1742	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1743		return;
1744
1745	/* Change the real priority. */
1746	oldprio = td->td_priority;
1747	sched_thread_priority(td, prio);
1748
1749	/*
1750	 * If the thread is on a turnstile, then let the turnstile update
1751	 * its state.
1752	 */
1753	if (TD_ON_LOCK(td) && oldprio != prio)
1754		turnstile_adjust(td, oldprio);
1755}
1756
1757/*
1758 * Set the base user priority, does not effect current running priority.
1759 */
1760void
1761sched_user_prio(struct thread *td, u_char prio)
1762{
1763
1764	td->td_base_user_pri = prio;
1765	if (td->td_lend_user_pri <= prio)
1766		return;
1767	td->td_user_pri = prio;
1768}
1769
1770void
1771sched_lend_user_prio(struct thread *td, u_char prio)
1772{
1773
1774	THREAD_LOCK_ASSERT(td, MA_OWNED);
1775	td->td_lend_user_pri = prio;
1776	td->td_user_pri = min(prio, td->td_base_user_pri);
1777	if (td->td_priority > td->td_user_pri)
1778		sched_prio(td, td->td_user_pri);
1779	else if (td->td_priority != td->td_user_pri)
1780		td->td_flags |= TDF_NEEDRESCHED;
1781}
1782
1783/*
1784 * Handle migration from sched_switch().  This happens only for
1785 * cpu binding.
1786 */
1787static struct mtx *
1788sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1789{
1790	struct tdq *tdn;
1791
1792	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1793#ifdef SMP
1794	tdq_load_rem(tdq, td);
1795	/*
1796	 * Do the lock dance required to avoid LOR.  We grab an extra
1797	 * spinlock nesting to prevent preemption while we're
1798	 * not holding either run-queue lock.
1799	 */
1800	spinlock_enter();
1801	thread_lock_block(td);	/* This releases the lock on tdq. */
1802
1803	/*
1804	 * Acquire both run-queue locks before placing the thread on the new
1805	 * run-queue to avoid deadlocks created by placing a thread with a
1806	 * blocked lock on the run-queue of a remote processor.  The deadlock
1807	 * occurs when a third processor attempts to lock the two queues in
1808	 * question while the target processor is spinning with its own
1809	 * run-queue lock held while waiting for the blocked lock to clear.
1810	 */
1811	tdq_lock_pair(tdn, tdq);
1812	tdq_add(tdn, td, flags);
1813	tdq_notify(tdn, td);
1814	TDQ_UNLOCK(tdn);
1815	spinlock_exit();
1816#endif
1817	return (TDQ_LOCKPTR(tdn));
1818}
1819
1820/*
1821 * Variadic version of thread_lock_unblock() that does not assume td_lock
1822 * is blocked.
1823 */
1824static inline void
1825thread_unblock_switch(struct thread *td, struct mtx *mtx)
1826{
1827	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1828	    (uintptr_t)mtx);
1829}
1830
1831/*
1832 * Switch threads.  This function has to handle threads coming in while
1833 * blocked for some reason, running, or idle.  It also must deal with
1834 * migrating a thread from one queue to another as running threads may
1835 * be assigned elsewhere via binding.
1836 */
1837void
1838sched_switch(struct thread *td, struct thread *newtd, int flags)
1839{
1840	struct tdq *tdq;
1841	struct td_sched *ts;
1842	struct mtx *mtx;
1843	int srqflag;
1844	int cpuid;
1845
1846	THREAD_LOCK_ASSERT(td, MA_OWNED);
1847	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1848
1849	cpuid = PCPU_GET(cpuid);
1850	tdq = TDQ_CPU(cpuid);
1851	ts = td->td_sched;
1852	mtx = td->td_lock;
1853	sched_pctcpu_update(ts, 1);
1854	ts->ts_rltick = ticks;
1855	td->td_lastcpu = td->td_oncpu;
1856	td->td_oncpu = NOCPU;
1857	if (!(flags & SW_PREEMPT))
1858		td->td_flags &= ~TDF_NEEDRESCHED;
1859	td->td_owepreempt = 0;
1860	tdq->tdq_switchcnt++;
1861	/*
1862	 * The lock pointer in an idle thread should never change.  Reset it
1863	 * to CAN_RUN as well.
1864	 */
1865	if (TD_IS_IDLETHREAD(td)) {
1866		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1867		TD_SET_CAN_RUN(td);
1868	} else if (TD_IS_RUNNING(td)) {
1869		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1870		srqflag = (flags & SW_PREEMPT) ?
1871		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1872		    SRQ_OURSELF|SRQ_YIELDING;
1873#ifdef SMP
1874		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1875			ts->ts_cpu = sched_pickcpu(td, 0);
1876#endif
1877		if (ts->ts_cpu == cpuid)
1878			tdq_runq_add(tdq, td, srqflag);
1879		else {
1880			KASSERT(THREAD_CAN_MIGRATE(td) ||
1881			    (ts->ts_flags & TSF_BOUND) != 0,
1882			    ("Thread %p shouldn't migrate", td));
1883			mtx = sched_switch_migrate(tdq, td, srqflag);
1884		}
1885	} else {
1886		/* This thread must be going to sleep. */
1887		TDQ_LOCK(tdq);
1888		mtx = thread_lock_block(td);
1889		tdq_load_rem(tdq, td);
1890	}
1891	/*
1892	 * We enter here with the thread blocked and assigned to the
1893	 * appropriate cpu run-queue or sleep-queue and with the current
1894	 * thread-queue locked.
1895	 */
1896	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1897	newtd = choosethread();
1898	/*
1899	 * Call the MD code to switch contexts if necessary.
1900	 */
1901	if (td != newtd) {
1902#ifdef	HWPMC_HOOKS
1903		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1904			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1905#endif
1906		SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
1907		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1908		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1909		sched_pctcpu_update(newtd->td_sched, 0);
1910
1911#ifdef KDTRACE_HOOKS
1912		/*
1913		 * If DTrace has set the active vtime enum to anything
1914		 * other than INACTIVE (0), then it should have set the
1915		 * function to call.
1916		 */
1917		if (dtrace_vtime_active)
1918			(*dtrace_vtime_switch_func)(newtd);
1919#endif
1920
1921		cpu_switch(td, newtd, mtx);
1922		/*
1923		 * We may return from cpu_switch on a different cpu.  However,
1924		 * we always return with td_lock pointing to the current cpu's
1925		 * run queue lock.
1926		 */
1927		cpuid = PCPU_GET(cpuid);
1928		tdq = TDQ_CPU(cpuid);
1929		lock_profile_obtain_lock_success(
1930		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1931
1932		SDT_PROBE0(sched, , , on_cpu);
1933#ifdef	HWPMC_HOOKS
1934		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1935			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1936#endif
1937	} else {
1938		thread_unblock_switch(td, mtx);
1939		SDT_PROBE0(sched, , , remain_cpu);
1940	}
1941	/*
1942	 * Assert that all went well and return.
1943	 */
1944	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1945	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1946	td->td_oncpu = cpuid;
1947}
1948
1949/*
1950 * Adjust thread priorities as a result of a nice request.
1951 */
1952void
1953sched_nice(struct proc *p, int nice)
1954{
1955	struct thread *td;
1956
1957	PROC_LOCK_ASSERT(p, MA_OWNED);
1958
1959	p->p_nice = nice;
1960	FOREACH_THREAD_IN_PROC(p, td) {
1961		thread_lock(td);
1962		sched_priority(td);
1963		sched_prio(td, td->td_base_user_pri);
1964		thread_unlock(td);
1965	}
1966}
1967
1968/*
1969 * Record the sleep time for the interactivity scorer.
1970 */
1971void
1972sched_sleep(struct thread *td, int prio)
1973{
1974
1975	THREAD_LOCK_ASSERT(td, MA_OWNED);
1976
1977	td->td_slptick = ticks;
1978	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1979		td->td_flags |= TDF_CANSWAP;
1980	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1981		return;
1982	if (static_boost == 1 && prio)
1983		sched_prio(td, prio);
1984	else if (static_boost && td->td_priority > static_boost)
1985		sched_prio(td, static_boost);
1986}
1987
1988/*
1989 * Schedule a thread to resume execution and record how long it voluntarily
1990 * slept.  We also update the pctcpu, interactivity, and priority.
1991 */
1992void
1993sched_wakeup(struct thread *td)
1994{
1995	struct td_sched *ts;
1996	int slptick;
1997
1998	THREAD_LOCK_ASSERT(td, MA_OWNED);
1999	ts = td->td_sched;
2000	td->td_flags &= ~TDF_CANSWAP;
2001	/*
2002	 * If we slept for more than a tick update our interactivity and
2003	 * priority.
2004	 */
2005	slptick = td->td_slptick;
2006	td->td_slptick = 0;
2007	if (slptick && slptick != ticks) {
2008		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2009		sched_interact_update(td);
2010		sched_pctcpu_update(ts, 0);
2011	}
2012	/* Reset the slice value after we sleep. */
2013	ts->ts_slice = sched_slice;
2014	sched_add(td, SRQ_BORING);
2015}
2016
2017/*
2018 * Penalize the parent for creating a new child and initialize the child's
2019 * priority.
2020 */
2021void
2022sched_fork(struct thread *td, struct thread *child)
2023{
2024	THREAD_LOCK_ASSERT(td, MA_OWNED);
2025	sched_pctcpu_update(td->td_sched, 1);
2026	sched_fork_thread(td, child);
2027	/*
2028	 * Penalize the parent and child for forking.
2029	 */
2030	sched_interact_fork(child);
2031	sched_priority(child);
2032	td->td_sched->ts_runtime += tickincr;
2033	sched_interact_update(td);
2034	sched_priority(td);
2035}
2036
2037/*
2038 * Fork a new thread, may be within the same process.
2039 */
2040void
2041sched_fork_thread(struct thread *td, struct thread *child)
2042{
2043	struct td_sched *ts;
2044	struct td_sched *ts2;
2045
2046	THREAD_LOCK_ASSERT(td, MA_OWNED);
2047	/*
2048	 * Initialize child.
2049	 */
2050	ts = td->td_sched;
2051	ts2 = child->td_sched;
2052	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2053	child->td_cpuset = cpuset_ref(td->td_cpuset);
2054	ts2->ts_cpu = ts->ts_cpu;
2055	ts2->ts_flags = 0;
2056	/*
2057	 * Grab our parents cpu estimation information.
2058	 */
2059	ts2->ts_ticks = ts->ts_ticks;
2060	ts2->ts_ltick = ts->ts_ltick;
2061	ts2->ts_ftick = ts->ts_ftick;
2062	/*
2063	 * Do not inherit any borrowed priority from the parent.
2064	 */
2065	child->td_priority = child->td_base_pri;
2066	/*
2067	 * And update interactivity score.
2068	 */
2069	ts2->ts_slptime = ts->ts_slptime;
2070	ts2->ts_runtime = ts->ts_runtime;
2071	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2072#ifdef KTR
2073	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2074#endif
2075}
2076
2077/*
2078 * Adjust the priority class of a thread.
2079 */
2080void
2081sched_class(struct thread *td, int class)
2082{
2083
2084	THREAD_LOCK_ASSERT(td, MA_OWNED);
2085	if (td->td_pri_class == class)
2086		return;
2087	td->td_pri_class = class;
2088}
2089
2090/*
2091 * Return some of the child's priority and interactivity to the parent.
2092 */
2093void
2094sched_exit(struct proc *p, struct thread *child)
2095{
2096	struct thread *td;
2097
2098	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2099	    "prio:%d", child->td_priority);
2100	PROC_LOCK_ASSERT(p, MA_OWNED);
2101	td = FIRST_THREAD_IN_PROC(p);
2102	sched_exit_thread(td, child);
2103}
2104
2105/*
2106 * Penalize another thread for the time spent on this one.  This helps to
2107 * worsen the priority and interactivity of processes which schedule batch
2108 * jobs such as make.  This has little effect on the make process itself but
2109 * causes new processes spawned by it to receive worse scores immediately.
2110 */
2111void
2112sched_exit_thread(struct thread *td, struct thread *child)
2113{
2114
2115	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2116	    "prio:%d", child->td_priority);
2117	/*
2118	 * Give the child's runtime to the parent without returning the
2119	 * sleep time as a penalty to the parent.  This causes shells that
2120	 * launch expensive things to mark their children as expensive.
2121	 */
2122	thread_lock(td);
2123	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2124	sched_interact_update(td);
2125	sched_priority(td);
2126	thread_unlock(td);
2127}
2128
2129void
2130sched_preempt(struct thread *td)
2131{
2132	struct tdq *tdq;
2133
2134	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2135
2136	thread_lock(td);
2137	tdq = TDQ_SELF();
2138	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2139	tdq->tdq_ipipending = 0;
2140	if (td->td_priority > tdq->tdq_lowpri) {
2141		int flags;
2142
2143		flags = SW_INVOL | SW_PREEMPT;
2144		if (td->td_critnest > 1)
2145			td->td_owepreempt = 1;
2146		else if (TD_IS_IDLETHREAD(td))
2147			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2148		else
2149			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2150	}
2151	thread_unlock(td);
2152}
2153
2154/*
2155 * Fix priorities on return to user-space.  Priorities may be elevated due
2156 * to static priorities in msleep() or similar.
2157 */
2158void
2159sched_userret(struct thread *td)
2160{
2161	/*
2162	 * XXX we cheat slightly on the locking here to avoid locking in
2163	 * the usual case.  Setting td_priority here is essentially an
2164	 * incomplete workaround for not setting it properly elsewhere.
2165	 * Now that some interrupt handlers are threads, not setting it
2166	 * properly elsewhere can clobber it in the window between setting
2167	 * it here and returning to user mode, so don't waste time setting
2168	 * it perfectly here.
2169	 */
2170	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2171	    ("thread with borrowed priority returning to userland"));
2172	if (td->td_priority != td->td_user_pri) {
2173		thread_lock(td);
2174		td->td_priority = td->td_user_pri;
2175		td->td_base_pri = td->td_user_pri;
2176		tdq_setlowpri(TDQ_SELF(), td);
2177		thread_unlock(td);
2178        }
2179}
2180
2181/*
2182 * Handle a stathz tick.  This is really only relevant for timeshare
2183 * threads.
2184 */
2185void
2186sched_clock(struct thread *td)
2187{
2188	struct tdq *tdq;
2189	struct td_sched *ts;
2190
2191	THREAD_LOCK_ASSERT(td, MA_OWNED);
2192	tdq = TDQ_SELF();
2193#ifdef SMP
2194	/*
2195	 * We run the long term load balancer infrequently on the first cpu.
2196	 */
2197	if (balance_tdq == tdq) {
2198		if (balance_ticks && --balance_ticks == 0)
2199			sched_balance();
2200	}
2201#endif
2202	/*
2203	 * Save the old switch count so we have a record of the last ticks
2204	 * activity.   Initialize the new switch count based on our load.
2205	 * If there is some activity seed it to reflect that.
2206	 */
2207	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2208	tdq->tdq_switchcnt = tdq->tdq_load;
2209	/*
2210	 * Advance the insert index once for each tick to ensure that all
2211	 * threads get a chance to run.
2212	 */
2213	if (tdq->tdq_idx == tdq->tdq_ridx) {
2214		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2215		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2216			tdq->tdq_ridx = tdq->tdq_idx;
2217	}
2218	ts = td->td_sched;
2219	sched_pctcpu_update(ts, 1);
2220	if (td->td_pri_class & PRI_FIFO_BIT)
2221		return;
2222	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2223		/*
2224		 * We used a tick; charge it to the thread so
2225		 * that we can compute our interactivity.
2226		 */
2227		td->td_sched->ts_runtime += tickincr;
2228		sched_interact_update(td);
2229		sched_priority(td);
2230	}
2231	/*
2232	 * We used up one time slice.
2233	 */
2234	if (--ts->ts_slice > 0)
2235		return;
2236	/*
2237	 * We're out of time, force a requeue at userret().
2238	 */
2239	ts->ts_slice = sched_slice;
2240	td->td_flags |= TDF_NEEDRESCHED;
2241}
2242
2243/*
2244 * Called once per hz tick.
2245 */
2246void
2247sched_tick(int cnt)
2248{
2249
2250}
2251
2252/*
2253 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2254 * cooperative idle threads.
2255 */
2256int
2257sched_runnable(void)
2258{
2259	struct tdq *tdq;
2260	int load;
2261
2262	load = 1;
2263
2264	tdq = TDQ_SELF();
2265	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2266		if (tdq->tdq_load > 0)
2267			goto out;
2268	} else
2269		if (tdq->tdq_load - 1 > 0)
2270			goto out;
2271	load = 0;
2272out:
2273	return (load);
2274}
2275
2276/*
2277 * Choose the highest priority thread to run.  The thread is removed from
2278 * the run-queue while running however the load remains.  For SMP we set
2279 * the tdq in the global idle bitmask if it idles here.
2280 */
2281struct thread *
2282sched_choose(void)
2283{
2284	struct thread *td;
2285	struct tdq *tdq;
2286
2287	tdq = TDQ_SELF();
2288	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2289	td = tdq_choose(tdq);
2290	if (td) {
2291		tdq_runq_rem(tdq, td);
2292		tdq->tdq_lowpri = td->td_priority;
2293		return (td);
2294	}
2295	tdq->tdq_lowpri = PRI_MAX_IDLE;
2296	return (PCPU_GET(idlethread));
2297}
2298
2299/*
2300 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2301 * we always request it once we exit a critical section.
2302 */
2303static inline void
2304sched_setpreempt(struct thread *td)
2305{
2306	struct thread *ctd;
2307	int cpri;
2308	int pri;
2309
2310	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2311
2312	ctd = curthread;
2313	pri = td->td_priority;
2314	cpri = ctd->td_priority;
2315	if (pri < cpri)
2316		ctd->td_flags |= TDF_NEEDRESCHED;
2317	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2318		return;
2319	if (!sched_shouldpreempt(pri, cpri, 0))
2320		return;
2321	ctd->td_owepreempt = 1;
2322}
2323
2324/*
2325 * Add a thread to a thread queue.  Select the appropriate runq and add the
2326 * thread to it.  This is the internal function called when the tdq is
2327 * predetermined.
2328 */
2329void
2330tdq_add(struct tdq *tdq, struct thread *td, int flags)
2331{
2332
2333	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2334	KASSERT((td->td_inhibitors == 0),
2335	    ("sched_add: trying to run inhibited thread"));
2336	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2337	    ("sched_add: bad thread state"));
2338	KASSERT(td->td_flags & TDF_INMEM,
2339	    ("sched_add: thread swapped out"));
2340
2341	if (td->td_priority < tdq->tdq_lowpri)
2342		tdq->tdq_lowpri = td->td_priority;
2343	tdq_runq_add(tdq, td, flags);
2344	tdq_load_add(tdq, td);
2345}
2346
2347/*
2348 * Select the target thread queue and add a thread to it.  Request
2349 * preemption or IPI a remote processor if required.
2350 */
2351void
2352sched_add(struct thread *td, int flags)
2353{
2354	struct tdq *tdq;
2355#ifdef SMP
2356	int cpu;
2357#endif
2358
2359	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2360	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2361	    sched_tdname(curthread));
2362	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2363	    KTR_ATTR_LINKED, sched_tdname(td));
2364	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2365	    flags & SRQ_PREEMPTED);
2366	THREAD_LOCK_ASSERT(td, MA_OWNED);
2367	/*
2368	 * Recalculate the priority before we select the target cpu or
2369	 * run-queue.
2370	 */
2371	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2372		sched_priority(td);
2373#ifdef SMP
2374	/*
2375	 * Pick the destination cpu and if it isn't ours transfer to the
2376	 * target cpu.
2377	 */
2378	cpu = sched_pickcpu(td, flags);
2379	tdq = sched_setcpu(td, cpu, flags);
2380	tdq_add(tdq, td, flags);
2381	if (cpu != PCPU_GET(cpuid)) {
2382		tdq_notify(tdq, td);
2383		return;
2384	}
2385#else
2386	tdq = TDQ_SELF();
2387	TDQ_LOCK(tdq);
2388	/*
2389	 * Now that the thread is moving to the run-queue, set the lock
2390	 * to the scheduler's lock.
2391	 */
2392	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2393	tdq_add(tdq, td, flags);
2394#endif
2395	if (!(flags & SRQ_YIELDING))
2396		sched_setpreempt(td);
2397}
2398
2399/*
2400 * Remove a thread from a run-queue without running it.  This is used
2401 * when we're stealing a thread from a remote queue.  Otherwise all threads
2402 * exit by calling sched_exit_thread() and sched_throw() themselves.
2403 */
2404void
2405sched_rem(struct thread *td)
2406{
2407	struct tdq *tdq;
2408
2409	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2410	    "prio:%d", td->td_priority);
2411	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2412	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2413	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2414	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2415	KASSERT(TD_ON_RUNQ(td),
2416	    ("sched_rem: thread not on run queue"));
2417	tdq_runq_rem(tdq, td);
2418	tdq_load_rem(tdq, td);
2419	TD_SET_CAN_RUN(td);
2420	if (td->td_priority == tdq->tdq_lowpri)
2421		tdq_setlowpri(tdq, NULL);
2422}
2423
2424/*
2425 * Fetch cpu utilization information.  Updates on demand.
2426 */
2427fixpt_t
2428sched_pctcpu(struct thread *td)
2429{
2430	fixpt_t pctcpu;
2431	struct td_sched *ts;
2432
2433	pctcpu = 0;
2434	ts = td->td_sched;
2435	if (ts == NULL)
2436		return (0);
2437
2438	THREAD_LOCK_ASSERT(td, MA_OWNED);
2439	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2440	if (ts->ts_ticks) {
2441		int rtick;
2442
2443		/* How many rtick per second ? */
2444		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2445		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2446	}
2447
2448	return (pctcpu);
2449}
2450
2451/*
2452 * Enforce affinity settings for a thread.  Called after adjustments to
2453 * cpumask.
2454 */
2455void
2456sched_affinity(struct thread *td)
2457{
2458#ifdef SMP
2459	struct td_sched *ts;
2460
2461	THREAD_LOCK_ASSERT(td, MA_OWNED);
2462	ts = td->td_sched;
2463	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2464		return;
2465	if (TD_ON_RUNQ(td)) {
2466		sched_rem(td);
2467		sched_add(td, SRQ_BORING);
2468		return;
2469	}
2470	if (!TD_IS_RUNNING(td))
2471		return;
2472	/*
2473	 * Force a switch before returning to userspace.  If the
2474	 * target thread is not running locally send an ipi to force
2475	 * the issue.
2476	 */
2477	td->td_flags |= TDF_NEEDRESCHED;
2478	if (td != curthread)
2479		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2480#endif
2481}
2482
2483/*
2484 * Bind a thread to a target cpu.
2485 */
2486void
2487sched_bind(struct thread *td, int cpu)
2488{
2489	struct td_sched *ts;
2490
2491	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2492	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2493	ts = td->td_sched;
2494	if (ts->ts_flags & TSF_BOUND)
2495		sched_unbind(td);
2496	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2497	ts->ts_flags |= TSF_BOUND;
2498	sched_pin();
2499	if (PCPU_GET(cpuid) == cpu)
2500		return;
2501	ts->ts_cpu = cpu;
2502	/* When we return from mi_switch we'll be on the correct cpu. */
2503	mi_switch(SW_VOL, NULL);
2504}
2505
2506/*
2507 * Release a bound thread.
2508 */
2509void
2510sched_unbind(struct thread *td)
2511{
2512	struct td_sched *ts;
2513
2514	THREAD_LOCK_ASSERT(td, MA_OWNED);
2515	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2516	ts = td->td_sched;
2517	if ((ts->ts_flags & TSF_BOUND) == 0)
2518		return;
2519	ts->ts_flags &= ~TSF_BOUND;
2520	sched_unpin();
2521}
2522
2523int
2524sched_is_bound(struct thread *td)
2525{
2526	THREAD_LOCK_ASSERT(td, MA_OWNED);
2527	return (td->td_sched->ts_flags & TSF_BOUND);
2528}
2529
2530/*
2531 * Basic yield call.
2532 */
2533void
2534sched_relinquish(struct thread *td)
2535{
2536	thread_lock(td);
2537	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2538	thread_unlock(td);
2539}
2540
2541/*
2542 * Return the total system load.
2543 */
2544int
2545sched_load(void)
2546{
2547#ifdef SMP
2548	int total;
2549	int i;
2550
2551	total = 0;
2552	CPU_FOREACH(i)
2553		total += TDQ_CPU(i)->tdq_sysload;
2554	return (total);
2555#else
2556	return (TDQ_SELF()->tdq_sysload);
2557#endif
2558}
2559
2560int
2561sched_sizeof_proc(void)
2562{
2563	return (sizeof(struct proc));
2564}
2565
2566int
2567sched_sizeof_thread(void)
2568{
2569	return (sizeof(struct thread) + sizeof(struct td_sched));
2570}
2571
2572#ifdef SMP
2573#define	TDQ_IDLESPIN(tdq)						\
2574    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2575#else
2576#define	TDQ_IDLESPIN(tdq)	1
2577#endif
2578
2579/*
2580 * The actual idle process.
2581 */
2582void
2583sched_idletd(void *dummy)
2584{
2585	struct thread *td;
2586	struct tdq *tdq;
2587	int switchcnt;
2588	int i;
2589
2590	mtx_assert(&Giant, MA_NOTOWNED);
2591	td = curthread;
2592	tdq = TDQ_SELF();
2593	for (;;) {
2594#ifdef SMP
2595		if (tdq_idled(tdq) == 0)
2596			continue;
2597#endif
2598		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2599		/*
2600		 * If we're switching very frequently, spin while checking
2601		 * for load rather than entering a low power state that
2602		 * may require an IPI.  However, don't do any busy
2603		 * loops while on SMT machines as this simply steals
2604		 * cycles from cores doing useful work.
2605		 */
2606		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2607			for (i = 0; i < sched_idlespins; i++) {
2608				if (tdq->tdq_load)
2609					break;
2610				cpu_spinwait();
2611			}
2612		}
2613		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2614		if (tdq->tdq_load == 0) {
2615			tdq->tdq_cpu_idle = 1;
2616			if (tdq->tdq_load == 0) {
2617				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2618				tdq->tdq_switchcnt++;
2619			}
2620			tdq->tdq_cpu_idle = 0;
2621		}
2622		if (tdq->tdq_load) {
2623			thread_lock(td);
2624			mi_switch(SW_VOL | SWT_IDLE, NULL);
2625			thread_unlock(td);
2626		}
2627	}
2628}
2629
2630/*
2631 * A CPU is entering for the first time or a thread is exiting.
2632 */
2633void
2634sched_throw(struct thread *td)
2635{
2636	struct thread *newtd;
2637	struct tdq *tdq;
2638
2639	tdq = TDQ_SELF();
2640	if (td == NULL) {
2641		/* Correct spinlock nesting and acquire the correct lock. */
2642		TDQ_LOCK(tdq);
2643		spinlock_exit();
2644		PCPU_SET(switchtime, cpu_ticks());
2645		PCPU_SET(switchticks, ticks);
2646	} else {
2647		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2648		tdq_load_rem(tdq, td);
2649		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2650	}
2651	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2652	newtd = choosethread();
2653	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2654	cpu_throw(td, newtd);		/* doesn't return */
2655}
2656
2657/*
2658 * This is called from fork_exit().  Just acquire the correct locks and
2659 * let fork do the rest of the work.
2660 */
2661void
2662sched_fork_exit(struct thread *td)
2663{
2664	struct td_sched *ts;
2665	struct tdq *tdq;
2666	int cpuid;
2667
2668	/*
2669	 * Finish setting up thread glue so that it begins execution in a
2670	 * non-nested critical section with the scheduler lock held.
2671	 */
2672	cpuid = PCPU_GET(cpuid);
2673	tdq = TDQ_CPU(cpuid);
2674	ts = td->td_sched;
2675	if (TD_IS_IDLETHREAD(td))
2676		td->td_lock = TDQ_LOCKPTR(tdq);
2677	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2678	td->td_oncpu = cpuid;
2679	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2680	lock_profile_obtain_lock_success(
2681	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2682}
2683
2684/*
2685 * Create on first use to catch odd startup conditons.
2686 */
2687char *
2688sched_tdname(struct thread *td)
2689{
2690#ifdef KTR
2691	struct td_sched *ts;
2692
2693	ts = td->td_sched;
2694	if (ts->ts_name[0] == '\0')
2695		snprintf(ts->ts_name, sizeof(ts->ts_name),
2696		    "%s tid %d", td->td_name, td->td_tid);
2697	return (ts->ts_name);
2698#else
2699	return (td->td_name);
2700#endif
2701}
2702
2703#ifdef KTR
2704void
2705sched_clear_tdname(struct thread *td)
2706{
2707	struct td_sched *ts;
2708
2709	ts = td->td_sched;
2710	ts->ts_name[0] = '\0';
2711}
2712#endif
2713
2714#ifdef SMP
2715
2716/*
2717 * Build the CPU topology dump string. Is recursively called to collect
2718 * the topology tree.
2719 */
2720static int
2721sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2722    int indent)
2723{
2724	char cpusetbuf[CPUSETBUFSIZ];
2725	int i, first;
2726
2727	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2728	    "", 1 + indent / 2, cg->cg_level);
2729	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2730	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2731	first = TRUE;
2732	for (i = 0; i < MAXCPU; i++) {
2733		if (CPU_ISSET(i, &cg->cg_mask)) {
2734			if (!first)
2735				sbuf_printf(sb, ", ");
2736			else
2737				first = FALSE;
2738			sbuf_printf(sb, "%d", i);
2739		}
2740	}
2741	sbuf_printf(sb, "</cpu>\n");
2742
2743	if (cg->cg_flags != 0) {
2744		sbuf_printf(sb, "%*s <flags>", indent, "");
2745		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2746			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2747		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2748			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2749		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2750			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2751		sbuf_printf(sb, "</flags>\n");
2752	}
2753
2754	if (cg->cg_children > 0) {
2755		sbuf_printf(sb, "%*s <children>\n", indent, "");
2756		for (i = 0; i < cg->cg_children; i++)
2757			sysctl_kern_sched_topology_spec_internal(sb,
2758			    &cg->cg_child[i], indent+2);
2759		sbuf_printf(sb, "%*s </children>\n", indent, "");
2760	}
2761	sbuf_printf(sb, "%*s</group>\n", indent, "");
2762	return (0);
2763}
2764
2765/*
2766 * Sysctl handler for retrieving topology dump. It's a wrapper for
2767 * the recursive sysctl_kern_smp_topology_spec_internal().
2768 */
2769static int
2770sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2771{
2772	struct sbuf *topo;
2773	int err;
2774
2775	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2776
2777	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2778	if (topo == NULL)
2779		return (ENOMEM);
2780
2781	sbuf_printf(topo, "<groups>\n");
2782	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2783	sbuf_printf(topo, "</groups>\n");
2784
2785	if (err == 0) {
2786		sbuf_finish(topo);
2787		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2788	}
2789	sbuf_delete(topo);
2790	return (err);
2791}
2792
2793#endif
2794
2795SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2796SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2797    "Scheduler name");
2798SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2799    "Slice size for timeshare threads");
2800SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2801     "Interactivity score threshold");
2802SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2803     0,"Min priority for preemption, lower priorities have greater precedence");
2804SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2805     0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2806SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2807     0,"Number of times idle will spin waiting for new work.");
2808SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2809     0,"Threshold before we will permit idle spinning.");
2810#ifdef SMP
2811SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2812    "Number of hz ticks to keep thread affinity for");
2813SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2814    "Enables the long-term load balancer");
2815SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2816    &balance_interval, 0,
2817    "Average frequency in stathz ticks to run the long-term balancer");
2818SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2819    "Attempts to steal work from other cores before idling");
2820SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2821    "Minimum load on remote cpu before we'll steal");
2822
2823/* Retrieve SMP topology */
2824SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2825    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2826    "XML dump of detected CPU topology");
2827
2828#endif
2829
2830/* ps compat.  All cpu percentages from ULE are weighted. */
2831static int ccpu = 0;
2832SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2833