sched_ule.c revision 233814
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/9/sys/kern/sched_ule.c 233814 2012-04-02 20:34:15Z jhb $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/turnstile.h>
61#include <sys/umtx.h>
62#include <sys/vmmeter.h>
63#include <sys/cpuset.h>
64#include <sys/sbuf.h>
65
66#ifdef HWPMC_HOOKS
67#include <sys/pmckern.h>
68#endif
69
70#ifdef KDTRACE_HOOKS
71#include <sys/dtrace_bsd.h>
72int				dtrace_vtime_active;
73dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
74#endif
75
76#include <machine/cpu.h>
77#include <machine/smp.h>
78
79#if defined(__powerpc__) && defined(E500)
80#error "This architecture is not currently compatible with ULE"
81#endif
82
83#define	KTR_ULE	0
84
85#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
86#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
87#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
88
89/*
90 * Thread scheduler specific section.  All fields are protected
91 * by the thread lock.
92 */
93struct td_sched {
94	struct runq	*ts_runq;	/* Run-queue we're queued on. */
95	short		ts_flags;	/* TSF_* flags. */
96	u_char		ts_cpu;		/* CPU that we have affinity for. */
97	int		ts_rltick;	/* Real last tick, for affinity. */
98	int		ts_slice;	/* Ticks of slice remaining. */
99	u_int		ts_slptime;	/* Number of ticks we vol. slept */
100	u_int		ts_runtime;	/* Number of ticks we were running */
101	int		ts_ltick;	/* Last tick that we were running on */
102	int		ts_incrtick;	/* Last tick that we incremented on */
103	int		ts_ftick;	/* First tick that we were running on */
104	int		ts_ticks;	/* Tick count */
105#ifdef KTR
106	char		ts_name[TS_NAME_LEN];
107#endif
108};
109/* flags kept in ts_flags */
110#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112
113static struct td_sched td_sched0;
114
115#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119/*
120 * Priority ranges used for interactive and non-interactive timeshare
121 * threads.  The timeshare priorities are split up into four ranges.
122 * The first range handles interactive threads.  The last three ranges
123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124 * ranges supporting nice values.
125 */
126#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129
130#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/*
193 * tickincr:		Converts a stathz tick into a hz domain scaled by
194 *			the shift factor.  Without the shift the error rate
195 *			due to rounding would be unacceptably high.
196 * realstathz:		stathz is sometimes 0 and run off of hz.
197 * sched_slice:		Runtime of each thread before rescheduling.
198 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
199 */
200static int sched_interact = SCHED_INTERACT_THRESH;
201static int realstathz;
202static int tickincr;
203static int sched_slice = 1;
204#ifdef PREEMPTION
205#ifdef FULL_PREEMPTION
206static int preempt_thresh = PRI_MAX_IDLE;
207#else
208static int preempt_thresh = PRI_MIN_KERN;
209#endif
210#else
211static int preempt_thresh = 0;
212#endif
213static int static_boost = PRI_MIN_BATCH;
214static int sched_idlespins = 10000;
215static int sched_idlespinthresh = 16;
216
217/*
218 * tdq - per processor runqs and statistics.  All fields are protected by the
219 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
220 * locking in sched_pickcpu();
221 */
222struct tdq {
223	/* Ordered to improve efficiency of cpu_search() and switch(). */
224	struct mtx	tdq_lock;		/* run queue lock. */
225	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
226	volatile int	tdq_load;		/* Aggregate load. */
227	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
228	int		tdq_sysload;		/* For loadavg, !ITHD load. */
229	int		tdq_transferable;	/* Transferable thread count. */
230	short		tdq_switchcnt;		/* Switches this tick. */
231	short		tdq_oldswitchcnt;	/* Switches last tick. */
232	u_char		tdq_lowpri;		/* Lowest priority thread. */
233	u_char		tdq_ipipending;		/* IPI pending. */
234	u_char		tdq_idx;		/* Current insert index. */
235	u_char		tdq_ridx;		/* Current removal index. */
236	struct runq	tdq_realtime;		/* real-time run queue. */
237	struct runq	tdq_timeshare;		/* timeshare run queue. */
238	struct runq	tdq_idle;		/* Queue of IDLE threads. */
239	char		tdq_name[TDQ_NAME_LEN];
240#ifdef KTR
241	char		tdq_loadname[TDQ_LOADNAME_LEN];
242#endif
243} __aligned(64);
244
245/* Idle thread states and config. */
246#define	TDQ_RUNNING	1
247#define	TDQ_IDLE	2
248
249#ifdef SMP
250struct cpu_group *cpu_top;		/* CPU topology */
251
252#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
253#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
254
255/*
256 * Run-time tunables.
257 */
258static int rebalance = 1;
259static int balance_interval = 128;	/* Default set in sched_initticks(). */
260static int affinity;
261static int steal_idle = 1;
262static int steal_thresh = 2;
263
264/*
265 * One thread queue per processor.
266 */
267static struct tdq	tdq_cpu[MAXCPU];
268static struct tdq	*balance_tdq;
269static int balance_ticks;
270static DPCPU_DEFINE(uint32_t, randomval);
271
272#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
273#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
274#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
275#else	/* !SMP */
276static struct tdq	tdq_cpu;
277
278#define	TDQ_ID(x)	(0)
279#define	TDQ_SELF()	(&tdq_cpu)
280#define	TDQ_CPU(x)	(&tdq_cpu)
281#endif
282
283#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
284#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
285#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
286#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
287#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
288
289static void sched_priority(struct thread *);
290static void sched_thread_priority(struct thread *, u_char);
291static int sched_interact_score(struct thread *);
292static void sched_interact_update(struct thread *);
293static void sched_interact_fork(struct thread *);
294static void sched_pctcpu_update(struct td_sched *);
295
296/* Operations on per processor queues */
297static struct thread *tdq_choose(struct tdq *);
298static void tdq_setup(struct tdq *);
299static void tdq_load_add(struct tdq *, struct thread *);
300static void tdq_load_rem(struct tdq *, struct thread *);
301static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
302static __inline void tdq_runq_rem(struct tdq *, struct thread *);
303static inline int sched_shouldpreempt(int, int, int);
304void tdq_print(int cpu);
305static void runq_print(struct runq *rq);
306static void tdq_add(struct tdq *, struct thread *, int);
307#ifdef SMP
308static int tdq_move(struct tdq *, struct tdq *);
309static int tdq_idled(struct tdq *);
310static void tdq_notify(struct tdq *, struct thread *);
311static struct thread *tdq_steal(struct tdq *, int);
312static struct thread *runq_steal(struct runq *, int);
313static int sched_pickcpu(struct thread *, int);
314static void sched_balance(void);
315static int sched_balance_pair(struct tdq *, struct tdq *);
316static inline struct tdq *sched_setcpu(struct thread *, int, int);
317static inline void thread_unblock_switch(struct thread *, struct mtx *);
318static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
319static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
320static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
321    struct cpu_group *cg, int indent);
322#endif
323
324static void sched_setup(void *dummy);
325SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
326
327static void sched_initticks(void *dummy);
328SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
329    NULL);
330
331/*
332 * Print the threads waiting on a run-queue.
333 */
334static void
335runq_print(struct runq *rq)
336{
337	struct rqhead *rqh;
338	struct thread *td;
339	int pri;
340	int j;
341	int i;
342
343	for (i = 0; i < RQB_LEN; i++) {
344		printf("\t\trunq bits %d 0x%zx\n",
345		    i, rq->rq_status.rqb_bits[i]);
346		for (j = 0; j < RQB_BPW; j++)
347			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
348				pri = j + (i << RQB_L2BPW);
349				rqh = &rq->rq_queues[pri];
350				TAILQ_FOREACH(td, rqh, td_runq) {
351					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
352					    td, td->td_name, td->td_priority,
353					    td->td_rqindex, pri);
354				}
355			}
356	}
357}
358
359/*
360 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
361 */
362void
363tdq_print(int cpu)
364{
365	struct tdq *tdq;
366
367	tdq = TDQ_CPU(cpu);
368
369	printf("tdq %d:\n", TDQ_ID(tdq));
370	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
371	printf("\tLock name:      %s\n", tdq->tdq_name);
372	printf("\tload:           %d\n", tdq->tdq_load);
373	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
374	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
375	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
376	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
377	printf("\tload transferable: %d\n", tdq->tdq_transferable);
378	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
379	printf("\trealtime runq:\n");
380	runq_print(&tdq->tdq_realtime);
381	printf("\ttimeshare runq:\n");
382	runq_print(&tdq->tdq_timeshare);
383	printf("\tidle runq:\n");
384	runq_print(&tdq->tdq_idle);
385}
386
387static inline int
388sched_shouldpreempt(int pri, int cpri, int remote)
389{
390	/*
391	 * If the new priority is not better than the current priority there is
392	 * nothing to do.
393	 */
394	if (pri >= cpri)
395		return (0);
396	/*
397	 * Always preempt idle.
398	 */
399	if (cpri >= PRI_MIN_IDLE)
400		return (1);
401	/*
402	 * If preemption is disabled don't preempt others.
403	 */
404	if (preempt_thresh == 0)
405		return (0);
406	/*
407	 * Preempt if we exceed the threshold.
408	 */
409	if (pri <= preempt_thresh)
410		return (1);
411	/*
412	 * If we're interactive or better and there is non-interactive
413	 * or worse running preempt only remote processors.
414	 */
415	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
416		return (1);
417	return (0);
418}
419
420/*
421 * Add a thread to the actual run-queue.  Keeps transferable counts up to
422 * date with what is actually on the run-queue.  Selects the correct
423 * queue position for timeshare threads.
424 */
425static __inline void
426tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
427{
428	struct td_sched *ts;
429	u_char pri;
430
431	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
432	THREAD_LOCK_ASSERT(td, MA_OWNED);
433
434	pri = td->td_priority;
435	ts = td->td_sched;
436	TD_SET_RUNQ(td);
437	if (THREAD_CAN_MIGRATE(td)) {
438		tdq->tdq_transferable++;
439		ts->ts_flags |= TSF_XFERABLE;
440	}
441	if (pri < PRI_MIN_BATCH) {
442		ts->ts_runq = &tdq->tdq_realtime;
443	} else if (pri <= PRI_MAX_BATCH) {
444		ts->ts_runq = &tdq->tdq_timeshare;
445		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
446			("Invalid priority %d on timeshare runq", pri));
447		/*
448		 * This queue contains only priorities between MIN and MAX
449		 * realtime.  Use the whole queue to represent these values.
450		 */
451		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
452			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
453			pri = (pri + tdq->tdq_idx) % RQ_NQS;
454			/*
455			 * This effectively shortens the queue by one so we
456			 * can have a one slot difference between idx and
457			 * ridx while we wait for threads to drain.
458			 */
459			if (tdq->tdq_ridx != tdq->tdq_idx &&
460			    pri == tdq->tdq_ridx)
461				pri = (unsigned char)(pri - 1) % RQ_NQS;
462		} else
463			pri = tdq->tdq_ridx;
464		runq_add_pri(ts->ts_runq, td, pri, flags);
465		return;
466	} else
467		ts->ts_runq = &tdq->tdq_idle;
468	runq_add(ts->ts_runq, td, flags);
469}
470
471/*
472 * Remove a thread from a run-queue.  This typically happens when a thread
473 * is selected to run.  Running threads are not on the queue and the
474 * transferable count does not reflect them.
475 */
476static __inline void
477tdq_runq_rem(struct tdq *tdq, struct thread *td)
478{
479	struct td_sched *ts;
480
481	ts = td->td_sched;
482	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
483	KASSERT(ts->ts_runq != NULL,
484	    ("tdq_runq_remove: thread %p null ts_runq", td));
485	if (ts->ts_flags & TSF_XFERABLE) {
486		tdq->tdq_transferable--;
487		ts->ts_flags &= ~TSF_XFERABLE;
488	}
489	if (ts->ts_runq == &tdq->tdq_timeshare) {
490		if (tdq->tdq_idx != tdq->tdq_ridx)
491			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
492		else
493			runq_remove_idx(ts->ts_runq, td, NULL);
494	} else
495		runq_remove(ts->ts_runq, td);
496}
497
498/*
499 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
500 * for this thread to the referenced thread queue.
501 */
502static void
503tdq_load_add(struct tdq *tdq, struct thread *td)
504{
505
506	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
507	THREAD_LOCK_ASSERT(td, MA_OWNED);
508
509	tdq->tdq_load++;
510	if ((td->td_flags & TDF_NOLOAD) == 0)
511		tdq->tdq_sysload++;
512	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
513}
514
515/*
516 * Remove the load from a thread that is transitioning to a sleep state or
517 * exiting.
518 */
519static void
520tdq_load_rem(struct tdq *tdq, struct thread *td)
521{
522
523	THREAD_LOCK_ASSERT(td, MA_OWNED);
524	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
525	KASSERT(tdq->tdq_load != 0,
526	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
527
528	tdq->tdq_load--;
529	if ((td->td_flags & TDF_NOLOAD) == 0)
530		tdq->tdq_sysload--;
531	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
532}
533
534/*
535 * Set lowpri to its exact value by searching the run-queue and
536 * evaluating curthread.  curthread may be passed as an optimization.
537 */
538static void
539tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
540{
541	struct thread *td;
542
543	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
544	if (ctd == NULL)
545		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
546	td = tdq_choose(tdq);
547	if (td == NULL || td->td_priority > ctd->td_priority)
548		tdq->tdq_lowpri = ctd->td_priority;
549	else
550		tdq->tdq_lowpri = td->td_priority;
551}
552
553#ifdef SMP
554struct cpu_search {
555	cpuset_t cs_mask;
556	u_int	cs_prefer;
557	int	cs_pri;		/* Min priority for low. */
558	int	cs_limit;	/* Max load for low, min load for high. */
559	int	cs_cpu;
560	int	cs_load;
561};
562
563#define	CPU_SEARCH_LOWEST	0x1
564#define	CPU_SEARCH_HIGHEST	0x2
565#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
566
567#define	CPUSET_FOREACH(cpu, mask)				\
568	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
569		if (CPU_ISSET(cpu, &mask))
570
571static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
572    struct cpu_search *high, const int match);
573int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
574int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
575int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
576    struct cpu_search *high);
577
578/*
579 * Search the tree of cpu_groups for the lowest or highest loaded cpu
580 * according to the match argument.  This routine actually compares the
581 * load on all paths through the tree and finds the least loaded cpu on
582 * the least loaded path, which may differ from the least loaded cpu in
583 * the system.  This balances work among caches and busses.
584 *
585 * This inline is instantiated in three forms below using constants for the
586 * match argument.  It is reduced to the minimum set for each case.  It is
587 * also recursive to the depth of the tree.
588 */
589static __inline int
590cpu_search(const struct cpu_group *cg, struct cpu_search *low,
591    struct cpu_search *high, const int match)
592{
593	struct cpu_search lgroup;
594	struct cpu_search hgroup;
595	cpuset_t cpumask;
596	struct cpu_group *child;
597	struct tdq *tdq;
598	int cpu, i, hload, lload, load, total, rnd;
599
600	total = 0;
601	cpumask = cg->cg_mask;
602	if (match & CPU_SEARCH_LOWEST) {
603		lload = INT_MAX;
604		low->cs_load = INT_MAX;
605		lgroup = *low;
606	}
607	if (match & CPU_SEARCH_HIGHEST) {
608		hload = -1;
609		high->cs_load = -1;
610		hgroup = *high;
611	}
612
613	/* Iterate through the child CPU groups and then remaining CPUs. */
614	for (i = 0, cpu = 0; i <= cg->cg_children; ) {
615		if (i >= cg->cg_children) {
616			while (cpu <= mp_maxid && !CPU_ISSET(cpu, &cpumask))
617				cpu++;
618			if (cpu > mp_maxid)
619				break;
620			child = NULL;
621		} else
622			child = &cg->cg_child[i];
623
624		if (child) {			/* Handle child CPU group. */
625			CPU_NAND(&cpumask, &child->cg_mask);
626			switch (match) {
627			case CPU_SEARCH_LOWEST:
628				load = cpu_search_lowest(child, &lgroup);
629				break;
630			case CPU_SEARCH_HIGHEST:
631				load = cpu_search_highest(child, &hgroup);
632				break;
633			case CPU_SEARCH_BOTH:
634				load = cpu_search_both(child, &lgroup, &hgroup);
635				break;
636			}
637		} else {			/* Handle child CPU. */
638			tdq = TDQ_CPU(cpu);
639			load = tdq->tdq_load * 256;
640			rnd = DPCPU_SET(randomval,
641			    DPCPU_GET(randomval) * 69069 + 5) >> 26;
642			if (match & CPU_SEARCH_LOWEST) {
643				if (cpu == low->cs_prefer)
644					load -= 64;
645				/* If that CPU is allowed and get data. */
646				if (CPU_ISSET(cpu, &lgroup.cs_mask) &&
647				    tdq->tdq_lowpri > lgroup.cs_pri &&
648				    tdq->tdq_load <= lgroup.cs_limit) {
649					lgroup.cs_cpu = cpu;
650					lgroup.cs_load = load - rnd;
651				}
652			}
653			if (match & CPU_SEARCH_HIGHEST)
654				if (CPU_ISSET(cpu, &hgroup.cs_mask) &&
655				    tdq->tdq_load >= hgroup.cs_limit &&
656				    tdq->tdq_transferable) {
657					hgroup.cs_cpu = cpu;
658					hgroup.cs_load = load - rnd;
659				}
660		}
661		total += load;
662
663		/* We have info about child item. Compare it. */
664		if (match & CPU_SEARCH_LOWEST) {
665			if (lgroup.cs_load != INT_MAX &&
666			    (load < lload ||
667			     (load == lload && lgroup.cs_load < low->cs_load))) {
668				lload = load;
669				low->cs_cpu = lgroup.cs_cpu;
670				low->cs_load = lgroup.cs_load;
671			}
672		}
673		if (match & CPU_SEARCH_HIGHEST)
674			if (hgroup.cs_load != -1 &&
675			    (load > hload ||
676			     (load == hload && hgroup.cs_load > high->cs_load))) {
677				hload = load;
678				high->cs_cpu = hgroup.cs_cpu;
679				high->cs_load = hgroup.cs_load;
680			}
681		if (child)
682			i++;
683		else
684			cpu++;
685	}
686	return (total);
687}
688
689/*
690 * cpu_search instantiations must pass constants to maintain the inline
691 * optimization.
692 */
693int
694cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
695{
696	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
697}
698
699int
700cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
701{
702	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
703}
704
705int
706cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
707    struct cpu_search *high)
708{
709	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
710}
711
712/*
713 * Find the cpu with the least load via the least loaded path that has a
714 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
715 * acceptable.
716 */
717static inline int
718sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
719    int prefer)
720{
721	struct cpu_search low;
722
723	low.cs_cpu = -1;
724	low.cs_prefer = prefer;
725	low.cs_mask = mask;
726	low.cs_pri = pri;
727	low.cs_limit = maxload;
728	cpu_search_lowest(cg, &low);
729	return low.cs_cpu;
730}
731
732/*
733 * Find the cpu with the highest load via the highest loaded path.
734 */
735static inline int
736sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
737{
738	struct cpu_search high;
739
740	high.cs_cpu = -1;
741	high.cs_mask = mask;
742	high.cs_limit = minload;
743	cpu_search_highest(cg, &high);
744	return high.cs_cpu;
745}
746
747/*
748 * Simultaneously find the highest and lowest loaded cpu reachable via
749 * cg.
750 */
751static inline void
752sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
753{
754	struct cpu_search high;
755	struct cpu_search low;
756
757	low.cs_cpu = -1;
758	low.cs_prefer = -1;
759	low.cs_pri = -1;
760	low.cs_limit = INT_MAX;
761	low.cs_mask = mask;
762	high.cs_cpu = -1;
763	high.cs_limit = -1;
764	high.cs_mask = mask;
765	cpu_search_both(cg, &low, &high);
766	*lowcpu = low.cs_cpu;
767	*highcpu = high.cs_cpu;
768	return;
769}
770
771static void
772sched_balance_group(struct cpu_group *cg)
773{
774	cpuset_t hmask, lmask;
775	int high, low, anylow;
776
777	CPU_FILL(&hmask);
778	for (;;) {
779		high = sched_highest(cg, hmask, 1);
780		/* Stop if there is no more CPU with transferrable threads. */
781		if (high == -1)
782			break;
783		CPU_CLR(high, &hmask);
784		CPU_COPY(&hmask, &lmask);
785		/* Stop if there is no more CPU left for low. */
786		if (CPU_EMPTY(&lmask))
787			break;
788		anylow = 1;
789nextlow:
790		low = sched_lowest(cg, lmask, -1,
791		    TDQ_CPU(high)->tdq_load - 1, high);
792		/* Stop if we looked well and found no less loaded CPU. */
793		if (anylow && low == -1)
794			break;
795		/* Go to next high if we found no less loaded CPU. */
796		if (low == -1)
797			continue;
798		/* Transfer thread from high to low. */
799		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
800			/* CPU that got thread can no longer be a donor. */
801			CPU_CLR(low, &hmask);
802		} else {
803			/*
804			 * If failed, then there is no threads on high
805			 * that can run on this low. Drop low from low
806			 * mask and look for different one.
807			 */
808			CPU_CLR(low, &lmask);
809			anylow = 0;
810			goto nextlow;
811		}
812	}
813}
814
815static void
816sched_balance(void)
817{
818	struct tdq *tdq;
819
820	/*
821	 * Select a random time between .5 * balance_interval and
822	 * 1.5 * balance_interval.
823	 */
824	balance_ticks = max(balance_interval / 2, 1);
825	balance_ticks += random() % balance_interval;
826	if (smp_started == 0 || rebalance == 0)
827		return;
828	tdq = TDQ_SELF();
829	TDQ_UNLOCK(tdq);
830	sched_balance_group(cpu_top);
831	TDQ_LOCK(tdq);
832}
833
834/*
835 * Lock two thread queues using their address to maintain lock order.
836 */
837static void
838tdq_lock_pair(struct tdq *one, struct tdq *two)
839{
840	if (one < two) {
841		TDQ_LOCK(one);
842		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
843	} else {
844		TDQ_LOCK(two);
845		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
846	}
847}
848
849/*
850 * Unlock two thread queues.  Order is not important here.
851 */
852static void
853tdq_unlock_pair(struct tdq *one, struct tdq *two)
854{
855	TDQ_UNLOCK(one);
856	TDQ_UNLOCK(two);
857}
858
859/*
860 * Transfer load between two imbalanced thread queues.
861 */
862static int
863sched_balance_pair(struct tdq *high, struct tdq *low)
864{
865	int moved;
866	int cpu;
867
868	tdq_lock_pair(high, low);
869	moved = 0;
870	/*
871	 * Determine what the imbalance is and then adjust that to how many
872	 * threads we actually have to give up (transferable).
873	 */
874	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
875	    (moved = tdq_move(high, low)) > 0) {
876		/*
877		 * In case the target isn't the current cpu IPI it to force a
878		 * reschedule with the new workload.
879		 */
880		cpu = TDQ_ID(low);
881		sched_pin();
882		if (cpu != PCPU_GET(cpuid))
883			ipi_cpu(cpu, IPI_PREEMPT);
884		sched_unpin();
885	}
886	tdq_unlock_pair(high, low);
887	return (moved);
888}
889
890/*
891 * Move a thread from one thread queue to another.
892 */
893static int
894tdq_move(struct tdq *from, struct tdq *to)
895{
896	struct td_sched *ts;
897	struct thread *td;
898	struct tdq *tdq;
899	int cpu;
900
901	TDQ_LOCK_ASSERT(from, MA_OWNED);
902	TDQ_LOCK_ASSERT(to, MA_OWNED);
903
904	tdq = from;
905	cpu = TDQ_ID(to);
906	td = tdq_steal(tdq, cpu);
907	if (td == NULL)
908		return (0);
909	ts = td->td_sched;
910	/*
911	 * Although the run queue is locked the thread may be blocked.  Lock
912	 * it to clear this and acquire the run-queue lock.
913	 */
914	thread_lock(td);
915	/* Drop recursive lock on from acquired via thread_lock(). */
916	TDQ_UNLOCK(from);
917	sched_rem(td);
918	ts->ts_cpu = cpu;
919	td->td_lock = TDQ_LOCKPTR(to);
920	tdq_add(to, td, SRQ_YIELDING);
921	return (1);
922}
923
924/*
925 * This tdq has idled.  Try to steal a thread from another cpu and switch
926 * to it.
927 */
928static int
929tdq_idled(struct tdq *tdq)
930{
931	struct cpu_group *cg;
932	struct tdq *steal;
933	cpuset_t mask;
934	int thresh;
935	int cpu;
936
937	if (smp_started == 0 || steal_idle == 0)
938		return (1);
939	CPU_FILL(&mask);
940	CPU_CLR(PCPU_GET(cpuid), &mask);
941	/* We don't want to be preempted while we're iterating. */
942	spinlock_enter();
943	for (cg = tdq->tdq_cg; cg != NULL; ) {
944		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
945			thresh = steal_thresh;
946		else
947			thresh = 1;
948		cpu = sched_highest(cg, mask, thresh);
949		if (cpu == -1) {
950			cg = cg->cg_parent;
951			continue;
952		}
953		steal = TDQ_CPU(cpu);
954		CPU_CLR(cpu, &mask);
955		tdq_lock_pair(tdq, steal);
956		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
957			tdq_unlock_pair(tdq, steal);
958			continue;
959		}
960		/*
961		 * If a thread was added while interrupts were disabled don't
962		 * steal one here.  If we fail to acquire one due to affinity
963		 * restrictions loop again with this cpu removed from the
964		 * set.
965		 */
966		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
967			tdq_unlock_pair(tdq, steal);
968			continue;
969		}
970		spinlock_exit();
971		TDQ_UNLOCK(steal);
972		mi_switch(SW_VOL | SWT_IDLE, NULL);
973		thread_unlock(curthread);
974
975		return (0);
976	}
977	spinlock_exit();
978	return (1);
979}
980
981/*
982 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
983 */
984static void
985tdq_notify(struct tdq *tdq, struct thread *td)
986{
987	struct thread *ctd;
988	int pri;
989	int cpu;
990
991	if (tdq->tdq_ipipending)
992		return;
993	cpu = td->td_sched->ts_cpu;
994	pri = td->td_priority;
995	ctd = pcpu_find(cpu)->pc_curthread;
996	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
997		return;
998	if (TD_IS_IDLETHREAD(ctd)) {
999		/*
1000		 * If the MD code has an idle wakeup routine try that before
1001		 * falling back to IPI.
1002		 */
1003		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1004			return;
1005	}
1006	tdq->tdq_ipipending = 1;
1007	ipi_cpu(cpu, IPI_PREEMPT);
1008}
1009
1010/*
1011 * Steals load from a timeshare queue.  Honors the rotating queue head
1012 * index.
1013 */
1014static struct thread *
1015runq_steal_from(struct runq *rq, int cpu, u_char start)
1016{
1017	struct rqbits *rqb;
1018	struct rqhead *rqh;
1019	struct thread *td, *first;
1020	int bit;
1021	int pri;
1022	int i;
1023
1024	rqb = &rq->rq_status;
1025	bit = start & (RQB_BPW -1);
1026	pri = 0;
1027	first = NULL;
1028again:
1029	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1030		if (rqb->rqb_bits[i] == 0)
1031			continue;
1032		if (bit != 0) {
1033			for (pri = bit; pri < RQB_BPW; pri++)
1034				if (rqb->rqb_bits[i] & (1ul << pri))
1035					break;
1036			if (pri >= RQB_BPW)
1037				continue;
1038		} else
1039			pri = RQB_FFS(rqb->rqb_bits[i]);
1040		pri += (i << RQB_L2BPW);
1041		rqh = &rq->rq_queues[pri];
1042		TAILQ_FOREACH(td, rqh, td_runq) {
1043			if (first && THREAD_CAN_MIGRATE(td) &&
1044			    THREAD_CAN_SCHED(td, cpu))
1045				return (td);
1046			first = td;
1047		}
1048	}
1049	if (start != 0) {
1050		start = 0;
1051		goto again;
1052	}
1053
1054	if (first && THREAD_CAN_MIGRATE(first) &&
1055	    THREAD_CAN_SCHED(first, cpu))
1056		return (first);
1057	return (NULL);
1058}
1059
1060/*
1061 * Steals load from a standard linear queue.
1062 */
1063static struct thread *
1064runq_steal(struct runq *rq, int cpu)
1065{
1066	struct rqhead *rqh;
1067	struct rqbits *rqb;
1068	struct thread *td;
1069	int word;
1070	int bit;
1071
1072	rqb = &rq->rq_status;
1073	for (word = 0; word < RQB_LEN; word++) {
1074		if (rqb->rqb_bits[word] == 0)
1075			continue;
1076		for (bit = 0; bit < RQB_BPW; bit++) {
1077			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1078				continue;
1079			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1080			TAILQ_FOREACH(td, rqh, td_runq)
1081				if (THREAD_CAN_MIGRATE(td) &&
1082				    THREAD_CAN_SCHED(td, cpu))
1083					return (td);
1084		}
1085	}
1086	return (NULL);
1087}
1088
1089/*
1090 * Attempt to steal a thread in priority order from a thread queue.
1091 */
1092static struct thread *
1093tdq_steal(struct tdq *tdq, int cpu)
1094{
1095	struct thread *td;
1096
1097	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1098	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1099		return (td);
1100	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1101	    cpu, tdq->tdq_ridx)) != NULL)
1102		return (td);
1103	return (runq_steal(&tdq->tdq_idle, cpu));
1104}
1105
1106/*
1107 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1108 * current lock and returns with the assigned queue locked.
1109 */
1110static inline struct tdq *
1111sched_setcpu(struct thread *td, int cpu, int flags)
1112{
1113
1114	struct tdq *tdq;
1115
1116	THREAD_LOCK_ASSERT(td, MA_OWNED);
1117	tdq = TDQ_CPU(cpu);
1118	td->td_sched->ts_cpu = cpu;
1119	/*
1120	 * If the lock matches just return the queue.
1121	 */
1122	if (td->td_lock == TDQ_LOCKPTR(tdq))
1123		return (tdq);
1124#ifdef notyet
1125	/*
1126	 * If the thread isn't running its lockptr is a
1127	 * turnstile or a sleepqueue.  We can just lock_set without
1128	 * blocking.
1129	 */
1130	if (TD_CAN_RUN(td)) {
1131		TDQ_LOCK(tdq);
1132		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1133		return (tdq);
1134	}
1135#endif
1136	/*
1137	 * The hard case, migration, we need to block the thread first to
1138	 * prevent order reversals with other cpus locks.
1139	 */
1140	spinlock_enter();
1141	thread_lock_block(td);
1142	TDQ_LOCK(tdq);
1143	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1144	spinlock_exit();
1145	return (tdq);
1146}
1147
1148SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1149SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1150SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1151SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1152SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1153SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1154
1155static int
1156sched_pickcpu(struct thread *td, int flags)
1157{
1158	struct cpu_group *cg, *ccg;
1159	struct td_sched *ts;
1160	struct tdq *tdq;
1161	cpuset_t mask;
1162	int cpu, pri, self;
1163
1164	self = PCPU_GET(cpuid);
1165	ts = td->td_sched;
1166	if (smp_started == 0)
1167		return (self);
1168	/*
1169	 * Don't migrate a running thread from sched_switch().
1170	 */
1171	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1172		return (ts->ts_cpu);
1173	/*
1174	 * Prefer to run interrupt threads on the processors that generate
1175	 * the interrupt.
1176	 */
1177	pri = td->td_priority;
1178	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1179	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1180		SCHED_STAT_INC(pickcpu_intrbind);
1181		ts->ts_cpu = self;
1182		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1183			SCHED_STAT_INC(pickcpu_affinity);
1184			return (ts->ts_cpu);
1185		}
1186	}
1187	/*
1188	 * If the thread can run on the last cpu and the affinity has not
1189	 * expired or it is idle run it there.
1190	 */
1191	tdq = TDQ_CPU(ts->ts_cpu);
1192	cg = tdq->tdq_cg;
1193	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1194	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1195	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1196		if (cg->cg_flags & CG_FLAG_THREAD) {
1197			CPUSET_FOREACH(cpu, cg->cg_mask) {
1198				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1199					break;
1200			}
1201		} else
1202			cpu = INT_MAX;
1203		if (cpu > mp_maxid) {
1204			SCHED_STAT_INC(pickcpu_idle_affinity);
1205			return (ts->ts_cpu);
1206		}
1207	}
1208	/*
1209	 * Search for the last level cache CPU group in the tree.
1210	 * Skip caches with expired affinity time and SMT groups.
1211	 * Affinity to higher level caches will be handled less aggressively.
1212	 */
1213	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1214		if (cg->cg_flags & CG_FLAG_THREAD)
1215			continue;
1216		if (!SCHED_AFFINITY(ts, cg->cg_level))
1217			continue;
1218		ccg = cg;
1219	}
1220	if (ccg != NULL)
1221		cg = ccg;
1222	cpu = -1;
1223	/* Search the group for the less loaded idle CPU we can run now. */
1224	mask = td->td_cpuset->cs_mask;
1225	if (cg != NULL && cg != cpu_top &&
1226	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1227		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1228		    INT_MAX, ts->ts_cpu);
1229	/* Search globally for the less loaded CPU we can run now. */
1230	if (cpu == -1)
1231		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1232	/* Search globally for the less loaded CPU. */
1233	if (cpu == -1)
1234		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1235	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1236	/*
1237	 * Compare the lowest loaded cpu to current cpu.
1238	 */
1239	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1240	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1241	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1242		SCHED_STAT_INC(pickcpu_local);
1243		cpu = self;
1244	} else
1245		SCHED_STAT_INC(pickcpu_lowest);
1246	if (cpu != ts->ts_cpu)
1247		SCHED_STAT_INC(pickcpu_migration);
1248	return (cpu);
1249}
1250#endif
1251
1252/*
1253 * Pick the highest priority task we have and return it.
1254 */
1255static struct thread *
1256tdq_choose(struct tdq *tdq)
1257{
1258	struct thread *td;
1259
1260	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1261	td = runq_choose(&tdq->tdq_realtime);
1262	if (td != NULL)
1263		return (td);
1264	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1265	if (td != NULL) {
1266		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1267		    ("tdq_choose: Invalid priority on timeshare queue %d",
1268		    td->td_priority));
1269		return (td);
1270	}
1271	td = runq_choose(&tdq->tdq_idle);
1272	if (td != NULL) {
1273		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1274		    ("tdq_choose: Invalid priority on idle queue %d",
1275		    td->td_priority));
1276		return (td);
1277	}
1278
1279	return (NULL);
1280}
1281
1282/*
1283 * Initialize a thread queue.
1284 */
1285static void
1286tdq_setup(struct tdq *tdq)
1287{
1288
1289	if (bootverbose)
1290		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1291	runq_init(&tdq->tdq_realtime);
1292	runq_init(&tdq->tdq_timeshare);
1293	runq_init(&tdq->tdq_idle);
1294	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1295	    "sched lock %d", (int)TDQ_ID(tdq));
1296	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1297	    MTX_SPIN | MTX_RECURSE);
1298#ifdef KTR
1299	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1300	    "CPU %d load", (int)TDQ_ID(tdq));
1301#endif
1302}
1303
1304#ifdef SMP
1305static void
1306sched_setup_smp(void)
1307{
1308	struct tdq *tdq;
1309	int i;
1310
1311	cpu_top = smp_topo();
1312	CPU_FOREACH(i) {
1313		tdq = TDQ_CPU(i);
1314		tdq_setup(tdq);
1315		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1316		if (tdq->tdq_cg == NULL)
1317			panic("Can't find cpu group for %d\n", i);
1318	}
1319	balance_tdq = TDQ_SELF();
1320	sched_balance();
1321}
1322#endif
1323
1324/*
1325 * Setup the thread queues and initialize the topology based on MD
1326 * information.
1327 */
1328static void
1329sched_setup(void *dummy)
1330{
1331	struct tdq *tdq;
1332
1333	tdq = TDQ_SELF();
1334#ifdef SMP
1335	sched_setup_smp();
1336#else
1337	tdq_setup(tdq);
1338#endif
1339	/*
1340	 * To avoid divide-by-zero, we set realstathz a dummy value
1341	 * in case which sched_clock() called before sched_initticks().
1342	 */
1343	realstathz = hz;
1344	sched_slice = (realstathz/10);	/* ~100ms */
1345	tickincr = 1 << SCHED_TICK_SHIFT;
1346
1347	/* Add thread0's load since it's running. */
1348	TDQ_LOCK(tdq);
1349	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1350	tdq_load_add(tdq, &thread0);
1351	tdq->tdq_lowpri = thread0.td_priority;
1352	TDQ_UNLOCK(tdq);
1353}
1354
1355/*
1356 * This routine determines the tickincr after stathz and hz are setup.
1357 */
1358/* ARGSUSED */
1359static void
1360sched_initticks(void *dummy)
1361{
1362	int incr;
1363
1364	realstathz = stathz ? stathz : hz;
1365	sched_slice = (realstathz/10);	/* ~100ms */
1366
1367	/*
1368	 * tickincr is shifted out by 10 to avoid rounding errors due to
1369	 * hz not being evenly divisible by stathz on all platforms.
1370	 */
1371	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1372	/*
1373	 * This does not work for values of stathz that are more than
1374	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1375	 */
1376	if (incr == 0)
1377		incr = 1;
1378	tickincr = incr;
1379#ifdef SMP
1380	/*
1381	 * Set the default balance interval now that we know
1382	 * what realstathz is.
1383	 */
1384	balance_interval = realstathz;
1385	/*
1386	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1387	 * This prevents excess thrashing on large machines and excess idle
1388	 * on smaller machines.
1389	 */
1390	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1391	affinity = SCHED_AFFINITY_DEFAULT;
1392#endif
1393}
1394
1395
1396/*
1397 * This is the core of the interactivity algorithm.  Determines a score based
1398 * on past behavior.  It is the ratio of sleep time to run time scaled to
1399 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1400 * differs from the cpu usage because it does not account for time spent
1401 * waiting on a run-queue.  Would be prettier if we had floating point.
1402 */
1403static int
1404sched_interact_score(struct thread *td)
1405{
1406	struct td_sched *ts;
1407	int div;
1408
1409	ts = td->td_sched;
1410	/*
1411	 * The score is only needed if this is likely to be an interactive
1412	 * task.  Don't go through the expense of computing it if there's
1413	 * no chance.
1414	 */
1415	if (sched_interact <= SCHED_INTERACT_HALF &&
1416		ts->ts_runtime >= ts->ts_slptime)
1417			return (SCHED_INTERACT_HALF);
1418
1419	if (ts->ts_runtime > ts->ts_slptime) {
1420		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1421		return (SCHED_INTERACT_HALF +
1422		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1423	}
1424	if (ts->ts_slptime > ts->ts_runtime) {
1425		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1426		return (ts->ts_runtime / div);
1427	}
1428	/* runtime == slptime */
1429	if (ts->ts_runtime)
1430		return (SCHED_INTERACT_HALF);
1431
1432	/*
1433	 * This can happen if slptime and runtime are 0.
1434	 */
1435	return (0);
1436
1437}
1438
1439/*
1440 * Scale the scheduling priority according to the "interactivity" of this
1441 * process.
1442 */
1443static void
1444sched_priority(struct thread *td)
1445{
1446	int score;
1447	int pri;
1448
1449	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1450		return;
1451	/*
1452	 * If the score is interactive we place the thread in the realtime
1453	 * queue with a priority that is less than kernel and interrupt
1454	 * priorities.  These threads are not subject to nice restrictions.
1455	 *
1456	 * Scores greater than this are placed on the normal timeshare queue
1457	 * where the priority is partially decided by the most recent cpu
1458	 * utilization and the rest is decided by nice value.
1459	 *
1460	 * The nice value of the process has a linear effect on the calculated
1461	 * score.  Negative nice values make it easier for a thread to be
1462	 * considered interactive.
1463	 */
1464	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1465	if (score < sched_interact) {
1466		pri = PRI_MIN_INTERACT;
1467		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1468		    sched_interact) * score;
1469		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1470		    ("sched_priority: invalid interactive priority %d score %d",
1471		    pri, score));
1472	} else {
1473		pri = SCHED_PRI_MIN;
1474		if (td->td_sched->ts_ticks)
1475			pri += min(SCHED_PRI_TICKS(td->td_sched),
1476			    SCHED_PRI_RANGE);
1477		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1478		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1479		    ("sched_priority: invalid priority %d: nice %d, "
1480		    "ticks %d ftick %d ltick %d tick pri %d",
1481		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1482		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1483		    SCHED_PRI_TICKS(td->td_sched)));
1484	}
1485	sched_user_prio(td, pri);
1486
1487	return;
1488}
1489
1490/*
1491 * This routine enforces a maximum limit on the amount of scheduling history
1492 * kept.  It is called after either the slptime or runtime is adjusted.  This
1493 * function is ugly due to integer math.
1494 */
1495static void
1496sched_interact_update(struct thread *td)
1497{
1498	struct td_sched *ts;
1499	u_int sum;
1500
1501	ts = td->td_sched;
1502	sum = ts->ts_runtime + ts->ts_slptime;
1503	if (sum < SCHED_SLP_RUN_MAX)
1504		return;
1505	/*
1506	 * This only happens from two places:
1507	 * 1) We have added an unusual amount of run time from fork_exit.
1508	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1509	 */
1510	if (sum > SCHED_SLP_RUN_MAX * 2) {
1511		if (ts->ts_runtime > ts->ts_slptime) {
1512			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1513			ts->ts_slptime = 1;
1514		} else {
1515			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1516			ts->ts_runtime = 1;
1517		}
1518		return;
1519	}
1520	/*
1521	 * If we have exceeded by more than 1/5th then the algorithm below
1522	 * will not bring us back into range.  Dividing by two here forces
1523	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1524	 */
1525	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1526		ts->ts_runtime /= 2;
1527		ts->ts_slptime /= 2;
1528		return;
1529	}
1530	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1531	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1532}
1533
1534/*
1535 * Scale back the interactivity history when a child thread is created.  The
1536 * history is inherited from the parent but the thread may behave totally
1537 * differently.  For example, a shell spawning a compiler process.  We want
1538 * to learn that the compiler is behaving badly very quickly.
1539 */
1540static void
1541sched_interact_fork(struct thread *td)
1542{
1543	int ratio;
1544	int sum;
1545
1546	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1547	if (sum > SCHED_SLP_RUN_FORK) {
1548		ratio = sum / SCHED_SLP_RUN_FORK;
1549		td->td_sched->ts_runtime /= ratio;
1550		td->td_sched->ts_slptime /= ratio;
1551	}
1552}
1553
1554/*
1555 * Called from proc0_init() to setup the scheduler fields.
1556 */
1557void
1558schedinit(void)
1559{
1560
1561	/*
1562	 * Set up the scheduler specific parts of proc0.
1563	 */
1564	proc0.p_sched = NULL; /* XXX */
1565	thread0.td_sched = &td_sched0;
1566	td_sched0.ts_ltick = ticks;
1567	td_sched0.ts_ftick = ticks;
1568	td_sched0.ts_slice = sched_slice;
1569}
1570
1571/*
1572 * This is only somewhat accurate since given many processes of the same
1573 * priority they will switch when their slices run out, which will be
1574 * at most sched_slice stathz ticks.
1575 */
1576int
1577sched_rr_interval(void)
1578{
1579
1580	/* Convert sched_slice to hz */
1581	return (hz/(realstathz/sched_slice));
1582}
1583
1584/*
1585 * Update the percent cpu tracking information when it is requested or
1586 * the total history exceeds the maximum.  We keep a sliding history of
1587 * tick counts that slowly decays.  This is less precise than the 4BSD
1588 * mechanism since it happens with less regular and frequent events.
1589 */
1590static void
1591sched_pctcpu_update(struct td_sched *ts)
1592{
1593
1594	if (ts->ts_ticks == 0)
1595		return;
1596	if (ticks - (hz / 10) < ts->ts_ltick &&
1597	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1598		return;
1599	/*
1600	 * Adjust counters and watermark for pctcpu calc.
1601	 */
1602	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1603		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1604			    SCHED_TICK_TARG;
1605	else
1606		ts->ts_ticks = 0;
1607	ts->ts_ltick = ticks;
1608	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1609}
1610
1611/*
1612 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1613 * if necessary.  This is the back-end for several priority related
1614 * functions.
1615 */
1616static void
1617sched_thread_priority(struct thread *td, u_char prio)
1618{
1619	struct td_sched *ts;
1620	struct tdq *tdq;
1621	int oldpri;
1622
1623	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1624	    "prio:%d", td->td_priority, "new prio:%d", prio,
1625	    KTR_ATTR_LINKED, sched_tdname(curthread));
1626	if (td != curthread && prio > td->td_priority) {
1627		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1628		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1629		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1630	}
1631	ts = td->td_sched;
1632	THREAD_LOCK_ASSERT(td, MA_OWNED);
1633	if (td->td_priority == prio)
1634		return;
1635	/*
1636	 * If the priority has been elevated due to priority
1637	 * propagation, we may have to move ourselves to a new
1638	 * queue.  This could be optimized to not re-add in some
1639	 * cases.
1640	 */
1641	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1642		sched_rem(td);
1643		td->td_priority = prio;
1644		sched_add(td, SRQ_BORROWING);
1645		return;
1646	}
1647	/*
1648	 * If the thread is currently running we may have to adjust the lowpri
1649	 * information so other cpus are aware of our current priority.
1650	 */
1651	if (TD_IS_RUNNING(td)) {
1652		tdq = TDQ_CPU(ts->ts_cpu);
1653		oldpri = td->td_priority;
1654		td->td_priority = prio;
1655		if (prio < tdq->tdq_lowpri)
1656			tdq->tdq_lowpri = prio;
1657		else if (tdq->tdq_lowpri == oldpri)
1658			tdq_setlowpri(tdq, td);
1659		return;
1660	}
1661	td->td_priority = prio;
1662}
1663
1664/*
1665 * Update a thread's priority when it is lent another thread's
1666 * priority.
1667 */
1668void
1669sched_lend_prio(struct thread *td, u_char prio)
1670{
1671
1672	td->td_flags |= TDF_BORROWING;
1673	sched_thread_priority(td, prio);
1674}
1675
1676/*
1677 * Restore a thread's priority when priority propagation is
1678 * over.  The prio argument is the minimum priority the thread
1679 * needs to have to satisfy other possible priority lending
1680 * requests.  If the thread's regular priority is less
1681 * important than prio, the thread will keep a priority boost
1682 * of prio.
1683 */
1684void
1685sched_unlend_prio(struct thread *td, u_char prio)
1686{
1687	u_char base_pri;
1688
1689	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1690	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1691		base_pri = td->td_user_pri;
1692	else
1693		base_pri = td->td_base_pri;
1694	if (prio >= base_pri) {
1695		td->td_flags &= ~TDF_BORROWING;
1696		sched_thread_priority(td, base_pri);
1697	} else
1698		sched_lend_prio(td, prio);
1699}
1700
1701/*
1702 * Standard entry for setting the priority to an absolute value.
1703 */
1704void
1705sched_prio(struct thread *td, u_char prio)
1706{
1707	u_char oldprio;
1708
1709	/* First, update the base priority. */
1710	td->td_base_pri = prio;
1711
1712	/*
1713	 * If the thread is borrowing another thread's priority, don't
1714	 * ever lower the priority.
1715	 */
1716	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1717		return;
1718
1719	/* Change the real priority. */
1720	oldprio = td->td_priority;
1721	sched_thread_priority(td, prio);
1722
1723	/*
1724	 * If the thread is on a turnstile, then let the turnstile update
1725	 * its state.
1726	 */
1727	if (TD_ON_LOCK(td) && oldprio != prio)
1728		turnstile_adjust(td, oldprio);
1729}
1730
1731/*
1732 * Set the base user priority, does not effect current running priority.
1733 */
1734void
1735sched_user_prio(struct thread *td, u_char prio)
1736{
1737
1738	td->td_base_user_pri = prio;
1739	if (td->td_lend_user_pri <= prio)
1740		return;
1741	td->td_user_pri = prio;
1742}
1743
1744void
1745sched_lend_user_prio(struct thread *td, u_char prio)
1746{
1747
1748	THREAD_LOCK_ASSERT(td, MA_OWNED);
1749	td->td_lend_user_pri = prio;
1750	td->td_user_pri = min(prio, td->td_base_user_pri);
1751	if (td->td_priority > td->td_user_pri)
1752		sched_prio(td, td->td_user_pri);
1753	else if (td->td_priority != td->td_user_pri)
1754		td->td_flags |= TDF_NEEDRESCHED;
1755}
1756
1757/*
1758 * Handle migration from sched_switch().  This happens only for
1759 * cpu binding.
1760 */
1761static struct mtx *
1762sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1763{
1764	struct tdq *tdn;
1765
1766	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1767#ifdef SMP
1768	tdq_load_rem(tdq, td);
1769	/*
1770	 * Do the lock dance required to avoid LOR.  We grab an extra
1771	 * spinlock nesting to prevent preemption while we're
1772	 * not holding either run-queue lock.
1773	 */
1774	spinlock_enter();
1775	thread_lock_block(td);	/* This releases the lock on tdq. */
1776
1777	/*
1778	 * Acquire both run-queue locks before placing the thread on the new
1779	 * run-queue to avoid deadlocks created by placing a thread with a
1780	 * blocked lock on the run-queue of a remote processor.  The deadlock
1781	 * occurs when a third processor attempts to lock the two queues in
1782	 * question while the target processor is spinning with its own
1783	 * run-queue lock held while waiting for the blocked lock to clear.
1784	 */
1785	tdq_lock_pair(tdn, tdq);
1786	tdq_add(tdn, td, flags);
1787	tdq_notify(tdn, td);
1788	TDQ_UNLOCK(tdn);
1789	spinlock_exit();
1790#endif
1791	return (TDQ_LOCKPTR(tdn));
1792}
1793
1794/*
1795 * Variadic version of thread_lock_unblock() that does not assume td_lock
1796 * is blocked.
1797 */
1798static inline void
1799thread_unblock_switch(struct thread *td, struct mtx *mtx)
1800{
1801	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1802	    (uintptr_t)mtx);
1803}
1804
1805/*
1806 * Switch threads.  This function has to handle threads coming in while
1807 * blocked for some reason, running, or idle.  It also must deal with
1808 * migrating a thread from one queue to another as running threads may
1809 * be assigned elsewhere via binding.
1810 */
1811void
1812sched_switch(struct thread *td, struct thread *newtd, int flags)
1813{
1814	struct tdq *tdq;
1815	struct td_sched *ts;
1816	struct mtx *mtx;
1817	int srqflag;
1818	int cpuid;
1819
1820	THREAD_LOCK_ASSERT(td, MA_OWNED);
1821	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1822
1823	cpuid = PCPU_GET(cpuid);
1824	tdq = TDQ_CPU(cpuid);
1825	ts = td->td_sched;
1826	mtx = td->td_lock;
1827	ts->ts_rltick = ticks;
1828	td->td_lastcpu = td->td_oncpu;
1829	td->td_oncpu = NOCPU;
1830	if (!(flags & SW_PREEMPT))
1831		td->td_flags &= ~TDF_NEEDRESCHED;
1832	td->td_owepreempt = 0;
1833	tdq->tdq_switchcnt++;
1834	/*
1835	 * The lock pointer in an idle thread should never change.  Reset it
1836	 * to CAN_RUN as well.
1837	 */
1838	if (TD_IS_IDLETHREAD(td)) {
1839		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1840		TD_SET_CAN_RUN(td);
1841	} else if (TD_IS_RUNNING(td)) {
1842		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1843		srqflag = (flags & SW_PREEMPT) ?
1844		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1845		    SRQ_OURSELF|SRQ_YIELDING;
1846#ifdef SMP
1847		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1848			ts->ts_cpu = sched_pickcpu(td, 0);
1849#endif
1850		if (ts->ts_cpu == cpuid)
1851			tdq_runq_add(tdq, td, srqflag);
1852		else {
1853			KASSERT(THREAD_CAN_MIGRATE(td) ||
1854			    (ts->ts_flags & TSF_BOUND) != 0,
1855			    ("Thread %p shouldn't migrate", td));
1856			mtx = sched_switch_migrate(tdq, td, srqflag);
1857		}
1858	} else {
1859		/* This thread must be going to sleep. */
1860		TDQ_LOCK(tdq);
1861		mtx = thread_lock_block(td);
1862		tdq_load_rem(tdq, td);
1863	}
1864	/*
1865	 * We enter here with the thread blocked and assigned to the
1866	 * appropriate cpu run-queue or sleep-queue and with the current
1867	 * thread-queue locked.
1868	 */
1869	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1870	newtd = choosethread();
1871	/*
1872	 * Call the MD code to switch contexts if necessary.
1873	 */
1874	if (td != newtd) {
1875#ifdef	HWPMC_HOOKS
1876		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1877			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1878#endif
1879		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1880		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1881
1882#ifdef KDTRACE_HOOKS
1883		/*
1884		 * If DTrace has set the active vtime enum to anything
1885		 * other than INACTIVE (0), then it should have set the
1886		 * function to call.
1887		 */
1888		if (dtrace_vtime_active)
1889			(*dtrace_vtime_switch_func)(newtd);
1890#endif
1891
1892		cpu_switch(td, newtd, mtx);
1893		/*
1894		 * We may return from cpu_switch on a different cpu.  However,
1895		 * we always return with td_lock pointing to the current cpu's
1896		 * run queue lock.
1897		 */
1898		cpuid = PCPU_GET(cpuid);
1899		tdq = TDQ_CPU(cpuid);
1900		lock_profile_obtain_lock_success(
1901		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1902#ifdef	HWPMC_HOOKS
1903		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1904			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1905#endif
1906	} else
1907		thread_unblock_switch(td, mtx);
1908	/*
1909	 * Assert that all went well and return.
1910	 */
1911	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1912	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1913	td->td_oncpu = cpuid;
1914}
1915
1916/*
1917 * Adjust thread priorities as a result of a nice request.
1918 */
1919void
1920sched_nice(struct proc *p, int nice)
1921{
1922	struct thread *td;
1923
1924	PROC_LOCK_ASSERT(p, MA_OWNED);
1925
1926	p->p_nice = nice;
1927	FOREACH_THREAD_IN_PROC(p, td) {
1928		thread_lock(td);
1929		sched_priority(td);
1930		sched_prio(td, td->td_base_user_pri);
1931		thread_unlock(td);
1932	}
1933}
1934
1935/*
1936 * Record the sleep time for the interactivity scorer.
1937 */
1938void
1939sched_sleep(struct thread *td, int prio)
1940{
1941
1942	THREAD_LOCK_ASSERT(td, MA_OWNED);
1943
1944	td->td_slptick = ticks;
1945	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1946		td->td_flags |= TDF_CANSWAP;
1947	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1948		return;
1949	if (static_boost == 1 && prio)
1950		sched_prio(td, prio);
1951	else if (static_boost && td->td_priority > static_boost)
1952		sched_prio(td, static_boost);
1953}
1954
1955/*
1956 * Schedule a thread to resume execution and record how long it voluntarily
1957 * slept.  We also update the pctcpu, interactivity, and priority.
1958 */
1959void
1960sched_wakeup(struct thread *td)
1961{
1962	struct td_sched *ts;
1963	int slptick;
1964
1965	THREAD_LOCK_ASSERT(td, MA_OWNED);
1966	ts = td->td_sched;
1967	td->td_flags &= ~TDF_CANSWAP;
1968	/*
1969	 * If we slept for more than a tick update our interactivity and
1970	 * priority.
1971	 */
1972	slptick = td->td_slptick;
1973	td->td_slptick = 0;
1974	if (slptick && slptick != ticks) {
1975		u_int hzticks;
1976
1977		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1978		ts->ts_slptime += hzticks;
1979		sched_interact_update(td);
1980		sched_pctcpu_update(ts);
1981	}
1982	/* Reset the slice value after we sleep. */
1983	ts->ts_slice = sched_slice;
1984	sched_add(td, SRQ_BORING);
1985}
1986
1987/*
1988 * Penalize the parent for creating a new child and initialize the child's
1989 * priority.
1990 */
1991void
1992sched_fork(struct thread *td, struct thread *child)
1993{
1994	THREAD_LOCK_ASSERT(td, MA_OWNED);
1995	sched_fork_thread(td, child);
1996	/*
1997	 * Penalize the parent and child for forking.
1998	 */
1999	sched_interact_fork(child);
2000	sched_priority(child);
2001	td->td_sched->ts_runtime += tickincr;
2002	sched_interact_update(td);
2003	sched_priority(td);
2004}
2005
2006/*
2007 * Fork a new thread, may be within the same process.
2008 */
2009void
2010sched_fork_thread(struct thread *td, struct thread *child)
2011{
2012	struct td_sched *ts;
2013	struct td_sched *ts2;
2014
2015	THREAD_LOCK_ASSERT(td, MA_OWNED);
2016	/*
2017	 * Initialize child.
2018	 */
2019	ts = td->td_sched;
2020	ts2 = child->td_sched;
2021	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2022	child->td_cpuset = cpuset_ref(td->td_cpuset);
2023	ts2->ts_cpu = ts->ts_cpu;
2024	ts2->ts_flags = 0;
2025	/*
2026	 * Grab our parents cpu estimation information.
2027	 */
2028	ts2->ts_ticks = ts->ts_ticks;
2029	ts2->ts_ltick = ts->ts_ltick;
2030	ts2->ts_incrtick = ts->ts_incrtick;
2031	ts2->ts_ftick = ts->ts_ftick;
2032	/*
2033	 * Do not inherit any borrowed priority from the parent.
2034	 */
2035	child->td_priority = child->td_base_pri;
2036	/*
2037	 * And update interactivity score.
2038	 */
2039	ts2->ts_slptime = ts->ts_slptime;
2040	ts2->ts_runtime = ts->ts_runtime;
2041	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2042#ifdef KTR
2043	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2044#endif
2045}
2046
2047/*
2048 * Adjust the priority class of a thread.
2049 */
2050void
2051sched_class(struct thread *td, int class)
2052{
2053
2054	THREAD_LOCK_ASSERT(td, MA_OWNED);
2055	if (td->td_pri_class == class)
2056		return;
2057	td->td_pri_class = class;
2058}
2059
2060/*
2061 * Return some of the child's priority and interactivity to the parent.
2062 */
2063void
2064sched_exit(struct proc *p, struct thread *child)
2065{
2066	struct thread *td;
2067
2068	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2069	    "prio:%d", child->td_priority);
2070	PROC_LOCK_ASSERT(p, MA_OWNED);
2071	td = FIRST_THREAD_IN_PROC(p);
2072	sched_exit_thread(td, child);
2073}
2074
2075/*
2076 * Penalize another thread for the time spent on this one.  This helps to
2077 * worsen the priority and interactivity of processes which schedule batch
2078 * jobs such as make.  This has little effect on the make process itself but
2079 * causes new processes spawned by it to receive worse scores immediately.
2080 */
2081void
2082sched_exit_thread(struct thread *td, struct thread *child)
2083{
2084
2085	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2086	    "prio:%d", child->td_priority);
2087	/*
2088	 * Give the child's runtime to the parent without returning the
2089	 * sleep time as a penalty to the parent.  This causes shells that
2090	 * launch expensive things to mark their children as expensive.
2091	 */
2092	thread_lock(td);
2093	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2094	sched_interact_update(td);
2095	sched_priority(td);
2096	thread_unlock(td);
2097}
2098
2099void
2100sched_preempt(struct thread *td)
2101{
2102	struct tdq *tdq;
2103
2104	thread_lock(td);
2105	tdq = TDQ_SELF();
2106	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2107	tdq->tdq_ipipending = 0;
2108	if (td->td_priority > tdq->tdq_lowpri) {
2109		int flags;
2110
2111		flags = SW_INVOL | SW_PREEMPT;
2112		if (td->td_critnest > 1)
2113			td->td_owepreempt = 1;
2114		else if (TD_IS_IDLETHREAD(td))
2115			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2116		else
2117			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2118	}
2119	thread_unlock(td);
2120}
2121
2122/*
2123 * Fix priorities on return to user-space.  Priorities may be elevated due
2124 * to static priorities in msleep() or similar.
2125 */
2126void
2127sched_userret(struct thread *td)
2128{
2129	/*
2130	 * XXX we cheat slightly on the locking here to avoid locking in
2131	 * the usual case.  Setting td_priority here is essentially an
2132	 * incomplete workaround for not setting it properly elsewhere.
2133	 * Now that some interrupt handlers are threads, not setting it
2134	 * properly elsewhere can clobber it in the window between setting
2135	 * it here and returning to user mode, so don't waste time setting
2136	 * it perfectly here.
2137	 */
2138	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2139	    ("thread with borrowed priority returning to userland"));
2140	if (td->td_priority != td->td_user_pri) {
2141		thread_lock(td);
2142		td->td_priority = td->td_user_pri;
2143		td->td_base_pri = td->td_user_pri;
2144		tdq_setlowpri(TDQ_SELF(), td);
2145		thread_unlock(td);
2146        }
2147}
2148
2149/*
2150 * Handle a stathz tick.  This is really only relevant for timeshare
2151 * threads.
2152 */
2153void
2154sched_clock(struct thread *td)
2155{
2156	struct tdq *tdq;
2157	struct td_sched *ts;
2158
2159	THREAD_LOCK_ASSERT(td, MA_OWNED);
2160	tdq = TDQ_SELF();
2161#ifdef SMP
2162	/*
2163	 * We run the long term load balancer infrequently on the first cpu.
2164	 */
2165	if (balance_tdq == tdq) {
2166		if (balance_ticks && --balance_ticks == 0)
2167			sched_balance();
2168	}
2169#endif
2170	/*
2171	 * Save the old switch count so we have a record of the last ticks
2172	 * activity.   Initialize the new switch count based on our load.
2173	 * If there is some activity seed it to reflect that.
2174	 */
2175	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2176	tdq->tdq_switchcnt = tdq->tdq_load;
2177	/*
2178	 * Advance the insert index once for each tick to ensure that all
2179	 * threads get a chance to run.
2180	 */
2181	if (tdq->tdq_idx == tdq->tdq_ridx) {
2182		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2183		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2184			tdq->tdq_ridx = tdq->tdq_idx;
2185	}
2186	ts = td->td_sched;
2187	if (td->td_pri_class & PRI_FIFO_BIT)
2188		return;
2189	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2190		/*
2191		 * We used a tick; charge it to the thread so
2192		 * that we can compute our interactivity.
2193		 */
2194		td->td_sched->ts_runtime += tickincr;
2195		sched_interact_update(td);
2196		sched_priority(td);
2197	}
2198	/*
2199	 * We used up one time slice.
2200	 */
2201	if (--ts->ts_slice > 0)
2202		return;
2203	/*
2204	 * We're out of time, force a requeue at userret().
2205	 */
2206	ts->ts_slice = sched_slice;
2207	td->td_flags |= TDF_NEEDRESCHED;
2208}
2209
2210/*
2211 * Called once per hz tick.  Used for cpu utilization information.  This
2212 * is easier than trying to scale based on stathz.
2213 */
2214void
2215sched_tick(int cnt)
2216{
2217	struct td_sched *ts;
2218
2219	ts = curthread->td_sched;
2220	/*
2221	 * Ticks is updated asynchronously on a single cpu.  Check here to
2222	 * avoid incrementing ts_ticks multiple times in a single tick.
2223	 */
2224	if (ts->ts_incrtick == ticks)
2225		return;
2226	/* Adjust ticks for pctcpu */
2227	ts->ts_ticks += cnt << SCHED_TICK_SHIFT;
2228	ts->ts_ltick = ticks;
2229	ts->ts_incrtick = ticks;
2230	/*
2231	 * Update if we've exceeded our desired tick threshold by over one
2232	 * second.
2233	 */
2234	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2235		sched_pctcpu_update(ts);
2236}
2237
2238/*
2239 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2240 * cooperative idle threads.
2241 */
2242int
2243sched_runnable(void)
2244{
2245	struct tdq *tdq;
2246	int load;
2247
2248	load = 1;
2249
2250	tdq = TDQ_SELF();
2251	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2252		if (tdq->tdq_load > 0)
2253			goto out;
2254	} else
2255		if (tdq->tdq_load - 1 > 0)
2256			goto out;
2257	load = 0;
2258out:
2259	return (load);
2260}
2261
2262/*
2263 * Choose the highest priority thread to run.  The thread is removed from
2264 * the run-queue while running however the load remains.  For SMP we set
2265 * the tdq in the global idle bitmask if it idles here.
2266 */
2267struct thread *
2268sched_choose(void)
2269{
2270	struct thread *td;
2271	struct tdq *tdq;
2272
2273	tdq = TDQ_SELF();
2274	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2275	td = tdq_choose(tdq);
2276	if (td) {
2277		td->td_sched->ts_ltick = ticks;
2278		tdq_runq_rem(tdq, td);
2279		tdq->tdq_lowpri = td->td_priority;
2280		return (td);
2281	}
2282	tdq->tdq_lowpri = PRI_MAX_IDLE;
2283	return (PCPU_GET(idlethread));
2284}
2285
2286/*
2287 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2288 * we always request it once we exit a critical section.
2289 */
2290static inline void
2291sched_setpreempt(struct thread *td)
2292{
2293	struct thread *ctd;
2294	int cpri;
2295	int pri;
2296
2297	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2298
2299	ctd = curthread;
2300	pri = td->td_priority;
2301	cpri = ctd->td_priority;
2302	if (pri < cpri)
2303		ctd->td_flags |= TDF_NEEDRESCHED;
2304	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2305		return;
2306	if (!sched_shouldpreempt(pri, cpri, 0))
2307		return;
2308	ctd->td_owepreempt = 1;
2309}
2310
2311/*
2312 * Add a thread to a thread queue.  Select the appropriate runq and add the
2313 * thread to it.  This is the internal function called when the tdq is
2314 * predetermined.
2315 */
2316void
2317tdq_add(struct tdq *tdq, struct thread *td, int flags)
2318{
2319
2320	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2321	KASSERT((td->td_inhibitors == 0),
2322	    ("sched_add: trying to run inhibited thread"));
2323	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2324	    ("sched_add: bad thread state"));
2325	KASSERT(td->td_flags & TDF_INMEM,
2326	    ("sched_add: thread swapped out"));
2327
2328	if (td->td_priority < tdq->tdq_lowpri)
2329		tdq->tdq_lowpri = td->td_priority;
2330	tdq_runq_add(tdq, td, flags);
2331	tdq_load_add(tdq, td);
2332}
2333
2334/*
2335 * Select the target thread queue and add a thread to it.  Request
2336 * preemption or IPI a remote processor if required.
2337 */
2338void
2339sched_add(struct thread *td, int flags)
2340{
2341	struct tdq *tdq;
2342#ifdef SMP
2343	int cpu;
2344#endif
2345
2346	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2347	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2348	    sched_tdname(curthread));
2349	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2350	    KTR_ATTR_LINKED, sched_tdname(td));
2351	THREAD_LOCK_ASSERT(td, MA_OWNED);
2352	/*
2353	 * Recalculate the priority before we select the target cpu or
2354	 * run-queue.
2355	 */
2356	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2357		sched_priority(td);
2358#ifdef SMP
2359	/*
2360	 * Pick the destination cpu and if it isn't ours transfer to the
2361	 * target cpu.
2362	 */
2363	cpu = sched_pickcpu(td, flags);
2364	tdq = sched_setcpu(td, cpu, flags);
2365	tdq_add(tdq, td, flags);
2366	if (cpu != PCPU_GET(cpuid)) {
2367		tdq_notify(tdq, td);
2368		return;
2369	}
2370#else
2371	tdq = TDQ_SELF();
2372	TDQ_LOCK(tdq);
2373	/*
2374	 * Now that the thread is moving to the run-queue, set the lock
2375	 * to the scheduler's lock.
2376	 */
2377	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2378	tdq_add(tdq, td, flags);
2379#endif
2380	if (!(flags & SRQ_YIELDING))
2381		sched_setpreempt(td);
2382}
2383
2384/*
2385 * Remove a thread from a run-queue without running it.  This is used
2386 * when we're stealing a thread from a remote queue.  Otherwise all threads
2387 * exit by calling sched_exit_thread() and sched_throw() themselves.
2388 */
2389void
2390sched_rem(struct thread *td)
2391{
2392	struct tdq *tdq;
2393
2394	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2395	    "prio:%d", td->td_priority);
2396	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2397	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2398	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2399	KASSERT(TD_ON_RUNQ(td),
2400	    ("sched_rem: thread not on run queue"));
2401	tdq_runq_rem(tdq, td);
2402	tdq_load_rem(tdq, td);
2403	TD_SET_CAN_RUN(td);
2404	if (td->td_priority == tdq->tdq_lowpri)
2405		tdq_setlowpri(tdq, NULL);
2406}
2407
2408/*
2409 * Fetch cpu utilization information.  Updates on demand.
2410 */
2411fixpt_t
2412sched_pctcpu(struct thread *td)
2413{
2414	fixpt_t pctcpu;
2415	struct td_sched *ts;
2416
2417	pctcpu = 0;
2418	ts = td->td_sched;
2419	if (ts == NULL)
2420		return (0);
2421
2422	THREAD_LOCK_ASSERT(td, MA_OWNED);
2423	if (ts->ts_ticks) {
2424		int rtick;
2425
2426		sched_pctcpu_update(ts);
2427		/* How many rtick per second ? */
2428		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2429		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2430	}
2431
2432	return (pctcpu);
2433}
2434
2435/*
2436 * Enforce affinity settings for a thread.  Called after adjustments to
2437 * cpumask.
2438 */
2439void
2440sched_affinity(struct thread *td)
2441{
2442#ifdef SMP
2443	struct td_sched *ts;
2444
2445	THREAD_LOCK_ASSERT(td, MA_OWNED);
2446	ts = td->td_sched;
2447	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2448		return;
2449	if (TD_ON_RUNQ(td)) {
2450		sched_rem(td);
2451		sched_add(td, SRQ_BORING);
2452		return;
2453	}
2454	if (!TD_IS_RUNNING(td))
2455		return;
2456	/*
2457	 * Force a switch before returning to userspace.  If the
2458	 * target thread is not running locally send an ipi to force
2459	 * the issue.
2460	 */
2461	td->td_flags |= TDF_NEEDRESCHED;
2462	if (td != curthread)
2463		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2464#endif
2465}
2466
2467/*
2468 * Bind a thread to a target cpu.
2469 */
2470void
2471sched_bind(struct thread *td, int cpu)
2472{
2473	struct td_sched *ts;
2474
2475	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2476	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2477	ts = td->td_sched;
2478	if (ts->ts_flags & TSF_BOUND)
2479		sched_unbind(td);
2480	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2481	ts->ts_flags |= TSF_BOUND;
2482	sched_pin();
2483	if (PCPU_GET(cpuid) == cpu)
2484		return;
2485	ts->ts_cpu = cpu;
2486	/* When we return from mi_switch we'll be on the correct cpu. */
2487	mi_switch(SW_VOL, NULL);
2488}
2489
2490/*
2491 * Release a bound thread.
2492 */
2493void
2494sched_unbind(struct thread *td)
2495{
2496	struct td_sched *ts;
2497
2498	THREAD_LOCK_ASSERT(td, MA_OWNED);
2499	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2500	ts = td->td_sched;
2501	if ((ts->ts_flags & TSF_BOUND) == 0)
2502		return;
2503	ts->ts_flags &= ~TSF_BOUND;
2504	sched_unpin();
2505}
2506
2507int
2508sched_is_bound(struct thread *td)
2509{
2510	THREAD_LOCK_ASSERT(td, MA_OWNED);
2511	return (td->td_sched->ts_flags & TSF_BOUND);
2512}
2513
2514/*
2515 * Basic yield call.
2516 */
2517void
2518sched_relinquish(struct thread *td)
2519{
2520	thread_lock(td);
2521	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2522	thread_unlock(td);
2523}
2524
2525/*
2526 * Return the total system load.
2527 */
2528int
2529sched_load(void)
2530{
2531#ifdef SMP
2532	int total;
2533	int i;
2534
2535	total = 0;
2536	CPU_FOREACH(i)
2537		total += TDQ_CPU(i)->tdq_sysload;
2538	return (total);
2539#else
2540	return (TDQ_SELF()->tdq_sysload);
2541#endif
2542}
2543
2544int
2545sched_sizeof_proc(void)
2546{
2547	return (sizeof(struct proc));
2548}
2549
2550int
2551sched_sizeof_thread(void)
2552{
2553	return (sizeof(struct thread) + sizeof(struct td_sched));
2554}
2555
2556#ifdef SMP
2557#define	TDQ_IDLESPIN(tdq)						\
2558    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2559#else
2560#define	TDQ_IDLESPIN(tdq)	1
2561#endif
2562
2563/*
2564 * The actual idle process.
2565 */
2566void
2567sched_idletd(void *dummy)
2568{
2569	struct thread *td;
2570	struct tdq *tdq;
2571	int switchcnt;
2572	int i;
2573
2574	mtx_assert(&Giant, MA_NOTOWNED);
2575	td = curthread;
2576	tdq = TDQ_SELF();
2577	for (;;) {
2578#ifdef SMP
2579		if (tdq_idled(tdq) == 0)
2580			continue;
2581#endif
2582		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2583		/*
2584		 * If we're switching very frequently, spin while checking
2585		 * for load rather than entering a low power state that
2586		 * may require an IPI.  However, don't do any busy
2587		 * loops while on SMT machines as this simply steals
2588		 * cycles from cores doing useful work.
2589		 */
2590		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2591			for (i = 0; i < sched_idlespins; i++) {
2592				if (tdq->tdq_load)
2593					break;
2594				cpu_spinwait();
2595			}
2596		}
2597		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2598		if (tdq->tdq_load == 0) {
2599			tdq->tdq_cpu_idle = 1;
2600			if (tdq->tdq_load == 0) {
2601				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2602				tdq->tdq_switchcnt++;
2603			}
2604			tdq->tdq_cpu_idle = 0;
2605		}
2606		if (tdq->tdq_load) {
2607			thread_lock(td);
2608			mi_switch(SW_VOL | SWT_IDLE, NULL);
2609			thread_unlock(td);
2610		}
2611	}
2612}
2613
2614/*
2615 * A CPU is entering for the first time or a thread is exiting.
2616 */
2617void
2618sched_throw(struct thread *td)
2619{
2620	struct thread *newtd;
2621	struct tdq *tdq;
2622
2623	tdq = TDQ_SELF();
2624	if (td == NULL) {
2625		/* Correct spinlock nesting and acquire the correct lock. */
2626		TDQ_LOCK(tdq);
2627		spinlock_exit();
2628		PCPU_SET(switchtime, cpu_ticks());
2629		PCPU_SET(switchticks, ticks);
2630	} else {
2631		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2632		tdq_load_rem(tdq, td);
2633		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2634	}
2635	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2636	newtd = choosethread();
2637	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2638	cpu_throw(td, newtd);		/* doesn't return */
2639}
2640
2641/*
2642 * This is called from fork_exit().  Just acquire the correct locks and
2643 * let fork do the rest of the work.
2644 */
2645void
2646sched_fork_exit(struct thread *td)
2647{
2648	struct td_sched *ts;
2649	struct tdq *tdq;
2650	int cpuid;
2651
2652	/*
2653	 * Finish setting up thread glue so that it begins execution in a
2654	 * non-nested critical section with the scheduler lock held.
2655	 */
2656	cpuid = PCPU_GET(cpuid);
2657	tdq = TDQ_CPU(cpuid);
2658	ts = td->td_sched;
2659	if (TD_IS_IDLETHREAD(td))
2660		td->td_lock = TDQ_LOCKPTR(tdq);
2661	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2662	td->td_oncpu = cpuid;
2663	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2664	lock_profile_obtain_lock_success(
2665	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2666}
2667
2668/*
2669 * Create on first use to catch odd startup conditons.
2670 */
2671char *
2672sched_tdname(struct thread *td)
2673{
2674#ifdef KTR
2675	struct td_sched *ts;
2676
2677	ts = td->td_sched;
2678	if (ts->ts_name[0] == '\0')
2679		snprintf(ts->ts_name, sizeof(ts->ts_name),
2680		    "%s tid %d", td->td_name, td->td_tid);
2681	return (ts->ts_name);
2682#else
2683	return (td->td_name);
2684#endif
2685}
2686
2687#ifdef KTR
2688void
2689sched_clear_tdname(struct thread *td)
2690{
2691	struct td_sched *ts;
2692
2693	ts = td->td_sched;
2694	ts->ts_name[0] = '\0';
2695}
2696#endif
2697
2698#ifdef SMP
2699
2700/*
2701 * Build the CPU topology dump string. Is recursively called to collect
2702 * the topology tree.
2703 */
2704static int
2705sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2706    int indent)
2707{
2708	char cpusetbuf[CPUSETBUFSIZ];
2709	int i, first;
2710
2711	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2712	    "", 1 + indent / 2, cg->cg_level);
2713	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2714	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2715	first = TRUE;
2716	for (i = 0; i < MAXCPU; i++) {
2717		if (CPU_ISSET(i, &cg->cg_mask)) {
2718			if (!first)
2719				sbuf_printf(sb, ", ");
2720			else
2721				first = FALSE;
2722			sbuf_printf(sb, "%d", i);
2723		}
2724	}
2725	sbuf_printf(sb, "</cpu>\n");
2726
2727	if (cg->cg_flags != 0) {
2728		sbuf_printf(sb, "%*s <flags>", indent, "");
2729		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2730			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2731		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2732			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2733		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2734			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2735		sbuf_printf(sb, "</flags>\n");
2736	}
2737
2738	if (cg->cg_children > 0) {
2739		sbuf_printf(sb, "%*s <children>\n", indent, "");
2740		for (i = 0; i < cg->cg_children; i++)
2741			sysctl_kern_sched_topology_spec_internal(sb,
2742			    &cg->cg_child[i], indent+2);
2743		sbuf_printf(sb, "%*s </children>\n", indent, "");
2744	}
2745	sbuf_printf(sb, "%*s</group>\n", indent, "");
2746	return (0);
2747}
2748
2749/*
2750 * Sysctl handler for retrieving topology dump. It's a wrapper for
2751 * the recursive sysctl_kern_smp_topology_spec_internal().
2752 */
2753static int
2754sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2755{
2756	struct sbuf *topo;
2757	int err;
2758
2759	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2760
2761	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2762	if (topo == NULL)
2763		return (ENOMEM);
2764
2765	sbuf_printf(topo, "<groups>\n");
2766	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2767	sbuf_printf(topo, "</groups>\n");
2768
2769	if (err == 0) {
2770		sbuf_finish(topo);
2771		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2772	}
2773	sbuf_delete(topo);
2774	return (err);
2775}
2776
2777#endif
2778
2779SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2780SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2781    "Scheduler name");
2782SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2783    "Slice size for timeshare threads");
2784SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2785     "Interactivity score threshold");
2786SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2787     0,"Min priority for preemption, lower priorities have greater precedence");
2788SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2789     0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2790SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2791     0,"Number of times idle will spin waiting for new work.");
2792SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2793     0,"Threshold before we will permit idle spinning.");
2794#ifdef SMP
2795SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2796    "Number of hz ticks to keep thread affinity for");
2797SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2798    "Enables the long-term load balancer");
2799SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2800    &balance_interval, 0,
2801    "Average frequency in stathz ticks to run the long-term balancer");
2802SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2803    "Attempts to steal work from other cores before idling");
2804SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2805    "Minimum load on remote cpu before we'll steal");
2806
2807/* Retrieve SMP topology */
2808SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2809    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2810    "XML dump of detected CPU topology");
2811
2812#endif
2813
2814/* ps compat.  All cpu percentages from ULE are weighted. */
2815static int ccpu = 0;
2816SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2817