sched_ule.c revision 210117
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 210117 2010-07-15 13:46:30Z ivoras $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/turnstile.h>
61#include <sys/umtx.h>
62#include <sys/vmmeter.h>
63#include <sys/cpuset.h>
64#include <sys/sbuf.h>
65#ifdef KTRACE
66#include <sys/uio.h>
67#include <sys/ktrace.h>
68#endif
69
70#ifdef HWPMC_HOOKS
71#include <sys/pmckern.h>
72#endif
73
74#ifdef KDTRACE_HOOKS
75#include <sys/dtrace_bsd.h>
76int				dtrace_vtime_active;
77dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
78#endif
79
80#include <machine/cpu.h>
81#include <machine/smp.h>
82
83#if defined(__sparc64__)
84#error "This architecture is not currently compatible with ULE"
85#endif
86
87#define	KTR_ULE	0
88
89#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
90#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
91#define	TDQ_LOADNAME_LEN	(PCPU_NAME_LEN + sizeof(" load"))
92
93/*
94 * Thread scheduler specific section.  All fields are protected
95 * by the thread lock.
96 */
97struct td_sched {
98	struct runq	*ts_runq;	/* Run-queue we're queued on. */
99	short		ts_flags;	/* TSF_* flags. */
100	u_char		ts_cpu;		/* CPU that we have affinity for. */
101	int		ts_rltick;	/* Real last tick, for affinity. */
102	int		ts_slice;	/* Ticks of slice remaining. */
103	u_int		ts_slptime;	/* Number of ticks we vol. slept */
104	u_int		ts_runtime;	/* Number of ticks we were running */
105	int		ts_ltick;	/* Last tick that we were running on */
106	int		ts_incrtick;	/* Last tick that we incremented on */
107	int		ts_ftick;	/* First tick that we were running on */
108	int		ts_ticks;	/* Tick count */
109#ifdef KTR
110	char		ts_name[TS_NAME_LEN];
111#endif
112};
113/* flags kept in ts_flags */
114#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
115#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
116
117static struct td_sched td_sched0;
118
119#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
120#define	THREAD_CAN_SCHED(td, cpu)	\
121    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
122
123/*
124 * Cpu percentage computation macros and defines.
125 *
126 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
127 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
128 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
129 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
130 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
131 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
132 */
133#define	SCHED_TICK_SECS		10
134#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
135#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
136#define	SCHED_TICK_SHIFT	10
137#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
138#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
139
140/*
141 * These macros determine priorities for non-interactive threads.  They are
142 * assigned a priority based on their recent cpu utilization as expressed
143 * by the ratio of ticks to the tick total.  NHALF priorities at the start
144 * and end of the MIN to MAX timeshare range are only reachable with negative
145 * or positive nice respectively.
146 *
147 * PRI_RANGE:	Priority range for utilization dependent priorities.
148 * PRI_NRESV:	Number of nice values.
149 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
150 * PRI_NICE:	Determines the part of the priority inherited from nice.
151 */
152#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
153#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
154#define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
155#define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
156#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN)
157#define	SCHED_PRI_TICKS(ts)						\
158    (SCHED_TICK_HZ((ts)) /						\
159    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
160#define	SCHED_PRI_NICE(nice)	(nice)
161
162/*
163 * These determine the interactivity of a process.  Interactivity differs from
164 * cpu utilization in that it expresses the voluntary time slept vs time ran
165 * while cpu utilization includes all time not running.  This more accurately
166 * models the intent of the thread.
167 *
168 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
169 *		before throttling back.
170 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
171 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
172 * INTERACT_THRESH:	Threshhold for placement on the current runq.
173 */
174#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
175#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
176#define	SCHED_INTERACT_MAX	(100)
177#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
178#define	SCHED_INTERACT_THRESH	(30)
179
180/*
181 * tickincr:		Converts a stathz tick into a hz domain scaled by
182 *			the shift factor.  Without the shift the error rate
183 *			due to rounding would be unacceptably high.
184 * realstathz:		stathz is sometimes 0 and run off of hz.
185 * sched_slice:		Runtime of each thread before rescheduling.
186 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
187 */
188static int sched_interact = SCHED_INTERACT_THRESH;
189static int realstathz;
190static int tickincr;
191static int sched_slice = 1;
192#ifdef PREEMPTION
193#ifdef FULL_PREEMPTION
194static int preempt_thresh = PRI_MAX_IDLE;
195#else
196static int preempt_thresh = PRI_MIN_KERN;
197#endif
198#else
199static int preempt_thresh = 0;
200#endif
201static int static_boost = PRI_MIN_TIMESHARE;
202static int sched_idlespins = 10000;
203static int sched_idlespinthresh = 4;
204
205/*
206 * tdq - per processor runqs and statistics.  All fields are protected by the
207 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
208 * locking in sched_pickcpu();
209 */
210struct tdq {
211	/* Ordered to improve efficiency of cpu_search() and switch(). */
212	struct mtx	tdq_lock;		/* run queue lock. */
213	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
214	volatile int	tdq_load;		/* Aggregate load. */
215	int		tdq_sysload;		/* For loadavg, !ITHD load. */
216	int		tdq_transferable;	/* Transferable thread count. */
217	short		tdq_switchcnt;		/* Switches this tick. */
218	short		tdq_oldswitchcnt;	/* Switches last tick. */
219	u_char		tdq_lowpri;		/* Lowest priority thread. */
220	u_char		tdq_ipipending;		/* IPI pending. */
221	u_char		tdq_idx;		/* Current insert index. */
222	u_char		tdq_ridx;		/* Current removal index. */
223	struct runq	tdq_realtime;		/* real-time run queue. */
224	struct runq	tdq_timeshare;		/* timeshare run queue. */
225	struct runq	tdq_idle;		/* Queue of IDLE threads. */
226	char		tdq_name[TDQ_NAME_LEN];
227#ifdef KTR
228	char		tdq_loadname[TDQ_LOADNAME_LEN];
229#endif
230} __aligned(64);
231
232/* Idle thread states and config. */
233#define	TDQ_RUNNING	1
234#define	TDQ_IDLE	2
235
236#ifdef SMP
237struct cpu_group *cpu_top;		/* CPU topology */
238
239#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
240#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
241
242/*
243 * Run-time tunables.
244 */
245static int rebalance = 1;
246static int balance_interval = 128;	/* Default set in sched_initticks(). */
247static int affinity;
248static int steal_htt = 1;
249static int steal_idle = 1;
250static int steal_thresh = 2;
251
252/*
253 * One thread queue per processor.
254 */
255static struct tdq	tdq_cpu[MAXCPU];
256static struct tdq	*balance_tdq;
257static int balance_ticks;
258
259#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
260#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
261#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
262#else	/* !SMP */
263static struct tdq	tdq_cpu;
264
265#define	TDQ_ID(x)	(0)
266#define	TDQ_SELF()	(&tdq_cpu)
267#define	TDQ_CPU(x)	(&tdq_cpu)
268#endif
269
270#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
271#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
272#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
273#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
274#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
275
276static void sched_priority(struct thread *);
277static void sched_thread_priority(struct thread *, u_char);
278static int sched_interact_score(struct thread *);
279static void sched_interact_update(struct thread *);
280static void sched_interact_fork(struct thread *);
281static void sched_pctcpu_update(struct td_sched *);
282
283/* Operations on per processor queues */
284static struct thread *tdq_choose(struct tdq *);
285static void tdq_setup(struct tdq *);
286static void tdq_load_add(struct tdq *, struct thread *);
287static void tdq_load_rem(struct tdq *, struct thread *);
288static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
289static __inline void tdq_runq_rem(struct tdq *, struct thread *);
290static inline int sched_shouldpreempt(int, int, int);
291void tdq_print(int cpu);
292static void runq_print(struct runq *rq);
293static void tdq_add(struct tdq *, struct thread *, int);
294#ifdef SMP
295static int tdq_move(struct tdq *, struct tdq *);
296static int tdq_idled(struct tdq *);
297static void tdq_notify(struct tdq *, struct thread *);
298static struct thread *tdq_steal(struct tdq *, int);
299static struct thread *runq_steal(struct runq *, int);
300static int sched_pickcpu(struct thread *, int);
301static void sched_balance(void);
302static int sched_balance_pair(struct tdq *, struct tdq *);
303static inline struct tdq *sched_setcpu(struct thread *, int, int);
304static inline void thread_unblock_switch(struct thread *, struct mtx *);
305static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
306static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
307static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
308    struct cpu_group *cg, int indent);
309#endif
310
311static void sched_setup(void *dummy);
312SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
313
314static void sched_initticks(void *dummy);
315SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
316    NULL);
317
318/*
319 * Print the threads waiting on a run-queue.
320 */
321static void
322runq_print(struct runq *rq)
323{
324	struct rqhead *rqh;
325	struct thread *td;
326	int pri;
327	int j;
328	int i;
329
330	for (i = 0; i < RQB_LEN; i++) {
331		printf("\t\trunq bits %d 0x%zx\n",
332		    i, rq->rq_status.rqb_bits[i]);
333		for (j = 0; j < RQB_BPW; j++)
334			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
335				pri = j + (i << RQB_L2BPW);
336				rqh = &rq->rq_queues[pri];
337				TAILQ_FOREACH(td, rqh, td_runq) {
338					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
339					    td, td->td_name, td->td_priority,
340					    td->td_rqindex, pri);
341				}
342			}
343	}
344}
345
346/*
347 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
348 */
349void
350tdq_print(int cpu)
351{
352	struct tdq *tdq;
353
354	tdq = TDQ_CPU(cpu);
355
356	printf("tdq %d:\n", TDQ_ID(tdq));
357	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
358	printf("\tLock name:      %s\n", tdq->tdq_name);
359	printf("\tload:           %d\n", tdq->tdq_load);
360	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
361	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
362	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
363	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
364	printf("\tload transferable: %d\n", tdq->tdq_transferable);
365	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
366	printf("\trealtime runq:\n");
367	runq_print(&tdq->tdq_realtime);
368	printf("\ttimeshare runq:\n");
369	runq_print(&tdq->tdq_timeshare);
370	printf("\tidle runq:\n");
371	runq_print(&tdq->tdq_idle);
372}
373
374static inline int
375sched_shouldpreempt(int pri, int cpri, int remote)
376{
377	/*
378	 * If the new priority is not better than the current priority there is
379	 * nothing to do.
380	 */
381	if (pri >= cpri)
382		return (0);
383	/*
384	 * Always preempt idle.
385	 */
386	if (cpri >= PRI_MIN_IDLE)
387		return (1);
388	/*
389	 * If preemption is disabled don't preempt others.
390	 */
391	if (preempt_thresh == 0)
392		return (0);
393	/*
394	 * Preempt if we exceed the threshold.
395	 */
396	if (pri <= preempt_thresh)
397		return (1);
398	/*
399	 * If we're realtime or better and there is timeshare or worse running
400	 * preempt only remote processors.
401	 */
402	if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
403		return (1);
404	return (0);
405}
406
407#define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
408/*
409 * Add a thread to the actual run-queue.  Keeps transferable counts up to
410 * date with what is actually on the run-queue.  Selects the correct
411 * queue position for timeshare threads.
412 */
413static __inline void
414tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
415{
416	struct td_sched *ts;
417	u_char pri;
418
419	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
420	THREAD_LOCK_ASSERT(td, MA_OWNED);
421
422	pri = td->td_priority;
423	ts = td->td_sched;
424	TD_SET_RUNQ(td);
425	if (THREAD_CAN_MIGRATE(td)) {
426		tdq->tdq_transferable++;
427		ts->ts_flags |= TSF_XFERABLE;
428	}
429	if (pri <= PRI_MAX_REALTIME) {
430		ts->ts_runq = &tdq->tdq_realtime;
431	} else if (pri <= PRI_MAX_TIMESHARE) {
432		ts->ts_runq = &tdq->tdq_timeshare;
433		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
434			("Invalid priority %d on timeshare runq", pri));
435		/*
436		 * This queue contains only priorities between MIN and MAX
437		 * realtime.  Use the whole queue to represent these values.
438		 */
439		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
440			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
441			pri = (pri + tdq->tdq_idx) % RQ_NQS;
442			/*
443			 * This effectively shortens the queue by one so we
444			 * can have a one slot difference between idx and
445			 * ridx while we wait for threads to drain.
446			 */
447			if (tdq->tdq_ridx != tdq->tdq_idx &&
448			    pri == tdq->tdq_ridx)
449				pri = (unsigned char)(pri - 1) % RQ_NQS;
450		} else
451			pri = tdq->tdq_ridx;
452		runq_add_pri(ts->ts_runq, td, pri, flags);
453		return;
454	} else
455		ts->ts_runq = &tdq->tdq_idle;
456	runq_add(ts->ts_runq, td, flags);
457}
458
459/*
460 * Remove a thread from a run-queue.  This typically happens when a thread
461 * is selected to run.  Running threads are not on the queue and the
462 * transferable count does not reflect them.
463 */
464static __inline void
465tdq_runq_rem(struct tdq *tdq, struct thread *td)
466{
467	struct td_sched *ts;
468
469	ts = td->td_sched;
470	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
471	KASSERT(ts->ts_runq != NULL,
472	    ("tdq_runq_remove: thread %p null ts_runq", td));
473	if (ts->ts_flags & TSF_XFERABLE) {
474		tdq->tdq_transferable--;
475		ts->ts_flags &= ~TSF_XFERABLE;
476	}
477	if (ts->ts_runq == &tdq->tdq_timeshare) {
478		if (tdq->tdq_idx != tdq->tdq_ridx)
479			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
480		else
481			runq_remove_idx(ts->ts_runq, td, NULL);
482	} else
483		runq_remove(ts->ts_runq, td);
484}
485
486/*
487 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
488 * for this thread to the referenced thread queue.
489 */
490static void
491tdq_load_add(struct tdq *tdq, struct thread *td)
492{
493
494	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
495	THREAD_LOCK_ASSERT(td, MA_OWNED);
496
497	tdq->tdq_load++;
498	if ((td->td_flags & TDF_NOLOAD) == 0)
499		tdq->tdq_sysload++;
500	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
501}
502
503/*
504 * Remove the load from a thread that is transitioning to a sleep state or
505 * exiting.
506 */
507static void
508tdq_load_rem(struct tdq *tdq, struct thread *td)
509{
510
511	THREAD_LOCK_ASSERT(td, MA_OWNED);
512	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
513	KASSERT(tdq->tdq_load != 0,
514	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
515
516	tdq->tdq_load--;
517	if ((td->td_flags & TDF_NOLOAD) == 0)
518		tdq->tdq_sysload--;
519	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
520}
521
522/*
523 * Set lowpri to its exact value by searching the run-queue and
524 * evaluating curthread.  curthread may be passed as an optimization.
525 */
526static void
527tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
528{
529	struct thread *td;
530
531	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
532	if (ctd == NULL)
533		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
534	td = tdq_choose(tdq);
535	if (td == NULL || td->td_priority > ctd->td_priority)
536		tdq->tdq_lowpri = ctd->td_priority;
537	else
538		tdq->tdq_lowpri = td->td_priority;
539}
540
541#ifdef SMP
542struct cpu_search {
543	cpuset_t cs_mask;
544	u_int	cs_load;
545	u_int	cs_cpu;
546	int	cs_limit;	/* Min priority for low min load for high. */
547};
548
549#define	CPU_SEARCH_LOWEST	0x1
550#define	CPU_SEARCH_HIGHEST	0x2
551#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
552
553#define	CPUSET_FOREACH(cpu, mask)				\
554	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
555		if ((mask) & 1 << (cpu))
556
557static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
558    struct cpu_search *high, const int match);
559int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
560int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
561int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
562    struct cpu_search *high);
563
564/*
565 * This routine compares according to the match argument and should be
566 * reduced in actual instantiations via constant propagation and dead code
567 * elimination.
568 */
569static __inline int
570cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
571    const int match)
572{
573	struct tdq *tdq;
574
575	tdq = TDQ_CPU(cpu);
576	if (match & CPU_SEARCH_LOWEST)
577		if (CPU_ISSET(cpu, &low->cs_mask) &&
578		    tdq->tdq_load < low->cs_load &&
579		    tdq->tdq_lowpri > low->cs_limit) {
580			low->cs_cpu = cpu;
581			low->cs_load = tdq->tdq_load;
582		}
583	if (match & CPU_SEARCH_HIGHEST)
584		if (CPU_ISSET(cpu, &high->cs_mask) &&
585		    tdq->tdq_load >= high->cs_limit &&
586		    tdq->tdq_load > high->cs_load &&
587		    tdq->tdq_transferable) {
588			high->cs_cpu = cpu;
589			high->cs_load = tdq->tdq_load;
590		}
591	return (tdq->tdq_load);
592}
593
594/*
595 * Search the tree of cpu_groups for the lowest or highest loaded cpu
596 * according to the match argument.  This routine actually compares the
597 * load on all paths through the tree and finds the least loaded cpu on
598 * the least loaded path, which may differ from the least loaded cpu in
599 * the system.  This balances work among caches and busses.
600 *
601 * This inline is instantiated in three forms below using constants for the
602 * match argument.  It is reduced to the minimum set for each case.  It is
603 * also recursive to the depth of the tree.
604 */
605static __inline int
606cpu_search(struct cpu_group *cg, struct cpu_search *low,
607    struct cpu_search *high, const int match)
608{
609	int total;
610
611	total = 0;
612	if (cg->cg_children) {
613		struct cpu_search lgroup;
614		struct cpu_search hgroup;
615		struct cpu_group *child;
616		u_int lload;
617		int hload;
618		int load;
619		int i;
620
621		lload = -1;
622		hload = -1;
623		for (i = 0; i < cg->cg_children; i++) {
624			child = &cg->cg_child[i];
625			if (match & CPU_SEARCH_LOWEST) {
626				lgroup = *low;
627				lgroup.cs_load = -1;
628			}
629			if (match & CPU_SEARCH_HIGHEST) {
630				hgroup = *high;
631				lgroup.cs_load = 0;
632			}
633			switch (match) {
634			case CPU_SEARCH_LOWEST:
635				load = cpu_search_lowest(child, &lgroup);
636				break;
637			case CPU_SEARCH_HIGHEST:
638				load = cpu_search_highest(child, &hgroup);
639				break;
640			case CPU_SEARCH_BOTH:
641				load = cpu_search_both(child, &lgroup, &hgroup);
642				break;
643			}
644			total += load;
645			if (match & CPU_SEARCH_LOWEST)
646				if (load < lload || low->cs_cpu == -1) {
647					*low = lgroup;
648					lload = load;
649				}
650			if (match & CPU_SEARCH_HIGHEST)
651				if (load > hload || high->cs_cpu == -1) {
652					hload = load;
653					*high = hgroup;
654				}
655		}
656	} else {
657		int cpu;
658
659		CPUSET_FOREACH(cpu, cg->cg_mask)
660			total += cpu_compare(cpu, low, high, match);
661	}
662	return (total);
663}
664
665/*
666 * cpu_search instantiations must pass constants to maintain the inline
667 * optimization.
668 */
669int
670cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
671{
672	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
673}
674
675int
676cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
677{
678	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
679}
680
681int
682cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
683    struct cpu_search *high)
684{
685	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
686}
687
688/*
689 * Find the cpu with the least load via the least loaded path that has a
690 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
691 * acceptable.
692 */
693static inline int
694sched_lowest(struct cpu_group *cg, cpuset_t mask, int pri)
695{
696	struct cpu_search low;
697
698	low.cs_cpu = -1;
699	low.cs_load = -1;
700	low.cs_mask = mask;
701	low.cs_limit = pri;
702	cpu_search_lowest(cg, &low);
703	return low.cs_cpu;
704}
705
706/*
707 * Find the cpu with the highest load via the highest loaded path.
708 */
709static inline int
710sched_highest(struct cpu_group *cg, cpuset_t mask, int minload)
711{
712	struct cpu_search high;
713
714	high.cs_cpu = -1;
715	high.cs_load = 0;
716	high.cs_mask = mask;
717	high.cs_limit = minload;
718	cpu_search_highest(cg, &high);
719	return high.cs_cpu;
720}
721
722/*
723 * Simultaneously find the highest and lowest loaded cpu reachable via
724 * cg.
725 */
726static inline void
727sched_both(struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
728{
729	struct cpu_search high;
730	struct cpu_search low;
731
732	low.cs_cpu = -1;
733	low.cs_limit = -1;
734	low.cs_load = -1;
735	low.cs_mask = mask;
736	high.cs_load = 0;
737	high.cs_cpu = -1;
738	high.cs_limit = -1;
739	high.cs_mask = mask;
740	cpu_search_both(cg, &low, &high);
741	*lowcpu = low.cs_cpu;
742	*highcpu = high.cs_cpu;
743	return;
744}
745
746static void
747sched_balance_group(struct cpu_group *cg)
748{
749	cpuset_t mask;
750	int high;
751	int low;
752	int i;
753
754	CPU_FILL(&mask);
755	for (;;) {
756		sched_both(cg, mask, &low, &high);
757		if (low == high || low == -1 || high == -1)
758			break;
759		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
760			break;
761		/*
762		 * If we failed to move any threads determine which cpu
763		 * to kick out of the set and try again.
764	 	 */
765		if (TDQ_CPU(high)->tdq_transferable == 0)
766			CPU_CLR(high, &mask);
767		else
768			CPU_CLR(low, &mask);
769	}
770
771	for (i = 0; i < cg->cg_children; i++)
772		sched_balance_group(&cg->cg_child[i]);
773}
774
775static void
776sched_balance(void)
777{
778	struct tdq *tdq;
779
780	/*
781	 * Select a random time between .5 * balance_interval and
782	 * 1.5 * balance_interval.
783	 */
784	balance_ticks = max(balance_interval / 2, 1);
785	balance_ticks += random() % balance_interval;
786	if (smp_started == 0 || rebalance == 0)
787		return;
788	tdq = TDQ_SELF();
789	TDQ_UNLOCK(tdq);
790	sched_balance_group(cpu_top);
791	TDQ_LOCK(tdq);
792}
793
794/*
795 * Lock two thread queues using their address to maintain lock order.
796 */
797static void
798tdq_lock_pair(struct tdq *one, struct tdq *two)
799{
800	if (one < two) {
801		TDQ_LOCK(one);
802		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
803	} else {
804		TDQ_LOCK(two);
805		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
806	}
807}
808
809/*
810 * Unlock two thread queues.  Order is not important here.
811 */
812static void
813tdq_unlock_pair(struct tdq *one, struct tdq *two)
814{
815	TDQ_UNLOCK(one);
816	TDQ_UNLOCK(two);
817}
818
819/*
820 * Transfer load between two imbalanced thread queues.
821 */
822static int
823sched_balance_pair(struct tdq *high, struct tdq *low)
824{
825	int transferable;
826	int high_load;
827	int low_load;
828	int moved;
829	int move;
830	int diff;
831	int i;
832
833	tdq_lock_pair(high, low);
834	transferable = high->tdq_transferable;
835	high_load = high->tdq_load;
836	low_load = low->tdq_load;
837	moved = 0;
838	/*
839	 * Determine what the imbalance is and then adjust that to how many
840	 * threads we actually have to give up (transferable).
841	 */
842	if (transferable != 0) {
843		diff = high_load - low_load;
844		move = diff / 2;
845		if (diff & 0x1)
846			move++;
847		move = min(move, transferable);
848		for (i = 0; i < move; i++)
849			moved += tdq_move(high, low);
850		/*
851		 * IPI the target cpu to force it to reschedule with the new
852		 * workload.
853		 */
854		ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT);
855	}
856	tdq_unlock_pair(high, low);
857	return (moved);
858}
859
860/*
861 * Move a thread from one thread queue to another.
862 */
863static int
864tdq_move(struct tdq *from, struct tdq *to)
865{
866	struct td_sched *ts;
867	struct thread *td;
868	struct tdq *tdq;
869	int cpu;
870
871	TDQ_LOCK_ASSERT(from, MA_OWNED);
872	TDQ_LOCK_ASSERT(to, MA_OWNED);
873
874	tdq = from;
875	cpu = TDQ_ID(to);
876	td = tdq_steal(tdq, cpu);
877	if (td == NULL)
878		return (0);
879	ts = td->td_sched;
880	/*
881	 * Although the run queue is locked the thread may be blocked.  Lock
882	 * it to clear this and acquire the run-queue lock.
883	 */
884	thread_lock(td);
885	/* Drop recursive lock on from acquired via thread_lock(). */
886	TDQ_UNLOCK(from);
887	sched_rem(td);
888	ts->ts_cpu = cpu;
889	td->td_lock = TDQ_LOCKPTR(to);
890	tdq_add(to, td, SRQ_YIELDING);
891	return (1);
892}
893
894/*
895 * This tdq has idled.  Try to steal a thread from another cpu and switch
896 * to it.
897 */
898static int
899tdq_idled(struct tdq *tdq)
900{
901	struct cpu_group *cg;
902	struct tdq *steal;
903	cpuset_t mask;
904	int thresh;
905	int cpu;
906
907	if (smp_started == 0 || steal_idle == 0)
908		return (1);
909	CPU_FILL(&mask);
910	CPU_CLR(PCPU_GET(cpuid), &mask);
911	/* We don't want to be preempted while we're iterating. */
912	spinlock_enter();
913	for (cg = tdq->tdq_cg; cg != NULL; ) {
914		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
915			thresh = steal_thresh;
916		else
917			thresh = 1;
918		cpu = sched_highest(cg, mask, thresh);
919		if (cpu == -1) {
920			cg = cg->cg_parent;
921			continue;
922		}
923		steal = TDQ_CPU(cpu);
924		CPU_CLR(cpu, &mask);
925		tdq_lock_pair(tdq, steal);
926		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
927			tdq_unlock_pair(tdq, steal);
928			continue;
929		}
930		/*
931		 * If a thread was added while interrupts were disabled don't
932		 * steal one here.  If we fail to acquire one due to affinity
933		 * restrictions loop again with this cpu removed from the
934		 * set.
935		 */
936		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
937			tdq_unlock_pair(tdq, steal);
938			continue;
939		}
940		spinlock_exit();
941		TDQ_UNLOCK(steal);
942		mi_switch(SW_VOL | SWT_IDLE, NULL);
943		thread_unlock(curthread);
944
945		return (0);
946	}
947	spinlock_exit();
948	return (1);
949}
950
951/*
952 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
953 */
954static void
955tdq_notify(struct tdq *tdq, struct thread *td)
956{
957	struct thread *ctd;
958	int pri;
959	int cpu;
960
961	if (tdq->tdq_ipipending)
962		return;
963	cpu = td->td_sched->ts_cpu;
964	pri = td->td_priority;
965	ctd = pcpu_find(cpu)->pc_curthread;
966	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
967		return;
968	if (TD_IS_IDLETHREAD(ctd)) {
969		/*
970		 * If the MD code has an idle wakeup routine try that before
971		 * falling back to IPI.
972		 */
973		if (cpu_idle_wakeup(cpu))
974			return;
975	}
976	tdq->tdq_ipipending = 1;
977	ipi_selected(1 << cpu, IPI_PREEMPT);
978}
979
980/*
981 * Steals load from a timeshare queue.  Honors the rotating queue head
982 * index.
983 */
984static struct thread *
985runq_steal_from(struct runq *rq, int cpu, u_char start)
986{
987	struct rqbits *rqb;
988	struct rqhead *rqh;
989	struct thread *td;
990	int first;
991	int bit;
992	int pri;
993	int i;
994
995	rqb = &rq->rq_status;
996	bit = start & (RQB_BPW -1);
997	pri = 0;
998	first = 0;
999again:
1000	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1001		if (rqb->rqb_bits[i] == 0)
1002			continue;
1003		if (bit != 0) {
1004			for (pri = bit; pri < RQB_BPW; pri++)
1005				if (rqb->rqb_bits[i] & (1ul << pri))
1006					break;
1007			if (pri >= RQB_BPW)
1008				continue;
1009		} else
1010			pri = RQB_FFS(rqb->rqb_bits[i]);
1011		pri += (i << RQB_L2BPW);
1012		rqh = &rq->rq_queues[pri];
1013		TAILQ_FOREACH(td, rqh, td_runq) {
1014			if (first && THREAD_CAN_MIGRATE(td) &&
1015			    THREAD_CAN_SCHED(td, cpu))
1016				return (td);
1017			first = 1;
1018		}
1019	}
1020	if (start != 0) {
1021		start = 0;
1022		goto again;
1023	}
1024
1025	return (NULL);
1026}
1027
1028/*
1029 * Steals load from a standard linear queue.
1030 */
1031static struct thread *
1032runq_steal(struct runq *rq, int cpu)
1033{
1034	struct rqhead *rqh;
1035	struct rqbits *rqb;
1036	struct thread *td;
1037	int word;
1038	int bit;
1039
1040	rqb = &rq->rq_status;
1041	for (word = 0; word < RQB_LEN; word++) {
1042		if (rqb->rqb_bits[word] == 0)
1043			continue;
1044		for (bit = 0; bit < RQB_BPW; bit++) {
1045			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1046				continue;
1047			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1048			TAILQ_FOREACH(td, rqh, td_runq)
1049				if (THREAD_CAN_MIGRATE(td) &&
1050				    THREAD_CAN_SCHED(td, cpu))
1051					return (td);
1052		}
1053	}
1054	return (NULL);
1055}
1056
1057/*
1058 * Attempt to steal a thread in priority order from a thread queue.
1059 */
1060static struct thread *
1061tdq_steal(struct tdq *tdq, int cpu)
1062{
1063	struct thread *td;
1064
1065	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1066	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1067		return (td);
1068	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1069	    cpu, tdq->tdq_ridx)) != NULL)
1070		return (td);
1071	return (runq_steal(&tdq->tdq_idle, cpu));
1072}
1073
1074/*
1075 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1076 * current lock and returns with the assigned queue locked.
1077 */
1078static inline struct tdq *
1079sched_setcpu(struct thread *td, int cpu, int flags)
1080{
1081
1082	struct tdq *tdq;
1083
1084	THREAD_LOCK_ASSERT(td, MA_OWNED);
1085	tdq = TDQ_CPU(cpu);
1086	td->td_sched->ts_cpu = cpu;
1087	/*
1088	 * If the lock matches just return the queue.
1089	 */
1090	if (td->td_lock == TDQ_LOCKPTR(tdq))
1091		return (tdq);
1092#ifdef notyet
1093	/*
1094	 * If the thread isn't running its lockptr is a
1095	 * turnstile or a sleepqueue.  We can just lock_set without
1096	 * blocking.
1097	 */
1098	if (TD_CAN_RUN(td)) {
1099		TDQ_LOCK(tdq);
1100		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1101		return (tdq);
1102	}
1103#endif
1104	/*
1105	 * The hard case, migration, we need to block the thread first to
1106	 * prevent order reversals with other cpus locks.
1107	 */
1108	spinlock_enter();
1109	thread_lock_block(td);
1110	TDQ_LOCK(tdq);
1111	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1112	spinlock_exit();
1113	return (tdq);
1114}
1115
1116SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1117SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1118SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1119SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1120SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1121SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1122
1123static int
1124sched_pickcpu(struct thread *td, int flags)
1125{
1126	struct cpu_group *cg;
1127	struct td_sched *ts;
1128	struct tdq *tdq;
1129	cpuset_t mask;
1130	int self;
1131	int pri;
1132	int cpu;
1133
1134	self = PCPU_GET(cpuid);
1135	ts = td->td_sched;
1136	if (smp_started == 0)
1137		return (self);
1138	/*
1139	 * Don't migrate a running thread from sched_switch().
1140	 */
1141	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1142		return (ts->ts_cpu);
1143	/*
1144	 * Prefer to run interrupt threads on the processors that generate
1145	 * the interrupt.
1146	 */
1147	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1148	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1149		SCHED_STAT_INC(pickcpu_intrbind);
1150		ts->ts_cpu = self;
1151	}
1152	/*
1153	 * If the thread can run on the last cpu and the affinity has not
1154	 * expired or it is idle run it there.
1155	 */
1156	pri = td->td_priority;
1157	tdq = TDQ_CPU(ts->ts_cpu);
1158	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1159		if (tdq->tdq_lowpri > PRI_MIN_IDLE) {
1160			SCHED_STAT_INC(pickcpu_idle_affinity);
1161			return (ts->ts_cpu);
1162		}
1163		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) {
1164			SCHED_STAT_INC(pickcpu_affinity);
1165			return (ts->ts_cpu);
1166		}
1167	}
1168	/*
1169	 * Search for the highest level in the tree that still has affinity.
1170	 */
1171	cg = NULL;
1172	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1173		if (SCHED_AFFINITY(ts, cg->cg_level))
1174			break;
1175	cpu = -1;
1176	mask = td->td_cpuset->cs_mask;
1177	if (cg)
1178		cpu = sched_lowest(cg, mask, pri);
1179	if (cpu == -1)
1180		cpu = sched_lowest(cpu_top, mask, -1);
1181	/*
1182	 * Compare the lowest loaded cpu to current cpu.
1183	 */
1184	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1185	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) {
1186		SCHED_STAT_INC(pickcpu_local);
1187		cpu = self;
1188	} else
1189		SCHED_STAT_INC(pickcpu_lowest);
1190	if (cpu != ts->ts_cpu)
1191		SCHED_STAT_INC(pickcpu_migration);
1192	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1193	return (cpu);
1194}
1195#endif
1196
1197/*
1198 * Pick the highest priority task we have and return it.
1199 */
1200static struct thread *
1201tdq_choose(struct tdq *tdq)
1202{
1203	struct thread *td;
1204
1205	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1206	td = runq_choose(&tdq->tdq_realtime);
1207	if (td != NULL)
1208		return (td);
1209	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1210	if (td != NULL) {
1211		KASSERT(td->td_priority >= PRI_MIN_TIMESHARE,
1212		    ("tdq_choose: Invalid priority on timeshare queue %d",
1213		    td->td_priority));
1214		return (td);
1215	}
1216	td = runq_choose(&tdq->tdq_idle);
1217	if (td != NULL) {
1218		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1219		    ("tdq_choose: Invalid priority on idle queue %d",
1220		    td->td_priority));
1221		return (td);
1222	}
1223
1224	return (NULL);
1225}
1226
1227/*
1228 * Initialize a thread queue.
1229 */
1230static void
1231tdq_setup(struct tdq *tdq)
1232{
1233
1234	if (bootverbose)
1235		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1236	runq_init(&tdq->tdq_realtime);
1237	runq_init(&tdq->tdq_timeshare);
1238	runq_init(&tdq->tdq_idle);
1239	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1240	    "sched lock %d", (int)TDQ_ID(tdq));
1241	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1242	    MTX_SPIN | MTX_RECURSE);
1243#ifdef KTR
1244	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1245	    "CPU %d load", (int)TDQ_ID(tdq));
1246#endif
1247}
1248
1249#ifdef SMP
1250static void
1251sched_setup_smp(void)
1252{
1253	struct tdq *tdq;
1254	int i;
1255
1256	cpu_top = smp_topo();
1257	CPU_FOREACH(i) {
1258		tdq = TDQ_CPU(i);
1259		tdq_setup(tdq);
1260		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1261		if (tdq->tdq_cg == NULL)
1262			panic("Can't find cpu group for %d\n", i);
1263	}
1264	balance_tdq = TDQ_SELF();
1265	sched_balance();
1266}
1267#endif
1268
1269/*
1270 * Setup the thread queues and initialize the topology based on MD
1271 * information.
1272 */
1273static void
1274sched_setup(void *dummy)
1275{
1276	struct tdq *tdq;
1277
1278	tdq = TDQ_SELF();
1279#ifdef SMP
1280	sched_setup_smp();
1281#else
1282	tdq_setup(tdq);
1283#endif
1284	/*
1285	 * To avoid divide-by-zero, we set realstathz a dummy value
1286	 * in case which sched_clock() called before sched_initticks().
1287	 */
1288	realstathz = hz;
1289	sched_slice = (realstathz/10);	/* ~100ms */
1290	tickincr = 1 << SCHED_TICK_SHIFT;
1291
1292	/* Add thread0's load since it's running. */
1293	TDQ_LOCK(tdq);
1294	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1295	tdq_load_add(tdq, &thread0);
1296	tdq->tdq_lowpri = thread0.td_priority;
1297	TDQ_UNLOCK(tdq);
1298}
1299
1300/*
1301 * This routine determines the tickincr after stathz and hz are setup.
1302 */
1303/* ARGSUSED */
1304static void
1305sched_initticks(void *dummy)
1306{
1307	int incr;
1308
1309	realstathz = stathz ? stathz : hz;
1310	sched_slice = (realstathz/10);	/* ~100ms */
1311
1312	/*
1313	 * tickincr is shifted out by 10 to avoid rounding errors due to
1314	 * hz not being evenly divisible by stathz on all platforms.
1315	 */
1316	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1317	/*
1318	 * This does not work for values of stathz that are more than
1319	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1320	 */
1321	if (incr == 0)
1322		incr = 1;
1323	tickincr = incr;
1324#ifdef SMP
1325	/*
1326	 * Set the default balance interval now that we know
1327	 * what realstathz is.
1328	 */
1329	balance_interval = realstathz;
1330	/*
1331	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1332	 * This prevents excess thrashing on large machines and excess idle
1333	 * on smaller machines.
1334	 */
1335	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1336	affinity = SCHED_AFFINITY_DEFAULT;
1337#endif
1338}
1339
1340
1341/*
1342 * This is the core of the interactivity algorithm.  Determines a score based
1343 * on past behavior.  It is the ratio of sleep time to run time scaled to
1344 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1345 * differs from the cpu usage because it does not account for time spent
1346 * waiting on a run-queue.  Would be prettier if we had floating point.
1347 */
1348static int
1349sched_interact_score(struct thread *td)
1350{
1351	struct td_sched *ts;
1352	int div;
1353
1354	ts = td->td_sched;
1355	/*
1356	 * The score is only needed if this is likely to be an interactive
1357	 * task.  Don't go through the expense of computing it if there's
1358	 * no chance.
1359	 */
1360	if (sched_interact <= SCHED_INTERACT_HALF &&
1361		ts->ts_runtime >= ts->ts_slptime)
1362			return (SCHED_INTERACT_HALF);
1363
1364	if (ts->ts_runtime > ts->ts_slptime) {
1365		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1366		return (SCHED_INTERACT_HALF +
1367		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1368	}
1369	if (ts->ts_slptime > ts->ts_runtime) {
1370		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1371		return (ts->ts_runtime / div);
1372	}
1373	/* runtime == slptime */
1374	if (ts->ts_runtime)
1375		return (SCHED_INTERACT_HALF);
1376
1377	/*
1378	 * This can happen if slptime and runtime are 0.
1379	 */
1380	return (0);
1381
1382}
1383
1384/*
1385 * Scale the scheduling priority according to the "interactivity" of this
1386 * process.
1387 */
1388static void
1389sched_priority(struct thread *td)
1390{
1391	int score;
1392	int pri;
1393
1394	if (td->td_pri_class != PRI_TIMESHARE)
1395		return;
1396	/*
1397	 * If the score is interactive we place the thread in the realtime
1398	 * queue with a priority that is less than kernel and interrupt
1399	 * priorities.  These threads are not subject to nice restrictions.
1400	 *
1401	 * Scores greater than this are placed on the normal timeshare queue
1402	 * where the priority is partially decided by the most recent cpu
1403	 * utilization and the rest is decided by nice value.
1404	 *
1405	 * The nice value of the process has a linear effect on the calculated
1406	 * score.  Negative nice values make it easier for a thread to be
1407	 * considered interactive.
1408	 */
1409	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1410	if (score < sched_interact) {
1411		pri = PRI_MIN_REALTIME;
1412		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1413		    * score;
1414		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1415		    ("sched_priority: invalid interactive priority %d score %d",
1416		    pri, score));
1417	} else {
1418		pri = SCHED_PRI_MIN;
1419		if (td->td_sched->ts_ticks)
1420			pri += SCHED_PRI_TICKS(td->td_sched);
1421		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1422		KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
1423		    ("sched_priority: invalid priority %d: nice %d, "
1424		    "ticks %d ftick %d ltick %d tick pri %d",
1425		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1426		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1427		    SCHED_PRI_TICKS(td->td_sched)));
1428	}
1429	sched_user_prio(td, pri);
1430
1431	return;
1432}
1433
1434/*
1435 * This routine enforces a maximum limit on the amount of scheduling history
1436 * kept.  It is called after either the slptime or runtime is adjusted.  This
1437 * function is ugly due to integer math.
1438 */
1439static void
1440sched_interact_update(struct thread *td)
1441{
1442	struct td_sched *ts;
1443	u_int sum;
1444
1445	ts = td->td_sched;
1446	sum = ts->ts_runtime + ts->ts_slptime;
1447	if (sum < SCHED_SLP_RUN_MAX)
1448		return;
1449	/*
1450	 * This only happens from two places:
1451	 * 1) We have added an unusual amount of run time from fork_exit.
1452	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1453	 */
1454	if (sum > SCHED_SLP_RUN_MAX * 2) {
1455		if (ts->ts_runtime > ts->ts_slptime) {
1456			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1457			ts->ts_slptime = 1;
1458		} else {
1459			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1460			ts->ts_runtime = 1;
1461		}
1462		return;
1463	}
1464	/*
1465	 * If we have exceeded by more than 1/5th then the algorithm below
1466	 * will not bring us back into range.  Dividing by two here forces
1467	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1468	 */
1469	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1470		ts->ts_runtime /= 2;
1471		ts->ts_slptime /= 2;
1472		return;
1473	}
1474	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1475	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1476}
1477
1478/*
1479 * Scale back the interactivity history when a child thread is created.  The
1480 * history is inherited from the parent but the thread may behave totally
1481 * differently.  For example, a shell spawning a compiler process.  We want
1482 * to learn that the compiler is behaving badly very quickly.
1483 */
1484static void
1485sched_interact_fork(struct thread *td)
1486{
1487	int ratio;
1488	int sum;
1489
1490	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1491	if (sum > SCHED_SLP_RUN_FORK) {
1492		ratio = sum / SCHED_SLP_RUN_FORK;
1493		td->td_sched->ts_runtime /= ratio;
1494		td->td_sched->ts_slptime /= ratio;
1495	}
1496}
1497
1498/*
1499 * Called from proc0_init() to setup the scheduler fields.
1500 */
1501void
1502schedinit(void)
1503{
1504
1505	/*
1506	 * Set up the scheduler specific parts of proc0.
1507	 */
1508	proc0.p_sched = NULL; /* XXX */
1509	thread0.td_sched = &td_sched0;
1510	td_sched0.ts_ltick = ticks;
1511	td_sched0.ts_ftick = ticks;
1512	td_sched0.ts_slice = sched_slice;
1513}
1514
1515/*
1516 * This is only somewhat accurate since given many processes of the same
1517 * priority they will switch when their slices run out, which will be
1518 * at most sched_slice stathz ticks.
1519 */
1520int
1521sched_rr_interval(void)
1522{
1523
1524	/* Convert sched_slice to hz */
1525	return (hz/(realstathz/sched_slice));
1526}
1527
1528/*
1529 * Update the percent cpu tracking information when it is requested or
1530 * the total history exceeds the maximum.  We keep a sliding history of
1531 * tick counts that slowly decays.  This is less precise than the 4BSD
1532 * mechanism since it happens with less regular and frequent events.
1533 */
1534static void
1535sched_pctcpu_update(struct td_sched *ts)
1536{
1537
1538	if (ts->ts_ticks == 0)
1539		return;
1540	if (ticks - (hz / 10) < ts->ts_ltick &&
1541	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1542		return;
1543	/*
1544	 * Adjust counters and watermark for pctcpu calc.
1545	 */
1546	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1547		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1548			    SCHED_TICK_TARG;
1549	else
1550		ts->ts_ticks = 0;
1551	ts->ts_ltick = ticks;
1552	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1553}
1554
1555/*
1556 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1557 * if necessary.  This is the back-end for several priority related
1558 * functions.
1559 */
1560static void
1561sched_thread_priority(struct thread *td, u_char prio)
1562{
1563	struct td_sched *ts;
1564	struct tdq *tdq;
1565	int oldpri;
1566
1567	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1568	    "prio:%d", td->td_priority, "new prio:%d", prio,
1569	    KTR_ATTR_LINKED, sched_tdname(curthread));
1570	if (td != curthread && prio > td->td_priority) {
1571		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1572		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1573		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1574	}
1575	ts = td->td_sched;
1576	THREAD_LOCK_ASSERT(td, MA_OWNED);
1577	if (td->td_priority == prio)
1578		return;
1579	/*
1580	 * If the priority has been elevated due to priority
1581	 * propagation, we may have to move ourselves to a new
1582	 * queue.  This could be optimized to not re-add in some
1583	 * cases.
1584	 */
1585	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1586		sched_rem(td);
1587		td->td_priority = prio;
1588		sched_add(td, SRQ_BORROWING);
1589		return;
1590	}
1591	/*
1592	 * If the thread is currently running we may have to adjust the lowpri
1593	 * information so other cpus are aware of our current priority.
1594	 */
1595	if (TD_IS_RUNNING(td)) {
1596		tdq = TDQ_CPU(ts->ts_cpu);
1597		oldpri = td->td_priority;
1598		td->td_priority = prio;
1599		if (prio < tdq->tdq_lowpri)
1600			tdq->tdq_lowpri = prio;
1601		else if (tdq->tdq_lowpri == oldpri)
1602			tdq_setlowpri(tdq, td);
1603		return;
1604	}
1605	td->td_priority = prio;
1606}
1607
1608/*
1609 * Update a thread's priority when it is lent another thread's
1610 * priority.
1611 */
1612void
1613sched_lend_prio(struct thread *td, u_char prio)
1614{
1615
1616	td->td_flags |= TDF_BORROWING;
1617	sched_thread_priority(td, prio);
1618}
1619
1620/*
1621 * Restore a thread's priority when priority propagation is
1622 * over.  The prio argument is the minimum priority the thread
1623 * needs to have to satisfy other possible priority lending
1624 * requests.  If the thread's regular priority is less
1625 * important than prio, the thread will keep a priority boost
1626 * of prio.
1627 */
1628void
1629sched_unlend_prio(struct thread *td, u_char prio)
1630{
1631	u_char base_pri;
1632
1633	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1634	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1635		base_pri = td->td_user_pri;
1636	else
1637		base_pri = td->td_base_pri;
1638	if (prio >= base_pri) {
1639		td->td_flags &= ~TDF_BORROWING;
1640		sched_thread_priority(td, base_pri);
1641	} else
1642		sched_lend_prio(td, prio);
1643}
1644
1645/*
1646 * Standard entry for setting the priority to an absolute value.
1647 */
1648void
1649sched_prio(struct thread *td, u_char prio)
1650{
1651	u_char oldprio;
1652
1653	/* First, update the base priority. */
1654	td->td_base_pri = prio;
1655
1656	/*
1657	 * If the thread is borrowing another thread's priority, don't
1658	 * ever lower the priority.
1659	 */
1660	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1661		return;
1662
1663	/* Change the real priority. */
1664	oldprio = td->td_priority;
1665	sched_thread_priority(td, prio);
1666
1667	/*
1668	 * If the thread is on a turnstile, then let the turnstile update
1669	 * its state.
1670	 */
1671	if (TD_ON_LOCK(td) && oldprio != prio)
1672		turnstile_adjust(td, oldprio);
1673}
1674
1675/*
1676 * Set the base user priority, does not effect current running priority.
1677 */
1678void
1679sched_user_prio(struct thread *td, u_char prio)
1680{
1681	u_char oldprio;
1682
1683	td->td_base_user_pri = prio;
1684	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1685                return;
1686	oldprio = td->td_user_pri;
1687	td->td_user_pri = prio;
1688}
1689
1690void
1691sched_lend_user_prio(struct thread *td, u_char prio)
1692{
1693	u_char oldprio;
1694
1695	THREAD_LOCK_ASSERT(td, MA_OWNED);
1696	td->td_flags |= TDF_UBORROWING;
1697	oldprio = td->td_user_pri;
1698	td->td_user_pri = prio;
1699}
1700
1701void
1702sched_unlend_user_prio(struct thread *td, u_char prio)
1703{
1704	u_char base_pri;
1705
1706	THREAD_LOCK_ASSERT(td, MA_OWNED);
1707	base_pri = td->td_base_user_pri;
1708	if (prio >= base_pri) {
1709		td->td_flags &= ~TDF_UBORROWING;
1710		sched_user_prio(td, base_pri);
1711	} else {
1712		sched_lend_user_prio(td, prio);
1713	}
1714}
1715
1716/*
1717 * Handle migration from sched_switch().  This happens only for
1718 * cpu binding.
1719 */
1720static struct mtx *
1721sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1722{
1723	struct tdq *tdn;
1724
1725	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1726#ifdef SMP
1727	tdq_load_rem(tdq, td);
1728	/*
1729	 * Do the lock dance required to avoid LOR.  We grab an extra
1730	 * spinlock nesting to prevent preemption while we're
1731	 * not holding either run-queue lock.
1732	 */
1733	spinlock_enter();
1734	thread_lock_block(td);	/* This releases the lock on tdq. */
1735
1736	/*
1737	 * Acquire both run-queue locks before placing the thread on the new
1738	 * run-queue to avoid deadlocks created by placing a thread with a
1739	 * blocked lock on the run-queue of a remote processor.  The deadlock
1740	 * occurs when a third processor attempts to lock the two queues in
1741	 * question while the target processor is spinning with its own
1742	 * run-queue lock held while waiting for the blocked lock to clear.
1743	 */
1744	tdq_lock_pair(tdn, tdq);
1745	tdq_add(tdn, td, flags);
1746	tdq_notify(tdn, td);
1747	TDQ_UNLOCK(tdn);
1748	spinlock_exit();
1749#endif
1750	return (TDQ_LOCKPTR(tdn));
1751}
1752
1753/*
1754 * Variadic version of thread_lock_unblock() that does not assume td_lock
1755 * is blocked.
1756 */
1757static inline void
1758thread_unblock_switch(struct thread *td, struct mtx *mtx)
1759{
1760	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1761	    (uintptr_t)mtx);
1762}
1763
1764/*
1765 * Switch threads.  This function has to handle threads coming in while
1766 * blocked for some reason, running, or idle.  It also must deal with
1767 * migrating a thread from one queue to another as running threads may
1768 * be assigned elsewhere via binding.
1769 */
1770void
1771sched_switch(struct thread *td, struct thread *newtd, int flags)
1772{
1773	struct tdq *tdq;
1774	struct td_sched *ts;
1775	struct mtx *mtx;
1776	int srqflag;
1777	int cpuid;
1778
1779	THREAD_LOCK_ASSERT(td, MA_OWNED);
1780	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1781
1782	cpuid = PCPU_GET(cpuid);
1783	tdq = TDQ_CPU(cpuid);
1784	ts = td->td_sched;
1785	mtx = td->td_lock;
1786	ts->ts_rltick = ticks;
1787	td->td_lastcpu = td->td_oncpu;
1788	td->td_oncpu = NOCPU;
1789	td->td_flags &= ~TDF_NEEDRESCHED;
1790	td->td_owepreempt = 0;
1791	tdq->tdq_switchcnt++;
1792	/*
1793	 * The lock pointer in an idle thread should never change.  Reset it
1794	 * to CAN_RUN as well.
1795	 */
1796	if (TD_IS_IDLETHREAD(td)) {
1797		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1798		TD_SET_CAN_RUN(td);
1799	} else if (TD_IS_RUNNING(td)) {
1800		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1801		srqflag = (flags & SW_PREEMPT) ?
1802		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1803		    SRQ_OURSELF|SRQ_YIELDING;
1804		if (ts->ts_cpu == cpuid)
1805			tdq_runq_add(tdq, td, srqflag);
1806		else
1807			mtx = sched_switch_migrate(tdq, td, srqflag);
1808	} else {
1809		/* This thread must be going to sleep. */
1810		TDQ_LOCK(tdq);
1811		mtx = thread_lock_block(td);
1812		tdq_load_rem(tdq, td);
1813	}
1814	/*
1815	 * We enter here with the thread blocked and assigned to the
1816	 * appropriate cpu run-queue or sleep-queue and with the current
1817	 * thread-queue locked.
1818	 */
1819	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1820	newtd = choosethread();
1821	/*
1822	 * Call the MD code to switch contexts if necessary.
1823	 */
1824	if (td != newtd) {
1825#ifdef	HWPMC_HOOKS
1826		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1827			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1828#endif
1829		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1830		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1831
1832#ifdef KDTRACE_HOOKS
1833		/*
1834		 * If DTrace has set the active vtime enum to anything
1835		 * other than INACTIVE (0), then it should have set the
1836		 * function to call.
1837		 */
1838		if (dtrace_vtime_active)
1839			(*dtrace_vtime_switch_func)(newtd);
1840#endif
1841
1842		cpu_switch(td, newtd, mtx);
1843		/*
1844		 * We may return from cpu_switch on a different cpu.  However,
1845		 * we always return with td_lock pointing to the current cpu's
1846		 * run queue lock.
1847		 */
1848		cpuid = PCPU_GET(cpuid);
1849		tdq = TDQ_CPU(cpuid);
1850		lock_profile_obtain_lock_success(
1851		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1852#ifdef	HWPMC_HOOKS
1853		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1854			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1855#endif
1856	} else
1857		thread_unblock_switch(td, mtx);
1858	/*
1859	 * Assert that all went well and return.
1860	 */
1861	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1862	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1863	td->td_oncpu = cpuid;
1864}
1865
1866/*
1867 * Adjust thread priorities as a result of a nice request.
1868 */
1869void
1870sched_nice(struct proc *p, int nice)
1871{
1872	struct thread *td;
1873
1874	PROC_LOCK_ASSERT(p, MA_OWNED);
1875
1876	p->p_nice = nice;
1877	FOREACH_THREAD_IN_PROC(p, td) {
1878		thread_lock(td);
1879		sched_priority(td);
1880		sched_prio(td, td->td_base_user_pri);
1881		thread_unlock(td);
1882	}
1883}
1884
1885/*
1886 * Record the sleep time for the interactivity scorer.
1887 */
1888void
1889sched_sleep(struct thread *td, int prio)
1890{
1891
1892	THREAD_LOCK_ASSERT(td, MA_OWNED);
1893
1894	td->td_slptick = ticks;
1895	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1896		td->td_flags |= TDF_CANSWAP;
1897	if (static_boost == 1 && prio)
1898		sched_prio(td, prio);
1899	else if (static_boost && td->td_priority > static_boost)
1900		sched_prio(td, static_boost);
1901}
1902
1903/*
1904 * Schedule a thread to resume execution and record how long it voluntarily
1905 * slept.  We also update the pctcpu, interactivity, and priority.
1906 */
1907void
1908sched_wakeup(struct thread *td)
1909{
1910	struct td_sched *ts;
1911	int slptick;
1912
1913	THREAD_LOCK_ASSERT(td, MA_OWNED);
1914	ts = td->td_sched;
1915	td->td_flags &= ~TDF_CANSWAP;
1916	/*
1917	 * If we slept for more than a tick update our interactivity and
1918	 * priority.
1919	 */
1920	slptick = td->td_slptick;
1921	td->td_slptick = 0;
1922	if (slptick && slptick != ticks) {
1923		u_int hzticks;
1924
1925		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1926		ts->ts_slptime += hzticks;
1927		sched_interact_update(td);
1928		sched_pctcpu_update(ts);
1929	}
1930	/* Reset the slice value after we sleep. */
1931	ts->ts_slice = sched_slice;
1932	sched_add(td, SRQ_BORING);
1933}
1934
1935/*
1936 * Penalize the parent for creating a new child and initialize the child's
1937 * priority.
1938 */
1939void
1940sched_fork(struct thread *td, struct thread *child)
1941{
1942	THREAD_LOCK_ASSERT(td, MA_OWNED);
1943	sched_fork_thread(td, child);
1944	/*
1945	 * Penalize the parent and child for forking.
1946	 */
1947	sched_interact_fork(child);
1948	sched_priority(child);
1949	td->td_sched->ts_runtime += tickincr;
1950	sched_interact_update(td);
1951	sched_priority(td);
1952}
1953
1954/*
1955 * Fork a new thread, may be within the same process.
1956 */
1957void
1958sched_fork_thread(struct thread *td, struct thread *child)
1959{
1960	struct td_sched *ts;
1961	struct td_sched *ts2;
1962
1963	THREAD_LOCK_ASSERT(td, MA_OWNED);
1964	/*
1965	 * Initialize child.
1966	 */
1967	ts = td->td_sched;
1968	ts2 = child->td_sched;
1969	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1970	child->td_cpuset = cpuset_ref(td->td_cpuset);
1971	ts2->ts_cpu = ts->ts_cpu;
1972	ts2->ts_flags = 0;
1973	/*
1974	 * Grab our parents cpu estimation information and priority.
1975	 */
1976	ts2->ts_ticks = ts->ts_ticks;
1977	ts2->ts_ltick = ts->ts_ltick;
1978	ts2->ts_incrtick = ts->ts_incrtick;
1979	ts2->ts_ftick = ts->ts_ftick;
1980	child->td_user_pri = td->td_user_pri;
1981	child->td_base_user_pri = td->td_base_user_pri;
1982	/*
1983	 * And update interactivity score.
1984	 */
1985	ts2->ts_slptime = ts->ts_slptime;
1986	ts2->ts_runtime = ts->ts_runtime;
1987	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1988#ifdef KTR
1989	bzero(ts2->ts_name, sizeof(ts2->ts_name));
1990#endif
1991}
1992
1993/*
1994 * Adjust the priority class of a thread.
1995 */
1996void
1997sched_class(struct thread *td, int class)
1998{
1999
2000	THREAD_LOCK_ASSERT(td, MA_OWNED);
2001	if (td->td_pri_class == class)
2002		return;
2003	td->td_pri_class = class;
2004}
2005
2006/*
2007 * Return some of the child's priority and interactivity to the parent.
2008 */
2009void
2010sched_exit(struct proc *p, struct thread *child)
2011{
2012	struct thread *td;
2013
2014	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2015	    "prio:td", child->td_priority);
2016	PROC_LOCK_ASSERT(p, MA_OWNED);
2017	td = FIRST_THREAD_IN_PROC(p);
2018	sched_exit_thread(td, child);
2019}
2020
2021/*
2022 * Penalize another thread for the time spent on this one.  This helps to
2023 * worsen the priority and interactivity of processes which schedule batch
2024 * jobs such as make.  This has little effect on the make process itself but
2025 * causes new processes spawned by it to receive worse scores immediately.
2026 */
2027void
2028sched_exit_thread(struct thread *td, struct thread *child)
2029{
2030
2031	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2032	    "prio:td", child->td_priority);
2033	/*
2034	 * Give the child's runtime to the parent without returning the
2035	 * sleep time as a penalty to the parent.  This causes shells that
2036	 * launch expensive things to mark their children as expensive.
2037	 */
2038	thread_lock(td);
2039	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2040	sched_interact_update(td);
2041	sched_priority(td);
2042	thread_unlock(td);
2043}
2044
2045void
2046sched_preempt(struct thread *td)
2047{
2048	struct tdq *tdq;
2049
2050	thread_lock(td);
2051	tdq = TDQ_SELF();
2052	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2053	tdq->tdq_ipipending = 0;
2054	if (td->td_priority > tdq->tdq_lowpri) {
2055		int flags;
2056
2057		flags = SW_INVOL | SW_PREEMPT;
2058		if (td->td_critnest > 1)
2059			td->td_owepreempt = 1;
2060		else if (TD_IS_IDLETHREAD(td))
2061			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2062		else
2063			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2064	}
2065	thread_unlock(td);
2066}
2067
2068/*
2069 * Fix priorities on return to user-space.  Priorities may be elevated due
2070 * to static priorities in msleep() or similar.
2071 */
2072void
2073sched_userret(struct thread *td)
2074{
2075	/*
2076	 * XXX we cheat slightly on the locking here to avoid locking in
2077	 * the usual case.  Setting td_priority here is essentially an
2078	 * incomplete workaround for not setting it properly elsewhere.
2079	 * Now that some interrupt handlers are threads, not setting it
2080	 * properly elsewhere can clobber it in the window between setting
2081	 * it here and returning to user mode, so don't waste time setting
2082	 * it perfectly here.
2083	 */
2084	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2085	    ("thread with borrowed priority returning to userland"));
2086	if (td->td_priority != td->td_user_pri) {
2087		thread_lock(td);
2088		td->td_priority = td->td_user_pri;
2089		td->td_base_pri = td->td_user_pri;
2090		tdq_setlowpri(TDQ_SELF(), td);
2091		thread_unlock(td);
2092        }
2093}
2094
2095/*
2096 * Handle a stathz tick.  This is really only relevant for timeshare
2097 * threads.
2098 */
2099void
2100sched_clock(struct thread *td)
2101{
2102	struct tdq *tdq;
2103	struct td_sched *ts;
2104
2105	THREAD_LOCK_ASSERT(td, MA_OWNED);
2106	tdq = TDQ_SELF();
2107#ifdef SMP
2108	/*
2109	 * We run the long term load balancer infrequently on the first cpu.
2110	 */
2111	if (balance_tdq == tdq) {
2112		if (balance_ticks && --balance_ticks == 0)
2113			sched_balance();
2114	}
2115#endif
2116	/*
2117	 * Save the old switch count so we have a record of the last ticks
2118	 * activity.   Initialize the new switch count based on our load.
2119	 * If there is some activity seed it to reflect that.
2120	 */
2121	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2122	tdq->tdq_switchcnt = tdq->tdq_load;
2123	/*
2124	 * Advance the insert index once for each tick to ensure that all
2125	 * threads get a chance to run.
2126	 */
2127	if (tdq->tdq_idx == tdq->tdq_ridx) {
2128		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2129		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2130			tdq->tdq_ridx = tdq->tdq_idx;
2131	}
2132	ts = td->td_sched;
2133	if (td->td_pri_class & PRI_FIFO_BIT)
2134		return;
2135	if (td->td_pri_class == PRI_TIMESHARE) {
2136		/*
2137		 * We used a tick; charge it to the thread so
2138		 * that we can compute our interactivity.
2139		 */
2140		td->td_sched->ts_runtime += tickincr;
2141		sched_interact_update(td);
2142		sched_priority(td);
2143	}
2144	/*
2145	 * We used up one time slice.
2146	 */
2147	if (--ts->ts_slice > 0)
2148		return;
2149	/*
2150	 * We're out of time, force a requeue at userret().
2151	 */
2152	ts->ts_slice = sched_slice;
2153	td->td_flags |= TDF_NEEDRESCHED;
2154}
2155
2156/*
2157 * Called once per hz tick.  Used for cpu utilization information.  This
2158 * is easier than trying to scale based on stathz.
2159 */
2160void
2161sched_tick(void)
2162{
2163	struct td_sched *ts;
2164
2165	ts = curthread->td_sched;
2166	/*
2167	 * Ticks is updated asynchronously on a single cpu.  Check here to
2168	 * avoid incrementing ts_ticks multiple times in a single tick.
2169	 */
2170	if (ts->ts_incrtick == ticks)
2171		return;
2172	/* Adjust ticks for pctcpu */
2173	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
2174	ts->ts_ltick = ticks;
2175	ts->ts_incrtick = ticks;
2176	/*
2177	 * Update if we've exceeded our desired tick threshhold by over one
2178	 * second.
2179	 */
2180	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2181		sched_pctcpu_update(ts);
2182}
2183
2184/*
2185 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2186 * cooperative idle threads.
2187 */
2188int
2189sched_runnable(void)
2190{
2191	struct tdq *tdq;
2192	int load;
2193
2194	load = 1;
2195
2196	tdq = TDQ_SELF();
2197	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2198		if (tdq->tdq_load > 0)
2199			goto out;
2200	} else
2201		if (tdq->tdq_load - 1 > 0)
2202			goto out;
2203	load = 0;
2204out:
2205	return (load);
2206}
2207
2208/*
2209 * Choose the highest priority thread to run.  The thread is removed from
2210 * the run-queue while running however the load remains.  For SMP we set
2211 * the tdq in the global idle bitmask if it idles here.
2212 */
2213struct thread *
2214sched_choose(void)
2215{
2216	struct thread *td;
2217	struct tdq *tdq;
2218
2219	tdq = TDQ_SELF();
2220	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2221	td = tdq_choose(tdq);
2222	if (td) {
2223		td->td_sched->ts_ltick = ticks;
2224		tdq_runq_rem(tdq, td);
2225		tdq->tdq_lowpri = td->td_priority;
2226		return (td);
2227	}
2228	tdq->tdq_lowpri = PRI_MAX_IDLE;
2229	return (PCPU_GET(idlethread));
2230}
2231
2232/*
2233 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2234 * we always request it once we exit a critical section.
2235 */
2236static inline void
2237sched_setpreempt(struct thread *td)
2238{
2239	struct thread *ctd;
2240	int cpri;
2241	int pri;
2242
2243	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2244
2245	ctd = curthread;
2246	pri = td->td_priority;
2247	cpri = ctd->td_priority;
2248	if (pri < cpri)
2249		ctd->td_flags |= TDF_NEEDRESCHED;
2250	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2251		return;
2252	if (!sched_shouldpreempt(pri, cpri, 0))
2253		return;
2254	ctd->td_owepreempt = 1;
2255}
2256
2257/*
2258 * Add a thread to a thread queue.  Select the appropriate runq and add the
2259 * thread to it.  This is the internal function called when the tdq is
2260 * predetermined.
2261 */
2262void
2263tdq_add(struct tdq *tdq, struct thread *td, int flags)
2264{
2265
2266	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2267	KASSERT((td->td_inhibitors == 0),
2268	    ("sched_add: trying to run inhibited thread"));
2269	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2270	    ("sched_add: bad thread state"));
2271	KASSERT(td->td_flags & TDF_INMEM,
2272	    ("sched_add: thread swapped out"));
2273
2274	if (td->td_priority < tdq->tdq_lowpri)
2275		tdq->tdq_lowpri = td->td_priority;
2276	tdq_runq_add(tdq, td, flags);
2277	tdq_load_add(tdq, td);
2278}
2279
2280/*
2281 * Select the target thread queue and add a thread to it.  Request
2282 * preemption or IPI a remote processor if required.
2283 */
2284void
2285sched_add(struct thread *td, int flags)
2286{
2287	struct tdq *tdq;
2288#ifdef SMP
2289	int cpu;
2290#endif
2291
2292	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2293	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2294	    sched_tdname(curthread));
2295	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2296	    KTR_ATTR_LINKED, sched_tdname(td));
2297	THREAD_LOCK_ASSERT(td, MA_OWNED);
2298	/*
2299	 * Recalculate the priority before we select the target cpu or
2300	 * run-queue.
2301	 */
2302	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2303		sched_priority(td);
2304#ifdef SMP
2305	/*
2306	 * Pick the destination cpu and if it isn't ours transfer to the
2307	 * target cpu.
2308	 */
2309	cpu = sched_pickcpu(td, flags);
2310	tdq = sched_setcpu(td, cpu, flags);
2311	tdq_add(tdq, td, flags);
2312	if (cpu != PCPU_GET(cpuid)) {
2313		tdq_notify(tdq, td);
2314		return;
2315	}
2316#else
2317	tdq = TDQ_SELF();
2318	TDQ_LOCK(tdq);
2319	/*
2320	 * Now that the thread is moving to the run-queue, set the lock
2321	 * to the scheduler's lock.
2322	 */
2323	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2324	tdq_add(tdq, td, flags);
2325#endif
2326	if (!(flags & SRQ_YIELDING))
2327		sched_setpreempt(td);
2328}
2329
2330/*
2331 * Remove a thread from a run-queue without running it.  This is used
2332 * when we're stealing a thread from a remote queue.  Otherwise all threads
2333 * exit by calling sched_exit_thread() and sched_throw() themselves.
2334 */
2335void
2336sched_rem(struct thread *td)
2337{
2338	struct tdq *tdq;
2339
2340	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2341	    "prio:%d", td->td_priority);
2342	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2343	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2344	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2345	KASSERT(TD_ON_RUNQ(td),
2346	    ("sched_rem: thread not on run queue"));
2347	tdq_runq_rem(tdq, td);
2348	tdq_load_rem(tdq, td);
2349	TD_SET_CAN_RUN(td);
2350	if (td->td_priority == tdq->tdq_lowpri)
2351		tdq_setlowpri(tdq, NULL);
2352}
2353
2354/*
2355 * Fetch cpu utilization information.  Updates on demand.
2356 */
2357fixpt_t
2358sched_pctcpu(struct thread *td)
2359{
2360	fixpt_t pctcpu;
2361	struct td_sched *ts;
2362
2363	pctcpu = 0;
2364	ts = td->td_sched;
2365	if (ts == NULL)
2366		return (0);
2367
2368	THREAD_LOCK_ASSERT(td, MA_OWNED);
2369	if (ts->ts_ticks) {
2370		int rtick;
2371
2372		sched_pctcpu_update(ts);
2373		/* How many rtick per second ? */
2374		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2375		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2376	}
2377
2378	return (pctcpu);
2379}
2380
2381/*
2382 * Enforce affinity settings for a thread.  Called after adjustments to
2383 * cpumask.
2384 */
2385void
2386sched_affinity(struct thread *td)
2387{
2388#ifdef SMP
2389	struct td_sched *ts;
2390	int cpu;
2391
2392	THREAD_LOCK_ASSERT(td, MA_OWNED);
2393	ts = td->td_sched;
2394	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2395		return;
2396	if (TD_ON_RUNQ(td)) {
2397		sched_rem(td);
2398		sched_add(td, SRQ_BORING);
2399		return;
2400	}
2401	if (!TD_IS_RUNNING(td))
2402		return;
2403	td->td_flags |= TDF_NEEDRESCHED;
2404	if (!THREAD_CAN_MIGRATE(td))
2405		return;
2406	/*
2407	 * Assign the new cpu and force a switch before returning to
2408	 * userspace.  If the target thread is not running locally send
2409	 * an ipi to force the issue.
2410	 */
2411	cpu = ts->ts_cpu;
2412	ts->ts_cpu = sched_pickcpu(td, 0);
2413	if (cpu != PCPU_GET(cpuid))
2414		ipi_selected(1 << cpu, IPI_PREEMPT);
2415#endif
2416}
2417
2418/*
2419 * Bind a thread to a target cpu.
2420 */
2421void
2422sched_bind(struct thread *td, int cpu)
2423{
2424	struct td_sched *ts;
2425
2426	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2427	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2428	ts = td->td_sched;
2429	if (ts->ts_flags & TSF_BOUND)
2430		sched_unbind(td);
2431	ts->ts_flags |= TSF_BOUND;
2432	sched_pin();
2433	if (PCPU_GET(cpuid) == cpu)
2434		return;
2435	ts->ts_cpu = cpu;
2436	/* When we return from mi_switch we'll be on the correct cpu. */
2437	mi_switch(SW_VOL, NULL);
2438}
2439
2440/*
2441 * Release a bound thread.
2442 */
2443void
2444sched_unbind(struct thread *td)
2445{
2446	struct td_sched *ts;
2447
2448	THREAD_LOCK_ASSERT(td, MA_OWNED);
2449	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2450	ts = td->td_sched;
2451	if ((ts->ts_flags & TSF_BOUND) == 0)
2452		return;
2453	ts->ts_flags &= ~TSF_BOUND;
2454	sched_unpin();
2455}
2456
2457int
2458sched_is_bound(struct thread *td)
2459{
2460	THREAD_LOCK_ASSERT(td, MA_OWNED);
2461	return (td->td_sched->ts_flags & TSF_BOUND);
2462}
2463
2464/*
2465 * Basic yield call.
2466 */
2467void
2468sched_relinquish(struct thread *td)
2469{
2470	thread_lock(td);
2471	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2472	thread_unlock(td);
2473}
2474
2475/*
2476 * Return the total system load.
2477 */
2478int
2479sched_load(void)
2480{
2481#ifdef SMP
2482	int total;
2483	int i;
2484
2485	total = 0;
2486	CPU_FOREACH(i)
2487		total += TDQ_CPU(i)->tdq_sysload;
2488	return (total);
2489#else
2490	return (TDQ_SELF()->tdq_sysload);
2491#endif
2492}
2493
2494int
2495sched_sizeof_proc(void)
2496{
2497	return (sizeof(struct proc));
2498}
2499
2500int
2501sched_sizeof_thread(void)
2502{
2503	return (sizeof(struct thread) + sizeof(struct td_sched));
2504}
2505
2506#ifdef SMP
2507#define	TDQ_IDLESPIN(tdq)						\
2508    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2509#else
2510#define	TDQ_IDLESPIN(tdq)	1
2511#endif
2512
2513/*
2514 * The actual idle process.
2515 */
2516void
2517sched_idletd(void *dummy)
2518{
2519	struct thread *td;
2520	struct tdq *tdq;
2521	int switchcnt;
2522	int i;
2523
2524	mtx_assert(&Giant, MA_NOTOWNED);
2525	td = curthread;
2526	tdq = TDQ_SELF();
2527	for (;;) {
2528#ifdef SMP
2529		if (tdq_idled(tdq) == 0)
2530			continue;
2531#endif
2532		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2533		/*
2534		 * If we're switching very frequently, spin while checking
2535		 * for load rather than entering a low power state that
2536		 * may require an IPI.  However, don't do any busy
2537		 * loops while on SMT machines as this simply steals
2538		 * cycles from cores doing useful work.
2539		 */
2540		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2541			for (i = 0; i < sched_idlespins; i++) {
2542				if (tdq->tdq_load)
2543					break;
2544				cpu_spinwait();
2545			}
2546		}
2547		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2548		if (tdq->tdq_load == 0)
2549			cpu_idle(switchcnt > 1);
2550		if (tdq->tdq_load) {
2551			thread_lock(td);
2552			mi_switch(SW_VOL | SWT_IDLE, NULL);
2553			thread_unlock(td);
2554		}
2555	}
2556}
2557
2558/*
2559 * A CPU is entering for the first time or a thread is exiting.
2560 */
2561void
2562sched_throw(struct thread *td)
2563{
2564	struct thread *newtd;
2565	struct tdq *tdq;
2566
2567	tdq = TDQ_SELF();
2568	if (td == NULL) {
2569		/* Correct spinlock nesting and acquire the correct lock. */
2570		TDQ_LOCK(tdq);
2571		spinlock_exit();
2572	} else {
2573		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2574		tdq_load_rem(tdq, td);
2575		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2576	}
2577	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2578	newtd = choosethread();
2579	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2580	PCPU_SET(switchtime, cpu_ticks());
2581	PCPU_SET(switchticks, ticks);
2582	cpu_throw(td, newtd);		/* doesn't return */
2583}
2584
2585/*
2586 * This is called from fork_exit().  Just acquire the correct locks and
2587 * let fork do the rest of the work.
2588 */
2589void
2590sched_fork_exit(struct thread *td)
2591{
2592	struct td_sched *ts;
2593	struct tdq *tdq;
2594	int cpuid;
2595
2596	/*
2597	 * Finish setting up thread glue so that it begins execution in a
2598	 * non-nested critical section with the scheduler lock held.
2599	 */
2600	cpuid = PCPU_GET(cpuid);
2601	tdq = TDQ_CPU(cpuid);
2602	ts = td->td_sched;
2603	if (TD_IS_IDLETHREAD(td))
2604		td->td_lock = TDQ_LOCKPTR(tdq);
2605	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2606	td->td_oncpu = cpuid;
2607	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2608	lock_profile_obtain_lock_success(
2609	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2610}
2611
2612/*
2613 * Create on first use to catch odd startup conditons.
2614 */
2615char *
2616sched_tdname(struct thread *td)
2617{
2618#ifdef KTR
2619	struct td_sched *ts;
2620
2621	ts = td->td_sched;
2622	if (ts->ts_name[0] == '\0')
2623		snprintf(ts->ts_name, sizeof(ts->ts_name),
2624		    "%s tid %d", td->td_name, td->td_tid);
2625	return (ts->ts_name);
2626#else
2627	return (td->td_name);
2628#endif
2629}
2630
2631#ifdef SMP
2632
2633/*
2634 * Build the CPU topology dump string. Is recursively called to collect
2635 * the topology tree.
2636 */
2637static int
2638sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2639    int indent)
2640{
2641	int i, first;
2642
2643	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2644	    "", indent, cg->cg_level);
2645	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"0x%x\">", indent, "",
2646	    cg->cg_count, cg->cg_mask);
2647	first = TRUE;
2648	for (i = 0; i < MAXCPU; i++) {
2649		if ((cg->cg_mask & (1 << i)) != 0) {
2650			if (!first)
2651				sbuf_printf(sb, ", ");
2652			else
2653				first = FALSE;
2654			sbuf_printf(sb, "%d", i);
2655		}
2656	}
2657	sbuf_printf(sb, "</cpu>\n");
2658
2659	if (cg->cg_flags != 0) {
2660		sbuf_printf(sb, "%*s <flags>", indent, "");
2661		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2662			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2663		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2664			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2665		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2666			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2667		sbuf_printf(sb, "</flags>\n");
2668	}
2669
2670	if (cg->cg_children > 0) {
2671		sbuf_printf(sb, "%*s <children>\n", indent, "");
2672		for (i = 0; i < cg->cg_children; i++)
2673			sysctl_kern_sched_topology_spec_internal(sb,
2674			    &cg->cg_child[i], indent+2);
2675		sbuf_printf(sb, "%*s </children>\n", indent, "");
2676	}
2677	sbuf_printf(sb, "%*s</group>\n", indent, "");
2678	return (0);
2679}
2680
2681/*
2682 * Sysctl handler for retrieving topology dump. It's a wrapper for
2683 * the recursive sysctl_kern_smp_topology_spec_internal().
2684 */
2685static int
2686sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2687{
2688	struct sbuf *topo;
2689	int err;
2690
2691	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2692
2693	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2694	if (topo == NULL)
2695		return (ENOMEM);
2696
2697	sbuf_printf(topo, "<groups>\n");
2698	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2699	sbuf_printf(topo, "</groups>\n");
2700
2701	if (err == 0) {
2702		sbuf_finish(topo);
2703		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2704	}
2705	sbuf_delete(topo);
2706	return (err);
2707}
2708#endif
2709
2710SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2711SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2712    "Scheduler name");
2713SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2714    "Slice size for timeshare threads");
2715SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2716     "Interactivity score threshold");
2717SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2718     0,"Min priority for preemption, lower priorities have greater precedence");
2719SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2720     0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2721SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2722     0,"Number of times idle will spin waiting for new work.");
2723SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2724     0,"Threshold before we will permit idle spinning.");
2725#ifdef SMP
2726SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2727    "Number of hz ticks to keep thread affinity for");
2728SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2729    "Enables the long-term load balancer");
2730SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2731    &balance_interval, 0,
2732    "Average frequency in stathz ticks to run the long-term balancer");
2733SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2734    "Steals work from another hyper-threaded core on idle");
2735SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2736    "Attempts to steal work from other cores before idling");
2737SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2738    "Minimum load on remote cpu before we'll steal");
2739
2740/* Retrieve SMP topology */
2741SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2742    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2743    "XML dump of detected CPU topology");
2744#endif
2745
2746/* ps compat.  All cpu percentages from ULE are weighted. */
2747static int ccpu = 0;
2748SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2749