sched_ule.c revision 208983
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 208983 2010-06-10 11:48:14Z ivoras $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/turnstile.h>
61#include <sys/umtx.h>
62#include <sys/vmmeter.h>
63#include <sys/cpuset.h>
64#include <sys/sbuf.h>
65#ifdef KTRACE
66#include <sys/uio.h>
67#include <sys/ktrace.h>
68#endif
69
70#ifdef HWPMC_HOOKS
71#include <sys/pmckern.h>
72#endif
73
74#ifdef KDTRACE_HOOKS
75#include <sys/dtrace_bsd.h>
76int				dtrace_vtime_active;
77dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
78#endif
79
80#include <machine/cpu.h>
81#include <machine/smp.h>
82
83#if defined(__sparc64__)
84#error "This architecture is not currently compatible with ULE"
85#endif
86
87#define	KTR_ULE	0
88
89#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
90#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
91#define	TDQ_LOADNAME_LEN	(PCPU_NAME_LEN + sizeof(" load"))
92
93/*
94 * Thread scheduler specific section.  All fields are protected
95 * by the thread lock.
96 */
97struct td_sched {
98	struct runq	*ts_runq;	/* Run-queue we're queued on. */
99	short		ts_flags;	/* TSF_* flags. */
100	u_char		ts_cpu;		/* CPU that we have affinity for. */
101	int		ts_rltick;	/* Real last tick, for affinity. */
102	int		ts_slice;	/* Ticks of slice remaining. */
103	u_int		ts_slptime;	/* Number of ticks we vol. slept */
104	u_int		ts_runtime;	/* Number of ticks we were running */
105	int		ts_ltick;	/* Last tick that we were running on */
106	int		ts_incrtick;	/* Last tick that we incremented on */
107	int		ts_ftick;	/* First tick that we were running on */
108	int		ts_ticks;	/* Tick count */
109#ifdef KTR
110	char		ts_name[TS_NAME_LEN];
111#endif
112};
113/* flags kept in ts_flags */
114#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
115#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
116
117static struct td_sched td_sched0;
118
119#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
120#define	THREAD_CAN_SCHED(td, cpu)	\
121    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
122
123/*
124 * Cpu percentage computation macros and defines.
125 *
126 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
127 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
128 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
129 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
130 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
131 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
132 */
133#define	SCHED_TICK_SECS		10
134#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
135#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
136#define	SCHED_TICK_SHIFT	10
137#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
138#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
139
140/*
141 * These macros determine priorities for non-interactive threads.  They are
142 * assigned a priority based on their recent cpu utilization as expressed
143 * by the ratio of ticks to the tick total.  NHALF priorities at the start
144 * and end of the MIN to MAX timeshare range are only reachable with negative
145 * or positive nice respectively.
146 *
147 * PRI_RANGE:	Priority range for utilization dependent priorities.
148 * PRI_NRESV:	Number of nice values.
149 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
150 * PRI_NICE:	Determines the part of the priority inherited from nice.
151 */
152#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
153#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
154#define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
155#define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
156#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN)
157#define	SCHED_PRI_TICKS(ts)						\
158    (SCHED_TICK_HZ((ts)) /						\
159    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
160#define	SCHED_PRI_NICE(nice)	(nice)
161
162/*
163 * These determine the interactivity of a process.  Interactivity differs from
164 * cpu utilization in that it expresses the voluntary time slept vs time ran
165 * while cpu utilization includes all time not running.  This more accurately
166 * models the intent of the thread.
167 *
168 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
169 *		before throttling back.
170 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
171 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
172 * INTERACT_THRESH:	Threshhold for placement on the current runq.
173 */
174#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
175#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
176#define	SCHED_INTERACT_MAX	(100)
177#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
178#define	SCHED_INTERACT_THRESH	(30)
179
180/*
181 * tickincr:		Converts a stathz tick into a hz domain scaled by
182 *			the shift factor.  Without the shift the error rate
183 *			due to rounding would be unacceptably high.
184 * realstathz:		stathz is sometimes 0 and run off of hz.
185 * sched_slice:		Runtime of each thread before rescheduling.
186 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
187 */
188static int sched_interact = SCHED_INTERACT_THRESH;
189static int realstathz;
190static int tickincr;
191static int sched_slice = 1;
192#ifdef PREEMPTION
193#ifdef FULL_PREEMPTION
194static int preempt_thresh = PRI_MAX_IDLE;
195#else
196static int preempt_thresh = PRI_MIN_KERN;
197#endif
198#else
199static int preempt_thresh = 0;
200#endif
201static int static_boost = PRI_MIN_TIMESHARE;
202static int sched_idlespins = 10000;
203static int sched_idlespinthresh = 4;
204
205/*
206 * tdq - per processor runqs and statistics.  All fields are protected by the
207 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
208 * locking in sched_pickcpu();
209 */
210struct tdq {
211	/* Ordered to improve efficiency of cpu_search() and switch(). */
212	struct mtx	tdq_lock;		/* run queue lock. */
213	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
214	volatile int	tdq_load;		/* Aggregate load. */
215	int		tdq_sysload;		/* For loadavg, !ITHD load. */
216	int		tdq_transferable;	/* Transferable thread count. */
217	short		tdq_switchcnt;		/* Switches this tick. */
218	short		tdq_oldswitchcnt;	/* Switches last tick. */
219	u_char		tdq_lowpri;		/* Lowest priority thread. */
220	u_char		tdq_ipipending;		/* IPI pending. */
221	u_char		tdq_idx;		/* Current insert index. */
222	u_char		tdq_ridx;		/* Current removal index. */
223	struct runq	tdq_realtime;		/* real-time run queue. */
224	struct runq	tdq_timeshare;		/* timeshare run queue. */
225	struct runq	tdq_idle;		/* Queue of IDLE threads. */
226	char		tdq_name[TDQ_NAME_LEN];
227#ifdef KTR
228	char		tdq_loadname[TDQ_LOADNAME_LEN];
229#endif
230} __aligned(64);
231
232/* Idle thread states and config. */
233#define	TDQ_RUNNING	1
234#define	TDQ_IDLE	2
235
236#ifdef SMP
237struct cpu_group *cpu_top;		/* CPU topology */
238
239#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
240#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
241
242/*
243 * Run-time tunables.
244 */
245static int rebalance = 1;
246static int balance_interval = 128;	/* Default set in sched_initticks(). */
247static int affinity;
248static int steal_htt = 1;
249static int steal_idle = 1;
250static int steal_thresh = 2;
251
252/*
253 * One thread queue per processor.
254 */
255static struct tdq	tdq_cpu[MAXCPU];
256static struct tdq	*balance_tdq;
257static int balance_ticks;
258
259#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
260#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
261#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
262#else	/* !SMP */
263static struct tdq	tdq_cpu;
264
265#define	TDQ_ID(x)	(0)
266#define	TDQ_SELF()	(&tdq_cpu)
267#define	TDQ_CPU(x)	(&tdq_cpu)
268#endif
269
270#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
271#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
272#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
273#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
274#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
275
276static void sched_priority(struct thread *);
277static void sched_thread_priority(struct thread *, u_char);
278static int sched_interact_score(struct thread *);
279static void sched_interact_update(struct thread *);
280static void sched_interact_fork(struct thread *);
281static void sched_pctcpu_update(struct td_sched *);
282
283/* Operations on per processor queues */
284static struct thread *tdq_choose(struct tdq *);
285static void tdq_setup(struct tdq *);
286static void tdq_load_add(struct tdq *, struct thread *);
287static void tdq_load_rem(struct tdq *, struct thread *);
288static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
289static __inline void tdq_runq_rem(struct tdq *, struct thread *);
290static inline int sched_shouldpreempt(int, int, int);
291void tdq_print(int cpu);
292static void runq_print(struct runq *rq);
293static void tdq_add(struct tdq *, struct thread *, int);
294#ifdef SMP
295static int tdq_move(struct tdq *, struct tdq *);
296static int tdq_idled(struct tdq *);
297static void tdq_notify(struct tdq *, struct thread *);
298static struct thread *tdq_steal(struct tdq *, int);
299static struct thread *runq_steal(struct runq *, int);
300static int sched_pickcpu(struct thread *, int);
301static void sched_balance(void);
302static int sched_balance_pair(struct tdq *, struct tdq *);
303static inline struct tdq *sched_setcpu(struct thread *, int, int);
304static inline void thread_unblock_switch(struct thread *, struct mtx *);
305static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
306static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
307static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
308    struct cpu_group *cg, int indent);
309#endif
310
311static void sched_setup(void *dummy);
312SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
313
314static void sched_initticks(void *dummy);
315SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
316    NULL);
317
318/*
319 * Print the threads waiting on a run-queue.
320 */
321static void
322runq_print(struct runq *rq)
323{
324	struct rqhead *rqh;
325	struct thread *td;
326	int pri;
327	int j;
328	int i;
329
330	for (i = 0; i < RQB_LEN; i++) {
331		printf("\t\trunq bits %d 0x%zx\n",
332		    i, rq->rq_status.rqb_bits[i]);
333		for (j = 0; j < RQB_BPW; j++)
334			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
335				pri = j + (i << RQB_L2BPW);
336				rqh = &rq->rq_queues[pri];
337				TAILQ_FOREACH(td, rqh, td_runq) {
338					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
339					    td, td->td_name, td->td_priority,
340					    td->td_rqindex, pri);
341				}
342			}
343	}
344}
345
346/*
347 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
348 */
349void
350tdq_print(int cpu)
351{
352	struct tdq *tdq;
353
354	tdq = TDQ_CPU(cpu);
355
356	printf("tdq %d:\n", TDQ_ID(tdq));
357	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
358	printf("\tLock name:      %s\n", tdq->tdq_name);
359	printf("\tload:           %d\n", tdq->tdq_load);
360	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
361	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
362	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
363	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
364	printf("\tload transferable: %d\n", tdq->tdq_transferable);
365	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
366	printf("\trealtime runq:\n");
367	runq_print(&tdq->tdq_realtime);
368	printf("\ttimeshare runq:\n");
369	runq_print(&tdq->tdq_timeshare);
370	printf("\tidle runq:\n");
371	runq_print(&tdq->tdq_idle);
372}
373
374static inline int
375sched_shouldpreempt(int pri, int cpri, int remote)
376{
377	/*
378	 * If the new priority is not better than the current priority there is
379	 * nothing to do.
380	 */
381	if (pri >= cpri)
382		return (0);
383	/*
384	 * Always preempt idle.
385	 */
386	if (cpri >= PRI_MIN_IDLE)
387		return (1);
388	/*
389	 * If preemption is disabled don't preempt others.
390	 */
391	if (preempt_thresh == 0)
392		return (0);
393	/*
394	 * Preempt if we exceed the threshold.
395	 */
396	if (pri <= preempt_thresh)
397		return (1);
398	/*
399	 * If we're realtime or better and there is timeshare or worse running
400	 * preempt only remote processors.
401	 */
402	if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
403		return (1);
404	return (0);
405}
406
407#define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
408/*
409 * Add a thread to the actual run-queue.  Keeps transferable counts up to
410 * date with what is actually on the run-queue.  Selects the correct
411 * queue position for timeshare threads.
412 */
413static __inline void
414tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
415{
416	struct td_sched *ts;
417	u_char pri;
418
419	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
420	THREAD_LOCK_ASSERT(td, MA_OWNED);
421
422	pri = td->td_priority;
423	ts = td->td_sched;
424	TD_SET_RUNQ(td);
425	if (THREAD_CAN_MIGRATE(td)) {
426		tdq->tdq_transferable++;
427		ts->ts_flags |= TSF_XFERABLE;
428	}
429	if (pri <= PRI_MAX_REALTIME) {
430		ts->ts_runq = &tdq->tdq_realtime;
431	} else if (pri <= PRI_MAX_TIMESHARE) {
432		ts->ts_runq = &tdq->tdq_timeshare;
433		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
434			("Invalid priority %d on timeshare runq", pri));
435		/*
436		 * This queue contains only priorities between MIN and MAX
437		 * realtime.  Use the whole queue to represent these values.
438		 */
439		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
440			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
441			pri = (pri + tdq->tdq_idx) % RQ_NQS;
442			/*
443			 * This effectively shortens the queue by one so we
444			 * can have a one slot difference between idx and
445			 * ridx while we wait for threads to drain.
446			 */
447			if (tdq->tdq_ridx != tdq->tdq_idx &&
448			    pri == tdq->tdq_ridx)
449				pri = (unsigned char)(pri - 1) % RQ_NQS;
450		} else
451			pri = tdq->tdq_ridx;
452		runq_add_pri(ts->ts_runq, td, pri, flags);
453		return;
454	} else
455		ts->ts_runq = &tdq->tdq_idle;
456	runq_add(ts->ts_runq, td, flags);
457}
458
459/*
460 * Remove a thread from a run-queue.  This typically happens when a thread
461 * is selected to run.  Running threads are not on the queue and the
462 * transferable count does not reflect them.
463 */
464static __inline void
465tdq_runq_rem(struct tdq *tdq, struct thread *td)
466{
467	struct td_sched *ts;
468
469	ts = td->td_sched;
470	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
471	KASSERT(ts->ts_runq != NULL,
472	    ("tdq_runq_remove: thread %p null ts_runq", td));
473	if (ts->ts_flags & TSF_XFERABLE) {
474		tdq->tdq_transferable--;
475		ts->ts_flags &= ~TSF_XFERABLE;
476	}
477	if (ts->ts_runq == &tdq->tdq_timeshare) {
478		if (tdq->tdq_idx != tdq->tdq_ridx)
479			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
480		else
481			runq_remove_idx(ts->ts_runq, td, NULL);
482	} else
483		runq_remove(ts->ts_runq, td);
484}
485
486/*
487 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
488 * for this thread to the referenced thread queue.
489 */
490static void
491tdq_load_add(struct tdq *tdq, struct thread *td)
492{
493
494	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
495	THREAD_LOCK_ASSERT(td, MA_OWNED);
496
497	tdq->tdq_load++;
498	if ((td->td_flags & TDF_NOLOAD) == 0)
499		tdq->tdq_sysload++;
500	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
501}
502
503/*
504 * Remove the load from a thread that is transitioning to a sleep state or
505 * exiting.
506 */
507static void
508tdq_load_rem(struct tdq *tdq, struct thread *td)
509{
510
511	THREAD_LOCK_ASSERT(td, MA_OWNED);
512	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
513	KASSERT(tdq->tdq_load != 0,
514	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
515
516	tdq->tdq_load--;
517	if ((td->td_flags & TDF_NOLOAD) == 0)
518		tdq->tdq_sysload--;
519	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
520}
521
522/*
523 * Set lowpri to its exact value by searching the run-queue and
524 * evaluating curthread.  curthread may be passed as an optimization.
525 */
526static void
527tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
528{
529	struct thread *td;
530
531	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
532	if (ctd == NULL)
533		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
534	td = tdq_choose(tdq);
535	if (td == NULL || td->td_priority > ctd->td_priority)
536		tdq->tdq_lowpri = ctd->td_priority;
537	else
538		tdq->tdq_lowpri = td->td_priority;
539}
540
541#ifdef SMP
542struct cpu_search {
543	cpuset_t cs_mask;
544	u_int	cs_load;
545	u_int	cs_cpu;
546	int	cs_limit;	/* Min priority for low min load for high. */
547};
548
549#define	CPU_SEARCH_LOWEST	0x1
550#define	CPU_SEARCH_HIGHEST	0x2
551#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
552
553#define	CPUSET_FOREACH(cpu, mask)				\
554	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
555		if ((mask) & 1 << (cpu))
556
557static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
558    struct cpu_search *high, const int match);
559int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
560int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
561int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
562    struct cpu_search *high);
563
564/*
565 * This routine compares according to the match argument and should be
566 * reduced in actual instantiations via constant propagation and dead code
567 * elimination.
568 */
569static __inline int
570cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
571    const int match)
572{
573	struct tdq *tdq;
574
575	tdq = TDQ_CPU(cpu);
576	if (match & CPU_SEARCH_LOWEST)
577		if (CPU_ISSET(cpu, &low->cs_mask) &&
578		    tdq->tdq_load < low->cs_load &&
579		    tdq->tdq_lowpri > low->cs_limit) {
580			low->cs_cpu = cpu;
581			low->cs_load = tdq->tdq_load;
582		}
583	if (match & CPU_SEARCH_HIGHEST)
584		if (CPU_ISSET(cpu, &high->cs_mask) &&
585		    tdq->tdq_load >= high->cs_limit &&
586		    tdq->tdq_load > high->cs_load &&
587		    tdq->tdq_transferable) {
588			high->cs_cpu = cpu;
589			high->cs_load = tdq->tdq_load;
590		}
591	return (tdq->tdq_load);
592}
593
594/*
595 * Search the tree of cpu_groups for the lowest or highest loaded cpu
596 * according to the match argument.  This routine actually compares the
597 * load on all paths through the tree and finds the least loaded cpu on
598 * the least loaded path, which may differ from the least loaded cpu in
599 * the system.  This balances work among caches and busses.
600 *
601 * This inline is instantiated in three forms below using constants for the
602 * match argument.  It is reduced to the minimum set for each case.  It is
603 * also recursive to the depth of the tree.
604 */
605static __inline int
606cpu_search(struct cpu_group *cg, struct cpu_search *low,
607    struct cpu_search *high, const int match)
608{
609	int total;
610
611	total = 0;
612	if (cg->cg_children) {
613		struct cpu_search lgroup;
614		struct cpu_search hgroup;
615		struct cpu_group *child;
616		u_int lload;
617		int hload;
618		int load;
619		int i;
620
621		lload = -1;
622		hload = -1;
623		for (i = 0; i < cg->cg_children; i++) {
624			child = &cg->cg_child[i];
625			if (match & CPU_SEARCH_LOWEST) {
626				lgroup = *low;
627				lgroup.cs_load = -1;
628			}
629			if (match & CPU_SEARCH_HIGHEST) {
630				hgroup = *high;
631				lgroup.cs_load = 0;
632			}
633			switch (match) {
634			case CPU_SEARCH_LOWEST:
635				load = cpu_search_lowest(child, &lgroup);
636				break;
637			case CPU_SEARCH_HIGHEST:
638				load = cpu_search_highest(child, &hgroup);
639				break;
640			case CPU_SEARCH_BOTH:
641				load = cpu_search_both(child, &lgroup, &hgroup);
642				break;
643			}
644			total += load;
645			if (match & CPU_SEARCH_LOWEST)
646				if (load < lload || low->cs_cpu == -1) {
647					*low = lgroup;
648					lload = load;
649				}
650			if (match & CPU_SEARCH_HIGHEST)
651				if (load > hload || high->cs_cpu == -1) {
652					hload = load;
653					*high = hgroup;
654				}
655		}
656	} else {
657		int cpu;
658
659		CPUSET_FOREACH(cpu, cg->cg_mask)
660			total += cpu_compare(cpu, low, high, match);
661	}
662	return (total);
663}
664
665/*
666 * cpu_search instantiations must pass constants to maintain the inline
667 * optimization.
668 */
669int
670cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
671{
672	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
673}
674
675int
676cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
677{
678	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
679}
680
681int
682cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
683    struct cpu_search *high)
684{
685	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
686}
687
688/*
689 * Find the cpu with the least load via the least loaded path that has a
690 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
691 * acceptable.
692 */
693static inline int
694sched_lowest(struct cpu_group *cg, cpuset_t mask, int pri)
695{
696	struct cpu_search low;
697
698	low.cs_cpu = -1;
699	low.cs_load = -1;
700	low.cs_mask = mask;
701	low.cs_limit = pri;
702	cpu_search_lowest(cg, &low);
703	return low.cs_cpu;
704}
705
706/*
707 * Find the cpu with the highest load via the highest loaded path.
708 */
709static inline int
710sched_highest(struct cpu_group *cg, cpuset_t mask, int minload)
711{
712	struct cpu_search high;
713
714	high.cs_cpu = -1;
715	high.cs_load = 0;
716	high.cs_mask = mask;
717	high.cs_limit = minload;
718	cpu_search_highest(cg, &high);
719	return high.cs_cpu;
720}
721
722/*
723 * Simultaneously find the highest and lowest loaded cpu reachable via
724 * cg.
725 */
726static inline void
727sched_both(struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
728{
729	struct cpu_search high;
730	struct cpu_search low;
731
732	low.cs_cpu = -1;
733	low.cs_limit = -1;
734	low.cs_load = -1;
735	low.cs_mask = mask;
736	high.cs_load = 0;
737	high.cs_cpu = -1;
738	high.cs_limit = -1;
739	high.cs_mask = mask;
740	cpu_search_both(cg, &low, &high);
741	*lowcpu = low.cs_cpu;
742	*highcpu = high.cs_cpu;
743	return;
744}
745
746static void
747sched_balance_group(struct cpu_group *cg)
748{
749	cpuset_t mask;
750	int high;
751	int low;
752	int i;
753
754	CPU_FILL(&mask);
755	for (;;) {
756		sched_both(cg, mask, &low, &high);
757		if (low == high || low == -1 || high == -1)
758			break;
759		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
760			break;
761		/*
762		 * If we failed to move any threads determine which cpu
763		 * to kick out of the set and try again.
764	 	 */
765		if (TDQ_CPU(high)->tdq_transferable == 0)
766			CPU_CLR(high, &mask);
767		else
768			CPU_CLR(low, &mask);
769	}
770
771	for (i = 0; i < cg->cg_children; i++)
772		sched_balance_group(&cg->cg_child[i]);
773}
774
775static void
776sched_balance(void)
777{
778	struct tdq *tdq;
779
780	/*
781	 * Select a random time between .5 * balance_interval and
782	 * 1.5 * balance_interval.
783	 */
784	balance_ticks = max(balance_interval / 2, 1);
785	balance_ticks += random() % balance_interval;
786	if (smp_started == 0 || rebalance == 0)
787		return;
788	tdq = TDQ_SELF();
789	TDQ_UNLOCK(tdq);
790	sched_balance_group(cpu_top);
791	TDQ_LOCK(tdq);
792}
793
794/*
795 * Lock two thread queues using their address to maintain lock order.
796 */
797static void
798tdq_lock_pair(struct tdq *one, struct tdq *two)
799{
800	if (one < two) {
801		TDQ_LOCK(one);
802		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
803	} else {
804		TDQ_LOCK(two);
805		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
806	}
807}
808
809/*
810 * Unlock two thread queues.  Order is not important here.
811 */
812static void
813tdq_unlock_pair(struct tdq *one, struct tdq *two)
814{
815	TDQ_UNLOCK(one);
816	TDQ_UNLOCK(two);
817}
818
819/*
820 * Transfer load between two imbalanced thread queues.
821 */
822static int
823sched_balance_pair(struct tdq *high, struct tdq *low)
824{
825	int transferable;
826	int high_load;
827	int low_load;
828	int moved;
829	int move;
830	int diff;
831	int i;
832
833	tdq_lock_pair(high, low);
834	transferable = high->tdq_transferable;
835	high_load = high->tdq_load;
836	low_load = low->tdq_load;
837	moved = 0;
838	/*
839	 * Determine what the imbalance is and then adjust that to how many
840	 * threads we actually have to give up (transferable).
841	 */
842	if (transferable != 0) {
843		diff = high_load - low_load;
844		move = diff / 2;
845		if (diff & 0x1)
846			move++;
847		move = min(move, transferable);
848		for (i = 0; i < move; i++)
849			moved += tdq_move(high, low);
850		/*
851		 * IPI the target cpu to force it to reschedule with the new
852		 * workload.
853		 */
854		ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT);
855	}
856	tdq_unlock_pair(high, low);
857	return (moved);
858}
859
860/*
861 * Move a thread from one thread queue to another.
862 */
863static int
864tdq_move(struct tdq *from, struct tdq *to)
865{
866	struct td_sched *ts;
867	struct thread *td;
868	struct tdq *tdq;
869	int cpu;
870
871	TDQ_LOCK_ASSERT(from, MA_OWNED);
872	TDQ_LOCK_ASSERT(to, MA_OWNED);
873
874	tdq = from;
875	cpu = TDQ_ID(to);
876	td = tdq_steal(tdq, cpu);
877	if (td == NULL)
878		return (0);
879	ts = td->td_sched;
880	/*
881	 * Although the run queue is locked the thread may be blocked.  Lock
882	 * it to clear this and acquire the run-queue lock.
883	 */
884	thread_lock(td);
885	/* Drop recursive lock on from acquired via thread_lock(). */
886	TDQ_UNLOCK(from);
887	sched_rem(td);
888	ts->ts_cpu = cpu;
889	td->td_lock = TDQ_LOCKPTR(to);
890	tdq_add(to, td, SRQ_YIELDING);
891	return (1);
892}
893
894/*
895 * This tdq has idled.  Try to steal a thread from another cpu and switch
896 * to it.
897 */
898static int
899tdq_idled(struct tdq *tdq)
900{
901	struct cpu_group *cg;
902	struct tdq *steal;
903	cpuset_t mask;
904	int thresh;
905	int cpu;
906
907	if (smp_started == 0 || steal_idle == 0)
908		return (1);
909	CPU_FILL(&mask);
910	CPU_CLR(PCPU_GET(cpuid), &mask);
911	/* We don't want to be preempted while we're iterating. */
912	spinlock_enter();
913	for (cg = tdq->tdq_cg; cg != NULL; ) {
914		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
915			thresh = steal_thresh;
916		else
917			thresh = 1;
918		cpu = sched_highest(cg, mask, thresh);
919		if (cpu == -1) {
920			cg = cg->cg_parent;
921			continue;
922		}
923		steal = TDQ_CPU(cpu);
924		CPU_CLR(cpu, &mask);
925		tdq_lock_pair(tdq, steal);
926		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
927			tdq_unlock_pair(tdq, steal);
928			continue;
929		}
930		/*
931		 * If a thread was added while interrupts were disabled don't
932		 * steal one here.  If we fail to acquire one due to affinity
933		 * restrictions loop again with this cpu removed from the
934		 * set.
935		 */
936		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
937			tdq_unlock_pair(tdq, steal);
938			continue;
939		}
940		spinlock_exit();
941		TDQ_UNLOCK(steal);
942		mi_switch(SW_VOL | SWT_IDLE, NULL);
943		thread_unlock(curthread);
944
945		return (0);
946	}
947	spinlock_exit();
948	return (1);
949}
950
951/*
952 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
953 */
954static void
955tdq_notify(struct tdq *tdq, struct thread *td)
956{
957	struct thread *ctd;
958	int pri;
959	int cpu;
960
961	if (tdq->tdq_ipipending)
962		return;
963	cpu = td->td_sched->ts_cpu;
964	pri = td->td_priority;
965	ctd = pcpu_find(cpu)->pc_curthread;
966	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
967		return;
968	if (TD_IS_IDLETHREAD(ctd)) {
969		/*
970		 * If the MD code has an idle wakeup routine try that before
971		 * falling back to IPI.
972		 */
973		if (cpu_idle_wakeup(cpu))
974			return;
975	}
976	tdq->tdq_ipipending = 1;
977	ipi_selected(1 << cpu, IPI_PREEMPT);
978}
979
980/*
981 * Steals load from a timeshare queue.  Honors the rotating queue head
982 * index.
983 */
984static struct thread *
985runq_steal_from(struct runq *rq, int cpu, u_char start)
986{
987	struct rqbits *rqb;
988	struct rqhead *rqh;
989	struct thread *td;
990	int first;
991	int bit;
992	int pri;
993	int i;
994
995	rqb = &rq->rq_status;
996	bit = start & (RQB_BPW -1);
997	pri = 0;
998	first = 0;
999again:
1000	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1001		if (rqb->rqb_bits[i] == 0)
1002			continue;
1003		if (bit != 0) {
1004			for (pri = bit; pri < RQB_BPW; pri++)
1005				if (rqb->rqb_bits[i] & (1ul << pri))
1006					break;
1007			if (pri >= RQB_BPW)
1008				continue;
1009		} else
1010			pri = RQB_FFS(rqb->rqb_bits[i]);
1011		pri += (i << RQB_L2BPW);
1012		rqh = &rq->rq_queues[pri];
1013		TAILQ_FOREACH(td, rqh, td_runq) {
1014			if (first && THREAD_CAN_MIGRATE(td) &&
1015			    THREAD_CAN_SCHED(td, cpu))
1016				return (td);
1017			first = 1;
1018		}
1019	}
1020	if (start != 0) {
1021		start = 0;
1022		goto again;
1023	}
1024
1025	return (NULL);
1026}
1027
1028/*
1029 * Steals load from a standard linear queue.
1030 */
1031static struct thread *
1032runq_steal(struct runq *rq, int cpu)
1033{
1034	struct rqhead *rqh;
1035	struct rqbits *rqb;
1036	struct thread *td;
1037	int word;
1038	int bit;
1039
1040	rqb = &rq->rq_status;
1041	for (word = 0; word < RQB_LEN; word++) {
1042		if (rqb->rqb_bits[word] == 0)
1043			continue;
1044		for (bit = 0; bit < RQB_BPW; bit++) {
1045			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1046				continue;
1047			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1048			TAILQ_FOREACH(td, rqh, td_runq)
1049				if (THREAD_CAN_MIGRATE(td) &&
1050				    THREAD_CAN_SCHED(td, cpu))
1051					return (td);
1052		}
1053	}
1054	return (NULL);
1055}
1056
1057/*
1058 * Attempt to steal a thread in priority order from a thread queue.
1059 */
1060static struct thread *
1061tdq_steal(struct tdq *tdq, int cpu)
1062{
1063	struct thread *td;
1064
1065	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1066	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1067		return (td);
1068	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1069	    cpu, tdq->tdq_ridx)) != NULL)
1070		return (td);
1071	return (runq_steal(&tdq->tdq_idle, cpu));
1072}
1073
1074/*
1075 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1076 * current lock and returns with the assigned queue locked.
1077 */
1078static inline struct tdq *
1079sched_setcpu(struct thread *td, int cpu, int flags)
1080{
1081
1082	struct tdq *tdq;
1083
1084	THREAD_LOCK_ASSERT(td, MA_OWNED);
1085	tdq = TDQ_CPU(cpu);
1086	td->td_sched->ts_cpu = cpu;
1087	/*
1088	 * If the lock matches just return the queue.
1089	 */
1090	if (td->td_lock == TDQ_LOCKPTR(tdq))
1091		return (tdq);
1092#ifdef notyet
1093	/*
1094	 * If the thread isn't running its lockptr is a
1095	 * turnstile or a sleepqueue.  We can just lock_set without
1096	 * blocking.
1097	 */
1098	if (TD_CAN_RUN(td)) {
1099		TDQ_LOCK(tdq);
1100		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1101		return (tdq);
1102	}
1103#endif
1104	/*
1105	 * The hard case, migration, we need to block the thread first to
1106	 * prevent order reversals with other cpus locks.
1107	 */
1108	spinlock_enter();
1109	thread_lock_block(td);
1110	TDQ_LOCK(tdq);
1111	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1112	spinlock_exit();
1113	return (tdq);
1114}
1115
1116SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1117SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1118SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1119SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1120SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1121SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1122
1123static int
1124sched_pickcpu(struct thread *td, int flags)
1125{
1126	struct cpu_group *cg;
1127	struct td_sched *ts;
1128	struct tdq *tdq;
1129	cpuset_t mask;
1130	int self;
1131	int pri;
1132	int cpu;
1133
1134	self = PCPU_GET(cpuid);
1135	ts = td->td_sched;
1136	if (smp_started == 0)
1137		return (self);
1138	/*
1139	 * Don't migrate a running thread from sched_switch().
1140	 */
1141	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1142		return (ts->ts_cpu);
1143	/*
1144	 * Prefer to run interrupt threads on the processors that generate
1145	 * the interrupt.
1146	 */
1147	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1148	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1149		SCHED_STAT_INC(pickcpu_intrbind);
1150		ts->ts_cpu = self;
1151	}
1152	/*
1153	 * If the thread can run on the last cpu and the affinity has not
1154	 * expired or it is idle run it there.
1155	 */
1156	pri = td->td_priority;
1157	tdq = TDQ_CPU(ts->ts_cpu);
1158	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1159		if (tdq->tdq_lowpri > PRI_MIN_IDLE) {
1160			SCHED_STAT_INC(pickcpu_idle_affinity);
1161			return (ts->ts_cpu);
1162		}
1163		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) {
1164			SCHED_STAT_INC(pickcpu_affinity);
1165			return (ts->ts_cpu);
1166		}
1167	}
1168	/*
1169	 * Search for the highest level in the tree that still has affinity.
1170	 */
1171	cg = NULL;
1172	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1173		if (SCHED_AFFINITY(ts, cg->cg_level))
1174			break;
1175	cpu = -1;
1176	mask = td->td_cpuset->cs_mask;
1177	if (cg)
1178		cpu = sched_lowest(cg, mask, pri);
1179	if (cpu == -1)
1180		cpu = sched_lowest(cpu_top, mask, -1);
1181	/*
1182	 * Compare the lowest loaded cpu to current cpu.
1183	 */
1184	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1185	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) {
1186		SCHED_STAT_INC(pickcpu_local);
1187		cpu = self;
1188	} else
1189		SCHED_STAT_INC(pickcpu_lowest);
1190	if (cpu != ts->ts_cpu)
1191		SCHED_STAT_INC(pickcpu_migration);
1192	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1193	return (cpu);
1194}
1195#endif
1196
1197/*
1198 * Pick the highest priority task we have and return it.
1199 */
1200static struct thread *
1201tdq_choose(struct tdq *tdq)
1202{
1203	struct thread *td;
1204
1205	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1206	td = runq_choose(&tdq->tdq_realtime);
1207	if (td != NULL)
1208		return (td);
1209	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1210	if (td != NULL) {
1211		KASSERT(td->td_priority >= PRI_MIN_TIMESHARE,
1212		    ("tdq_choose: Invalid priority on timeshare queue %d",
1213		    td->td_priority));
1214		return (td);
1215	}
1216	td = runq_choose(&tdq->tdq_idle);
1217	if (td != NULL) {
1218		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1219		    ("tdq_choose: Invalid priority on idle queue %d",
1220		    td->td_priority));
1221		return (td);
1222	}
1223
1224	return (NULL);
1225}
1226
1227/*
1228 * Initialize a thread queue.
1229 */
1230static void
1231tdq_setup(struct tdq *tdq)
1232{
1233
1234	if (bootverbose)
1235		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1236	runq_init(&tdq->tdq_realtime);
1237	runq_init(&tdq->tdq_timeshare);
1238	runq_init(&tdq->tdq_idle);
1239	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1240	    "sched lock %d", (int)TDQ_ID(tdq));
1241	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1242	    MTX_SPIN | MTX_RECURSE);
1243#ifdef KTR
1244	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1245	    "CPU %d load", (int)TDQ_ID(tdq));
1246#endif
1247}
1248
1249#ifdef SMP
1250static void
1251sched_setup_smp(void)
1252{
1253	struct tdq *tdq;
1254	int i;
1255
1256	cpu_top = smp_topo();
1257	for (i = 0; i < MAXCPU; i++) {
1258		if (CPU_ABSENT(i))
1259			continue;
1260		tdq = TDQ_CPU(i);
1261		tdq_setup(tdq);
1262		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1263		if (tdq->tdq_cg == NULL)
1264			panic("Can't find cpu group for %d\n", i);
1265	}
1266	balance_tdq = TDQ_SELF();
1267	sched_balance();
1268}
1269#endif
1270
1271/*
1272 * Setup the thread queues and initialize the topology based on MD
1273 * information.
1274 */
1275static void
1276sched_setup(void *dummy)
1277{
1278	struct tdq *tdq;
1279
1280	tdq = TDQ_SELF();
1281#ifdef SMP
1282	sched_setup_smp();
1283#else
1284	tdq_setup(tdq);
1285#endif
1286	/*
1287	 * To avoid divide-by-zero, we set realstathz a dummy value
1288	 * in case which sched_clock() called before sched_initticks().
1289	 */
1290	realstathz = hz;
1291	sched_slice = (realstathz/10);	/* ~100ms */
1292	tickincr = 1 << SCHED_TICK_SHIFT;
1293
1294	/* Add thread0's load since it's running. */
1295	TDQ_LOCK(tdq);
1296	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1297	tdq_load_add(tdq, &thread0);
1298	tdq->tdq_lowpri = thread0.td_priority;
1299	TDQ_UNLOCK(tdq);
1300}
1301
1302/*
1303 * This routine determines the tickincr after stathz and hz are setup.
1304 */
1305/* ARGSUSED */
1306static void
1307sched_initticks(void *dummy)
1308{
1309	int incr;
1310
1311	realstathz = stathz ? stathz : hz;
1312	sched_slice = (realstathz/10);	/* ~100ms */
1313
1314	/*
1315	 * tickincr is shifted out by 10 to avoid rounding errors due to
1316	 * hz not being evenly divisible by stathz on all platforms.
1317	 */
1318	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1319	/*
1320	 * This does not work for values of stathz that are more than
1321	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1322	 */
1323	if (incr == 0)
1324		incr = 1;
1325	tickincr = incr;
1326#ifdef SMP
1327	/*
1328	 * Set the default balance interval now that we know
1329	 * what realstathz is.
1330	 */
1331	balance_interval = realstathz;
1332	/*
1333	 * Set steal thresh to roughly log2(mp_ncpu) but no greater than 4.
1334	 * This prevents excess thrashing on large machines and excess idle
1335	 * on smaller machines.
1336	 */
1337	steal_thresh = min(fls(mp_ncpus) - 1, 3);
1338	affinity = SCHED_AFFINITY_DEFAULT;
1339#endif
1340}
1341
1342
1343/*
1344 * This is the core of the interactivity algorithm.  Determines a score based
1345 * on past behavior.  It is the ratio of sleep time to run time scaled to
1346 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1347 * differs from the cpu usage because it does not account for time spent
1348 * waiting on a run-queue.  Would be prettier if we had floating point.
1349 */
1350static int
1351sched_interact_score(struct thread *td)
1352{
1353	struct td_sched *ts;
1354	int div;
1355
1356	ts = td->td_sched;
1357	/*
1358	 * The score is only needed if this is likely to be an interactive
1359	 * task.  Don't go through the expense of computing it if there's
1360	 * no chance.
1361	 */
1362	if (sched_interact <= SCHED_INTERACT_HALF &&
1363		ts->ts_runtime >= ts->ts_slptime)
1364			return (SCHED_INTERACT_HALF);
1365
1366	if (ts->ts_runtime > ts->ts_slptime) {
1367		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1368		return (SCHED_INTERACT_HALF +
1369		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1370	}
1371	if (ts->ts_slptime > ts->ts_runtime) {
1372		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1373		return (ts->ts_runtime / div);
1374	}
1375	/* runtime == slptime */
1376	if (ts->ts_runtime)
1377		return (SCHED_INTERACT_HALF);
1378
1379	/*
1380	 * This can happen if slptime and runtime are 0.
1381	 */
1382	return (0);
1383
1384}
1385
1386/*
1387 * Scale the scheduling priority according to the "interactivity" of this
1388 * process.
1389 */
1390static void
1391sched_priority(struct thread *td)
1392{
1393	int score;
1394	int pri;
1395
1396	if (td->td_pri_class != PRI_TIMESHARE)
1397		return;
1398	/*
1399	 * If the score is interactive we place the thread in the realtime
1400	 * queue with a priority that is less than kernel and interrupt
1401	 * priorities.  These threads are not subject to nice restrictions.
1402	 *
1403	 * Scores greater than this are placed on the normal timeshare queue
1404	 * where the priority is partially decided by the most recent cpu
1405	 * utilization and the rest is decided by nice value.
1406	 *
1407	 * The nice value of the process has a linear effect on the calculated
1408	 * score.  Negative nice values make it easier for a thread to be
1409	 * considered interactive.
1410	 */
1411	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1412	if (score < sched_interact) {
1413		pri = PRI_MIN_REALTIME;
1414		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1415		    * score;
1416		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1417		    ("sched_priority: invalid interactive priority %d score %d",
1418		    pri, score));
1419	} else {
1420		pri = SCHED_PRI_MIN;
1421		if (td->td_sched->ts_ticks)
1422			pri += SCHED_PRI_TICKS(td->td_sched);
1423		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1424		KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
1425		    ("sched_priority: invalid priority %d: nice %d, "
1426		    "ticks %d ftick %d ltick %d tick pri %d",
1427		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1428		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1429		    SCHED_PRI_TICKS(td->td_sched)));
1430	}
1431	sched_user_prio(td, pri);
1432
1433	return;
1434}
1435
1436/*
1437 * This routine enforces a maximum limit on the amount of scheduling history
1438 * kept.  It is called after either the slptime or runtime is adjusted.  This
1439 * function is ugly due to integer math.
1440 */
1441static void
1442sched_interact_update(struct thread *td)
1443{
1444	struct td_sched *ts;
1445	u_int sum;
1446
1447	ts = td->td_sched;
1448	sum = ts->ts_runtime + ts->ts_slptime;
1449	if (sum < SCHED_SLP_RUN_MAX)
1450		return;
1451	/*
1452	 * This only happens from two places:
1453	 * 1) We have added an unusual amount of run time from fork_exit.
1454	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1455	 */
1456	if (sum > SCHED_SLP_RUN_MAX * 2) {
1457		if (ts->ts_runtime > ts->ts_slptime) {
1458			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1459			ts->ts_slptime = 1;
1460		} else {
1461			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1462			ts->ts_runtime = 1;
1463		}
1464		return;
1465	}
1466	/*
1467	 * If we have exceeded by more than 1/5th then the algorithm below
1468	 * will not bring us back into range.  Dividing by two here forces
1469	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1470	 */
1471	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1472		ts->ts_runtime /= 2;
1473		ts->ts_slptime /= 2;
1474		return;
1475	}
1476	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1477	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1478}
1479
1480/*
1481 * Scale back the interactivity history when a child thread is created.  The
1482 * history is inherited from the parent but the thread may behave totally
1483 * differently.  For example, a shell spawning a compiler process.  We want
1484 * to learn that the compiler is behaving badly very quickly.
1485 */
1486static void
1487sched_interact_fork(struct thread *td)
1488{
1489	int ratio;
1490	int sum;
1491
1492	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1493	if (sum > SCHED_SLP_RUN_FORK) {
1494		ratio = sum / SCHED_SLP_RUN_FORK;
1495		td->td_sched->ts_runtime /= ratio;
1496		td->td_sched->ts_slptime /= ratio;
1497	}
1498}
1499
1500/*
1501 * Called from proc0_init() to setup the scheduler fields.
1502 */
1503void
1504schedinit(void)
1505{
1506
1507	/*
1508	 * Set up the scheduler specific parts of proc0.
1509	 */
1510	proc0.p_sched = NULL; /* XXX */
1511	thread0.td_sched = &td_sched0;
1512	td_sched0.ts_ltick = ticks;
1513	td_sched0.ts_ftick = ticks;
1514	td_sched0.ts_slice = sched_slice;
1515}
1516
1517/*
1518 * This is only somewhat accurate since given many processes of the same
1519 * priority they will switch when their slices run out, which will be
1520 * at most sched_slice stathz ticks.
1521 */
1522int
1523sched_rr_interval(void)
1524{
1525
1526	/* Convert sched_slice to hz */
1527	return (hz/(realstathz/sched_slice));
1528}
1529
1530/*
1531 * Update the percent cpu tracking information when it is requested or
1532 * the total history exceeds the maximum.  We keep a sliding history of
1533 * tick counts that slowly decays.  This is less precise than the 4BSD
1534 * mechanism since it happens with less regular and frequent events.
1535 */
1536static void
1537sched_pctcpu_update(struct td_sched *ts)
1538{
1539
1540	if (ts->ts_ticks == 0)
1541		return;
1542	if (ticks - (hz / 10) < ts->ts_ltick &&
1543	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1544		return;
1545	/*
1546	 * Adjust counters and watermark for pctcpu calc.
1547	 */
1548	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1549		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1550			    SCHED_TICK_TARG;
1551	else
1552		ts->ts_ticks = 0;
1553	ts->ts_ltick = ticks;
1554	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1555}
1556
1557/*
1558 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1559 * if necessary.  This is the back-end for several priority related
1560 * functions.
1561 */
1562static void
1563sched_thread_priority(struct thread *td, u_char prio)
1564{
1565	struct td_sched *ts;
1566	struct tdq *tdq;
1567	int oldpri;
1568
1569	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1570	    "prio:%d", td->td_priority, "new prio:%d", prio,
1571	    KTR_ATTR_LINKED, sched_tdname(curthread));
1572	if (td != curthread && prio > td->td_priority) {
1573		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1574		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1575		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1576	}
1577	ts = td->td_sched;
1578	THREAD_LOCK_ASSERT(td, MA_OWNED);
1579	if (td->td_priority == prio)
1580		return;
1581	/*
1582	 * If the priority has been elevated due to priority
1583	 * propagation, we may have to move ourselves to a new
1584	 * queue.  This could be optimized to not re-add in some
1585	 * cases.
1586	 */
1587	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1588		sched_rem(td);
1589		td->td_priority = prio;
1590		sched_add(td, SRQ_BORROWING);
1591		return;
1592	}
1593	/*
1594	 * If the thread is currently running we may have to adjust the lowpri
1595	 * information so other cpus are aware of our current priority.
1596	 */
1597	if (TD_IS_RUNNING(td)) {
1598		tdq = TDQ_CPU(ts->ts_cpu);
1599		oldpri = td->td_priority;
1600		td->td_priority = prio;
1601		if (prio < tdq->tdq_lowpri)
1602			tdq->tdq_lowpri = prio;
1603		else if (tdq->tdq_lowpri == oldpri)
1604			tdq_setlowpri(tdq, td);
1605		return;
1606	}
1607	td->td_priority = prio;
1608}
1609
1610/*
1611 * Update a thread's priority when it is lent another thread's
1612 * priority.
1613 */
1614void
1615sched_lend_prio(struct thread *td, u_char prio)
1616{
1617
1618	td->td_flags |= TDF_BORROWING;
1619	sched_thread_priority(td, prio);
1620}
1621
1622/*
1623 * Restore a thread's priority when priority propagation is
1624 * over.  The prio argument is the minimum priority the thread
1625 * needs to have to satisfy other possible priority lending
1626 * requests.  If the thread's regular priority is less
1627 * important than prio, the thread will keep a priority boost
1628 * of prio.
1629 */
1630void
1631sched_unlend_prio(struct thread *td, u_char prio)
1632{
1633	u_char base_pri;
1634
1635	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1636	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1637		base_pri = td->td_user_pri;
1638	else
1639		base_pri = td->td_base_pri;
1640	if (prio >= base_pri) {
1641		td->td_flags &= ~TDF_BORROWING;
1642		sched_thread_priority(td, base_pri);
1643	} else
1644		sched_lend_prio(td, prio);
1645}
1646
1647/*
1648 * Standard entry for setting the priority to an absolute value.
1649 */
1650void
1651sched_prio(struct thread *td, u_char prio)
1652{
1653	u_char oldprio;
1654
1655	/* First, update the base priority. */
1656	td->td_base_pri = prio;
1657
1658	/*
1659	 * If the thread is borrowing another thread's priority, don't
1660	 * ever lower the priority.
1661	 */
1662	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1663		return;
1664
1665	/* Change the real priority. */
1666	oldprio = td->td_priority;
1667	sched_thread_priority(td, prio);
1668
1669	/*
1670	 * If the thread is on a turnstile, then let the turnstile update
1671	 * its state.
1672	 */
1673	if (TD_ON_LOCK(td) && oldprio != prio)
1674		turnstile_adjust(td, oldprio);
1675}
1676
1677/*
1678 * Set the base user priority, does not effect current running priority.
1679 */
1680void
1681sched_user_prio(struct thread *td, u_char prio)
1682{
1683	u_char oldprio;
1684
1685	td->td_base_user_pri = prio;
1686	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1687                return;
1688	oldprio = td->td_user_pri;
1689	td->td_user_pri = prio;
1690}
1691
1692void
1693sched_lend_user_prio(struct thread *td, u_char prio)
1694{
1695	u_char oldprio;
1696
1697	THREAD_LOCK_ASSERT(td, MA_OWNED);
1698	td->td_flags |= TDF_UBORROWING;
1699	oldprio = td->td_user_pri;
1700	td->td_user_pri = prio;
1701}
1702
1703void
1704sched_unlend_user_prio(struct thread *td, u_char prio)
1705{
1706	u_char base_pri;
1707
1708	THREAD_LOCK_ASSERT(td, MA_OWNED);
1709	base_pri = td->td_base_user_pri;
1710	if (prio >= base_pri) {
1711		td->td_flags &= ~TDF_UBORROWING;
1712		sched_user_prio(td, base_pri);
1713	} else {
1714		sched_lend_user_prio(td, prio);
1715	}
1716}
1717
1718/*
1719 * Handle migration from sched_switch().  This happens only for
1720 * cpu binding.
1721 */
1722static struct mtx *
1723sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1724{
1725	struct tdq *tdn;
1726
1727	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1728#ifdef SMP
1729	tdq_load_rem(tdq, td);
1730	/*
1731	 * Do the lock dance required to avoid LOR.  We grab an extra
1732	 * spinlock nesting to prevent preemption while we're
1733	 * not holding either run-queue lock.
1734	 */
1735	spinlock_enter();
1736	thread_lock_block(td);	/* This releases the lock on tdq. */
1737
1738	/*
1739	 * Acquire both run-queue locks before placing the thread on the new
1740	 * run-queue to avoid deadlocks created by placing a thread with a
1741	 * blocked lock on the run-queue of a remote processor.  The deadlock
1742	 * occurs when a third processor attempts to lock the two queues in
1743	 * question while the target processor is spinning with its own
1744	 * run-queue lock held while waiting for the blocked lock to clear.
1745	 */
1746	tdq_lock_pair(tdn, tdq);
1747	tdq_add(tdn, td, flags);
1748	tdq_notify(tdn, td);
1749	TDQ_UNLOCK(tdn);
1750	spinlock_exit();
1751#endif
1752	return (TDQ_LOCKPTR(tdn));
1753}
1754
1755/*
1756 * Variadic version of thread_lock_unblock() that does not assume td_lock
1757 * is blocked.
1758 */
1759static inline void
1760thread_unblock_switch(struct thread *td, struct mtx *mtx)
1761{
1762	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1763	    (uintptr_t)mtx);
1764}
1765
1766/*
1767 * Switch threads.  This function has to handle threads coming in while
1768 * blocked for some reason, running, or idle.  It also must deal with
1769 * migrating a thread from one queue to another as running threads may
1770 * be assigned elsewhere via binding.
1771 */
1772void
1773sched_switch(struct thread *td, struct thread *newtd, int flags)
1774{
1775	struct tdq *tdq;
1776	struct td_sched *ts;
1777	struct mtx *mtx;
1778	int srqflag;
1779	int cpuid;
1780
1781	THREAD_LOCK_ASSERT(td, MA_OWNED);
1782	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1783
1784	cpuid = PCPU_GET(cpuid);
1785	tdq = TDQ_CPU(cpuid);
1786	ts = td->td_sched;
1787	mtx = td->td_lock;
1788	ts->ts_rltick = ticks;
1789	td->td_lastcpu = td->td_oncpu;
1790	td->td_oncpu = NOCPU;
1791	td->td_flags &= ~TDF_NEEDRESCHED;
1792	td->td_owepreempt = 0;
1793	tdq->tdq_switchcnt++;
1794	/*
1795	 * The lock pointer in an idle thread should never change.  Reset it
1796	 * to CAN_RUN as well.
1797	 */
1798	if (TD_IS_IDLETHREAD(td)) {
1799		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1800		TD_SET_CAN_RUN(td);
1801	} else if (TD_IS_RUNNING(td)) {
1802		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1803		srqflag = (flags & SW_PREEMPT) ?
1804		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1805		    SRQ_OURSELF|SRQ_YIELDING;
1806		if (ts->ts_cpu == cpuid)
1807			tdq_runq_add(tdq, td, srqflag);
1808		else
1809			mtx = sched_switch_migrate(tdq, td, srqflag);
1810	} else {
1811		/* This thread must be going to sleep. */
1812		TDQ_LOCK(tdq);
1813		mtx = thread_lock_block(td);
1814		tdq_load_rem(tdq, td);
1815	}
1816	/*
1817	 * We enter here with the thread blocked and assigned to the
1818	 * appropriate cpu run-queue or sleep-queue and with the current
1819	 * thread-queue locked.
1820	 */
1821	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1822	newtd = choosethread();
1823	/*
1824	 * Call the MD code to switch contexts if necessary.
1825	 */
1826	if (td != newtd) {
1827#ifdef	HWPMC_HOOKS
1828		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1829			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1830#endif
1831		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1832		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1833
1834#ifdef KDTRACE_HOOKS
1835		/*
1836		 * If DTrace has set the active vtime enum to anything
1837		 * other than INACTIVE (0), then it should have set the
1838		 * function to call.
1839		 */
1840		if (dtrace_vtime_active)
1841			(*dtrace_vtime_switch_func)(newtd);
1842#endif
1843
1844		cpu_switch(td, newtd, mtx);
1845		/*
1846		 * We may return from cpu_switch on a different cpu.  However,
1847		 * we always return with td_lock pointing to the current cpu's
1848		 * run queue lock.
1849		 */
1850		cpuid = PCPU_GET(cpuid);
1851		tdq = TDQ_CPU(cpuid);
1852		lock_profile_obtain_lock_success(
1853		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1854#ifdef	HWPMC_HOOKS
1855		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1856			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1857#endif
1858	} else
1859		thread_unblock_switch(td, mtx);
1860	/*
1861	 * Assert that all went well and return.
1862	 */
1863	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1864	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1865	td->td_oncpu = cpuid;
1866}
1867
1868/*
1869 * Adjust thread priorities as a result of a nice request.
1870 */
1871void
1872sched_nice(struct proc *p, int nice)
1873{
1874	struct thread *td;
1875
1876	PROC_LOCK_ASSERT(p, MA_OWNED);
1877
1878	p->p_nice = nice;
1879	FOREACH_THREAD_IN_PROC(p, td) {
1880		thread_lock(td);
1881		sched_priority(td);
1882		sched_prio(td, td->td_base_user_pri);
1883		thread_unlock(td);
1884	}
1885}
1886
1887/*
1888 * Record the sleep time for the interactivity scorer.
1889 */
1890void
1891sched_sleep(struct thread *td, int prio)
1892{
1893
1894	THREAD_LOCK_ASSERT(td, MA_OWNED);
1895
1896	td->td_slptick = ticks;
1897	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1898		td->td_flags |= TDF_CANSWAP;
1899	if (static_boost == 1 && prio)
1900		sched_prio(td, prio);
1901	else if (static_boost && td->td_priority > static_boost)
1902		sched_prio(td, static_boost);
1903}
1904
1905/*
1906 * Schedule a thread to resume execution and record how long it voluntarily
1907 * slept.  We also update the pctcpu, interactivity, and priority.
1908 */
1909void
1910sched_wakeup(struct thread *td)
1911{
1912	struct td_sched *ts;
1913	int slptick;
1914
1915	THREAD_LOCK_ASSERT(td, MA_OWNED);
1916	ts = td->td_sched;
1917	td->td_flags &= ~TDF_CANSWAP;
1918	/*
1919	 * If we slept for more than a tick update our interactivity and
1920	 * priority.
1921	 */
1922	slptick = td->td_slptick;
1923	td->td_slptick = 0;
1924	if (slptick && slptick != ticks) {
1925		u_int hzticks;
1926
1927		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1928		ts->ts_slptime += hzticks;
1929		sched_interact_update(td);
1930		sched_pctcpu_update(ts);
1931	}
1932	/* Reset the slice value after we sleep. */
1933	ts->ts_slice = sched_slice;
1934	sched_add(td, SRQ_BORING);
1935}
1936
1937/*
1938 * Penalize the parent for creating a new child and initialize the child's
1939 * priority.
1940 */
1941void
1942sched_fork(struct thread *td, struct thread *child)
1943{
1944	THREAD_LOCK_ASSERT(td, MA_OWNED);
1945	sched_fork_thread(td, child);
1946	/*
1947	 * Penalize the parent and child for forking.
1948	 */
1949	sched_interact_fork(child);
1950	sched_priority(child);
1951	td->td_sched->ts_runtime += tickincr;
1952	sched_interact_update(td);
1953	sched_priority(td);
1954}
1955
1956/*
1957 * Fork a new thread, may be within the same process.
1958 */
1959void
1960sched_fork_thread(struct thread *td, struct thread *child)
1961{
1962	struct td_sched *ts;
1963	struct td_sched *ts2;
1964
1965	THREAD_LOCK_ASSERT(td, MA_OWNED);
1966	/*
1967	 * Initialize child.
1968	 */
1969	ts = td->td_sched;
1970	ts2 = child->td_sched;
1971	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1972	child->td_cpuset = cpuset_ref(td->td_cpuset);
1973	ts2->ts_cpu = ts->ts_cpu;
1974	ts2->ts_flags = 0;
1975	/*
1976	 * Grab our parents cpu estimation information and priority.
1977	 */
1978	ts2->ts_ticks = ts->ts_ticks;
1979	ts2->ts_ltick = ts->ts_ltick;
1980	ts2->ts_incrtick = ts->ts_incrtick;
1981	ts2->ts_ftick = ts->ts_ftick;
1982	child->td_user_pri = td->td_user_pri;
1983	child->td_base_user_pri = td->td_base_user_pri;
1984	/*
1985	 * And update interactivity score.
1986	 */
1987	ts2->ts_slptime = ts->ts_slptime;
1988	ts2->ts_runtime = ts->ts_runtime;
1989	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1990#ifdef KTR
1991	bzero(ts2->ts_name, sizeof(ts2->ts_name));
1992#endif
1993}
1994
1995/*
1996 * Adjust the priority class of a thread.
1997 */
1998void
1999sched_class(struct thread *td, int class)
2000{
2001
2002	THREAD_LOCK_ASSERT(td, MA_OWNED);
2003	if (td->td_pri_class == class)
2004		return;
2005	td->td_pri_class = class;
2006}
2007
2008/*
2009 * Return some of the child's priority and interactivity to the parent.
2010 */
2011void
2012sched_exit(struct proc *p, struct thread *child)
2013{
2014	struct thread *td;
2015
2016	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2017	    "prio:td", child->td_priority);
2018	PROC_LOCK_ASSERT(p, MA_OWNED);
2019	td = FIRST_THREAD_IN_PROC(p);
2020	sched_exit_thread(td, child);
2021}
2022
2023/*
2024 * Penalize another thread for the time spent on this one.  This helps to
2025 * worsen the priority and interactivity of processes which schedule batch
2026 * jobs such as make.  This has little effect on the make process itself but
2027 * causes new processes spawned by it to receive worse scores immediately.
2028 */
2029void
2030sched_exit_thread(struct thread *td, struct thread *child)
2031{
2032
2033	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2034	    "prio:td", child->td_priority);
2035	/*
2036	 * Give the child's runtime to the parent without returning the
2037	 * sleep time as a penalty to the parent.  This causes shells that
2038	 * launch expensive things to mark their children as expensive.
2039	 */
2040	thread_lock(td);
2041	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2042	sched_interact_update(td);
2043	sched_priority(td);
2044	thread_unlock(td);
2045}
2046
2047void
2048sched_preempt(struct thread *td)
2049{
2050	struct tdq *tdq;
2051
2052	thread_lock(td);
2053	tdq = TDQ_SELF();
2054	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2055	tdq->tdq_ipipending = 0;
2056	if (td->td_priority > tdq->tdq_lowpri) {
2057		int flags;
2058
2059		flags = SW_INVOL | SW_PREEMPT;
2060		if (td->td_critnest > 1)
2061			td->td_owepreempt = 1;
2062		else if (TD_IS_IDLETHREAD(td))
2063			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2064		else
2065			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2066	}
2067	thread_unlock(td);
2068}
2069
2070/*
2071 * Fix priorities on return to user-space.  Priorities may be elevated due
2072 * to static priorities in msleep() or similar.
2073 */
2074void
2075sched_userret(struct thread *td)
2076{
2077	/*
2078	 * XXX we cheat slightly on the locking here to avoid locking in
2079	 * the usual case.  Setting td_priority here is essentially an
2080	 * incomplete workaround for not setting it properly elsewhere.
2081	 * Now that some interrupt handlers are threads, not setting it
2082	 * properly elsewhere can clobber it in the window between setting
2083	 * it here and returning to user mode, so don't waste time setting
2084	 * it perfectly here.
2085	 */
2086	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2087	    ("thread with borrowed priority returning to userland"));
2088	if (td->td_priority != td->td_user_pri) {
2089		thread_lock(td);
2090		td->td_priority = td->td_user_pri;
2091		td->td_base_pri = td->td_user_pri;
2092		tdq_setlowpri(TDQ_SELF(), td);
2093		thread_unlock(td);
2094        }
2095}
2096
2097/*
2098 * Handle a stathz tick.  This is really only relevant for timeshare
2099 * threads.
2100 */
2101void
2102sched_clock(struct thread *td)
2103{
2104	struct tdq *tdq;
2105	struct td_sched *ts;
2106
2107	THREAD_LOCK_ASSERT(td, MA_OWNED);
2108	tdq = TDQ_SELF();
2109#ifdef SMP
2110	/*
2111	 * We run the long term load balancer infrequently on the first cpu.
2112	 */
2113	if (balance_tdq == tdq) {
2114		if (balance_ticks && --balance_ticks == 0)
2115			sched_balance();
2116	}
2117#endif
2118	/*
2119	 * Save the old switch count so we have a record of the last ticks
2120	 * activity.   Initialize the new switch count based on our load.
2121	 * If there is some activity seed it to reflect that.
2122	 */
2123	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2124	tdq->tdq_switchcnt = tdq->tdq_load;
2125	/*
2126	 * Advance the insert index once for each tick to ensure that all
2127	 * threads get a chance to run.
2128	 */
2129	if (tdq->tdq_idx == tdq->tdq_ridx) {
2130		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2131		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2132			tdq->tdq_ridx = tdq->tdq_idx;
2133	}
2134	ts = td->td_sched;
2135	if (td->td_pri_class & PRI_FIFO_BIT)
2136		return;
2137	if (td->td_pri_class == PRI_TIMESHARE) {
2138		/*
2139		 * We used a tick; charge it to the thread so
2140		 * that we can compute our interactivity.
2141		 */
2142		td->td_sched->ts_runtime += tickincr;
2143		sched_interact_update(td);
2144		sched_priority(td);
2145	}
2146	/*
2147	 * We used up one time slice.
2148	 */
2149	if (--ts->ts_slice > 0)
2150		return;
2151	/*
2152	 * We're out of time, force a requeue at userret().
2153	 */
2154	ts->ts_slice = sched_slice;
2155	td->td_flags |= TDF_NEEDRESCHED;
2156}
2157
2158/*
2159 * Called once per hz tick.  Used for cpu utilization information.  This
2160 * is easier than trying to scale based on stathz.
2161 */
2162void
2163sched_tick(void)
2164{
2165	struct td_sched *ts;
2166
2167	ts = curthread->td_sched;
2168	/*
2169	 * Ticks is updated asynchronously on a single cpu.  Check here to
2170	 * avoid incrementing ts_ticks multiple times in a single tick.
2171	 */
2172	if (ts->ts_incrtick == ticks)
2173		return;
2174	/* Adjust ticks for pctcpu */
2175	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
2176	ts->ts_ltick = ticks;
2177	ts->ts_incrtick = ticks;
2178	/*
2179	 * Update if we've exceeded our desired tick threshhold by over one
2180	 * second.
2181	 */
2182	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2183		sched_pctcpu_update(ts);
2184}
2185
2186/*
2187 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2188 * cooperative idle threads.
2189 */
2190int
2191sched_runnable(void)
2192{
2193	struct tdq *tdq;
2194	int load;
2195
2196	load = 1;
2197
2198	tdq = TDQ_SELF();
2199	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2200		if (tdq->tdq_load > 0)
2201			goto out;
2202	} else
2203		if (tdq->tdq_load - 1 > 0)
2204			goto out;
2205	load = 0;
2206out:
2207	return (load);
2208}
2209
2210/*
2211 * Choose the highest priority thread to run.  The thread is removed from
2212 * the run-queue while running however the load remains.  For SMP we set
2213 * the tdq in the global idle bitmask if it idles here.
2214 */
2215struct thread *
2216sched_choose(void)
2217{
2218	struct thread *td;
2219	struct tdq *tdq;
2220
2221	tdq = TDQ_SELF();
2222	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2223	td = tdq_choose(tdq);
2224	if (td) {
2225		td->td_sched->ts_ltick = ticks;
2226		tdq_runq_rem(tdq, td);
2227		tdq->tdq_lowpri = td->td_priority;
2228		return (td);
2229	}
2230	tdq->tdq_lowpri = PRI_MAX_IDLE;
2231	return (PCPU_GET(idlethread));
2232}
2233
2234/*
2235 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2236 * we always request it once we exit a critical section.
2237 */
2238static inline void
2239sched_setpreempt(struct thread *td)
2240{
2241	struct thread *ctd;
2242	int cpri;
2243	int pri;
2244
2245	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2246
2247	ctd = curthread;
2248	pri = td->td_priority;
2249	cpri = ctd->td_priority;
2250	if (pri < cpri)
2251		ctd->td_flags |= TDF_NEEDRESCHED;
2252	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2253		return;
2254	if (!sched_shouldpreempt(pri, cpri, 0))
2255		return;
2256	ctd->td_owepreempt = 1;
2257}
2258
2259/*
2260 * Add a thread to a thread queue.  Select the appropriate runq and add the
2261 * thread to it.  This is the internal function called when the tdq is
2262 * predetermined.
2263 */
2264void
2265tdq_add(struct tdq *tdq, struct thread *td, int flags)
2266{
2267
2268	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2269	KASSERT((td->td_inhibitors == 0),
2270	    ("sched_add: trying to run inhibited thread"));
2271	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2272	    ("sched_add: bad thread state"));
2273	KASSERT(td->td_flags & TDF_INMEM,
2274	    ("sched_add: thread swapped out"));
2275
2276	if (td->td_priority < tdq->tdq_lowpri)
2277		tdq->tdq_lowpri = td->td_priority;
2278	tdq_runq_add(tdq, td, flags);
2279	tdq_load_add(tdq, td);
2280}
2281
2282/*
2283 * Select the target thread queue and add a thread to it.  Request
2284 * preemption or IPI a remote processor if required.
2285 */
2286void
2287sched_add(struct thread *td, int flags)
2288{
2289	struct tdq *tdq;
2290#ifdef SMP
2291	int cpu;
2292#endif
2293
2294	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2295	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2296	    sched_tdname(curthread));
2297	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2298	    KTR_ATTR_LINKED, sched_tdname(td));
2299	THREAD_LOCK_ASSERT(td, MA_OWNED);
2300	/*
2301	 * Recalculate the priority before we select the target cpu or
2302	 * run-queue.
2303	 */
2304	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2305		sched_priority(td);
2306#ifdef SMP
2307	/*
2308	 * Pick the destination cpu and if it isn't ours transfer to the
2309	 * target cpu.
2310	 */
2311	cpu = sched_pickcpu(td, flags);
2312	tdq = sched_setcpu(td, cpu, flags);
2313	tdq_add(tdq, td, flags);
2314	if (cpu != PCPU_GET(cpuid)) {
2315		tdq_notify(tdq, td);
2316		return;
2317	}
2318#else
2319	tdq = TDQ_SELF();
2320	TDQ_LOCK(tdq);
2321	/*
2322	 * Now that the thread is moving to the run-queue, set the lock
2323	 * to the scheduler's lock.
2324	 */
2325	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2326	tdq_add(tdq, td, flags);
2327#endif
2328	if (!(flags & SRQ_YIELDING))
2329		sched_setpreempt(td);
2330}
2331
2332/*
2333 * Remove a thread from a run-queue without running it.  This is used
2334 * when we're stealing a thread from a remote queue.  Otherwise all threads
2335 * exit by calling sched_exit_thread() and sched_throw() themselves.
2336 */
2337void
2338sched_rem(struct thread *td)
2339{
2340	struct tdq *tdq;
2341
2342	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2343	    "prio:%d", td->td_priority);
2344	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2345	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2346	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2347	KASSERT(TD_ON_RUNQ(td),
2348	    ("sched_rem: thread not on run queue"));
2349	tdq_runq_rem(tdq, td);
2350	tdq_load_rem(tdq, td);
2351	TD_SET_CAN_RUN(td);
2352	if (td->td_priority == tdq->tdq_lowpri)
2353		tdq_setlowpri(tdq, NULL);
2354}
2355
2356/*
2357 * Fetch cpu utilization information.  Updates on demand.
2358 */
2359fixpt_t
2360sched_pctcpu(struct thread *td)
2361{
2362	fixpt_t pctcpu;
2363	struct td_sched *ts;
2364
2365	pctcpu = 0;
2366	ts = td->td_sched;
2367	if (ts == NULL)
2368		return (0);
2369
2370	THREAD_LOCK_ASSERT(td, MA_OWNED);
2371	if (ts->ts_ticks) {
2372		int rtick;
2373
2374		sched_pctcpu_update(ts);
2375		/* How many rtick per second ? */
2376		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2377		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2378	}
2379
2380	return (pctcpu);
2381}
2382
2383/*
2384 * Enforce affinity settings for a thread.  Called after adjustments to
2385 * cpumask.
2386 */
2387void
2388sched_affinity(struct thread *td)
2389{
2390#ifdef SMP
2391	struct td_sched *ts;
2392	int cpu;
2393
2394	THREAD_LOCK_ASSERT(td, MA_OWNED);
2395	ts = td->td_sched;
2396	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2397		return;
2398	if (TD_ON_RUNQ(td)) {
2399		sched_rem(td);
2400		sched_add(td, SRQ_BORING);
2401		return;
2402	}
2403	if (!TD_IS_RUNNING(td))
2404		return;
2405	td->td_flags |= TDF_NEEDRESCHED;
2406	if (!THREAD_CAN_MIGRATE(td))
2407		return;
2408	/*
2409	 * Assign the new cpu and force a switch before returning to
2410	 * userspace.  If the target thread is not running locally send
2411	 * an ipi to force the issue.
2412	 */
2413	cpu = ts->ts_cpu;
2414	ts->ts_cpu = sched_pickcpu(td, 0);
2415	if (cpu != PCPU_GET(cpuid))
2416		ipi_selected(1 << cpu, IPI_PREEMPT);
2417#endif
2418}
2419
2420/*
2421 * Bind a thread to a target cpu.
2422 */
2423void
2424sched_bind(struct thread *td, int cpu)
2425{
2426	struct td_sched *ts;
2427
2428	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2429	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2430	ts = td->td_sched;
2431	if (ts->ts_flags & TSF_BOUND)
2432		sched_unbind(td);
2433	ts->ts_flags |= TSF_BOUND;
2434	sched_pin();
2435	if (PCPU_GET(cpuid) == cpu)
2436		return;
2437	ts->ts_cpu = cpu;
2438	/* When we return from mi_switch we'll be on the correct cpu. */
2439	mi_switch(SW_VOL, NULL);
2440}
2441
2442/*
2443 * Release a bound thread.
2444 */
2445void
2446sched_unbind(struct thread *td)
2447{
2448	struct td_sched *ts;
2449
2450	THREAD_LOCK_ASSERT(td, MA_OWNED);
2451	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2452	ts = td->td_sched;
2453	if ((ts->ts_flags & TSF_BOUND) == 0)
2454		return;
2455	ts->ts_flags &= ~TSF_BOUND;
2456	sched_unpin();
2457}
2458
2459int
2460sched_is_bound(struct thread *td)
2461{
2462	THREAD_LOCK_ASSERT(td, MA_OWNED);
2463	return (td->td_sched->ts_flags & TSF_BOUND);
2464}
2465
2466/*
2467 * Basic yield call.
2468 */
2469void
2470sched_relinquish(struct thread *td)
2471{
2472	thread_lock(td);
2473	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2474	thread_unlock(td);
2475}
2476
2477/*
2478 * Return the total system load.
2479 */
2480int
2481sched_load(void)
2482{
2483#ifdef SMP
2484	int total;
2485	int i;
2486
2487	total = 0;
2488	for (i = 0; i <= mp_maxid; i++)
2489		total += TDQ_CPU(i)->tdq_sysload;
2490	return (total);
2491#else
2492	return (TDQ_SELF()->tdq_sysload);
2493#endif
2494}
2495
2496int
2497sched_sizeof_proc(void)
2498{
2499	return (sizeof(struct proc));
2500}
2501
2502int
2503sched_sizeof_thread(void)
2504{
2505	return (sizeof(struct thread) + sizeof(struct td_sched));
2506}
2507
2508#ifdef SMP
2509#define	TDQ_IDLESPIN(tdq)						\
2510    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2511#else
2512#define	TDQ_IDLESPIN(tdq)	1
2513#endif
2514
2515/*
2516 * The actual idle process.
2517 */
2518void
2519sched_idletd(void *dummy)
2520{
2521	struct thread *td;
2522	struct tdq *tdq;
2523	int switchcnt;
2524	int i;
2525
2526	mtx_assert(&Giant, MA_NOTOWNED);
2527	td = curthread;
2528	tdq = TDQ_SELF();
2529	for (;;) {
2530#ifdef SMP
2531		if (tdq_idled(tdq) == 0)
2532			continue;
2533#endif
2534		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2535		/*
2536		 * If we're switching very frequently, spin while checking
2537		 * for load rather than entering a low power state that
2538		 * may require an IPI.  However, don't do any busy
2539		 * loops while on SMT machines as this simply steals
2540		 * cycles from cores doing useful work.
2541		 */
2542		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2543			for (i = 0; i < sched_idlespins; i++) {
2544				if (tdq->tdq_load)
2545					break;
2546				cpu_spinwait();
2547			}
2548		}
2549		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2550		if (tdq->tdq_load == 0)
2551			cpu_idle(switchcnt > 1);
2552		if (tdq->tdq_load) {
2553			thread_lock(td);
2554			mi_switch(SW_VOL | SWT_IDLE, NULL);
2555			thread_unlock(td);
2556		}
2557	}
2558}
2559
2560/*
2561 * A CPU is entering for the first time or a thread is exiting.
2562 */
2563void
2564sched_throw(struct thread *td)
2565{
2566	struct thread *newtd;
2567	struct tdq *tdq;
2568
2569	tdq = TDQ_SELF();
2570	if (td == NULL) {
2571		/* Correct spinlock nesting and acquire the correct lock. */
2572		TDQ_LOCK(tdq);
2573		spinlock_exit();
2574	} else {
2575		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2576		tdq_load_rem(tdq, td);
2577		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2578	}
2579	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2580	newtd = choosethread();
2581	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2582	PCPU_SET(switchtime, cpu_ticks());
2583	PCPU_SET(switchticks, ticks);
2584	cpu_throw(td, newtd);		/* doesn't return */
2585}
2586
2587/*
2588 * This is called from fork_exit().  Just acquire the correct locks and
2589 * let fork do the rest of the work.
2590 */
2591void
2592sched_fork_exit(struct thread *td)
2593{
2594	struct td_sched *ts;
2595	struct tdq *tdq;
2596	int cpuid;
2597
2598	/*
2599	 * Finish setting up thread glue so that it begins execution in a
2600	 * non-nested critical section with the scheduler lock held.
2601	 */
2602	cpuid = PCPU_GET(cpuid);
2603	tdq = TDQ_CPU(cpuid);
2604	ts = td->td_sched;
2605	if (TD_IS_IDLETHREAD(td))
2606		td->td_lock = TDQ_LOCKPTR(tdq);
2607	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2608	td->td_oncpu = cpuid;
2609	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2610	lock_profile_obtain_lock_success(
2611	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2612}
2613
2614/*
2615 * Create on first use to catch odd startup conditons.
2616 */
2617char *
2618sched_tdname(struct thread *td)
2619{
2620#ifdef KTR
2621	struct td_sched *ts;
2622
2623	ts = td->td_sched;
2624	if (ts->ts_name[0] == '\0')
2625		snprintf(ts->ts_name, sizeof(ts->ts_name),
2626		    "%s tid %d", td->td_name, td->td_tid);
2627	return (ts->ts_name);
2628#else
2629	return (td->td_name);
2630#endif
2631}
2632
2633#ifdef SMP
2634
2635/*
2636 * Build the CPU topology dump string. Is recursively called to collect
2637 * the topology tree.
2638 */
2639static int
2640sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2641    int indent)
2642{
2643	int i, first;
2644
2645	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2646	    "", indent, cg->cg_level);
2647	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"0x%x\">", indent, "",
2648	    cg->cg_count, cg->cg_mask);
2649	first = TRUE;
2650	for (i = 0; i < MAXCPU; i++) {
2651		if ((cg->cg_mask & (1 << i)) != 0) {
2652			if (!first)
2653				sbuf_printf(sb, ", ");
2654			else
2655				first = FALSE;
2656			sbuf_printf(sb, "%d", i);
2657		}
2658	}
2659	sbuf_printf(sb, "</cpu>\n");
2660
2661	sbuf_printf(sb, "%*s <flags>", indent, "");
2662	if (cg->cg_flags != 0) {
2663		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2664			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2665		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2666			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2667		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2668			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2669	}
2670	sbuf_printf(sb, "</flags>\n");
2671
2672	if (cg->cg_children > 0) {
2673		sbuf_printf(sb, "%*s <children>\n", indent, "");
2674		for (i = 0; i < cg->cg_children; i++)
2675			sysctl_kern_sched_topology_spec_internal(sb,
2676			    &cg->cg_child[i], indent+2);
2677		sbuf_printf(sb, "%*s </children>\n", indent, "");
2678	}
2679	sbuf_printf(sb, "%*s</group>\n", indent, "");
2680	return (0);
2681}
2682
2683/*
2684 * Sysctl handler for retrieving topology dump. It's a wrapper for
2685 * the recursive sysctl_kern_smp_topology_spec_internal().
2686 */
2687static int
2688sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2689{
2690	struct sbuf *topo;
2691	int err;
2692
2693	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2694
2695	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2696	if (topo == NULL)
2697		return (ENOMEM);
2698
2699	sbuf_printf(topo, "<groups>\n");
2700	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2701	sbuf_printf(topo, "</groups>\n");
2702
2703	if (err == 0) {
2704		sbuf_finish(topo);
2705		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2706	}
2707	sbuf_delete(topo);
2708	return (err);
2709}
2710#endif
2711
2712SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2713SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2714    "Scheduler name");
2715SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2716    "Slice size for timeshare threads");
2717SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2718     "Interactivity score threshold");
2719SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2720     0,"Min priority for preemption, lower priorities have greater precedence");
2721SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2722     0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2723SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2724     0,"Number of times idle will spin waiting for new work.");
2725SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2726     0,"Threshold before we will permit idle spinning.");
2727#ifdef SMP
2728SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2729    "Number of hz ticks to keep thread affinity for");
2730SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2731    "Enables the long-term load balancer");
2732SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2733    &balance_interval, 0,
2734    "Average frequency in stathz ticks to run the long-term balancer");
2735SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2736    "Steals work from another hyper-threaded core on idle");
2737SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2738    "Attempts to steal work from other cores before idling");
2739SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2740    "Minimum load on remote cpu before we'll steal");
2741
2742/* Retrieve SMP topology */
2743SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2744    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2745    "XML dump of detected CPU topology");
2746#endif
2747
2748/* ps compat.  All cpu percentages from ULE are weighted. */
2749static int ccpu = 0;
2750SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2751