sched_ule.c revision 236546
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/9/sys/kern/sched_ule.c 236546 2012-06-04 07:12:36Z mav $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#if defined(__powerpc__) && defined(E500)
81#error "This architecture is not currently compatible with ULE"
82#endif
83
84#define	KTR_ULE	0
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89
90/*
91 * Thread scheduler specific section.  All fields are protected
92 * by the thread lock.
93 */
94struct td_sched {
95	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96	short		ts_flags;	/* TSF_* flags. */
97	u_char		ts_cpu;		/* CPU that we have affinity for. */
98	int		ts_rltick;	/* Real last tick, for affinity. */
99	int		ts_slice;	/* Ticks of slice remaining. */
100	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101	u_int		ts_runtime;	/* Number of ticks we were running */
102	int		ts_ltick;	/* Last tick that we were running on */
103	int		ts_ftick;	/* First tick that we were running on */
104	int		ts_ticks;	/* Tick count */
105#ifdef KTR
106	char		ts_name[TS_NAME_LEN];
107#endif
108};
109/* flags kept in ts_flags */
110#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112
113static struct td_sched td_sched0;
114
115#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119/*
120 * Priority ranges used for interactive and non-interactive timeshare
121 * threads.  The timeshare priorities are split up into four ranges.
122 * The first range handles interactive threads.  The last three ranges
123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124 * ranges supporting nice values.
125 */
126#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129
130#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/*
193 * tickincr:		Converts a stathz tick into a hz domain scaled by
194 *			the shift factor.  Without the shift the error rate
195 *			due to rounding would be unacceptably high.
196 * realstathz:		stathz is sometimes 0 and run off of hz.
197 * sched_slice:		Runtime of each thread before rescheduling.
198 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
199 */
200static int sched_interact = SCHED_INTERACT_THRESH;
201static int realstathz;
202static int tickincr;
203static int sched_slice = 1;
204#ifdef PREEMPTION
205#ifdef FULL_PREEMPTION
206static int preempt_thresh = PRI_MAX_IDLE;
207#else
208static int preempt_thresh = PRI_MIN_KERN;
209#endif
210#else
211static int preempt_thresh = 0;
212#endif
213static int static_boost = PRI_MIN_BATCH;
214static int sched_idlespins = 10000;
215static int sched_idlespinthresh = -1;
216
217/*
218 * tdq - per processor runqs and statistics.  All fields are protected by the
219 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
220 * locking in sched_pickcpu();
221 */
222struct tdq {
223	/* Ordered to improve efficiency of cpu_search() and switch(). */
224	struct mtx	tdq_lock;		/* run queue lock. */
225	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
226	volatile int	tdq_load;		/* Aggregate load. */
227	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
228	int		tdq_sysload;		/* For loadavg, !ITHD load. */
229	int		tdq_transferable;	/* Transferable thread count. */
230	short		tdq_switchcnt;		/* Switches this tick. */
231	short		tdq_oldswitchcnt;	/* Switches last tick. */
232	u_char		tdq_lowpri;		/* Lowest priority thread. */
233	u_char		tdq_ipipending;		/* IPI pending. */
234	u_char		tdq_idx;		/* Current insert index. */
235	u_char		tdq_ridx;		/* Current removal index. */
236	struct runq	tdq_realtime;		/* real-time run queue. */
237	struct runq	tdq_timeshare;		/* timeshare run queue. */
238	struct runq	tdq_idle;		/* Queue of IDLE threads. */
239	char		tdq_name[TDQ_NAME_LEN];
240#ifdef KTR
241	char		tdq_loadname[TDQ_LOADNAME_LEN];
242#endif
243} __aligned(64);
244
245/* Idle thread states and config. */
246#define	TDQ_RUNNING	1
247#define	TDQ_IDLE	2
248
249#ifdef SMP
250struct cpu_group *cpu_top;		/* CPU topology */
251
252#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
253#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
254
255/*
256 * Run-time tunables.
257 */
258static int rebalance = 1;
259static int balance_interval = 128;	/* Default set in sched_initticks(). */
260static int affinity;
261static int steal_idle = 1;
262static int steal_thresh = 2;
263
264/*
265 * One thread queue per processor.
266 */
267static struct tdq	tdq_cpu[MAXCPU];
268static struct tdq	*balance_tdq;
269static int balance_ticks;
270static DPCPU_DEFINE(uint32_t, randomval);
271
272#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
273#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
274#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
275#else	/* !SMP */
276static struct tdq	tdq_cpu;
277
278#define	TDQ_ID(x)	(0)
279#define	TDQ_SELF()	(&tdq_cpu)
280#define	TDQ_CPU(x)	(&tdq_cpu)
281#endif
282
283#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
284#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
285#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
286#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
287#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
288
289static void sched_priority(struct thread *);
290static void sched_thread_priority(struct thread *, u_char);
291static int sched_interact_score(struct thread *);
292static void sched_interact_update(struct thread *);
293static void sched_interact_fork(struct thread *);
294static void sched_pctcpu_update(struct td_sched *, int);
295
296/* Operations on per processor queues */
297static struct thread *tdq_choose(struct tdq *);
298static void tdq_setup(struct tdq *);
299static void tdq_load_add(struct tdq *, struct thread *);
300static void tdq_load_rem(struct tdq *, struct thread *);
301static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
302static __inline void tdq_runq_rem(struct tdq *, struct thread *);
303static inline int sched_shouldpreempt(int, int, int);
304void tdq_print(int cpu);
305static void runq_print(struct runq *rq);
306static void tdq_add(struct tdq *, struct thread *, int);
307#ifdef SMP
308static int tdq_move(struct tdq *, struct tdq *);
309static int tdq_idled(struct tdq *);
310static void tdq_notify(struct tdq *, struct thread *);
311static struct thread *tdq_steal(struct tdq *, int);
312static struct thread *runq_steal(struct runq *, int);
313static int sched_pickcpu(struct thread *, int);
314static void sched_balance(void);
315static int sched_balance_pair(struct tdq *, struct tdq *);
316static inline struct tdq *sched_setcpu(struct thread *, int, int);
317static inline void thread_unblock_switch(struct thread *, struct mtx *);
318static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
319static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
320static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
321    struct cpu_group *cg, int indent);
322#endif
323
324static void sched_setup(void *dummy);
325SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
326
327static void sched_initticks(void *dummy);
328SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
329    NULL);
330
331SDT_PROVIDER_DEFINE(sched);
332
333SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
334    "struct proc *", "uint8_t");
335SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
336    "struct proc *", "void *");
337SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
338    "struct proc *", "void *", "int");
339SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
340    "struct proc *", "uint8_t", "struct thread *");
341SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
342SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
343    "struct proc *");
344SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
345SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
346SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
347    "struct proc *");
348
349/*
350 * Print the threads waiting on a run-queue.
351 */
352static void
353runq_print(struct runq *rq)
354{
355	struct rqhead *rqh;
356	struct thread *td;
357	int pri;
358	int j;
359	int i;
360
361	for (i = 0; i < RQB_LEN; i++) {
362		printf("\t\trunq bits %d 0x%zx\n",
363		    i, rq->rq_status.rqb_bits[i]);
364		for (j = 0; j < RQB_BPW; j++)
365			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
366				pri = j + (i << RQB_L2BPW);
367				rqh = &rq->rq_queues[pri];
368				TAILQ_FOREACH(td, rqh, td_runq) {
369					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
370					    td, td->td_name, td->td_priority,
371					    td->td_rqindex, pri);
372				}
373			}
374	}
375}
376
377/*
378 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
379 */
380void
381tdq_print(int cpu)
382{
383	struct tdq *tdq;
384
385	tdq = TDQ_CPU(cpu);
386
387	printf("tdq %d:\n", TDQ_ID(tdq));
388	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
389	printf("\tLock name:      %s\n", tdq->tdq_name);
390	printf("\tload:           %d\n", tdq->tdq_load);
391	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
392	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
393	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
394	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
395	printf("\tload transferable: %d\n", tdq->tdq_transferable);
396	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
397	printf("\trealtime runq:\n");
398	runq_print(&tdq->tdq_realtime);
399	printf("\ttimeshare runq:\n");
400	runq_print(&tdq->tdq_timeshare);
401	printf("\tidle runq:\n");
402	runq_print(&tdq->tdq_idle);
403}
404
405static inline int
406sched_shouldpreempt(int pri, int cpri, int remote)
407{
408	/*
409	 * If the new priority is not better than the current priority there is
410	 * nothing to do.
411	 */
412	if (pri >= cpri)
413		return (0);
414	/*
415	 * Always preempt idle.
416	 */
417	if (cpri >= PRI_MIN_IDLE)
418		return (1);
419	/*
420	 * If preemption is disabled don't preempt others.
421	 */
422	if (preempt_thresh == 0)
423		return (0);
424	/*
425	 * Preempt if we exceed the threshold.
426	 */
427	if (pri <= preempt_thresh)
428		return (1);
429	/*
430	 * If we're interactive or better and there is non-interactive
431	 * or worse running preempt only remote processors.
432	 */
433	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
434		return (1);
435	return (0);
436}
437
438/*
439 * Add a thread to the actual run-queue.  Keeps transferable counts up to
440 * date with what is actually on the run-queue.  Selects the correct
441 * queue position for timeshare threads.
442 */
443static __inline void
444tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
445{
446	struct td_sched *ts;
447	u_char pri;
448
449	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
450	THREAD_LOCK_ASSERT(td, MA_OWNED);
451
452	pri = td->td_priority;
453	ts = td->td_sched;
454	TD_SET_RUNQ(td);
455	if (THREAD_CAN_MIGRATE(td)) {
456		tdq->tdq_transferable++;
457		ts->ts_flags |= TSF_XFERABLE;
458	}
459	if (pri < PRI_MIN_BATCH) {
460		ts->ts_runq = &tdq->tdq_realtime;
461	} else if (pri <= PRI_MAX_BATCH) {
462		ts->ts_runq = &tdq->tdq_timeshare;
463		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
464			("Invalid priority %d on timeshare runq", pri));
465		/*
466		 * This queue contains only priorities between MIN and MAX
467		 * realtime.  Use the whole queue to represent these values.
468		 */
469		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
470			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
471			pri = (pri + tdq->tdq_idx) % RQ_NQS;
472			/*
473			 * This effectively shortens the queue by one so we
474			 * can have a one slot difference between idx and
475			 * ridx while we wait for threads to drain.
476			 */
477			if (tdq->tdq_ridx != tdq->tdq_idx &&
478			    pri == tdq->tdq_ridx)
479				pri = (unsigned char)(pri - 1) % RQ_NQS;
480		} else
481			pri = tdq->tdq_ridx;
482		runq_add_pri(ts->ts_runq, td, pri, flags);
483		return;
484	} else
485		ts->ts_runq = &tdq->tdq_idle;
486	runq_add(ts->ts_runq, td, flags);
487}
488
489/*
490 * Remove a thread from a run-queue.  This typically happens when a thread
491 * is selected to run.  Running threads are not on the queue and the
492 * transferable count does not reflect them.
493 */
494static __inline void
495tdq_runq_rem(struct tdq *tdq, struct thread *td)
496{
497	struct td_sched *ts;
498
499	ts = td->td_sched;
500	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
501	KASSERT(ts->ts_runq != NULL,
502	    ("tdq_runq_remove: thread %p null ts_runq", td));
503	if (ts->ts_flags & TSF_XFERABLE) {
504		tdq->tdq_transferable--;
505		ts->ts_flags &= ~TSF_XFERABLE;
506	}
507	if (ts->ts_runq == &tdq->tdq_timeshare) {
508		if (tdq->tdq_idx != tdq->tdq_ridx)
509			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
510		else
511			runq_remove_idx(ts->ts_runq, td, NULL);
512	} else
513		runq_remove(ts->ts_runq, td);
514}
515
516/*
517 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
518 * for this thread to the referenced thread queue.
519 */
520static void
521tdq_load_add(struct tdq *tdq, struct thread *td)
522{
523
524	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
525	THREAD_LOCK_ASSERT(td, MA_OWNED);
526
527	tdq->tdq_load++;
528	if ((td->td_flags & TDF_NOLOAD) == 0)
529		tdq->tdq_sysload++;
530	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
531	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
532}
533
534/*
535 * Remove the load from a thread that is transitioning to a sleep state or
536 * exiting.
537 */
538static void
539tdq_load_rem(struct tdq *tdq, struct thread *td)
540{
541
542	THREAD_LOCK_ASSERT(td, MA_OWNED);
543	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
544	KASSERT(tdq->tdq_load != 0,
545	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
546
547	tdq->tdq_load--;
548	if ((td->td_flags & TDF_NOLOAD) == 0)
549		tdq->tdq_sysload--;
550	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
551	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
552}
553
554/*
555 * Set lowpri to its exact value by searching the run-queue and
556 * evaluating curthread.  curthread may be passed as an optimization.
557 */
558static void
559tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
560{
561	struct thread *td;
562
563	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
564	if (ctd == NULL)
565		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
566	td = tdq_choose(tdq);
567	if (td == NULL || td->td_priority > ctd->td_priority)
568		tdq->tdq_lowpri = ctd->td_priority;
569	else
570		tdq->tdq_lowpri = td->td_priority;
571}
572
573#ifdef SMP
574struct cpu_search {
575	cpuset_t cs_mask;
576	u_int	cs_prefer;
577	int	cs_pri;		/* Min priority for low. */
578	int	cs_limit;	/* Max load for low, min load for high. */
579	int	cs_cpu;
580	int	cs_load;
581};
582
583#define	CPU_SEARCH_LOWEST	0x1
584#define	CPU_SEARCH_HIGHEST	0x2
585#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
586
587#define	CPUSET_FOREACH(cpu, mask)				\
588	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
589		if (CPU_ISSET(cpu, &mask))
590
591static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
592    struct cpu_search *high, const int match);
593int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
594int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
595int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
596    struct cpu_search *high);
597
598/*
599 * Search the tree of cpu_groups for the lowest or highest loaded cpu
600 * according to the match argument.  This routine actually compares the
601 * load on all paths through the tree and finds the least loaded cpu on
602 * the least loaded path, which may differ from the least loaded cpu in
603 * the system.  This balances work among caches and busses.
604 *
605 * This inline is instantiated in three forms below using constants for the
606 * match argument.  It is reduced to the minimum set for each case.  It is
607 * also recursive to the depth of the tree.
608 */
609static __inline int
610cpu_search(const struct cpu_group *cg, struct cpu_search *low,
611    struct cpu_search *high, const int match)
612{
613	struct cpu_search lgroup;
614	struct cpu_search hgroup;
615	cpuset_t cpumask;
616	struct cpu_group *child;
617	struct tdq *tdq;
618	int cpu, i, hload, lload, load, total, rnd;
619
620	total = 0;
621	cpumask = cg->cg_mask;
622	if (match & CPU_SEARCH_LOWEST) {
623		lload = INT_MAX;
624		low->cs_load = INT_MAX;
625		lgroup = *low;
626	}
627	if (match & CPU_SEARCH_HIGHEST) {
628		hload = -1;
629		high->cs_load = -1;
630		hgroup = *high;
631	}
632
633	/* Iterate through the child CPU groups and then remaining CPUs. */
634	for (i = 0, cpu = 0; i <= cg->cg_children; ) {
635		if (i >= cg->cg_children) {
636			while (cpu <= mp_maxid && !CPU_ISSET(cpu, &cpumask))
637				cpu++;
638			if (cpu > mp_maxid)
639				break;
640			child = NULL;
641		} else
642			child = &cg->cg_child[i];
643
644		if (child) {			/* Handle child CPU group. */
645			CPU_NAND(&cpumask, &child->cg_mask);
646			switch (match) {
647			case CPU_SEARCH_LOWEST:
648				load = cpu_search_lowest(child, &lgroup);
649				break;
650			case CPU_SEARCH_HIGHEST:
651				load = cpu_search_highest(child, &hgroup);
652				break;
653			case CPU_SEARCH_BOTH:
654				load = cpu_search_both(child, &lgroup, &hgroup);
655				break;
656			}
657		} else {			/* Handle child CPU. */
658			tdq = TDQ_CPU(cpu);
659			load = tdq->tdq_load * 256;
660			rnd = DPCPU_SET(randomval,
661			    DPCPU_GET(randomval) * 69069 + 5) >> 26;
662			if (match & CPU_SEARCH_LOWEST) {
663				if (cpu == low->cs_prefer)
664					load -= 64;
665				/* If that CPU is allowed and get data. */
666				if (CPU_ISSET(cpu, &lgroup.cs_mask) &&
667				    tdq->tdq_lowpri > lgroup.cs_pri &&
668				    tdq->tdq_load <= lgroup.cs_limit) {
669					lgroup.cs_cpu = cpu;
670					lgroup.cs_load = load - rnd;
671				}
672			}
673			if (match & CPU_SEARCH_HIGHEST)
674				if (CPU_ISSET(cpu, &hgroup.cs_mask) &&
675				    tdq->tdq_load >= hgroup.cs_limit &&
676				    tdq->tdq_transferable) {
677					hgroup.cs_cpu = cpu;
678					hgroup.cs_load = load - rnd;
679				}
680		}
681		total += load;
682
683		/* We have info about child item. Compare it. */
684		if (match & CPU_SEARCH_LOWEST) {
685			if (lgroup.cs_load != INT_MAX &&
686			    (load < lload ||
687			     (load == lload && lgroup.cs_load < low->cs_load))) {
688				lload = load;
689				low->cs_cpu = lgroup.cs_cpu;
690				low->cs_load = lgroup.cs_load;
691			}
692		}
693		if (match & CPU_SEARCH_HIGHEST)
694			if (hgroup.cs_load >= 0 &&
695			    (load > hload ||
696			     (load == hload && hgroup.cs_load > high->cs_load))) {
697				hload = load;
698				high->cs_cpu = hgroup.cs_cpu;
699				high->cs_load = hgroup.cs_load;
700			}
701		if (child)
702			i++;
703		else
704			cpu++;
705	}
706	return (total);
707}
708
709/*
710 * cpu_search instantiations must pass constants to maintain the inline
711 * optimization.
712 */
713int
714cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
715{
716	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
717}
718
719int
720cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
721{
722	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
723}
724
725int
726cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
727    struct cpu_search *high)
728{
729	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
730}
731
732/*
733 * Find the cpu with the least load via the least loaded path that has a
734 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
735 * acceptable.
736 */
737static inline int
738sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
739    int prefer)
740{
741	struct cpu_search low;
742
743	low.cs_cpu = -1;
744	low.cs_prefer = prefer;
745	low.cs_mask = mask;
746	low.cs_pri = pri;
747	low.cs_limit = maxload;
748	cpu_search_lowest(cg, &low);
749	return low.cs_cpu;
750}
751
752/*
753 * Find the cpu with the highest load via the highest loaded path.
754 */
755static inline int
756sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
757{
758	struct cpu_search high;
759
760	high.cs_cpu = -1;
761	high.cs_mask = mask;
762	high.cs_limit = minload;
763	cpu_search_highest(cg, &high);
764	return high.cs_cpu;
765}
766
767/*
768 * Simultaneously find the highest and lowest loaded cpu reachable via
769 * cg.
770 */
771static inline void
772sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
773{
774	struct cpu_search high;
775	struct cpu_search low;
776
777	low.cs_cpu = -1;
778	low.cs_prefer = -1;
779	low.cs_pri = -1;
780	low.cs_limit = INT_MAX;
781	low.cs_mask = mask;
782	high.cs_cpu = -1;
783	high.cs_limit = -1;
784	high.cs_mask = mask;
785	cpu_search_both(cg, &low, &high);
786	*lowcpu = low.cs_cpu;
787	*highcpu = high.cs_cpu;
788	return;
789}
790
791static void
792sched_balance_group(struct cpu_group *cg)
793{
794	cpuset_t hmask, lmask;
795	int high, low, anylow;
796
797	CPU_FILL(&hmask);
798	for (;;) {
799		high = sched_highest(cg, hmask, 1);
800		/* Stop if there is no more CPU with transferrable threads. */
801		if (high == -1)
802			break;
803		CPU_CLR(high, &hmask);
804		CPU_COPY(&hmask, &lmask);
805		/* Stop if there is no more CPU left for low. */
806		if (CPU_EMPTY(&lmask))
807			break;
808		anylow = 1;
809nextlow:
810		low = sched_lowest(cg, lmask, -1,
811		    TDQ_CPU(high)->tdq_load - 1, high);
812		/* Stop if we looked well and found no less loaded CPU. */
813		if (anylow && low == -1)
814			break;
815		/* Go to next high if we found no less loaded CPU. */
816		if (low == -1)
817			continue;
818		/* Transfer thread from high to low. */
819		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
820			/* CPU that got thread can no longer be a donor. */
821			CPU_CLR(low, &hmask);
822		} else {
823			/*
824			 * If failed, then there is no threads on high
825			 * that can run on this low. Drop low from low
826			 * mask and look for different one.
827			 */
828			CPU_CLR(low, &lmask);
829			anylow = 0;
830			goto nextlow;
831		}
832	}
833}
834
835static void
836sched_balance(void)
837{
838	struct tdq *tdq;
839
840	/*
841	 * Select a random time between .5 * balance_interval and
842	 * 1.5 * balance_interval.
843	 */
844	balance_ticks = max(balance_interval / 2, 1);
845	balance_ticks += random() % balance_interval;
846	if (smp_started == 0 || rebalance == 0)
847		return;
848	tdq = TDQ_SELF();
849	TDQ_UNLOCK(tdq);
850	sched_balance_group(cpu_top);
851	TDQ_LOCK(tdq);
852}
853
854/*
855 * Lock two thread queues using their address to maintain lock order.
856 */
857static void
858tdq_lock_pair(struct tdq *one, struct tdq *two)
859{
860	if (one < two) {
861		TDQ_LOCK(one);
862		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
863	} else {
864		TDQ_LOCK(two);
865		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
866	}
867}
868
869/*
870 * Unlock two thread queues.  Order is not important here.
871 */
872static void
873tdq_unlock_pair(struct tdq *one, struct tdq *two)
874{
875	TDQ_UNLOCK(one);
876	TDQ_UNLOCK(two);
877}
878
879/*
880 * Transfer load between two imbalanced thread queues.
881 */
882static int
883sched_balance_pair(struct tdq *high, struct tdq *low)
884{
885	int moved;
886	int cpu;
887
888	tdq_lock_pair(high, low);
889	moved = 0;
890	/*
891	 * Determine what the imbalance is and then adjust that to how many
892	 * threads we actually have to give up (transferable).
893	 */
894	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
895	    (moved = tdq_move(high, low)) > 0) {
896		/*
897		 * In case the target isn't the current cpu IPI it to force a
898		 * reschedule with the new workload.
899		 */
900		cpu = TDQ_ID(low);
901		sched_pin();
902		if (cpu != PCPU_GET(cpuid))
903			ipi_cpu(cpu, IPI_PREEMPT);
904		sched_unpin();
905	}
906	tdq_unlock_pair(high, low);
907	return (moved);
908}
909
910/*
911 * Move a thread from one thread queue to another.
912 */
913static int
914tdq_move(struct tdq *from, struct tdq *to)
915{
916	struct td_sched *ts;
917	struct thread *td;
918	struct tdq *tdq;
919	int cpu;
920
921	TDQ_LOCK_ASSERT(from, MA_OWNED);
922	TDQ_LOCK_ASSERT(to, MA_OWNED);
923
924	tdq = from;
925	cpu = TDQ_ID(to);
926	td = tdq_steal(tdq, cpu);
927	if (td == NULL)
928		return (0);
929	ts = td->td_sched;
930	/*
931	 * Although the run queue is locked the thread may be blocked.  Lock
932	 * it to clear this and acquire the run-queue lock.
933	 */
934	thread_lock(td);
935	/* Drop recursive lock on from acquired via thread_lock(). */
936	TDQ_UNLOCK(from);
937	sched_rem(td);
938	ts->ts_cpu = cpu;
939	td->td_lock = TDQ_LOCKPTR(to);
940	tdq_add(to, td, SRQ_YIELDING);
941	return (1);
942}
943
944/*
945 * This tdq has idled.  Try to steal a thread from another cpu and switch
946 * to it.
947 */
948static int
949tdq_idled(struct tdq *tdq)
950{
951	struct cpu_group *cg;
952	struct tdq *steal;
953	cpuset_t mask;
954	int thresh;
955	int cpu;
956
957	if (smp_started == 0 || steal_idle == 0)
958		return (1);
959	CPU_FILL(&mask);
960	CPU_CLR(PCPU_GET(cpuid), &mask);
961	/* We don't want to be preempted while we're iterating. */
962	spinlock_enter();
963	for (cg = tdq->tdq_cg; cg != NULL; ) {
964		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
965			thresh = steal_thresh;
966		else
967			thresh = 1;
968		cpu = sched_highest(cg, mask, thresh);
969		if (cpu == -1) {
970			cg = cg->cg_parent;
971			continue;
972		}
973		steal = TDQ_CPU(cpu);
974		CPU_CLR(cpu, &mask);
975		tdq_lock_pair(tdq, steal);
976		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
977			tdq_unlock_pair(tdq, steal);
978			continue;
979		}
980		/*
981		 * If a thread was added while interrupts were disabled don't
982		 * steal one here.  If we fail to acquire one due to affinity
983		 * restrictions loop again with this cpu removed from the
984		 * set.
985		 */
986		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
987			tdq_unlock_pair(tdq, steal);
988			continue;
989		}
990		spinlock_exit();
991		TDQ_UNLOCK(steal);
992		mi_switch(SW_VOL | SWT_IDLE, NULL);
993		thread_unlock(curthread);
994
995		return (0);
996	}
997	spinlock_exit();
998	return (1);
999}
1000
1001/*
1002 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1003 */
1004static void
1005tdq_notify(struct tdq *tdq, struct thread *td)
1006{
1007	struct thread *ctd;
1008	int pri;
1009	int cpu;
1010
1011	if (tdq->tdq_ipipending)
1012		return;
1013	cpu = td->td_sched->ts_cpu;
1014	pri = td->td_priority;
1015	ctd = pcpu_find(cpu)->pc_curthread;
1016	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1017		return;
1018	if (TD_IS_IDLETHREAD(ctd)) {
1019		/*
1020		 * If the MD code has an idle wakeup routine try that before
1021		 * falling back to IPI.
1022		 */
1023		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1024			return;
1025	}
1026	tdq->tdq_ipipending = 1;
1027	ipi_cpu(cpu, IPI_PREEMPT);
1028}
1029
1030/*
1031 * Steals load from a timeshare queue.  Honors the rotating queue head
1032 * index.
1033 */
1034static struct thread *
1035runq_steal_from(struct runq *rq, int cpu, u_char start)
1036{
1037	struct rqbits *rqb;
1038	struct rqhead *rqh;
1039	struct thread *td, *first;
1040	int bit;
1041	int pri;
1042	int i;
1043
1044	rqb = &rq->rq_status;
1045	bit = start & (RQB_BPW -1);
1046	pri = 0;
1047	first = NULL;
1048again:
1049	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1050		if (rqb->rqb_bits[i] == 0)
1051			continue;
1052		if (bit != 0) {
1053			for (pri = bit; pri < RQB_BPW; pri++)
1054				if (rqb->rqb_bits[i] & (1ul << pri))
1055					break;
1056			if (pri >= RQB_BPW)
1057				continue;
1058		} else
1059			pri = RQB_FFS(rqb->rqb_bits[i]);
1060		pri += (i << RQB_L2BPW);
1061		rqh = &rq->rq_queues[pri];
1062		TAILQ_FOREACH(td, rqh, td_runq) {
1063			if (first && THREAD_CAN_MIGRATE(td) &&
1064			    THREAD_CAN_SCHED(td, cpu))
1065				return (td);
1066			first = td;
1067		}
1068	}
1069	if (start != 0) {
1070		start = 0;
1071		goto again;
1072	}
1073
1074	if (first && THREAD_CAN_MIGRATE(first) &&
1075	    THREAD_CAN_SCHED(first, cpu))
1076		return (first);
1077	return (NULL);
1078}
1079
1080/*
1081 * Steals load from a standard linear queue.
1082 */
1083static struct thread *
1084runq_steal(struct runq *rq, int cpu)
1085{
1086	struct rqhead *rqh;
1087	struct rqbits *rqb;
1088	struct thread *td;
1089	int word;
1090	int bit;
1091
1092	rqb = &rq->rq_status;
1093	for (word = 0; word < RQB_LEN; word++) {
1094		if (rqb->rqb_bits[word] == 0)
1095			continue;
1096		for (bit = 0; bit < RQB_BPW; bit++) {
1097			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1098				continue;
1099			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1100			TAILQ_FOREACH(td, rqh, td_runq)
1101				if (THREAD_CAN_MIGRATE(td) &&
1102				    THREAD_CAN_SCHED(td, cpu))
1103					return (td);
1104		}
1105	}
1106	return (NULL);
1107}
1108
1109/*
1110 * Attempt to steal a thread in priority order from a thread queue.
1111 */
1112static struct thread *
1113tdq_steal(struct tdq *tdq, int cpu)
1114{
1115	struct thread *td;
1116
1117	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1118	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1119		return (td);
1120	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1121	    cpu, tdq->tdq_ridx)) != NULL)
1122		return (td);
1123	return (runq_steal(&tdq->tdq_idle, cpu));
1124}
1125
1126/*
1127 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1128 * current lock and returns with the assigned queue locked.
1129 */
1130static inline struct tdq *
1131sched_setcpu(struct thread *td, int cpu, int flags)
1132{
1133
1134	struct tdq *tdq;
1135
1136	THREAD_LOCK_ASSERT(td, MA_OWNED);
1137	tdq = TDQ_CPU(cpu);
1138	td->td_sched->ts_cpu = cpu;
1139	/*
1140	 * If the lock matches just return the queue.
1141	 */
1142	if (td->td_lock == TDQ_LOCKPTR(tdq))
1143		return (tdq);
1144#ifdef notyet
1145	/*
1146	 * If the thread isn't running its lockptr is a
1147	 * turnstile or a sleepqueue.  We can just lock_set without
1148	 * blocking.
1149	 */
1150	if (TD_CAN_RUN(td)) {
1151		TDQ_LOCK(tdq);
1152		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1153		return (tdq);
1154	}
1155#endif
1156	/*
1157	 * The hard case, migration, we need to block the thread first to
1158	 * prevent order reversals with other cpus locks.
1159	 */
1160	spinlock_enter();
1161	thread_lock_block(td);
1162	TDQ_LOCK(tdq);
1163	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1164	spinlock_exit();
1165	return (tdq);
1166}
1167
1168SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1169SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1170SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1171SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1172SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1173SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1174
1175static int
1176sched_pickcpu(struct thread *td, int flags)
1177{
1178	struct cpu_group *cg, *ccg;
1179	struct td_sched *ts;
1180	struct tdq *tdq;
1181	cpuset_t mask;
1182	int cpu, pri, self;
1183
1184	self = PCPU_GET(cpuid);
1185	ts = td->td_sched;
1186	if (smp_started == 0)
1187		return (self);
1188	/*
1189	 * Don't migrate a running thread from sched_switch().
1190	 */
1191	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1192		return (ts->ts_cpu);
1193	/*
1194	 * Prefer to run interrupt threads on the processors that generate
1195	 * the interrupt.
1196	 */
1197	pri = td->td_priority;
1198	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1199	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1200		SCHED_STAT_INC(pickcpu_intrbind);
1201		ts->ts_cpu = self;
1202		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1203			SCHED_STAT_INC(pickcpu_affinity);
1204			return (ts->ts_cpu);
1205		}
1206	}
1207	/*
1208	 * If the thread can run on the last cpu and the affinity has not
1209	 * expired or it is idle run it there.
1210	 */
1211	tdq = TDQ_CPU(ts->ts_cpu);
1212	cg = tdq->tdq_cg;
1213	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1214	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1215	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1216		if (cg->cg_flags & CG_FLAG_THREAD) {
1217			CPUSET_FOREACH(cpu, cg->cg_mask) {
1218				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1219					break;
1220			}
1221		} else
1222			cpu = INT_MAX;
1223		if (cpu > mp_maxid) {
1224			SCHED_STAT_INC(pickcpu_idle_affinity);
1225			return (ts->ts_cpu);
1226		}
1227	}
1228	/*
1229	 * Search for the last level cache CPU group in the tree.
1230	 * Skip caches with expired affinity time and SMT groups.
1231	 * Affinity to higher level caches will be handled less aggressively.
1232	 */
1233	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1234		if (cg->cg_flags & CG_FLAG_THREAD)
1235			continue;
1236		if (!SCHED_AFFINITY(ts, cg->cg_level))
1237			continue;
1238		ccg = cg;
1239	}
1240	if (ccg != NULL)
1241		cg = ccg;
1242	cpu = -1;
1243	/* Search the group for the less loaded idle CPU we can run now. */
1244	mask = td->td_cpuset->cs_mask;
1245	if (cg != NULL && cg != cpu_top &&
1246	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1247		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1248		    INT_MAX, ts->ts_cpu);
1249	/* Search globally for the less loaded CPU we can run now. */
1250	if (cpu == -1)
1251		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1252	/* Search globally for the less loaded CPU. */
1253	if (cpu == -1)
1254		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1255	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1256	/*
1257	 * Compare the lowest loaded cpu to current cpu.
1258	 */
1259	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1260	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1261	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1262		SCHED_STAT_INC(pickcpu_local);
1263		cpu = self;
1264	} else
1265		SCHED_STAT_INC(pickcpu_lowest);
1266	if (cpu != ts->ts_cpu)
1267		SCHED_STAT_INC(pickcpu_migration);
1268	return (cpu);
1269}
1270#endif
1271
1272/*
1273 * Pick the highest priority task we have and return it.
1274 */
1275static struct thread *
1276tdq_choose(struct tdq *tdq)
1277{
1278	struct thread *td;
1279
1280	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1281	td = runq_choose(&tdq->tdq_realtime);
1282	if (td != NULL)
1283		return (td);
1284	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1285	if (td != NULL) {
1286		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1287		    ("tdq_choose: Invalid priority on timeshare queue %d",
1288		    td->td_priority));
1289		return (td);
1290	}
1291	td = runq_choose(&tdq->tdq_idle);
1292	if (td != NULL) {
1293		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1294		    ("tdq_choose: Invalid priority on idle queue %d",
1295		    td->td_priority));
1296		return (td);
1297	}
1298
1299	return (NULL);
1300}
1301
1302/*
1303 * Initialize a thread queue.
1304 */
1305static void
1306tdq_setup(struct tdq *tdq)
1307{
1308
1309	if (bootverbose)
1310		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1311	runq_init(&tdq->tdq_realtime);
1312	runq_init(&tdq->tdq_timeshare);
1313	runq_init(&tdq->tdq_idle);
1314	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1315	    "sched lock %d", (int)TDQ_ID(tdq));
1316	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1317	    MTX_SPIN | MTX_RECURSE);
1318#ifdef KTR
1319	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1320	    "CPU %d load", (int)TDQ_ID(tdq));
1321#endif
1322}
1323
1324#ifdef SMP
1325static void
1326sched_setup_smp(void)
1327{
1328	struct tdq *tdq;
1329	int i;
1330
1331	cpu_top = smp_topo();
1332	CPU_FOREACH(i) {
1333		tdq = TDQ_CPU(i);
1334		tdq_setup(tdq);
1335		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1336		if (tdq->tdq_cg == NULL)
1337			panic("Can't find cpu group for %d\n", i);
1338	}
1339	balance_tdq = TDQ_SELF();
1340	sched_balance();
1341}
1342#endif
1343
1344/*
1345 * Setup the thread queues and initialize the topology based on MD
1346 * information.
1347 */
1348static void
1349sched_setup(void *dummy)
1350{
1351	struct tdq *tdq;
1352
1353	tdq = TDQ_SELF();
1354#ifdef SMP
1355	sched_setup_smp();
1356#else
1357	tdq_setup(tdq);
1358#endif
1359	/*
1360	 * To avoid divide-by-zero, we set realstathz a dummy value
1361	 * in case which sched_clock() called before sched_initticks().
1362	 */
1363	realstathz = hz;
1364	sched_slice = (realstathz/10);	/* ~100ms */
1365	tickincr = 1 << SCHED_TICK_SHIFT;
1366
1367	/* Add thread0's load since it's running. */
1368	TDQ_LOCK(tdq);
1369	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1370	tdq_load_add(tdq, &thread0);
1371	tdq->tdq_lowpri = thread0.td_priority;
1372	TDQ_UNLOCK(tdq);
1373}
1374
1375/*
1376 * This routine determines the tickincr after stathz and hz are setup.
1377 */
1378/* ARGSUSED */
1379static void
1380sched_initticks(void *dummy)
1381{
1382	int incr;
1383
1384	realstathz = stathz ? stathz : hz;
1385	sched_slice = (realstathz/10);	/* ~100ms */
1386
1387	/*
1388	 * tickincr is shifted out by 10 to avoid rounding errors due to
1389	 * hz not being evenly divisible by stathz on all platforms.
1390	 */
1391	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1392	/*
1393	 * This does not work for values of stathz that are more than
1394	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1395	 */
1396	if (incr == 0)
1397		incr = 1;
1398	tickincr = incr;
1399#ifdef SMP
1400	/*
1401	 * Set the default balance interval now that we know
1402	 * what realstathz is.
1403	 */
1404	balance_interval = realstathz;
1405	/*
1406	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1407	 * This prevents excess thrashing on large machines and excess idle
1408	 * on smaller machines.
1409	 */
1410	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1411	affinity = SCHED_AFFINITY_DEFAULT;
1412#endif
1413	if (sched_idlespinthresh < 0)
1414		sched_idlespinthresh = max(16, 2 * hz / realstathz);
1415}
1416
1417
1418/*
1419 * This is the core of the interactivity algorithm.  Determines a score based
1420 * on past behavior.  It is the ratio of sleep time to run time scaled to
1421 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1422 * differs from the cpu usage because it does not account for time spent
1423 * waiting on a run-queue.  Would be prettier if we had floating point.
1424 */
1425static int
1426sched_interact_score(struct thread *td)
1427{
1428	struct td_sched *ts;
1429	int div;
1430
1431	ts = td->td_sched;
1432	/*
1433	 * The score is only needed if this is likely to be an interactive
1434	 * task.  Don't go through the expense of computing it if there's
1435	 * no chance.
1436	 */
1437	if (sched_interact <= SCHED_INTERACT_HALF &&
1438		ts->ts_runtime >= ts->ts_slptime)
1439			return (SCHED_INTERACT_HALF);
1440
1441	if (ts->ts_runtime > ts->ts_slptime) {
1442		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1443		return (SCHED_INTERACT_HALF +
1444		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1445	}
1446	if (ts->ts_slptime > ts->ts_runtime) {
1447		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1448		return (ts->ts_runtime / div);
1449	}
1450	/* runtime == slptime */
1451	if (ts->ts_runtime)
1452		return (SCHED_INTERACT_HALF);
1453
1454	/*
1455	 * This can happen if slptime and runtime are 0.
1456	 */
1457	return (0);
1458
1459}
1460
1461/*
1462 * Scale the scheduling priority according to the "interactivity" of this
1463 * process.
1464 */
1465static void
1466sched_priority(struct thread *td)
1467{
1468	int score;
1469	int pri;
1470
1471	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1472		return;
1473	/*
1474	 * If the score is interactive we place the thread in the realtime
1475	 * queue with a priority that is less than kernel and interrupt
1476	 * priorities.  These threads are not subject to nice restrictions.
1477	 *
1478	 * Scores greater than this are placed on the normal timeshare queue
1479	 * where the priority is partially decided by the most recent cpu
1480	 * utilization and the rest is decided by nice value.
1481	 *
1482	 * The nice value of the process has a linear effect on the calculated
1483	 * score.  Negative nice values make it easier for a thread to be
1484	 * considered interactive.
1485	 */
1486	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1487	if (score < sched_interact) {
1488		pri = PRI_MIN_INTERACT;
1489		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1490		    sched_interact) * score;
1491		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1492		    ("sched_priority: invalid interactive priority %d score %d",
1493		    pri, score));
1494	} else {
1495		pri = SCHED_PRI_MIN;
1496		if (td->td_sched->ts_ticks)
1497			pri += min(SCHED_PRI_TICKS(td->td_sched),
1498			    SCHED_PRI_RANGE);
1499		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1500		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1501		    ("sched_priority: invalid priority %d: nice %d, "
1502		    "ticks %d ftick %d ltick %d tick pri %d",
1503		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1504		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1505		    SCHED_PRI_TICKS(td->td_sched)));
1506	}
1507	sched_user_prio(td, pri);
1508
1509	return;
1510}
1511
1512/*
1513 * This routine enforces a maximum limit on the amount of scheduling history
1514 * kept.  It is called after either the slptime or runtime is adjusted.  This
1515 * function is ugly due to integer math.
1516 */
1517static void
1518sched_interact_update(struct thread *td)
1519{
1520	struct td_sched *ts;
1521	u_int sum;
1522
1523	ts = td->td_sched;
1524	sum = ts->ts_runtime + ts->ts_slptime;
1525	if (sum < SCHED_SLP_RUN_MAX)
1526		return;
1527	/*
1528	 * This only happens from two places:
1529	 * 1) We have added an unusual amount of run time from fork_exit.
1530	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1531	 */
1532	if (sum > SCHED_SLP_RUN_MAX * 2) {
1533		if (ts->ts_runtime > ts->ts_slptime) {
1534			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1535			ts->ts_slptime = 1;
1536		} else {
1537			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1538			ts->ts_runtime = 1;
1539		}
1540		return;
1541	}
1542	/*
1543	 * If we have exceeded by more than 1/5th then the algorithm below
1544	 * will not bring us back into range.  Dividing by two here forces
1545	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1546	 */
1547	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1548		ts->ts_runtime /= 2;
1549		ts->ts_slptime /= 2;
1550		return;
1551	}
1552	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1553	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1554}
1555
1556/*
1557 * Scale back the interactivity history when a child thread is created.  The
1558 * history is inherited from the parent but the thread may behave totally
1559 * differently.  For example, a shell spawning a compiler process.  We want
1560 * to learn that the compiler is behaving badly very quickly.
1561 */
1562static void
1563sched_interact_fork(struct thread *td)
1564{
1565	int ratio;
1566	int sum;
1567
1568	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1569	if (sum > SCHED_SLP_RUN_FORK) {
1570		ratio = sum / SCHED_SLP_RUN_FORK;
1571		td->td_sched->ts_runtime /= ratio;
1572		td->td_sched->ts_slptime /= ratio;
1573	}
1574}
1575
1576/*
1577 * Called from proc0_init() to setup the scheduler fields.
1578 */
1579void
1580schedinit(void)
1581{
1582
1583	/*
1584	 * Set up the scheduler specific parts of proc0.
1585	 */
1586	proc0.p_sched = NULL; /* XXX */
1587	thread0.td_sched = &td_sched0;
1588	td_sched0.ts_ltick = ticks;
1589	td_sched0.ts_ftick = ticks;
1590	td_sched0.ts_slice = sched_slice;
1591}
1592
1593/*
1594 * This is only somewhat accurate since given many processes of the same
1595 * priority they will switch when their slices run out, which will be
1596 * at most sched_slice stathz ticks.
1597 */
1598int
1599sched_rr_interval(void)
1600{
1601
1602	/* Convert sched_slice to hz */
1603	return (hz/(realstathz/sched_slice));
1604}
1605
1606/*
1607 * Update the percent cpu tracking information when it is requested or
1608 * the total history exceeds the maximum.  We keep a sliding history of
1609 * tick counts that slowly decays.  This is less precise than the 4BSD
1610 * mechanism since it happens with less regular and frequent events.
1611 */
1612static void
1613sched_pctcpu_update(struct td_sched *ts, int run)
1614{
1615	int t = ticks;
1616
1617	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1618		ts->ts_ticks = 0;
1619		ts->ts_ftick = t - SCHED_TICK_TARG;
1620	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1621		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1622		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1623		ts->ts_ftick = t - SCHED_TICK_TARG;
1624	}
1625	if (run)
1626		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1627	ts->ts_ltick = t;
1628}
1629
1630/*
1631 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1632 * if necessary.  This is the back-end for several priority related
1633 * functions.
1634 */
1635static void
1636sched_thread_priority(struct thread *td, u_char prio)
1637{
1638	struct td_sched *ts;
1639	struct tdq *tdq;
1640	int oldpri;
1641
1642	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1643	    "prio:%d", td->td_priority, "new prio:%d", prio,
1644	    KTR_ATTR_LINKED, sched_tdname(curthread));
1645	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1646	if (td != curthread && prio > td->td_priority) {
1647		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1648		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1649		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1650		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1651		    curthread);
1652	}
1653	ts = td->td_sched;
1654	THREAD_LOCK_ASSERT(td, MA_OWNED);
1655	if (td->td_priority == prio)
1656		return;
1657	/*
1658	 * If the priority has been elevated due to priority
1659	 * propagation, we may have to move ourselves to a new
1660	 * queue.  This could be optimized to not re-add in some
1661	 * cases.
1662	 */
1663	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1664		sched_rem(td);
1665		td->td_priority = prio;
1666		sched_add(td, SRQ_BORROWING);
1667		return;
1668	}
1669	/*
1670	 * If the thread is currently running we may have to adjust the lowpri
1671	 * information so other cpus are aware of our current priority.
1672	 */
1673	if (TD_IS_RUNNING(td)) {
1674		tdq = TDQ_CPU(ts->ts_cpu);
1675		oldpri = td->td_priority;
1676		td->td_priority = prio;
1677		if (prio < tdq->tdq_lowpri)
1678			tdq->tdq_lowpri = prio;
1679		else if (tdq->tdq_lowpri == oldpri)
1680			tdq_setlowpri(tdq, td);
1681		return;
1682	}
1683	td->td_priority = prio;
1684}
1685
1686/*
1687 * Update a thread's priority when it is lent another thread's
1688 * priority.
1689 */
1690void
1691sched_lend_prio(struct thread *td, u_char prio)
1692{
1693
1694	td->td_flags |= TDF_BORROWING;
1695	sched_thread_priority(td, prio);
1696}
1697
1698/*
1699 * Restore a thread's priority when priority propagation is
1700 * over.  The prio argument is the minimum priority the thread
1701 * needs to have to satisfy other possible priority lending
1702 * requests.  If the thread's regular priority is less
1703 * important than prio, the thread will keep a priority boost
1704 * of prio.
1705 */
1706void
1707sched_unlend_prio(struct thread *td, u_char prio)
1708{
1709	u_char base_pri;
1710
1711	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1712	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1713		base_pri = td->td_user_pri;
1714	else
1715		base_pri = td->td_base_pri;
1716	if (prio >= base_pri) {
1717		td->td_flags &= ~TDF_BORROWING;
1718		sched_thread_priority(td, base_pri);
1719	} else
1720		sched_lend_prio(td, prio);
1721}
1722
1723/*
1724 * Standard entry for setting the priority to an absolute value.
1725 */
1726void
1727sched_prio(struct thread *td, u_char prio)
1728{
1729	u_char oldprio;
1730
1731	/* First, update the base priority. */
1732	td->td_base_pri = prio;
1733
1734	/*
1735	 * If the thread is borrowing another thread's priority, don't
1736	 * ever lower the priority.
1737	 */
1738	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1739		return;
1740
1741	/* Change the real priority. */
1742	oldprio = td->td_priority;
1743	sched_thread_priority(td, prio);
1744
1745	/*
1746	 * If the thread is on a turnstile, then let the turnstile update
1747	 * its state.
1748	 */
1749	if (TD_ON_LOCK(td) && oldprio != prio)
1750		turnstile_adjust(td, oldprio);
1751}
1752
1753/*
1754 * Set the base user priority, does not effect current running priority.
1755 */
1756void
1757sched_user_prio(struct thread *td, u_char prio)
1758{
1759
1760	td->td_base_user_pri = prio;
1761	if (td->td_lend_user_pri <= prio)
1762		return;
1763	td->td_user_pri = prio;
1764}
1765
1766void
1767sched_lend_user_prio(struct thread *td, u_char prio)
1768{
1769
1770	THREAD_LOCK_ASSERT(td, MA_OWNED);
1771	td->td_lend_user_pri = prio;
1772	td->td_user_pri = min(prio, td->td_base_user_pri);
1773	if (td->td_priority > td->td_user_pri)
1774		sched_prio(td, td->td_user_pri);
1775	else if (td->td_priority != td->td_user_pri)
1776		td->td_flags |= TDF_NEEDRESCHED;
1777}
1778
1779/*
1780 * Handle migration from sched_switch().  This happens only for
1781 * cpu binding.
1782 */
1783static struct mtx *
1784sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1785{
1786	struct tdq *tdn;
1787
1788	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1789#ifdef SMP
1790	tdq_load_rem(tdq, td);
1791	/*
1792	 * Do the lock dance required to avoid LOR.  We grab an extra
1793	 * spinlock nesting to prevent preemption while we're
1794	 * not holding either run-queue lock.
1795	 */
1796	spinlock_enter();
1797	thread_lock_block(td);	/* This releases the lock on tdq. */
1798
1799	/*
1800	 * Acquire both run-queue locks before placing the thread on the new
1801	 * run-queue to avoid deadlocks created by placing a thread with a
1802	 * blocked lock on the run-queue of a remote processor.  The deadlock
1803	 * occurs when a third processor attempts to lock the two queues in
1804	 * question while the target processor is spinning with its own
1805	 * run-queue lock held while waiting for the blocked lock to clear.
1806	 */
1807	tdq_lock_pair(tdn, tdq);
1808	tdq_add(tdn, td, flags);
1809	tdq_notify(tdn, td);
1810	TDQ_UNLOCK(tdn);
1811	spinlock_exit();
1812#endif
1813	return (TDQ_LOCKPTR(tdn));
1814}
1815
1816/*
1817 * Variadic version of thread_lock_unblock() that does not assume td_lock
1818 * is blocked.
1819 */
1820static inline void
1821thread_unblock_switch(struct thread *td, struct mtx *mtx)
1822{
1823	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1824	    (uintptr_t)mtx);
1825}
1826
1827/*
1828 * Switch threads.  This function has to handle threads coming in while
1829 * blocked for some reason, running, or idle.  It also must deal with
1830 * migrating a thread from one queue to another as running threads may
1831 * be assigned elsewhere via binding.
1832 */
1833void
1834sched_switch(struct thread *td, struct thread *newtd, int flags)
1835{
1836	struct tdq *tdq;
1837	struct td_sched *ts;
1838	struct mtx *mtx;
1839	int srqflag;
1840	int cpuid;
1841
1842	THREAD_LOCK_ASSERT(td, MA_OWNED);
1843	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1844
1845	cpuid = PCPU_GET(cpuid);
1846	tdq = TDQ_CPU(cpuid);
1847	ts = td->td_sched;
1848	mtx = td->td_lock;
1849	sched_pctcpu_update(ts, 1);
1850	ts->ts_rltick = ticks;
1851	td->td_lastcpu = td->td_oncpu;
1852	td->td_oncpu = NOCPU;
1853	if (!(flags & SW_PREEMPT))
1854		td->td_flags &= ~TDF_NEEDRESCHED;
1855	td->td_owepreempt = 0;
1856	tdq->tdq_switchcnt++;
1857	/*
1858	 * The lock pointer in an idle thread should never change.  Reset it
1859	 * to CAN_RUN as well.
1860	 */
1861	if (TD_IS_IDLETHREAD(td)) {
1862		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1863		TD_SET_CAN_RUN(td);
1864	} else if (TD_IS_RUNNING(td)) {
1865		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1866		srqflag = (flags & SW_PREEMPT) ?
1867		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1868		    SRQ_OURSELF|SRQ_YIELDING;
1869#ifdef SMP
1870		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1871			ts->ts_cpu = sched_pickcpu(td, 0);
1872#endif
1873		if (ts->ts_cpu == cpuid)
1874			tdq_runq_add(tdq, td, srqflag);
1875		else {
1876			KASSERT(THREAD_CAN_MIGRATE(td) ||
1877			    (ts->ts_flags & TSF_BOUND) != 0,
1878			    ("Thread %p shouldn't migrate", td));
1879			mtx = sched_switch_migrate(tdq, td, srqflag);
1880		}
1881	} else {
1882		/* This thread must be going to sleep. */
1883		TDQ_LOCK(tdq);
1884		mtx = thread_lock_block(td);
1885		tdq_load_rem(tdq, td);
1886	}
1887	/*
1888	 * We enter here with the thread blocked and assigned to the
1889	 * appropriate cpu run-queue or sleep-queue and with the current
1890	 * thread-queue locked.
1891	 */
1892	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1893	newtd = choosethread();
1894	/*
1895	 * Call the MD code to switch contexts if necessary.
1896	 */
1897	if (td != newtd) {
1898#ifdef	HWPMC_HOOKS
1899		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1900			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1901#endif
1902		SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
1903		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1904		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1905		sched_pctcpu_update(newtd->td_sched, 0);
1906
1907#ifdef KDTRACE_HOOKS
1908		/*
1909		 * If DTrace has set the active vtime enum to anything
1910		 * other than INACTIVE (0), then it should have set the
1911		 * function to call.
1912		 */
1913		if (dtrace_vtime_active)
1914			(*dtrace_vtime_switch_func)(newtd);
1915#endif
1916
1917		cpu_switch(td, newtd, mtx);
1918		/*
1919		 * We may return from cpu_switch on a different cpu.  However,
1920		 * we always return with td_lock pointing to the current cpu's
1921		 * run queue lock.
1922		 */
1923		cpuid = PCPU_GET(cpuid);
1924		tdq = TDQ_CPU(cpuid);
1925		lock_profile_obtain_lock_success(
1926		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1927
1928		SDT_PROBE0(sched, , , on_cpu);
1929#ifdef	HWPMC_HOOKS
1930		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1931			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1932#endif
1933	} else {
1934		thread_unblock_switch(td, mtx);
1935		SDT_PROBE0(sched, , , remain_cpu);
1936	}
1937	/*
1938	 * Assert that all went well and return.
1939	 */
1940	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1941	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1942	td->td_oncpu = cpuid;
1943}
1944
1945/*
1946 * Adjust thread priorities as a result of a nice request.
1947 */
1948void
1949sched_nice(struct proc *p, int nice)
1950{
1951	struct thread *td;
1952
1953	PROC_LOCK_ASSERT(p, MA_OWNED);
1954
1955	p->p_nice = nice;
1956	FOREACH_THREAD_IN_PROC(p, td) {
1957		thread_lock(td);
1958		sched_priority(td);
1959		sched_prio(td, td->td_base_user_pri);
1960		thread_unlock(td);
1961	}
1962}
1963
1964/*
1965 * Record the sleep time for the interactivity scorer.
1966 */
1967void
1968sched_sleep(struct thread *td, int prio)
1969{
1970
1971	THREAD_LOCK_ASSERT(td, MA_OWNED);
1972
1973	td->td_slptick = ticks;
1974	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1975		td->td_flags |= TDF_CANSWAP;
1976	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1977		return;
1978	if (static_boost == 1 && prio)
1979		sched_prio(td, prio);
1980	else if (static_boost && td->td_priority > static_boost)
1981		sched_prio(td, static_boost);
1982}
1983
1984/*
1985 * Schedule a thread to resume execution and record how long it voluntarily
1986 * slept.  We also update the pctcpu, interactivity, and priority.
1987 */
1988void
1989sched_wakeup(struct thread *td)
1990{
1991	struct td_sched *ts;
1992	int slptick;
1993
1994	THREAD_LOCK_ASSERT(td, MA_OWNED);
1995	ts = td->td_sched;
1996	td->td_flags &= ~TDF_CANSWAP;
1997	/*
1998	 * If we slept for more than a tick update our interactivity and
1999	 * priority.
2000	 */
2001	slptick = td->td_slptick;
2002	td->td_slptick = 0;
2003	if (slptick && slptick != ticks) {
2004		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2005		sched_interact_update(td);
2006		sched_pctcpu_update(ts, 0);
2007	}
2008	/* Reset the slice value after we sleep. */
2009	ts->ts_slice = sched_slice;
2010	sched_add(td, SRQ_BORING);
2011}
2012
2013/*
2014 * Penalize the parent for creating a new child and initialize the child's
2015 * priority.
2016 */
2017void
2018sched_fork(struct thread *td, struct thread *child)
2019{
2020	THREAD_LOCK_ASSERT(td, MA_OWNED);
2021	sched_pctcpu_update(td->td_sched, 1);
2022	sched_fork_thread(td, child);
2023	/*
2024	 * Penalize the parent and child for forking.
2025	 */
2026	sched_interact_fork(child);
2027	sched_priority(child);
2028	td->td_sched->ts_runtime += tickincr;
2029	sched_interact_update(td);
2030	sched_priority(td);
2031}
2032
2033/*
2034 * Fork a new thread, may be within the same process.
2035 */
2036void
2037sched_fork_thread(struct thread *td, struct thread *child)
2038{
2039	struct td_sched *ts;
2040	struct td_sched *ts2;
2041
2042	THREAD_LOCK_ASSERT(td, MA_OWNED);
2043	/*
2044	 * Initialize child.
2045	 */
2046	ts = td->td_sched;
2047	ts2 = child->td_sched;
2048	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2049	child->td_cpuset = cpuset_ref(td->td_cpuset);
2050	ts2->ts_cpu = ts->ts_cpu;
2051	ts2->ts_flags = 0;
2052	/*
2053	 * Grab our parents cpu estimation information.
2054	 */
2055	ts2->ts_ticks = ts->ts_ticks;
2056	ts2->ts_ltick = ts->ts_ltick;
2057	ts2->ts_ftick = ts->ts_ftick;
2058	/*
2059	 * Do not inherit any borrowed priority from the parent.
2060	 */
2061	child->td_priority = child->td_base_pri;
2062	/*
2063	 * And update interactivity score.
2064	 */
2065	ts2->ts_slptime = ts->ts_slptime;
2066	ts2->ts_runtime = ts->ts_runtime;
2067	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2068#ifdef KTR
2069	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2070#endif
2071}
2072
2073/*
2074 * Adjust the priority class of a thread.
2075 */
2076void
2077sched_class(struct thread *td, int class)
2078{
2079
2080	THREAD_LOCK_ASSERT(td, MA_OWNED);
2081	if (td->td_pri_class == class)
2082		return;
2083	td->td_pri_class = class;
2084}
2085
2086/*
2087 * Return some of the child's priority and interactivity to the parent.
2088 */
2089void
2090sched_exit(struct proc *p, struct thread *child)
2091{
2092	struct thread *td;
2093
2094	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2095	    "prio:%d", child->td_priority);
2096	PROC_LOCK_ASSERT(p, MA_OWNED);
2097	td = FIRST_THREAD_IN_PROC(p);
2098	sched_exit_thread(td, child);
2099}
2100
2101/*
2102 * Penalize another thread for the time spent on this one.  This helps to
2103 * worsen the priority and interactivity of processes which schedule batch
2104 * jobs such as make.  This has little effect on the make process itself but
2105 * causes new processes spawned by it to receive worse scores immediately.
2106 */
2107void
2108sched_exit_thread(struct thread *td, struct thread *child)
2109{
2110
2111	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2112	    "prio:%d", child->td_priority);
2113	/*
2114	 * Give the child's runtime to the parent without returning the
2115	 * sleep time as a penalty to the parent.  This causes shells that
2116	 * launch expensive things to mark their children as expensive.
2117	 */
2118	thread_lock(td);
2119	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2120	sched_interact_update(td);
2121	sched_priority(td);
2122	thread_unlock(td);
2123}
2124
2125void
2126sched_preempt(struct thread *td)
2127{
2128	struct tdq *tdq;
2129
2130	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2131
2132	thread_lock(td);
2133	tdq = TDQ_SELF();
2134	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2135	tdq->tdq_ipipending = 0;
2136	if (td->td_priority > tdq->tdq_lowpri) {
2137		int flags;
2138
2139		flags = SW_INVOL | SW_PREEMPT;
2140		if (td->td_critnest > 1)
2141			td->td_owepreempt = 1;
2142		else if (TD_IS_IDLETHREAD(td))
2143			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2144		else
2145			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2146	}
2147	thread_unlock(td);
2148}
2149
2150/*
2151 * Fix priorities on return to user-space.  Priorities may be elevated due
2152 * to static priorities in msleep() or similar.
2153 */
2154void
2155sched_userret(struct thread *td)
2156{
2157	/*
2158	 * XXX we cheat slightly on the locking here to avoid locking in
2159	 * the usual case.  Setting td_priority here is essentially an
2160	 * incomplete workaround for not setting it properly elsewhere.
2161	 * Now that some interrupt handlers are threads, not setting it
2162	 * properly elsewhere can clobber it in the window between setting
2163	 * it here and returning to user mode, so don't waste time setting
2164	 * it perfectly here.
2165	 */
2166	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2167	    ("thread with borrowed priority returning to userland"));
2168	if (td->td_priority != td->td_user_pri) {
2169		thread_lock(td);
2170		td->td_priority = td->td_user_pri;
2171		td->td_base_pri = td->td_user_pri;
2172		tdq_setlowpri(TDQ_SELF(), td);
2173		thread_unlock(td);
2174        }
2175}
2176
2177/*
2178 * Handle a stathz tick.  This is really only relevant for timeshare
2179 * threads.
2180 */
2181void
2182sched_clock(struct thread *td)
2183{
2184	struct tdq *tdq;
2185	struct td_sched *ts;
2186
2187	THREAD_LOCK_ASSERT(td, MA_OWNED);
2188	tdq = TDQ_SELF();
2189#ifdef SMP
2190	/*
2191	 * We run the long term load balancer infrequently on the first cpu.
2192	 */
2193	if (balance_tdq == tdq) {
2194		if (balance_ticks && --balance_ticks == 0)
2195			sched_balance();
2196	}
2197#endif
2198	/*
2199	 * Save the old switch count so we have a record of the last ticks
2200	 * activity.   Initialize the new switch count based on our load.
2201	 * If there is some activity seed it to reflect that.
2202	 */
2203	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2204	tdq->tdq_switchcnt = tdq->tdq_load;
2205	/*
2206	 * Advance the insert index once for each tick to ensure that all
2207	 * threads get a chance to run.
2208	 */
2209	if (tdq->tdq_idx == tdq->tdq_ridx) {
2210		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2211		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2212			tdq->tdq_ridx = tdq->tdq_idx;
2213	}
2214	ts = td->td_sched;
2215	sched_pctcpu_update(ts, 1);
2216	if (td->td_pri_class & PRI_FIFO_BIT)
2217		return;
2218	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2219		/*
2220		 * We used a tick; charge it to the thread so
2221		 * that we can compute our interactivity.
2222		 */
2223		td->td_sched->ts_runtime += tickincr;
2224		sched_interact_update(td);
2225		sched_priority(td);
2226	}
2227	/*
2228	 * We used up one time slice.
2229	 */
2230	if (--ts->ts_slice > 0)
2231		return;
2232	/*
2233	 * We're out of time, force a requeue at userret().
2234	 */
2235	ts->ts_slice = sched_slice;
2236	td->td_flags |= TDF_NEEDRESCHED;
2237}
2238
2239/*
2240 * Called once per hz tick.
2241 */
2242void
2243sched_tick(int cnt)
2244{
2245
2246}
2247
2248/*
2249 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2250 * cooperative idle threads.
2251 */
2252int
2253sched_runnable(void)
2254{
2255	struct tdq *tdq;
2256	int load;
2257
2258	load = 1;
2259
2260	tdq = TDQ_SELF();
2261	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2262		if (tdq->tdq_load > 0)
2263			goto out;
2264	} else
2265		if (tdq->tdq_load - 1 > 0)
2266			goto out;
2267	load = 0;
2268out:
2269	return (load);
2270}
2271
2272/*
2273 * Choose the highest priority thread to run.  The thread is removed from
2274 * the run-queue while running however the load remains.  For SMP we set
2275 * the tdq in the global idle bitmask if it idles here.
2276 */
2277struct thread *
2278sched_choose(void)
2279{
2280	struct thread *td;
2281	struct tdq *tdq;
2282
2283	tdq = TDQ_SELF();
2284	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2285	td = tdq_choose(tdq);
2286	if (td) {
2287		tdq_runq_rem(tdq, td);
2288		tdq->tdq_lowpri = td->td_priority;
2289		return (td);
2290	}
2291	tdq->tdq_lowpri = PRI_MAX_IDLE;
2292	return (PCPU_GET(idlethread));
2293}
2294
2295/*
2296 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2297 * we always request it once we exit a critical section.
2298 */
2299static inline void
2300sched_setpreempt(struct thread *td)
2301{
2302	struct thread *ctd;
2303	int cpri;
2304	int pri;
2305
2306	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2307
2308	ctd = curthread;
2309	pri = td->td_priority;
2310	cpri = ctd->td_priority;
2311	if (pri < cpri)
2312		ctd->td_flags |= TDF_NEEDRESCHED;
2313	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2314		return;
2315	if (!sched_shouldpreempt(pri, cpri, 0))
2316		return;
2317	ctd->td_owepreempt = 1;
2318}
2319
2320/*
2321 * Add a thread to a thread queue.  Select the appropriate runq and add the
2322 * thread to it.  This is the internal function called when the tdq is
2323 * predetermined.
2324 */
2325void
2326tdq_add(struct tdq *tdq, struct thread *td, int flags)
2327{
2328
2329	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2330	KASSERT((td->td_inhibitors == 0),
2331	    ("sched_add: trying to run inhibited thread"));
2332	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2333	    ("sched_add: bad thread state"));
2334	KASSERT(td->td_flags & TDF_INMEM,
2335	    ("sched_add: thread swapped out"));
2336
2337	if (td->td_priority < tdq->tdq_lowpri)
2338		tdq->tdq_lowpri = td->td_priority;
2339	tdq_runq_add(tdq, td, flags);
2340	tdq_load_add(tdq, td);
2341}
2342
2343/*
2344 * Select the target thread queue and add a thread to it.  Request
2345 * preemption or IPI a remote processor if required.
2346 */
2347void
2348sched_add(struct thread *td, int flags)
2349{
2350	struct tdq *tdq;
2351#ifdef SMP
2352	int cpu;
2353#endif
2354
2355	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2356	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2357	    sched_tdname(curthread));
2358	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2359	    KTR_ATTR_LINKED, sched_tdname(td));
2360	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2361	    flags & SRQ_PREEMPTED);
2362	THREAD_LOCK_ASSERT(td, MA_OWNED);
2363	/*
2364	 * Recalculate the priority before we select the target cpu or
2365	 * run-queue.
2366	 */
2367	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2368		sched_priority(td);
2369#ifdef SMP
2370	/*
2371	 * Pick the destination cpu and if it isn't ours transfer to the
2372	 * target cpu.
2373	 */
2374	cpu = sched_pickcpu(td, flags);
2375	tdq = sched_setcpu(td, cpu, flags);
2376	tdq_add(tdq, td, flags);
2377	if (cpu != PCPU_GET(cpuid)) {
2378		tdq_notify(tdq, td);
2379		return;
2380	}
2381#else
2382	tdq = TDQ_SELF();
2383	TDQ_LOCK(tdq);
2384	/*
2385	 * Now that the thread is moving to the run-queue, set the lock
2386	 * to the scheduler's lock.
2387	 */
2388	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2389	tdq_add(tdq, td, flags);
2390#endif
2391	if (!(flags & SRQ_YIELDING))
2392		sched_setpreempt(td);
2393}
2394
2395/*
2396 * Remove a thread from a run-queue without running it.  This is used
2397 * when we're stealing a thread from a remote queue.  Otherwise all threads
2398 * exit by calling sched_exit_thread() and sched_throw() themselves.
2399 */
2400void
2401sched_rem(struct thread *td)
2402{
2403	struct tdq *tdq;
2404
2405	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2406	    "prio:%d", td->td_priority);
2407	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2408	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2409	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2410	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2411	KASSERT(TD_ON_RUNQ(td),
2412	    ("sched_rem: thread not on run queue"));
2413	tdq_runq_rem(tdq, td);
2414	tdq_load_rem(tdq, td);
2415	TD_SET_CAN_RUN(td);
2416	if (td->td_priority == tdq->tdq_lowpri)
2417		tdq_setlowpri(tdq, NULL);
2418}
2419
2420/*
2421 * Fetch cpu utilization information.  Updates on demand.
2422 */
2423fixpt_t
2424sched_pctcpu(struct thread *td)
2425{
2426	fixpt_t pctcpu;
2427	struct td_sched *ts;
2428
2429	pctcpu = 0;
2430	ts = td->td_sched;
2431	if (ts == NULL)
2432		return (0);
2433
2434	THREAD_LOCK_ASSERT(td, MA_OWNED);
2435	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2436	if (ts->ts_ticks) {
2437		int rtick;
2438
2439		/* How many rtick per second ? */
2440		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2441		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2442	}
2443
2444	return (pctcpu);
2445}
2446
2447/*
2448 * Enforce affinity settings for a thread.  Called after adjustments to
2449 * cpumask.
2450 */
2451void
2452sched_affinity(struct thread *td)
2453{
2454#ifdef SMP
2455	struct td_sched *ts;
2456
2457	THREAD_LOCK_ASSERT(td, MA_OWNED);
2458	ts = td->td_sched;
2459	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2460		return;
2461	if (TD_ON_RUNQ(td)) {
2462		sched_rem(td);
2463		sched_add(td, SRQ_BORING);
2464		return;
2465	}
2466	if (!TD_IS_RUNNING(td))
2467		return;
2468	/*
2469	 * Force a switch before returning to userspace.  If the
2470	 * target thread is not running locally send an ipi to force
2471	 * the issue.
2472	 */
2473	td->td_flags |= TDF_NEEDRESCHED;
2474	if (td != curthread)
2475		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2476#endif
2477}
2478
2479/*
2480 * Bind a thread to a target cpu.
2481 */
2482void
2483sched_bind(struct thread *td, int cpu)
2484{
2485	struct td_sched *ts;
2486
2487	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2488	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2489	ts = td->td_sched;
2490	if (ts->ts_flags & TSF_BOUND)
2491		sched_unbind(td);
2492	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2493	ts->ts_flags |= TSF_BOUND;
2494	sched_pin();
2495	if (PCPU_GET(cpuid) == cpu)
2496		return;
2497	ts->ts_cpu = cpu;
2498	/* When we return from mi_switch we'll be on the correct cpu. */
2499	mi_switch(SW_VOL, NULL);
2500}
2501
2502/*
2503 * Release a bound thread.
2504 */
2505void
2506sched_unbind(struct thread *td)
2507{
2508	struct td_sched *ts;
2509
2510	THREAD_LOCK_ASSERT(td, MA_OWNED);
2511	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2512	ts = td->td_sched;
2513	if ((ts->ts_flags & TSF_BOUND) == 0)
2514		return;
2515	ts->ts_flags &= ~TSF_BOUND;
2516	sched_unpin();
2517}
2518
2519int
2520sched_is_bound(struct thread *td)
2521{
2522	THREAD_LOCK_ASSERT(td, MA_OWNED);
2523	return (td->td_sched->ts_flags & TSF_BOUND);
2524}
2525
2526/*
2527 * Basic yield call.
2528 */
2529void
2530sched_relinquish(struct thread *td)
2531{
2532	thread_lock(td);
2533	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2534	thread_unlock(td);
2535}
2536
2537/*
2538 * Return the total system load.
2539 */
2540int
2541sched_load(void)
2542{
2543#ifdef SMP
2544	int total;
2545	int i;
2546
2547	total = 0;
2548	CPU_FOREACH(i)
2549		total += TDQ_CPU(i)->tdq_sysload;
2550	return (total);
2551#else
2552	return (TDQ_SELF()->tdq_sysload);
2553#endif
2554}
2555
2556int
2557sched_sizeof_proc(void)
2558{
2559	return (sizeof(struct proc));
2560}
2561
2562int
2563sched_sizeof_thread(void)
2564{
2565	return (sizeof(struct thread) + sizeof(struct td_sched));
2566}
2567
2568#ifdef SMP
2569#define	TDQ_IDLESPIN(tdq)						\
2570    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2571#else
2572#define	TDQ_IDLESPIN(tdq)	1
2573#endif
2574
2575/*
2576 * The actual idle process.
2577 */
2578void
2579sched_idletd(void *dummy)
2580{
2581	struct thread *td;
2582	struct tdq *tdq;
2583	int switchcnt;
2584	int i;
2585
2586	mtx_assert(&Giant, MA_NOTOWNED);
2587	td = curthread;
2588	tdq = TDQ_SELF();
2589	for (;;) {
2590#ifdef SMP
2591		if (tdq_idled(tdq) == 0)
2592			continue;
2593#endif
2594		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2595		/*
2596		 * If we're switching very frequently, spin while checking
2597		 * for load rather than entering a low power state that
2598		 * may require an IPI.  However, don't do any busy
2599		 * loops while on SMT machines as this simply steals
2600		 * cycles from cores doing useful work.
2601		 */
2602		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2603			for (i = 0; i < sched_idlespins; i++) {
2604				if (tdq->tdq_load)
2605					break;
2606				cpu_spinwait();
2607			}
2608		}
2609		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2610		if (tdq->tdq_load == 0) {
2611			tdq->tdq_cpu_idle = 1;
2612			if (tdq->tdq_load == 0) {
2613				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2614				tdq->tdq_switchcnt++;
2615			}
2616			tdq->tdq_cpu_idle = 0;
2617		}
2618		if (tdq->tdq_load) {
2619			thread_lock(td);
2620			mi_switch(SW_VOL | SWT_IDLE, NULL);
2621			thread_unlock(td);
2622		}
2623	}
2624}
2625
2626/*
2627 * A CPU is entering for the first time or a thread is exiting.
2628 */
2629void
2630sched_throw(struct thread *td)
2631{
2632	struct thread *newtd;
2633	struct tdq *tdq;
2634
2635	tdq = TDQ_SELF();
2636	if (td == NULL) {
2637		/* Correct spinlock nesting and acquire the correct lock. */
2638		TDQ_LOCK(tdq);
2639		spinlock_exit();
2640		PCPU_SET(switchtime, cpu_ticks());
2641		PCPU_SET(switchticks, ticks);
2642	} else {
2643		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2644		tdq_load_rem(tdq, td);
2645		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2646	}
2647	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2648	newtd = choosethread();
2649	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2650	cpu_throw(td, newtd);		/* doesn't return */
2651}
2652
2653/*
2654 * This is called from fork_exit().  Just acquire the correct locks and
2655 * let fork do the rest of the work.
2656 */
2657void
2658sched_fork_exit(struct thread *td)
2659{
2660	struct td_sched *ts;
2661	struct tdq *tdq;
2662	int cpuid;
2663
2664	/*
2665	 * Finish setting up thread glue so that it begins execution in a
2666	 * non-nested critical section with the scheduler lock held.
2667	 */
2668	cpuid = PCPU_GET(cpuid);
2669	tdq = TDQ_CPU(cpuid);
2670	ts = td->td_sched;
2671	if (TD_IS_IDLETHREAD(td))
2672		td->td_lock = TDQ_LOCKPTR(tdq);
2673	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2674	td->td_oncpu = cpuid;
2675	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2676	lock_profile_obtain_lock_success(
2677	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2678}
2679
2680/*
2681 * Create on first use to catch odd startup conditons.
2682 */
2683char *
2684sched_tdname(struct thread *td)
2685{
2686#ifdef KTR
2687	struct td_sched *ts;
2688
2689	ts = td->td_sched;
2690	if (ts->ts_name[0] == '\0')
2691		snprintf(ts->ts_name, sizeof(ts->ts_name),
2692		    "%s tid %d", td->td_name, td->td_tid);
2693	return (ts->ts_name);
2694#else
2695	return (td->td_name);
2696#endif
2697}
2698
2699#ifdef KTR
2700void
2701sched_clear_tdname(struct thread *td)
2702{
2703	struct td_sched *ts;
2704
2705	ts = td->td_sched;
2706	ts->ts_name[0] = '\0';
2707}
2708#endif
2709
2710#ifdef SMP
2711
2712/*
2713 * Build the CPU topology dump string. Is recursively called to collect
2714 * the topology tree.
2715 */
2716static int
2717sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2718    int indent)
2719{
2720	char cpusetbuf[CPUSETBUFSIZ];
2721	int i, first;
2722
2723	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2724	    "", 1 + indent / 2, cg->cg_level);
2725	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2726	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2727	first = TRUE;
2728	for (i = 0; i < MAXCPU; i++) {
2729		if (CPU_ISSET(i, &cg->cg_mask)) {
2730			if (!first)
2731				sbuf_printf(sb, ", ");
2732			else
2733				first = FALSE;
2734			sbuf_printf(sb, "%d", i);
2735		}
2736	}
2737	sbuf_printf(sb, "</cpu>\n");
2738
2739	if (cg->cg_flags != 0) {
2740		sbuf_printf(sb, "%*s <flags>", indent, "");
2741		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2742			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2743		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2744			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2745		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2746			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2747		sbuf_printf(sb, "</flags>\n");
2748	}
2749
2750	if (cg->cg_children > 0) {
2751		sbuf_printf(sb, "%*s <children>\n", indent, "");
2752		for (i = 0; i < cg->cg_children; i++)
2753			sysctl_kern_sched_topology_spec_internal(sb,
2754			    &cg->cg_child[i], indent+2);
2755		sbuf_printf(sb, "%*s </children>\n", indent, "");
2756	}
2757	sbuf_printf(sb, "%*s</group>\n", indent, "");
2758	return (0);
2759}
2760
2761/*
2762 * Sysctl handler for retrieving topology dump. It's a wrapper for
2763 * the recursive sysctl_kern_smp_topology_spec_internal().
2764 */
2765static int
2766sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2767{
2768	struct sbuf *topo;
2769	int err;
2770
2771	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2772
2773	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2774	if (topo == NULL)
2775		return (ENOMEM);
2776
2777	sbuf_printf(topo, "<groups>\n");
2778	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2779	sbuf_printf(topo, "</groups>\n");
2780
2781	if (err == 0) {
2782		sbuf_finish(topo);
2783		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2784	}
2785	sbuf_delete(topo);
2786	return (err);
2787}
2788
2789#endif
2790
2791SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2792SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2793    "Scheduler name");
2794SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2795    "Slice size for timeshare threads");
2796SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2797     "Interactivity score threshold");
2798SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2799     0,"Min priority for preemption, lower priorities have greater precedence");
2800SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2801     0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2802SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2803     0,"Number of times idle will spin waiting for new work.");
2804SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2805     0,"Threshold before we will permit idle spinning.");
2806#ifdef SMP
2807SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2808    "Number of hz ticks to keep thread affinity for");
2809SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2810    "Enables the long-term load balancer");
2811SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2812    &balance_interval, 0,
2813    "Average frequency in stathz ticks to run the long-term balancer");
2814SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2815    "Attempts to steal work from other cores before idling");
2816SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2817    "Minimum load on remote cpu before we'll steal");
2818
2819/* Retrieve SMP topology */
2820SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2821    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2822    "XML dump of detected CPU topology");
2823
2824#endif
2825
2826/* ps compat.  All cpu percentages from ULE are weighted. */
2827static int ccpu = 0;
2828SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2829