sched_ule.c revision 230691
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/9/sys/kern/sched_ule.c 230691 2012-01-29 00:32:37Z marius $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/turnstile.h>
61#include <sys/umtx.h>
62#include <sys/vmmeter.h>
63#include <sys/cpuset.h>
64#include <sys/sbuf.h>
65
66#ifdef HWPMC_HOOKS
67#include <sys/pmckern.h>
68#endif
69
70#ifdef KDTRACE_HOOKS
71#include <sys/dtrace_bsd.h>
72int				dtrace_vtime_active;
73dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
74#endif
75
76#include <machine/cpu.h>
77#include <machine/smp.h>
78
79#if defined(__powerpc__) && defined(E500)
80#error "This architecture is not currently compatible with ULE"
81#endif
82
83#define	KTR_ULE	0
84
85#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
86#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
87#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
88
89/*
90 * Thread scheduler specific section.  All fields are protected
91 * by the thread lock.
92 */
93struct td_sched {
94	struct runq	*ts_runq;	/* Run-queue we're queued on. */
95	short		ts_flags;	/* TSF_* flags. */
96	u_char		ts_cpu;		/* CPU that we have affinity for. */
97	int		ts_rltick;	/* Real last tick, for affinity. */
98	int		ts_slice;	/* Ticks of slice remaining. */
99	u_int		ts_slptime;	/* Number of ticks we vol. slept */
100	u_int		ts_runtime;	/* Number of ticks we were running */
101	int		ts_ltick;	/* Last tick that we were running on */
102	int		ts_incrtick;	/* Last tick that we incremented on */
103	int		ts_ftick;	/* First tick that we were running on */
104	int		ts_ticks;	/* Tick count */
105#ifdef KTR
106	char		ts_name[TS_NAME_LEN];
107#endif
108};
109/* flags kept in ts_flags */
110#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112
113static struct td_sched td_sched0;
114
115#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119/*
120 * Priority ranges used for interactive and non-interactive timeshare
121 * threads.  The timeshare priorities are split up into four ranges.
122 * The first range handles interactive threads.  The last three ranges
123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124 * ranges supporting nice values.
125 */
126#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129
130#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/*
193 * tickincr:		Converts a stathz tick into a hz domain scaled by
194 *			the shift factor.  Without the shift the error rate
195 *			due to rounding would be unacceptably high.
196 * realstathz:		stathz is sometimes 0 and run off of hz.
197 * sched_slice:		Runtime of each thread before rescheduling.
198 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
199 */
200static int sched_interact = SCHED_INTERACT_THRESH;
201static int realstathz;
202static int tickincr;
203static int sched_slice = 1;
204#ifdef PREEMPTION
205#ifdef FULL_PREEMPTION
206static int preempt_thresh = PRI_MAX_IDLE;
207#else
208static int preempt_thresh = PRI_MIN_KERN;
209#endif
210#else
211static int preempt_thresh = 0;
212#endif
213static int static_boost = PRI_MIN_BATCH;
214static int sched_idlespins = 10000;
215static int sched_idlespinthresh = 16;
216
217/*
218 * tdq - per processor runqs and statistics.  All fields are protected by the
219 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
220 * locking in sched_pickcpu();
221 */
222struct tdq {
223	/* Ordered to improve efficiency of cpu_search() and switch(). */
224	struct mtx	tdq_lock;		/* run queue lock. */
225	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
226	volatile int	tdq_load;		/* Aggregate load. */
227	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
228	int		tdq_sysload;		/* For loadavg, !ITHD load. */
229	int		tdq_transferable;	/* Transferable thread count. */
230	short		tdq_switchcnt;		/* Switches this tick. */
231	short		tdq_oldswitchcnt;	/* Switches last tick. */
232	u_char		tdq_lowpri;		/* Lowest priority thread. */
233	u_char		tdq_ipipending;		/* IPI pending. */
234	u_char		tdq_idx;		/* Current insert index. */
235	u_char		tdq_ridx;		/* Current removal index. */
236	struct runq	tdq_realtime;		/* real-time run queue. */
237	struct runq	tdq_timeshare;		/* timeshare run queue. */
238	struct runq	tdq_idle;		/* Queue of IDLE threads. */
239	char		tdq_name[TDQ_NAME_LEN];
240#ifdef KTR
241	char		tdq_loadname[TDQ_LOADNAME_LEN];
242#endif
243} __aligned(64);
244
245/* Idle thread states and config. */
246#define	TDQ_RUNNING	1
247#define	TDQ_IDLE	2
248
249#ifdef SMP
250struct cpu_group *cpu_top;		/* CPU topology */
251
252#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
253#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
254
255/*
256 * Run-time tunables.
257 */
258static int rebalance = 1;
259static int balance_interval = 128;	/* Default set in sched_initticks(). */
260static int affinity;
261static int steal_htt = 1;
262static int steal_idle = 1;
263static int steal_thresh = 2;
264
265/*
266 * One thread queue per processor.
267 */
268static struct tdq	tdq_cpu[MAXCPU];
269static struct tdq	*balance_tdq;
270static int balance_ticks;
271
272#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
273#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
274#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
275#else	/* !SMP */
276static struct tdq	tdq_cpu;
277
278#define	TDQ_ID(x)	(0)
279#define	TDQ_SELF()	(&tdq_cpu)
280#define	TDQ_CPU(x)	(&tdq_cpu)
281#endif
282
283#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
284#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
285#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
286#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
287#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
288
289static void sched_priority(struct thread *);
290static void sched_thread_priority(struct thread *, u_char);
291static int sched_interact_score(struct thread *);
292static void sched_interact_update(struct thread *);
293static void sched_interact_fork(struct thread *);
294static void sched_pctcpu_update(struct td_sched *);
295
296/* Operations on per processor queues */
297static struct thread *tdq_choose(struct tdq *);
298static void tdq_setup(struct tdq *);
299static void tdq_load_add(struct tdq *, struct thread *);
300static void tdq_load_rem(struct tdq *, struct thread *);
301static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
302static __inline void tdq_runq_rem(struct tdq *, struct thread *);
303static inline int sched_shouldpreempt(int, int, int);
304void tdq_print(int cpu);
305static void runq_print(struct runq *rq);
306static void tdq_add(struct tdq *, struct thread *, int);
307#ifdef SMP
308static int tdq_move(struct tdq *, struct tdq *);
309static int tdq_idled(struct tdq *);
310static void tdq_notify(struct tdq *, struct thread *);
311static struct thread *tdq_steal(struct tdq *, int);
312static struct thread *runq_steal(struct runq *, int);
313static int sched_pickcpu(struct thread *, int);
314static void sched_balance(void);
315static int sched_balance_pair(struct tdq *, struct tdq *);
316static inline struct tdq *sched_setcpu(struct thread *, int, int);
317static inline void thread_unblock_switch(struct thread *, struct mtx *);
318static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
319static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
320static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
321    struct cpu_group *cg, int indent);
322#endif
323
324static void sched_setup(void *dummy);
325SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
326
327static void sched_initticks(void *dummy);
328SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
329    NULL);
330
331/*
332 * Print the threads waiting on a run-queue.
333 */
334static void
335runq_print(struct runq *rq)
336{
337	struct rqhead *rqh;
338	struct thread *td;
339	int pri;
340	int j;
341	int i;
342
343	for (i = 0; i < RQB_LEN; i++) {
344		printf("\t\trunq bits %d 0x%zx\n",
345		    i, rq->rq_status.rqb_bits[i]);
346		for (j = 0; j < RQB_BPW; j++)
347			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
348				pri = j + (i << RQB_L2BPW);
349				rqh = &rq->rq_queues[pri];
350				TAILQ_FOREACH(td, rqh, td_runq) {
351					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
352					    td, td->td_name, td->td_priority,
353					    td->td_rqindex, pri);
354				}
355			}
356	}
357}
358
359/*
360 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
361 */
362void
363tdq_print(int cpu)
364{
365	struct tdq *tdq;
366
367	tdq = TDQ_CPU(cpu);
368
369	printf("tdq %d:\n", TDQ_ID(tdq));
370	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
371	printf("\tLock name:      %s\n", tdq->tdq_name);
372	printf("\tload:           %d\n", tdq->tdq_load);
373	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
374	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
375	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
376	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
377	printf("\tload transferable: %d\n", tdq->tdq_transferable);
378	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
379	printf("\trealtime runq:\n");
380	runq_print(&tdq->tdq_realtime);
381	printf("\ttimeshare runq:\n");
382	runq_print(&tdq->tdq_timeshare);
383	printf("\tidle runq:\n");
384	runq_print(&tdq->tdq_idle);
385}
386
387static inline int
388sched_shouldpreempt(int pri, int cpri, int remote)
389{
390	/*
391	 * If the new priority is not better than the current priority there is
392	 * nothing to do.
393	 */
394	if (pri >= cpri)
395		return (0);
396	/*
397	 * Always preempt idle.
398	 */
399	if (cpri >= PRI_MIN_IDLE)
400		return (1);
401	/*
402	 * If preemption is disabled don't preempt others.
403	 */
404	if (preempt_thresh == 0)
405		return (0);
406	/*
407	 * Preempt if we exceed the threshold.
408	 */
409	if (pri <= preempt_thresh)
410		return (1);
411	/*
412	 * If we're interactive or better and there is non-interactive
413	 * or worse running preempt only remote processors.
414	 */
415	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
416		return (1);
417	return (0);
418}
419
420/*
421 * Add a thread to the actual run-queue.  Keeps transferable counts up to
422 * date with what is actually on the run-queue.  Selects the correct
423 * queue position for timeshare threads.
424 */
425static __inline void
426tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
427{
428	struct td_sched *ts;
429	u_char pri;
430
431	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
432	THREAD_LOCK_ASSERT(td, MA_OWNED);
433
434	pri = td->td_priority;
435	ts = td->td_sched;
436	TD_SET_RUNQ(td);
437	if (THREAD_CAN_MIGRATE(td)) {
438		tdq->tdq_transferable++;
439		ts->ts_flags |= TSF_XFERABLE;
440	}
441	if (pri < PRI_MIN_BATCH) {
442		ts->ts_runq = &tdq->tdq_realtime;
443	} else if (pri <= PRI_MAX_BATCH) {
444		ts->ts_runq = &tdq->tdq_timeshare;
445		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
446			("Invalid priority %d on timeshare runq", pri));
447		/*
448		 * This queue contains only priorities between MIN and MAX
449		 * realtime.  Use the whole queue to represent these values.
450		 */
451		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
452			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
453			pri = (pri + tdq->tdq_idx) % RQ_NQS;
454			/*
455			 * This effectively shortens the queue by one so we
456			 * can have a one slot difference between idx and
457			 * ridx while we wait for threads to drain.
458			 */
459			if (tdq->tdq_ridx != tdq->tdq_idx &&
460			    pri == tdq->tdq_ridx)
461				pri = (unsigned char)(pri - 1) % RQ_NQS;
462		} else
463			pri = tdq->tdq_ridx;
464		runq_add_pri(ts->ts_runq, td, pri, flags);
465		return;
466	} else
467		ts->ts_runq = &tdq->tdq_idle;
468	runq_add(ts->ts_runq, td, flags);
469}
470
471/*
472 * Remove a thread from a run-queue.  This typically happens when a thread
473 * is selected to run.  Running threads are not on the queue and the
474 * transferable count does not reflect them.
475 */
476static __inline void
477tdq_runq_rem(struct tdq *tdq, struct thread *td)
478{
479	struct td_sched *ts;
480
481	ts = td->td_sched;
482	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
483	KASSERT(ts->ts_runq != NULL,
484	    ("tdq_runq_remove: thread %p null ts_runq", td));
485	if (ts->ts_flags & TSF_XFERABLE) {
486		tdq->tdq_transferable--;
487		ts->ts_flags &= ~TSF_XFERABLE;
488	}
489	if (ts->ts_runq == &tdq->tdq_timeshare) {
490		if (tdq->tdq_idx != tdq->tdq_ridx)
491			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
492		else
493			runq_remove_idx(ts->ts_runq, td, NULL);
494	} else
495		runq_remove(ts->ts_runq, td);
496}
497
498/*
499 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
500 * for this thread to the referenced thread queue.
501 */
502static void
503tdq_load_add(struct tdq *tdq, struct thread *td)
504{
505
506	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
507	THREAD_LOCK_ASSERT(td, MA_OWNED);
508
509	tdq->tdq_load++;
510	if ((td->td_flags & TDF_NOLOAD) == 0)
511		tdq->tdq_sysload++;
512	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
513}
514
515/*
516 * Remove the load from a thread that is transitioning to a sleep state or
517 * exiting.
518 */
519static void
520tdq_load_rem(struct tdq *tdq, struct thread *td)
521{
522
523	THREAD_LOCK_ASSERT(td, MA_OWNED);
524	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
525	KASSERT(tdq->tdq_load != 0,
526	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
527
528	tdq->tdq_load--;
529	if ((td->td_flags & TDF_NOLOAD) == 0)
530		tdq->tdq_sysload--;
531	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
532}
533
534/*
535 * Set lowpri to its exact value by searching the run-queue and
536 * evaluating curthread.  curthread may be passed as an optimization.
537 */
538static void
539tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
540{
541	struct thread *td;
542
543	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
544	if (ctd == NULL)
545		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
546	td = tdq_choose(tdq);
547	if (td == NULL || td->td_priority > ctd->td_priority)
548		tdq->tdq_lowpri = ctd->td_priority;
549	else
550		tdq->tdq_lowpri = td->td_priority;
551}
552
553#ifdef SMP
554struct cpu_search {
555	cpuset_t cs_mask;
556	u_int	cs_load;
557	u_int	cs_cpu;
558	int	cs_limit;	/* Min priority for low min load for high. */
559};
560
561#define	CPU_SEARCH_LOWEST	0x1
562#define	CPU_SEARCH_HIGHEST	0x2
563#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
564
565#define	CPUSET_FOREACH(cpu, mask)				\
566	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
567		if (CPU_ISSET(cpu, &mask))
568
569static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
570    struct cpu_search *high, const int match);
571int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
572int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
573int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
574    struct cpu_search *high);
575
576/*
577 * This routine compares according to the match argument and should be
578 * reduced in actual instantiations via constant propagation and dead code
579 * elimination.
580 */
581static __inline int
582cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
583    const int match)
584{
585	struct tdq *tdq;
586
587	tdq = TDQ_CPU(cpu);
588	if (match & CPU_SEARCH_LOWEST)
589		if (CPU_ISSET(cpu, &low->cs_mask) &&
590		    tdq->tdq_load < low->cs_load &&
591		    tdq->tdq_lowpri > low->cs_limit) {
592			low->cs_cpu = cpu;
593			low->cs_load = tdq->tdq_load;
594		}
595	if (match & CPU_SEARCH_HIGHEST)
596		if (CPU_ISSET(cpu, &high->cs_mask) &&
597		    tdq->tdq_load >= high->cs_limit &&
598		    tdq->tdq_load > high->cs_load &&
599		    tdq->tdq_transferable) {
600			high->cs_cpu = cpu;
601			high->cs_load = tdq->tdq_load;
602		}
603	return (tdq->tdq_load);
604}
605
606/*
607 * Search the tree of cpu_groups for the lowest or highest loaded cpu
608 * according to the match argument.  This routine actually compares the
609 * load on all paths through the tree and finds the least loaded cpu on
610 * the least loaded path, which may differ from the least loaded cpu in
611 * the system.  This balances work among caches and busses.
612 *
613 * This inline is instantiated in three forms below using constants for the
614 * match argument.  It is reduced to the minimum set for each case.  It is
615 * also recursive to the depth of the tree.
616 */
617static __inline int
618cpu_search(struct cpu_group *cg, struct cpu_search *low,
619    struct cpu_search *high, const int match)
620{
621	int total;
622
623	total = 0;
624	if (cg->cg_children) {
625		struct cpu_search lgroup;
626		struct cpu_search hgroup;
627		struct cpu_group *child;
628		u_int lload;
629		int hload;
630		int load;
631		int i;
632
633		lload = -1;
634		hload = -1;
635		for (i = 0; i < cg->cg_children; i++) {
636			child = &cg->cg_child[i];
637			if (match & CPU_SEARCH_LOWEST) {
638				lgroup = *low;
639				lgroup.cs_load = -1;
640			}
641			if (match & CPU_SEARCH_HIGHEST) {
642				hgroup = *high;
643				lgroup.cs_load = 0;
644			}
645			switch (match) {
646			case CPU_SEARCH_LOWEST:
647				load = cpu_search_lowest(child, &lgroup);
648				break;
649			case CPU_SEARCH_HIGHEST:
650				load = cpu_search_highest(child, &hgroup);
651				break;
652			case CPU_SEARCH_BOTH:
653				load = cpu_search_both(child, &lgroup, &hgroup);
654				break;
655			}
656			total += load;
657			if (match & CPU_SEARCH_LOWEST)
658				if (load < lload || low->cs_cpu == -1) {
659					*low = lgroup;
660					lload = load;
661				}
662			if (match & CPU_SEARCH_HIGHEST)
663				if (load > hload || high->cs_cpu == -1) {
664					hload = load;
665					*high = hgroup;
666				}
667		}
668	} else {
669		int cpu;
670
671		CPUSET_FOREACH(cpu, cg->cg_mask)
672			total += cpu_compare(cpu, low, high, match);
673	}
674	return (total);
675}
676
677/*
678 * cpu_search instantiations must pass constants to maintain the inline
679 * optimization.
680 */
681int
682cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
683{
684	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
685}
686
687int
688cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
689{
690	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
691}
692
693int
694cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
695    struct cpu_search *high)
696{
697	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
698}
699
700/*
701 * Find the cpu with the least load via the least loaded path that has a
702 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
703 * acceptable.
704 */
705static inline int
706sched_lowest(struct cpu_group *cg, cpuset_t mask, int pri)
707{
708	struct cpu_search low;
709
710	low.cs_cpu = -1;
711	low.cs_load = -1;
712	low.cs_mask = mask;
713	low.cs_limit = pri;
714	cpu_search_lowest(cg, &low);
715	return low.cs_cpu;
716}
717
718/*
719 * Find the cpu with the highest load via the highest loaded path.
720 */
721static inline int
722sched_highest(struct cpu_group *cg, cpuset_t mask, int minload)
723{
724	struct cpu_search high;
725
726	high.cs_cpu = -1;
727	high.cs_load = 0;
728	high.cs_mask = mask;
729	high.cs_limit = minload;
730	cpu_search_highest(cg, &high);
731	return high.cs_cpu;
732}
733
734/*
735 * Simultaneously find the highest and lowest loaded cpu reachable via
736 * cg.
737 */
738static inline void
739sched_both(struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
740{
741	struct cpu_search high;
742	struct cpu_search low;
743
744	low.cs_cpu = -1;
745	low.cs_limit = -1;
746	low.cs_load = -1;
747	low.cs_mask = mask;
748	high.cs_load = 0;
749	high.cs_cpu = -1;
750	high.cs_limit = -1;
751	high.cs_mask = mask;
752	cpu_search_both(cg, &low, &high);
753	*lowcpu = low.cs_cpu;
754	*highcpu = high.cs_cpu;
755	return;
756}
757
758static void
759sched_balance_group(struct cpu_group *cg)
760{
761	cpuset_t mask;
762	int high;
763	int low;
764	int i;
765
766	CPU_FILL(&mask);
767	for (;;) {
768		sched_both(cg, mask, &low, &high);
769		if (low == high || low == -1 || high == -1)
770			break;
771		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
772			break;
773		/*
774		 * If we failed to move any threads determine which cpu
775		 * to kick out of the set and try again.
776	 	 */
777		if (TDQ_CPU(high)->tdq_transferable == 0)
778			CPU_CLR(high, &mask);
779		else
780			CPU_CLR(low, &mask);
781	}
782
783	for (i = 0; i < cg->cg_children; i++)
784		sched_balance_group(&cg->cg_child[i]);
785}
786
787static void
788sched_balance(void)
789{
790	struct tdq *tdq;
791
792	/*
793	 * Select a random time between .5 * balance_interval and
794	 * 1.5 * balance_interval.
795	 */
796	balance_ticks = max(balance_interval / 2, 1);
797	balance_ticks += random() % balance_interval;
798	if (smp_started == 0 || rebalance == 0)
799		return;
800	tdq = TDQ_SELF();
801	TDQ_UNLOCK(tdq);
802	sched_balance_group(cpu_top);
803	TDQ_LOCK(tdq);
804}
805
806/*
807 * Lock two thread queues using their address to maintain lock order.
808 */
809static void
810tdq_lock_pair(struct tdq *one, struct tdq *two)
811{
812	if (one < two) {
813		TDQ_LOCK(one);
814		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
815	} else {
816		TDQ_LOCK(two);
817		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
818	}
819}
820
821/*
822 * Unlock two thread queues.  Order is not important here.
823 */
824static void
825tdq_unlock_pair(struct tdq *one, struct tdq *two)
826{
827	TDQ_UNLOCK(one);
828	TDQ_UNLOCK(two);
829}
830
831/*
832 * Transfer load between two imbalanced thread queues.
833 */
834static int
835sched_balance_pair(struct tdq *high, struct tdq *low)
836{
837	int transferable;
838	int high_load;
839	int low_load;
840	int moved;
841	int move;
842	int cpu;
843	int diff;
844	int i;
845
846	tdq_lock_pair(high, low);
847	transferable = high->tdq_transferable;
848	high_load = high->tdq_load;
849	low_load = low->tdq_load;
850	moved = 0;
851	/*
852	 * Determine what the imbalance is and then adjust that to how many
853	 * threads we actually have to give up (transferable).
854	 */
855	if (transferable != 0) {
856		diff = high_load - low_load;
857		move = diff / 2;
858		if (diff & 0x1)
859			move++;
860		move = min(move, transferable);
861		for (i = 0; i < move; i++)
862			moved += tdq_move(high, low);
863		/*
864		 * In case the target isn't the current cpu IPI it to force a
865		 * reschedule with the new workload.
866		 */
867		cpu = TDQ_ID(low);
868		sched_pin();
869		if (cpu != PCPU_GET(cpuid))
870			ipi_cpu(cpu, IPI_PREEMPT);
871		sched_unpin();
872	}
873	tdq_unlock_pair(high, low);
874	return (moved);
875}
876
877/*
878 * Move a thread from one thread queue to another.
879 */
880static int
881tdq_move(struct tdq *from, struct tdq *to)
882{
883	struct td_sched *ts;
884	struct thread *td;
885	struct tdq *tdq;
886	int cpu;
887
888	TDQ_LOCK_ASSERT(from, MA_OWNED);
889	TDQ_LOCK_ASSERT(to, MA_OWNED);
890
891	tdq = from;
892	cpu = TDQ_ID(to);
893	td = tdq_steal(tdq, cpu);
894	if (td == NULL)
895		return (0);
896	ts = td->td_sched;
897	/*
898	 * Although the run queue is locked the thread may be blocked.  Lock
899	 * it to clear this and acquire the run-queue lock.
900	 */
901	thread_lock(td);
902	/* Drop recursive lock on from acquired via thread_lock(). */
903	TDQ_UNLOCK(from);
904	sched_rem(td);
905	ts->ts_cpu = cpu;
906	td->td_lock = TDQ_LOCKPTR(to);
907	tdq_add(to, td, SRQ_YIELDING);
908	return (1);
909}
910
911/*
912 * This tdq has idled.  Try to steal a thread from another cpu and switch
913 * to it.
914 */
915static int
916tdq_idled(struct tdq *tdq)
917{
918	struct cpu_group *cg;
919	struct tdq *steal;
920	cpuset_t mask;
921	int thresh;
922	int cpu;
923
924	if (smp_started == 0 || steal_idle == 0)
925		return (1);
926	CPU_FILL(&mask);
927	CPU_CLR(PCPU_GET(cpuid), &mask);
928	/* We don't want to be preempted while we're iterating. */
929	spinlock_enter();
930	for (cg = tdq->tdq_cg; cg != NULL; ) {
931		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
932			thresh = steal_thresh;
933		else
934			thresh = 1;
935		cpu = sched_highest(cg, mask, thresh);
936		if (cpu == -1) {
937			cg = cg->cg_parent;
938			continue;
939		}
940		steal = TDQ_CPU(cpu);
941		CPU_CLR(cpu, &mask);
942		tdq_lock_pair(tdq, steal);
943		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
944			tdq_unlock_pair(tdq, steal);
945			continue;
946		}
947		/*
948		 * If a thread was added while interrupts were disabled don't
949		 * steal one here.  If we fail to acquire one due to affinity
950		 * restrictions loop again with this cpu removed from the
951		 * set.
952		 */
953		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
954			tdq_unlock_pair(tdq, steal);
955			continue;
956		}
957		spinlock_exit();
958		TDQ_UNLOCK(steal);
959		mi_switch(SW_VOL | SWT_IDLE, NULL);
960		thread_unlock(curthread);
961
962		return (0);
963	}
964	spinlock_exit();
965	return (1);
966}
967
968/*
969 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
970 */
971static void
972tdq_notify(struct tdq *tdq, struct thread *td)
973{
974	struct thread *ctd;
975	int pri;
976	int cpu;
977
978	if (tdq->tdq_ipipending)
979		return;
980	cpu = td->td_sched->ts_cpu;
981	pri = td->td_priority;
982	ctd = pcpu_find(cpu)->pc_curthread;
983	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
984		return;
985	if (TD_IS_IDLETHREAD(ctd)) {
986		/*
987		 * If the MD code has an idle wakeup routine try that before
988		 * falling back to IPI.
989		 */
990		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
991			return;
992	}
993	tdq->tdq_ipipending = 1;
994	ipi_cpu(cpu, IPI_PREEMPT);
995}
996
997/*
998 * Steals load from a timeshare queue.  Honors the rotating queue head
999 * index.
1000 */
1001static struct thread *
1002runq_steal_from(struct runq *rq, int cpu, u_char start)
1003{
1004	struct rqbits *rqb;
1005	struct rqhead *rqh;
1006	struct thread *td;
1007	int first;
1008	int bit;
1009	int pri;
1010	int i;
1011
1012	rqb = &rq->rq_status;
1013	bit = start & (RQB_BPW -1);
1014	pri = 0;
1015	first = 0;
1016again:
1017	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1018		if (rqb->rqb_bits[i] == 0)
1019			continue;
1020		if (bit != 0) {
1021			for (pri = bit; pri < RQB_BPW; pri++)
1022				if (rqb->rqb_bits[i] & (1ul << pri))
1023					break;
1024			if (pri >= RQB_BPW)
1025				continue;
1026		} else
1027			pri = RQB_FFS(rqb->rqb_bits[i]);
1028		pri += (i << RQB_L2BPW);
1029		rqh = &rq->rq_queues[pri];
1030		TAILQ_FOREACH(td, rqh, td_runq) {
1031			if (first && THREAD_CAN_MIGRATE(td) &&
1032			    THREAD_CAN_SCHED(td, cpu))
1033				return (td);
1034			first = 1;
1035		}
1036	}
1037	if (start != 0) {
1038		start = 0;
1039		goto again;
1040	}
1041
1042	return (NULL);
1043}
1044
1045/*
1046 * Steals load from a standard linear queue.
1047 */
1048static struct thread *
1049runq_steal(struct runq *rq, int cpu)
1050{
1051	struct rqhead *rqh;
1052	struct rqbits *rqb;
1053	struct thread *td;
1054	int word;
1055	int bit;
1056
1057	rqb = &rq->rq_status;
1058	for (word = 0; word < RQB_LEN; word++) {
1059		if (rqb->rqb_bits[word] == 0)
1060			continue;
1061		for (bit = 0; bit < RQB_BPW; bit++) {
1062			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1063				continue;
1064			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1065			TAILQ_FOREACH(td, rqh, td_runq)
1066				if (THREAD_CAN_MIGRATE(td) &&
1067				    THREAD_CAN_SCHED(td, cpu))
1068					return (td);
1069		}
1070	}
1071	return (NULL);
1072}
1073
1074/*
1075 * Attempt to steal a thread in priority order from a thread queue.
1076 */
1077static struct thread *
1078tdq_steal(struct tdq *tdq, int cpu)
1079{
1080	struct thread *td;
1081
1082	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1083	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1084		return (td);
1085	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1086	    cpu, tdq->tdq_ridx)) != NULL)
1087		return (td);
1088	return (runq_steal(&tdq->tdq_idle, cpu));
1089}
1090
1091/*
1092 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1093 * current lock and returns with the assigned queue locked.
1094 */
1095static inline struct tdq *
1096sched_setcpu(struct thread *td, int cpu, int flags)
1097{
1098
1099	struct tdq *tdq;
1100
1101	THREAD_LOCK_ASSERT(td, MA_OWNED);
1102	tdq = TDQ_CPU(cpu);
1103	td->td_sched->ts_cpu = cpu;
1104	/*
1105	 * If the lock matches just return the queue.
1106	 */
1107	if (td->td_lock == TDQ_LOCKPTR(tdq))
1108		return (tdq);
1109#ifdef notyet
1110	/*
1111	 * If the thread isn't running its lockptr is a
1112	 * turnstile or a sleepqueue.  We can just lock_set without
1113	 * blocking.
1114	 */
1115	if (TD_CAN_RUN(td)) {
1116		TDQ_LOCK(tdq);
1117		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1118		return (tdq);
1119	}
1120#endif
1121	/*
1122	 * The hard case, migration, we need to block the thread first to
1123	 * prevent order reversals with other cpus locks.
1124	 */
1125	spinlock_enter();
1126	thread_lock_block(td);
1127	TDQ_LOCK(tdq);
1128	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1129	spinlock_exit();
1130	return (tdq);
1131}
1132
1133SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1134SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1135SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1136SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1137SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1138SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1139
1140static int
1141sched_pickcpu(struct thread *td, int flags)
1142{
1143	struct cpu_group *cg;
1144	struct td_sched *ts;
1145	struct tdq *tdq;
1146	cpuset_t mask;
1147	int self;
1148	int pri;
1149	int cpu;
1150
1151	self = PCPU_GET(cpuid);
1152	ts = td->td_sched;
1153	if (smp_started == 0)
1154		return (self);
1155	/*
1156	 * Don't migrate a running thread from sched_switch().
1157	 */
1158	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1159		return (ts->ts_cpu);
1160	/*
1161	 * Prefer to run interrupt threads on the processors that generate
1162	 * the interrupt.
1163	 */
1164	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1165	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1166		SCHED_STAT_INC(pickcpu_intrbind);
1167		ts->ts_cpu = self;
1168	}
1169	/*
1170	 * If the thread can run on the last cpu and the affinity has not
1171	 * expired or it is idle run it there.
1172	 */
1173	pri = td->td_priority;
1174	tdq = TDQ_CPU(ts->ts_cpu);
1175	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1176		if (tdq->tdq_lowpri > PRI_MIN_IDLE) {
1177			SCHED_STAT_INC(pickcpu_idle_affinity);
1178			return (ts->ts_cpu);
1179		}
1180		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) {
1181			SCHED_STAT_INC(pickcpu_affinity);
1182			return (ts->ts_cpu);
1183		}
1184	}
1185	/*
1186	 * Search for the highest level in the tree that still has affinity.
1187	 */
1188	cg = NULL;
1189	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1190		if (SCHED_AFFINITY(ts, cg->cg_level))
1191			break;
1192	cpu = -1;
1193	mask = td->td_cpuset->cs_mask;
1194	if (cg)
1195		cpu = sched_lowest(cg, mask, pri);
1196	if (cpu == -1)
1197		cpu = sched_lowest(cpu_top, mask, -1);
1198	/*
1199	 * Compare the lowest loaded cpu to current cpu.
1200	 */
1201	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1202	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) {
1203		SCHED_STAT_INC(pickcpu_local);
1204		cpu = self;
1205	} else
1206		SCHED_STAT_INC(pickcpu_lowest);
1207	if (cpu != ts->ts_cpu)
1208		SCHED_STAT_INC(pickcpu_migration);
1209	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1210	return (cpu);
1211}
1212#endif
1213
1214/*
1215 * Pick the highest priority task we have and return it.
1216 */
1217static struct thread *
1218tdq_choose(struct tdq *tdq)
1219{
1220	struct thread *td;
1221
1222	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1223	td = runq_choose(&tdq->tdq_realtime);
1224	if (td != NULL)
1225		return (td);
1226	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1227	if (td != NULL) {
1228		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1229		    ("tdq_choose: Invalid priority on timeshare queue %d",
1230		    td->td_priority));
1231		return (td);
1232	}
1233	td = runq_choose(&tdq->tdq_idle);
1234	if (td != NULL) {
1235		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1236		    ("tdq_choose: Invalid priority on idle queue %d",
1237		    td->td_priority));
1238		return (td);
1239	}
1240
1241	return (NULL);
1242}
1243
1244/*
1245 * Initialize a thread queue.
1246 */
1247static void
1248tdq_setup(struct tdq *tdq)
1249{
1250
1251	if (bootverbose)
1252		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1253	runq_init(&tdq->tdq_realtime);
1254	runq_init(&tdq->tdq_timeshare);
1255	runq_init(&tdq->tdq_idle);
1256	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1257	    "sched lock %d", (int)TDQ_ID(tdq));
1258	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1259	    MTX_SPIN | MTX_RECURSE);
1260#ifdef KTR
1261	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1262	    "CPU %d load", (int)TDQ_ID(tdq));
1263#endif
1264}
1265
1266#ifdef SMP
1267static void
1268sched_setup_smp(void)
1269{
1270	struct tdq *tdq;
1271	int i;
1272
1273	cpu_top = smp_topo();
1274	CPU_FOREACH(i) {
1275		tdq = TDQ_CPU(i);
1276		tdq_setup(tdq);
1277		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1278		if (tdq->tdq_cg == NULL)
1279			panic("Can't find cpu group for %d\n", i);
1280	}
1281	balance_tdq = TDQ_SELF();
1282	sched_balance();
1283}
1284#endif
1285
1286/*
1287 * Setup the thread queues and initialize the topology based on MD
1288 * information.
1289 */
1290static void
1291sched_setup(void *dummy)
1292{
1293	struct tdq *tdq;
1294
1295	tdq = TDQ_SELF();
1296#ifdef SMP
1297	sched_setup_smp();
1298#else
1299	tdq_setup(tdq);
1300#endif
1301	/*
1302	 * To avoid divide-by-zero, we set realstathz a dummy value
1303	 * in case which sched_clock() called before sched_initticks().
1304	 */
1305	realstathz = hz;
1306	sched_slice = (realstathz/10);	/* ~100ms */
1307	tickincr = 1 << SCHED_TICK_SHIFT;
1308
1309	/* Add thread0's load since it's running. */
1310	TDQ_LOCK(tdq);
1311	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1312	tdq_load_add(tdq, &thread0);
1313	tdq->tdq_lowpri = thread0.td_priority;
1314	TDQ_UNLOCK(tdq);
1315}
1316
1317/*
1318 * This routine determines the tickincr after stathz and hz are setup.
1319 */
1320/* ARGSUSED */
1321static void
1322sched_initticks(void *dummy)
1323{
1324	int incr;
1325
1326	realstathz = stathz ? stathz : hz;
1327	sched_slice = (realstathz/10);	/* ~100ms */
1328
1329	/*
1330	 * tickincr is shifted out by 10 to avoid rounding errors due to
1331	 * hz not being evenly divisible by stathz on all platforms.
1332	 */
1333	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1334	/*
1335	 * This does not work for values of stathz that are more than
1336	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1337	 */
1338	if (incr == 0)
1339		incr = 1;
1340	tickincr = incr;
1341#ifdef SMP
1342	/*
1343	 * Set the default balance interval now that we know
1344	 * what realstathz is.
1345	 */
1346	balance_interval = realstathz;
1347	/*
1348	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1349	 * This prevents excess thrashing on large machines and excess idle
1350	 * on smaller machines.
1351	 */
1352	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1353	affinity = SCHED_AFFINITY_DEFAULT;
1354#endif
1355}
1356
1357
1358/*
1359 * This is the core of the interactivity algorithm.  Determines a score based
1360 * on past behavior.  It is the ratio of sleep time to run time scaled to
1361 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1362 * differs from the cpu usage because it does not account for time spent
1363 * waiting on a run-queue.  Would be prettier if we had floating point.
1364 */
1365static int
1366sched_interact_score(struct thread *td)
1367{
1368	struct td_sched *ts;
1369	int div;
1370
1371	ts = td->td_sched;
1372	/*
1373	 * The score is only needed if this is likely to be an interactive
1374	 * task.  Don't go through the expense of computing it if there's
1375	 * no chance.
1376	 */
1377	if (sched_interact <= SCHED_INTERACT_HALF &&
1378		ts->ts_runtime >= ts->ts_slptime)
1379			return (SCHED_INTERACT_HALF);
1380
1381	if (ts->ts_runtime > ts->ts_slptime) {
1382		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1383		return (SCHED_INTERACT_HALF +
1384		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1385	}
1386	if (ts->ts_slptime > ts->ts_runtime) {
1387		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1388		return (ts->ts_runtime / div);
1389	}
1390	/* runtime == slptime */
1391	if (ts->ts_runtime)
1392		return (SCHED_INTERACT_HALF);
1393
1394	/*
1395	 * This can happen if slptime and runtime are 0.
1396	 */
1397	return (0);
1398
1399}
1400
1401/*
1402 * Scale the scheduling priority according to the "interactivity" of this
1403 * process.
1404 */
1405static void
1406sched_priority(struct thread *td)
1407{
1408	int score;
1409	int pri;
1410
1411	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1412		return;
1413	/*
1414	 * If the score is interactive we place the thread in the realtime
1415	 * queue with a priority that is less than kernel and interrupt
1416	 * priorities.  These threads are not subject to nice restrictions.
1417	 *
1418	 * Scores greater than this are placed on the normal timeshare queue
1419	 * where the priority is partially decided by the most recent cpu
1420	 * utilization and the rest is decided by nice value.
1421	 *
1422	 * The nice value of the process has a linear effect on the calculated
1423	 * score.  Negative nice values make it easier for a thread to be
1424	 * considered interactive.
1425	 */
1426	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1427	if (score < sched_interact) {
1428		pri = PRI_MIN_INTERACT;
1429		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1430		    sched_interact) * score;
1431		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1432		    ("sched_priority: invalid interactive priority %d score %d",
1433		    pri, score));
1434	} else {
1435		pri = SCHED_PRI_MIN;
1436		if (td->td_sched->ts_ticks)
1437			pri += min(SCHED_PRI_TICKS(td->td_sched),
1438			    SCHED_PRI_RANGE);
1439		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1440		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1441		    ("sched_priority: invalid priority %d: nice %d, "
1442		    "ticks %d ftick %d ltick %d tick pri %d",
1443		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1444		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1445		    SCHED_PRI_TICKS(td->td_sched)));
1446	}
1447	sched_user_prio(td, pri);
1448
1449	return;
1450}
1451
1452/*
1453 * This routine enforces a maximum limit on the amount of scheduling history
1454 * kept.  It is called after either the slptime or runtime is adjusted.  This
1455 * function is ugly due to integer math.
1456 */
1457static void
1458sched_interact_update(struct thread *td)
1459{
1460	struct td_sched *ts;
1461	u_int sum;
1462
1463	ts = td->td_sched;
1464	sum = ts->ts_runtime + ts->ts_slptime;
1465	if (sum < SCHED_SLP_RUN_MAX)
1466		return;
1467	/*
1468	 * This only happens from two places:
1469	 * 1) We have added an unusual amount of run time from fork_exit.
1470	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1471	 */
1472	if (sum > SCHED_SLP_RUN_MAX * 2) {
1473		if (ts->ts_runtime > ts->ts_slptime) {
1474			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1475			ts->ts_slptime = 1;
1476		} else {
1477			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1478			ts->ts_runtime = 1;
1479		}
1480		return;
1481	}
1482	/*
1483	 * If we have exceeded by more than 1/5th then the algorithm below
1484	 * will not bring us back into range.  Dividing by two here forces
1485	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1486	 */
1487	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1488		ts->ts_runtime /= 2;
1489		ts->ts_slptime /= 2;
1490		return;
1491	}
1492	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1493	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1494}
1495
1496/*
1497 * Scale back the interactivity history when a child thread is created.  The
1498 * history is inherited from the parent but the thread may behave totally
1499 * differently.  For example, a shell spawning a compiler process.  We want
1500 * to learn that the compiler is behaving badly very quickly.
1501 */
1502static void
1503sched_interact_fork(struct thread *td)
1504{
1505	int ratio;
1506	int sum;
1507
1508	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1509	if (sum > SCHED_SLP_RUN_FORK) {
1510		ratio = sum / SCHED_SLP_RUN_FORK;
1511		td->td_sched->ts_runtime /= ratio;
1512		td->td_sched->ts_slptime /= ratio;
1513	}
1514}
1515
1516/*
1517 * Called from proc0_init() to setup the scheduler fields.
1518 */
1519void
1520schedinit(void)
1521{
1522
1523	/*
1524	 * Set up the scheduler specific parts of proc0.
1525	 */
1526	proc0.p_sched = NULL; /* XXX */
1527	thread0.td_sched = &td_sched0;
1528	td_sched0.ts_ltick = ticks;
1529	td_sched0.ts_ftick = ticks;
1530	td_sched0.ts_slice = sched_slice;
1531}
1532
1533/*
1534 * This is only somewhat accurate since given many processes of the same
1535 * priority they will switch when their slices run out, which will be
1536 * at most sched_slice stathz ticks.
1537 */
1538int
1539sched_rr_interval(void)
1540{
1541
1542	/* Convert sched_slice to hz */
1543	return (hz/(realstathz/sched_slice));
1544}
1545
1546/*
1547 * Update the percent cpu tracking information when it is requested or
1548 * the total history exceeds the maximum.  We keep a sliding history of
1549 * tick counts that slowly decays.  This is less precise than the 4BSD
1550 * mechanism since it happens with less regular and frequent events.
1551 */
1552static void
1553sched_pctcpu_update(struct td_sched *ts)
1554{
1555
1556	if (ts->ts_ticks == 0)
1557		return;
1558	if (ticks - (hz / 10) < ts->ts_ltick &&
1559	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1560		return;
1561	/*
1562	 * Adjust counters and watermark for pctcpu calc.
1563	 */
1564	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1565		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1566			    SCHED_TICK_TARG;
1567	else
1568		ts->ts_ticks = 0;
1569	ts->ts_ltick = ticks;
1570	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1571}
1572
1573/*
1574 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1575 * if necessary.  This is the back-end for several priority related
1576 * functions.
1577 */
1578static void
1579sched_thread_priority(struct thread *td, u_char prio)
1580{
1581	struct td_sched *ts;
1582	struct tdq *tdq;
1583	int oldpri;
1584
1585	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1586	    "prio:%d", td->td_priority, "new prio:%d", prio,
1587	    KTR_ATTR_LINKED, sched_tdname(curthread));
1588	if (td != curthread && prio > td->td_priority) {
1589		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1590		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1591		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1592	}
1593	ts = td->td_sched;
1594	THREAD_LOCK_ASSERT(td, MA_OWNED);
1595	if (td->td_priority == prio)
1596		return;
1597	/*
1598	 * If the priority has been elevated due to priority
1599	 * propagation, we may have to move ourselves to a new
1600	 * queue.  This could be optimized to not re-add in some
1601	 * cases.
1602	 */
1603	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1604		sched_rem(td);
1605		td->td_priority = prio;
1606		sched_add(td, SRQ_BORROWING);
1607		return;
1608	}
1609	/*
1610	 * If the thread is currently running we may have to adjust the lowpri
1611	 * information so other cpus are aware of our current priority.
1612	 */
1613	if (TD_IS_RUNNING(td)) {
1614		tdq = TDQ_CPU(ts->ts_cpu);
1615		oldpri = td->td_priority;
1616		td->td_priority = prio;
1617		if (prio < tdq->tdq_lowpri)
1618			tdq->tdq_lowpri = prio;
1619		else if (tdq->tdq_lowpri == oldpri)
1620			tdq_setlowpri(tdq, td);
1621		return;
1622	}
1623	td->td_priority = prio;
1624}
1625
1626/*
1627 * Update a thread's priority when it is lent another thread's
1628 * priority.
1629 */
1630void
1631sched_lend_prio(struct thread *td, u_char prio)
1632{
1633
1634	td->td_flags |= TDF_BORROWING;
1635	sched_thread_priority(td, prio);
1636}
1637
1638/*
1639 * Restore a thread's priority when priority propagation is
1640 * over.  The prio argument is the minimum priority the thread
1641 * needs to have to satisfy other possible priority lending
1642 * requests.  If the thread's regular priority is less
1643 * important than prio, the thread will keep a priority boost
1644 * of prio.
1645 */
1646void
1647sched_unlend_prio(struct thread *td, u_char prio)
1648{
1649	u_char base_pri;
1650
1651	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1652	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1653		base_pri = td->td_user_pri;
1654	else
1655		base_pri = td->td_base_pri;
1656	if (prio >= base_pri) {
1657		td->td_flags &= ~TDF_BORROWING;
1658		sched_thread_priority(td, base_pri);
1659	} else
1660		sched_lend_prio(td, prio);
1661}
1662
1663/*
1664 * Standard entry for setting the priority to an absolute value.
1665 */
1666void
1667sched_prio(struct thread *td, u_char prio)
1668{
1669	u_char oldprio;
1670
1671	/* First, update the base priority. */
1672	td->td_base_pri = prio;
1673
1674	/*
1675	 * If the thread is borrowing another thread's priority, don't
1676	 * ever lower the priority.
1677	 */
1678	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1679		return;
1680
1681	/* Change the real priority. */
1682	oldprio = td->td_priority;
1683	sched_thread_priority(td, prio);
1684
1685	/*
1686	 * If the thread is on a turnstile, then let the turnstile update
1687	 * its state.
1688	 */
1689	if (TD_ON_LOCK(td) && oldprio != prio)
1690		turnstile_adjust(td, oldprio);
1691}
1692
1693/*
1694 * Set the base user priority, does not effect current running priority.
1695 */
1696void
1697sched_user_prio(struct thread *td, u_char prio)
1698{
1699
1700	td->td_base_user_pri = prio;
1701	if (td->td_lend_user_pri <= prio)
1702		return;
1703	td->td_user_pri = prio;
1704}
1705
1706void
1707sched_lend_user_prio(struct thread *td, u_char prio)
1708{
1709
1710	THREAD_LOCK_ASSERT(td, MA_OWNED);
1711	td->td_lend_user_pri = prio;
1712	td->td_user_pri = min(prio, td->td_base_user_pri);
1713	if (td->td_priority > td->td_user_pri)
1714		sched_prio(td, td->td_user_pri);
1715	else if (td->td_priority != td->td_user_pri)
1716		td->td_flags |= TDF_NEEDRESCHED;
1717}
1718
1719/*
1720 * Handle migration from sched_switch().  This happens only for
1721 * cpu binding.
1722 */
1723static struct mtx *
1724sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1725{
1726	struct tdq *tdn;
1727
1728	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1729#ifdef SMP
1730	tdq_load_rem(tdq, td);
1731	/*
1732	 * Do the lock dance required to avoid LOR.  We grab an extra
1733	 * spinlock nesting to prevent preemption while we're
1734	 * not holding either run-queue lock.
1735	 */
1736	spinlock_enter();
1737	thread_lock_block(td);	/* This releases the lock on tdq. */
1738
1739	/*
1740	 * Acquire both run-queue locks before placing the thread on the new
1741	 * run-queue to avoid deadlocks created by placing a thread with a
1742	 * blocked lock on the run-queue of a remote processor.  The deadlock
1743	 * occurs when a third processor attempts to lock the two queues in
1744	 * question while the target processor is spinning with its own
1745	 * run-queue lock held while waiting for the blocked lock to clear.
1746	 */
1747	tdq_lock_pair(tdn, tdq);
1748	tdq_add(tdn, td, flags);
1749	tdq_notify(tdn, td);
1750	TDQ_UNLOCK(tdn);
1751	spinlock_exit();
1752#endif
1753	return (TDQ_LOCKPTR(tdn));
1754}
1755
1756/*
1757 * Variadic version of thread_lock_unblock() that does not assume td_lock
1758 * is blocked.
1759 */
1760static inline void
1761thread_unblock_switch(struct thread *td, struct mtx *mtx)
1762{
1763	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1764	    (uintptr_t)mtx);
1765}
1766
1767/*
1768 * Switch threads.  This function has to handle threads coming in while
1769 * blocked for some reason, running, or idle.  It also must deal with
1770 * migrating a thread from one queue to another as running threads may
1771 * be assigned elsewhere via binding.
1772 */
1773void
1774sched_switch(struct thread *td, struct thread *newtd, int flags)
1775{
1776	struct tdq *tdq;
1777	struct td_sched *ts;
1778	struct mtx *mtx;
1779	int srqflag;
1780	int cpuid;
1781
1782	THREAD_LOCK_ASSERT(td, MA_OWNED);
1783	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1784
1785	cpuid = PCPU_GET(cpuid);
1786	tdq = TDQ_CPU(cpuid);
1787	ts = td->td_sched;
1788	mtx = td->td_lock;
1789	ts->ts_rltick = ticks;
1790	td->td_lastcpu = td->td_oncpu;
1791	td->td_oncpu = NOCPU;
1792	if (!(flags & SW_PREEMPT))
1793		td->td_flags &= ~TDF_NEEDRESCHED;
1794	td->td_owepreempt = 0;
1795	tdq->tdq_switchcnt++;
1796	/*
1797	 * The lock pointer in an idle thread should never change.  Reset it
1798	 * to CAN_RUN as well.
1799	 */
1800	if (TD_IS_IDLETHREAD(td)) {
1801		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1802		TD_SET_CAN_RUN(td);
1803	} else if (TD_IS_RUNNING(td)) {
1804		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1805		srqflag = (flags & SW_PREEMPT) ?
1806		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1807		    SRQ_OURSELF|SRQ_YIELDING;
1808#ifdef SMP
1809		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1810			ts->ts_cpu = sched_pickcpu(td, 0);
1811#endif
1812		if (ts->ts_cpu == cpuid)
1813			tdq_runq_add(tdq, td, srqflag);
1814		else {
1815			KASSERT(THREAD_CAN_MIGRATE(td) ||
1816			    (ts->ts_flags & TSF_BOUND) != 0,
1817			    ("Thread %p shouldn't migrate", td));
1818			mtx = sched_switch_migrate(tdq, td, srqflag);
1819		}
1820	} else {
1821		/* This thread must be going to sleep. */
1822		TDQ_LOCK(tdq);
1823		mtx = thread_lock_block(td);
1824		tdq_load_rem(tdq, td);
1825	}
1826	/*
1827	 * We enter here with the thread blocked and assigned to the
1828	 * appropriate cpu run-queue or sleep-queue and with the current
1829	 * thread-queue locked.
1830	 */
1831	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1832	newtd = choosethread();
1833	/*
1834	 * Call the MD code to switch contexts if necessary.
1835	 */
1836	if (td != newtd) {
1837#ifdef	HWPMC_HOOKS
1838		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1839			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1840#endif
1841		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1842		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1843
1844#ifdef KDTRACE_HOOKS
1845		/*
1846		 * If DTrace has set the active vtime enum to anything
1847		 * other than INACTIVE (0), then it should have set the
1848		 * function to call.
1849		 */
1850		if (dtrace_vtime_active)
1851			(*dtrace_vtime_switch_func)(newtd);
1852#endif
1853
1854		cpu_switch(td, newtd, mtx);
1855		/*
1856		 * We may return from cpu_switch on a different cpu.  However,
1857		 * we always return with td_lock pointing to the current cpu's
1858		 * run queue lock.
1859		 */
1860		cpuid = PCPU_GET(cpuid);
1861		tdq = TDQ_CPU(cpuid);
1862		lock_profile_obtain_lock_success(
1863		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1864#ifdef	HWPMC_HOOKS
1865		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1866			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1867#endif
1868	} else
1869		thread_unblock_switch(td, mtx);
1870	/*
1871	 * Assert that all went well and return.
1872	 */
1873	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1874	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1875	td->td_oncpu = cpuid;
1876}
1877
1878/*
1879 * Adjust thread priorities as a result of a nice request.
1880 */
1881void
1882sched_nice(struct proc *p, int nice)
1883{
1884	struct thread *td;
1885
1886	PROC_LOCK_ASSERT(p, MA_OWNED);
1887
1888	p->p_nice = nice;
1889	FOREACH_THREAD_IN_PROC(p, td) {
1890		thread_lock(td);
1891		sched_priority(td);
1892		sched_prio(td, td->td_base_user_pri);
1893		thread_unlock(td);
1894	}
1895}
1896
1897/*
1898 * Record the sleep time for the interactivity scorer.
1899 */
1900void
1901sched_sleep(struct thread *td, int prio)
1902{
1903
1904	THREAD_LOCK_ASSERT(td, MA_OWNED);
1905
1906	td->td_slptick = ticks;
1907	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1908		td->td_flags |= TDF_CANSWAP;
1909	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1910		return;
1911	if (static_boost == 1 && prio)
1912		sched_prio(td, prio);
1913	else if (static_boost && td->td_priority > static_boost)
1914		sched_prio(td, static_boost);
1915}
1916
1917/*
1918 * Schedule a thread to resume execution and record how long it voluntarily
1919 * slept.  We also update the pctcpu, interactivity, and priority.
1920 */
1921void
1922sched_wakeup(struct thread *td)
1923{
1924	struct td_sched *ts;
1925	int slptick;
1926
1927	THREAD_LOCK_ASSERT(td, MA_OWNED);
1928	ts = td->td_sched;
1929	td->td_flags &= ~TDF_CANSWAP;
1930	/*
1931	 * If we slept for more than a tick update our interactivity and
1932	 * priority.
1933	 */
1934	slptick = td->td_slptick;
1935	td->td_slptick = 0;
1936	if (slptick && slptick != ticks) {
1937		u_int hzticks;
1938
1939		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1940		ts->ts_slptime += hzticks;
1941		sched_interact_update(td);
1942		sched_pctcpu_update(ts);
1943	}
1944	/* Reset the slice value after we sleep. */
1945	ts->ts_slice = sched_slice;
1946	sched_add(td, SRQ_BORING);
1947}
1948
1949/*
1950 * Penalize the parent for creating a new child and initialize the child's
1951 * priority.
1952 */
1953void
1954sched_fork(struct thread *td, struct thread *child)
1955{
1956	THREAD_LOCK_ASSERT(td, MA_OWNED);
1957	sched_fork_thread(td, child);
1958	/*
1959	 * Penalize the parent and child for forking.
1960	 */
1961	sched_interact_fork(child);
1962	sched_priority(child);
1963	td->td_sched->ts_runtime += tickincr;
1964	sched_interact_update(td);
1965	sched_priority(td);
1966}
1967
1968/*
1969 * Fork a new thread, may be within the same process.
1970 */
1971void
1972sched_fork_thread(struct thread *td, struct thread *child)
1973{
1974	struct td_sched *ts;
1975	struct td_sched *ts2;
1976
1977	THREAD_LOCK_ASSERT(td, MA_OWNED);
1978	/*
1979	 * Initialize child.
1980	 */
1981	ts = td->td_sched;
1982	ts2 = child->td_sched;
1983	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1984	child->td_cpuset = cpuset_ref(td->td_cpuset);
1985	ts2->ts_cpu = ts->ts_cpu;
1986	ts2->ts_flags = 0;
1987	/*
1988	 * Grab our parents cpu estimation information.
1989	 */
1990	ts2->ts_ticks = ts->ts_ticks;
1991	ts2->ts_ltick = ts->ts_ltick;
1992	ts2->ts_incrtick = ts->ts_incrtick;
1993	ts2->ts_ftick = ts->ts_ftick;
1994	/*
1995	 * Do not inherit any borrowed priority from the parent.
1996	 */
1997	child->td_priority = child->td_base_pri;
1998	/*
1999	 * And update interactivity score.
2000	 */
2001	ts2->ts_slptime = ts->ts_slptime;
2002	ts2->ts_runtime = ts->ts_runtime;
2003	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2004#ifdef KTR
2005	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2006#endif
2007}
2008
2009/*
2010 * Adjust the priority class of a thread.
2011 */
2012void
2013sched_class(struct thread *td, int class)
2014{
2015
2016	THREAD_LOCK_ASSERT(td, MA_OWNED);
2017	if (td->td_pri_class == class)
2018		return;
2019	td->td_pri_class = class;
2020}
2021
2022/*
2023 * Return some of the child's priority and interactivity to the parent.
2024 */
2025void
2026sched_exit(struct proc *p, struct thread *child)
2027{
2028	struct thread *td;
2029
2030	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2031	    "prio:%d", child->td_priority);
2032	PROC_LOCK_ASSERT(p, MA_OWNED);
2033	td = FIRST_THREAD_IN_PROC(p);
2034	sched_exit_thread(td, child);
2035}
2036
2037/*
2038 * Penalize another thread for the time spent on this one.  This helps to
2039 * worsen the priority and interactivity of processes which schedule batch
2040 * jobs such as make.  This has little effect on the make process itself but
2041 * causes new processes spawned by it to receive worse scores immediately.
2042 */
2043void
2044sched_exit_thread(struct thread *td, struct thread *child)
2045{
2046
2047	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2048	    "prio:%d", child->td_priority);
2049	/*
2050	 * Give the child's runtime to the parent without returning the
2051	 * sleep time as a penalty to the parent.  This causes shells that
2052	 * launch expensive things to mark their children as expensive.
2053	 */
2054	thread_lock(td);
2055	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2056	sched_interact_update(td);
2057	sched_priority(td);
2058	thread_unlock(td);
2059}
2060
2061void
2062sched_preempt(struct thread *td)
2063{
2064	struct tdq *tdq;
2065
2066	thread_lock(td);
2067	tdq = TDQ_SELF();
2068	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2069	tdq->tdq_ipipending = 0;
2070	if (td->td_priority > tdq->tdq_lowpri) {
2071		int flags;
2072
2073		flags = SW_INVOL | SW_PREEMPT;
2074		if (td->td_critnest > 1)
2075			td->td_owepreempt = 1;
2076		else if (TD_IS_IDLETHREAD(td))
2077			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2078		else
2079			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2080	}
2081	thread_unlock(td);
2082}
2083
2084/*
2085 * Fix priorities on return to user-space.  Priorities may be elevated due
2086 * to static priorities in msleep() or similar.
2087 */
2088void
2089sched_userret(struct thread *td)
2090{
2091	/*
2092	 * XXX we cheat slightly on the locking here to avoid locking in
2093	 * the usual case.  Setting td_priority here is essentially an
2094	 * incomplete workaround for not setting it properly elsewhere.
2095	 * Now that some interrupt handlers are threads, not setting it
2096	 * properly elsewhere can clobber it in the window between setting
2097	 * it here and returning to user mode, so don't waste time setting
2098	 * it perfectly here.
2099	 */
2100	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2101	    ("thread with borrowed priority returning to userland"));
2102	if (td->td_priority != td->td_user_pri) {
2103		thread_lock(td);
2104		td->td_priority = td->td_user_pri;
2105		td->td_base_pri = td->td_user_pri;
2106		tdq_setlowpri(TDQ_SELF(), td);
2107		thread_unlock(td);
2108        }
2109}
2110
2111/*
2112 * Handle a stathz tick.  This is really only relevant for timeshare
2113 * threads.
2114 */
2115void
2116sched_clock(struct thread *td)
2117{
2118	struct tdq *tdq;
2119	struct td_sched *ts;
2120
2121	THREAD_LOCK_ASSERT(td, MA_OWNED);
2122	tdq = TDQ_SELF();
2123#ifdef SMP
2124	/*
2125	 * We run the long term load balancer infrequently on the first cpu.
2126	 */
2127	if (balance_tdq == tdq) {
2128		if (balance_ticks && --balance_ticks == 0)
2129			sched_balance();
2130	}
2131#endif
2132	/*
2133	 * Save the old switch count so we have a record of the last ticks
2134	 * activity.   Initialize the new switch count based on our load.
2135	 * If there is some activity seed it to reflect that.
2136	 */
2137	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2138	tdq->tdq_switchcnt = tdq->tdq_load;
2139	/*
2140	 * Advance the insert index once for each tick to ensure that all
2141	 * threads get a chance to run.
2142	 */
2143	if (tdq->tdq_idx == tdq->tdq_ridx) {
2144		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2145		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2146			tdq->tdq_ridx = tdq->tdq_idx;
2147	}
2148	ts = td->td_sched;
2149	if (td->td_pri_class & PRI_FIFO_BIT)
2150		return;
2151	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2152		/*
2153		 * We used a tick; charge it to the thread so
2154		 * that we can compute our interactivity.
2155		 */
2156		td->td_sched->ts_runtime += tickincr;
2157		sched_interact_update(td);
2158		sched_priority(td);
2159	}
2160	/*
2161	 * We used up one time slice.
2162	 */
2163	if (--ts->ts_slice > 0)
2164		return;
2165	/*
2166	 * We're out of time, force a requeue at userret().
2167	 */
2168	ts->ts_slice = sched_slice;
2169	td->td_flags |= TDF_NEEDRESCHED;
2170}
2171
2172/*
2173 * Called once per hz tick.  Used for cpu utilization information.  This
2174 * is easier than trying to scale based on stathz.
2175 */
2176void
2177sched_tick(int cnt)
2178{
2179	struct td_sched *ts;
2180
2181	ts = curthread->td_sched;
2182	/*
2183	 * Ticks is updated asynchronously on a single cpu.  Check here to
2184	 * avoid incrementing ts_ticks multiple times in a single tick.
2185	 */
2186	if (ts->ts_incrtick == ticks)
2187		return;
2188	/* Adjust ticks for pctcpu */
2189	ts->ts_ticks += cnt << SCHED_TICK_SHIFT;
2190	ts->ts_ltick = ticks;
2191	ts->ts_incrtick = ticks;
2192	/*
2193	 * Update if we've exceeded our desired tick threshold by over one
2194	 * second.
2195	 */
2196	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2197		sched_pctcpu_update(ts);
2198}
2199
2200/*
2201 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2202 * cooperative idle threads.
2203 */
2204int
2205sched_runnable(void)
2206{
2207	struct tdq *tdq;
2208	int load;
2209
2210	load = 1;
2211
2212	tdq = TDQ_SELF();
2213	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2214		if (tdq->tdq_load > 0)
2215			goto out;
2216	} else
2217		if (tdq->tdq_load - 1 > 0)
2218			goto out;
2219	load = 0;
2220out:
2221	return (load);
2222}
2223
2224/*
2225 * Choose the highest priority thread to run.  The thread is removed from
2226 * the run-queue while running however the load remains.  For SMP we set
2227 * the tdq in the global idle bitmask if it idles here.
2228 */
2229struct thread *
2230sched_choose(void)
2231{
2232	struct thread *td;
2233	struct tdq *tdq;
2234
2235	tdq = TDQ_SELF();
2236	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2237	td = tdq_choose(tdq);
2238	if (td) {
2239		td->td_sched->ts_ltick = ticks;
2240		tdq_runq_rem(tdq, td);
2241		tdq->tdq_lowpri = td->td_priority;
2242		return (td);
2243	}
2244	tdq->tdq_lowpri = PRI_MAX_IDLE;
2245	return (PCPU_GET(idlethread));
2246}
2247
2248/*
2249 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2250 * we always request it once we exit a critical section.
2251 */
2252static inline void
2253sched_setpreempt(struct thread *td)
2254{
2255	struct thread *ctd;
2256	int cpri;
2257	int pri;
2258
2259	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2260
2261	ctd = curthread;
2262	pri = td->td_priority;
2263	cpri = ctd->td_priority;
2264	if (pri < cpri)
2265		ctd->td_flags |= TDF_NEEDRESCHED;
2266	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2267		return;
2268	if (!sched_shouldpreempt(pri, cpri, 0))
2269		return;
2270	ctd->td_owepreempt = 1;
2271}
2272
2273/*
2274 * Add a thread to a thread queue.  Select the appropriate runq and add the
2275 * thread to it.  This is the internal function called when the tdq is
2276 * predetermined.
2277 */
2278void
2279tdq_add(struct tdq *tdq, struct thread *td, int flags)
2280{
2281
2282	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2283	KASSERT((td->td_inhibitors == 0),
2284	    ("sched_add: trying to run inhibited thread"));
2285	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2286	    ("sched_add: bad thread state"));
2287	KASSERT(td->td_flags & TDF_INMEM,
2288	    ("sched_add: thread swapped out"));
2289
2290	if (td->td_priority < tdq->tdq_lowpri)
2291		tdq->tdq_lowpri = td->td_priority;
2292	tdq_runq_add(tdq, td, flags);
2293	tdq_load_add(tdq, td);
2294}
2295
2296/*
2297 * Select the target thread queue and add a thread to it.  Request
2298 * preemption or IPI a remote processor if required.
2299 */
2300void
2301sched_add(struct thread *td, int flags)
2302{
2303	struct tdq *tdq;
2304#ifdef SMP
2305	int cpu;
2306#endif
2307
2308	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2309	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2310	    sched_tdname(curthread));
2311	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2312	    KTR_ATTR_LINKED, sched_tdname(td));
2313	THREAD_LOCK_ASSERT(td, MA_OWNED);
2314	/*
2315	 * Recalculate the priority before we select the target cpu or
2316	 * run-queue.
2317	 */
2318	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2319		sched_priority(td);
2320#ifdef SMP
2321	/*
2322	 * Pick the destination cpu and if it isn't ours transfer to the
2323	 * target cpu.
2324	 */
2325	cpu = sched_pickcpu(td, flags);
2326	tdq = sched_setcpu(td, cpu, flags);
2327	tdq_add(tdq, td, flags);
2328	if (cpu != PCPU_GET(cpuid)) {
2329		tdq_notify(tdq, td);
2330		return;
2331	}
2332#else
2333	tdq = TDQ_SELF();
2334	TDQ_LOCK(tdq);
2335	/*
2336	 * Now that the thread is moving to the run-queue, set the lock
2337	 * to the scheduler's lock.
2338	 */
2339	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2340	tdq_add(tdq, td, flags);
2341#endif
2342	if (!(flags & SRQ_YIELDING))
2343		sched_setpreempt(td);
2344}
2345
2346/*
2347 * Remove a thread from a run-queue without running it.  This is used
2348 * when we're stealing a thread from a remote queue.  Otherwise all threads
2349 * exit by calling sched_exit_thread() and sched_throw() themselves.
2350 */
2351void
2352sched_rem(struct thread *td)
2353{
2354	struct tdq *tdq;
2355
2356	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2357	    "prio:%d", td->td_priority);
2358	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2359	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2360	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2361	KASSERT(TD_ON_RUNQ(td),
2362	    ("sched_rem: thread not on run queue"));
2363	tdq_runq_rem(tdq, td);
2364	tdq_load_rem(tdq, td);
2365	TD_SET_CAN_RUN(td);
2366	if (td->td_priority == tdq->tdq_lowpri)
2367		tdq_setlowpri(tdq, NULL);
2368}
2369
2370/*
2371 * Fetch cpu utilization information.  Updates on demand.
2372 */
2373fixpt_t
2374sched_pctcpu(struct thread *td)
2375{
2376	fixpt_t pctcpu;
2377	struct td_sched *ts;
2378
2379	pctcpu = 0;
2380	ts = td->td_sched;
2381	if (ts == NULL)
2382		return (0);
2383
2384	THREAD_LOCK_ASSERT(td, MA_OWNED);
2385	if (ts->ts_ticks) {
2386		int rtick;
2387
2388		sched_pctcpu_update(ts);
2389		/* How many rtick per second ? */
2390		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2391		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2392	}
2393
2394	return (pctcpu);
2395}
2396
2397/*
2398 * Enforce affinity settings for a thread.  Called after adjustments to
2399 * cpumask.
2400 */
2401void
2402sched_affinity(struct thread *td)
2403{
2404#ifdef SMP
2405	struct td_sched *ts;
2406
2407	THREAD_LOCK_ASSERT(td, MA_OWNED);
2408	ts = td->td_sched;
2409	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2410		return;
2411	if (TD_ON_RUNQ(td)) {
2412		sched_rem(td);
2413		sched_add(td, SRQ_BORING);
2414		return;
2415	}
2416	if (!TD_IS_RUNNING(td))
2417		return;
2418	/*
2419	 * Force a switch before returning to userspace.  If the
2420	 * target thread is not running locally send an ipi to force
2421	 * the issue.
2422	 */
2423	td->td_flags |= TDF_NEEDRESCHED;
2424	if (td != curthread)
2425		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2426#endif
2427}
2428
2429/*
2430 * Bind a thread to a target cpu.
2431 */
2432void
2433sched_bind(struct thread *td, int cpu)
2434{
2435	struct td_sched *ts;
2436
2437	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2438	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2439	ts = td->td_sched;
2440	if (ts->ts_flags & TSF_BOUND)
2441		sched_unbind(td);
2442	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2443	ts->ts_flags |= TSF_BOUND;
2444	sched_pin();
2445	if (PCPU_GET(cpuid) == cpu)
2446		return;
2447	ts->ts_cpu = cpu;
2448	/* When we return from mi_switch we'll be on the correct cpu. */
2449	mi_switch(SW_VOL, NULL);
2450}
2451
2452/*
2453 * Release a bound thread.
2454 */
2455void
2456sched_unbind(struct thread *td)
2457{
2458	struct td_sched *ts;
2459
2460	THREAD_LOCK_ASSERT(td, MA_OWNED);
2461	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2462	ts = td->td_sched;
2463	if ((ts->ts_flags & TSF_BOUND) == 0)
2464		return;
2465	ts->ts_flags &= ~TSF_BOUND;
2466	sched_unpin();
2467}
2468
2469int
2470sched_is_bound(struct thread *td)
2471{
2472	THREAD_LOCK_ASSERT(td, MA_OWNED);
2473	return (td->td_sched->ts_flags & TSF_BOUND);
2474}
2475
2476/*
2477 * Basic yield call.
2478 */
2479void
2480sched_relinquish(struct thread *td)
2481{
2482	thread_lock(td);
2483	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2484	thread_unlock(td);
2485}
2486
2487/*
2488 * Return the total system load.
2489 */
2490int
2491sched_load(void)
2492{
2493#ifdef SMP
2494	int total;
2495	int i;
2496
2497	total = 0;
2498	CPU_FOREACH(i)
2499		total += TDQ_CPU(i)->tdq_sysload;
2500	return (total);
2501#else
2502	return (TDQ_SELF()->tdq_sysload);
2503#endif
2504}
2505
2506int
2507sched_sizeof_proc(void)
2508{
2509	return (sizeof(struct proc));
2510}
2511
2512int
2513sched_sizeof_thread(void)
2514{
2515	return (sizeof(struct thread) + sizeof(struct td_sched));
2516}
2517
2518#ifdef SMP
2519#define	TDQ_IDLESPIN(tdq)						\
2520    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2521#else
2522#define	TDQ_IDLESPIN(tdq)	1
2523#endif
2524
2525/*
2526 * The actual idle process.
2527 */
2528void
2529sched_idletd(void *dummy)
2530{
2531	struct thread *td;
2532	struct tdq *tdq;
2533	int switchcnt;
2534	int i;
2535
2536	mtx_assert(&Giant, MA_NOTOWNED);
2537	td = curthread;
2538	tdq = TDQ_SELF();
2539	for (;;) {
2540#ifdef SMP
2541		if (tdq_idled(tdq) == 0)
2542			continue;
2543#endif
2544		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2545		/*
2546		 * If we're switching very frequently, spin while checking
2547		 * for load rather than entering a low power state that
2548		 * may require an IPI.  However, don't do any busy
2549		 * loops while on SMT machines as this simply steals
2550		 * cycles from cores doing useful work.
2551		 */
2552		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2553			for (i = 0; i < sched_idlespins; i++) {
2554				if (tdq->tdq_load)
2555					break;
2556				cpu_spinwait();
2557			}
2558		}
2559		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2560		if (tdq->tdq_load == 0) {
2561			tdq->tdq_cpu_idle = 1;
2562			if (tdq->tdq_load == 0) {
2563				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2564				tdq->tdq_switchcnt++;
2565			}
2566			tdq->tdq_cpu_idle = 0;
2567		}
2568		if (tdq->tdq_load) {
2569			thread_lock(td);
2570			mi_switch(SW_VOL | SWT_IDLE, NULL);
2571			thread_unlock(td);
2572		}
2573	}
2574}
2575
2576/*
2577 * A CPU is entering for the first time or a thread is exiting.
2578 */
2579void
2580sched_throw(struct thread *td)
2581{
2582	struct thread *newtd;
2583	struct tdq *tdq;
2584
2585	tdq = TDQ_SELF();
2586	if (td == NULL) {
2587		/* Correct spinlock nesting and acquire the correct lock. */
2588		TDQ_LOCK(tdq);
2589		spinlock_exit();
2590		PCPU_SET(switchtime, cpu_ticks());
2591		PCPU_SET(switchticks, ticks);
2592	} else {
2593		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2594		tdq_load_rem(tdq, td);
2595		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2596	}
2597	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2598	newtd = choosethread();
2599	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2600	cpu_throw(td, newtd);		/* doesn't return */
2601}
2602
2603/*
2604 * This is called from fork_exit().  Just acquire the correct locks and
2605 * let fork do the rest of the work.
2606 */
2607void
2608sched_fork_exit(struct thread *td)
2609{
2610	struct td_sched *ts;
2611	struct tdq *tdq;
2612	int cpuid;
2613
2614	/*
2615	 * Finish setting up thread glue so that it begins execution in a
2616	 * non-nested critical section with the scheduler lock held.
2617	 */
2618	cpuid = PCPU_GET(cpuid);
2619	tdq = TDQ_CPU(cpuid);
2620	ts = td->td_sched;
2621	if (TD_IS_IDLETHREAD(td))
2622		td->td_lock = TDQ_LOCKPTR(tdq);
2623	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2624	td->td_oncpu = cpuid;
2625	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2626	lock_profile_obtain_lock_success(
2627	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2628}
2629
2630/*
2631 * Create on first use to catch odd startup conditons.
2632 */
2633char *
2634sched_tdname(struct thread *td)
2635{
2636#ifdef KTR
2637	struct td_sched *ts;
2638
2639	ts = td->td_sched;
2640	if (ts->ts_name[0] == '\0')
2641		snprintf(ts->ts_name, sizeof(ts->ts_name),
2642		    "%s tid %d", td->td_name, td->td_tid);
2643	return (ts->ts_name);
2644#else
2645	return (td->td_name);
2646#endif
2647}
2648
2649#ifdef SMP
2650
2651/*
2652 * Build the CPU topology dump string. Is recursively called to collect
2653 * the topology tree.
2654 */
2655static int
2656sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2657    int indent)
2658{
2659	char cpusetbuf[CPUSETBUFSIZ];
2660	int i, first;
2661
2662	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2663	    "", 1 + indent / 2, cg->cg_level);
2664	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2665	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2666	first = TRUE;
2667	for (i = 0; i < MAXCPU; i++) {
2668		if (CPU_ISSET(i, &cg->cg_mask)) {
2669			if (!first)
2670				sbuf_printf(sb, ", ");
2671			else
2672				first = FALSE;
2673			sbuf_printf(sb, "%d", i);
2674		}
2675	}
2676	sbuf_printf(sb, "</cpu>\n");
2677
2678	if (cg->cg_flags != 0) {
2679		sbuf_printf(sb, "%*s <flags>", indent, "");
2680		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2681			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2682		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2683			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2684		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2685			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2686		sbuf_printf(sb, "</flags>\n");
2687	}
2688
2689	if (cg->cg_children > 0) {
2690		sbuf_printf(sb, "%*s <children>\n", indent, "");
2691		for (i = 0; i < cg->cg_children; i++)
2692			sysctl_kern_sched_topology_spec_internal(sb,
2693			    &cg->cg_child[i], indent+2);
2694		sbuf_printf(sb, "%*s </children>\n", indent, "");
2695	}
2696	sbuf_printf(sb, "%*s</group>\n", indent, "");
2697	return (0);
2698}
2699
2700/*
2701 * Sysctl handler for retrieving topology dump. It's a wrapper for
2702 * the recursive sysctl_kern_smp_topology_spec_internal().
2703 */
2704static int
2705sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2706{
2707	struct sbuf *topo;
2708	int err;
2709
2710	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2711
2712	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2713	if (topo == NULL)
2714		return (ENOMEM);
2715
2716	sbuf_printf(topo, "<groups>\n");
2717	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2718	sbuf_printf(topo, "</groups>\n");
2719
2720	if (err == 0) {
2721		sbuf_finish(topo);
2722		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2723	}
2724	sbuf_delete(topo);
2725	return (err);
2726}
2727
2728#endif
2729
2730SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2731SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2732    "Scheduler name");
2733SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2734    "Slice size for timeshare threads");
2735SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2736     "Interactivity score threshold");
2737SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2738     0,"Min priority for preemption, lower priorities have greater precedence");
2739SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2740     0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2741SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2742     0,"Number of times idle will spin waiting for new work.");
2743SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2744     0,"Threshold before we will permit idle spinning.");
2745#ifdef SMP
2746SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2747    "Number of hz ticks to keep thread affinity for");
2748SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2749    "Enables the long-term load balancer");
2750SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2751    &balance_interval, 0,
2752    "Average frequency in stathz ticks to run the long-term balancer");
2753SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2754    "Steals work from another hyper-threaded core on idle");
2755SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2756    "Attempts to steal work from other cores before idling");
2757SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2758    "Minimum load on remote cpu before we'll steal");
2759
2760/* Retrieve SMP topology */
2761SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2762    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2763    "XML dump of detected CPU topology");
2764
2765#endif
2766
2767/* ps compat.  All cpu percentages from ULE are weighted. */
2768static int ccpu = 0;
2769SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2770