sched_ule.c revision 186435
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 186435 2008-12-23 16:19:59Z ivoras $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysproto.h>
60#include <sys/turnstile.h>
61#include <sys/umtx.h>
62#include <sys/vmmeter.h>
63#include <sys/cpuset.h>
64#include <sys/sbuf.h>
65#ifdef KTRACE
66#include <sys/uio.h>
67#include <sys/ktrace.h>
68#endif
69
70#ifdef HWPMC_HOOKS
71#include <sys/pmckern.h>
72#endif
73
74#ifdef KDTRACE_HOOKS
75#include <sys/dtrace_bsd.h>
76int				dtrace_vtime_active;
77dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
78#endif
79
80#include <machine/cpu.h>
81#include <machine/smp.h>
82
83#if defined(__sparc64__) || defined(__mips__)
84#error "This architecture is not currently compatible with ULE"
85#endif
86
87#define	KTR_ULE	0
88
89/*
90 * Thread scheduler specific section.  All fields are protected
91 * by the thread lock.
92 */
93struct td_sched {
94	struct runq	*ts_runq;	/* Run-queue we're queued on. */
95	short		ts_flags;	/* TSF_* flags. */
96	u_char		ts_cpu;		/* CPU that we have affinity for. */
97	int		ts_rltick;	/* Real last tick, for affinity. */
98	int		ts_slice;	/* Ticks of slice remaining. */
99	u_int		ts_slptime;	/* Number of ticks we vol. slept */
100	u_int		ts_runtime;	/* Number of ticks we were running */
101	int		ts_ltick;	/* Last tick that we were running on */
102	int		ts_ftick;	/* First tick that we were running on */
103	int		ts_ticks;	/* Tick count */
104};
105/* flags kept in ts_flags */
106#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
107#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
108
109static struct td_sched td_sched0;
110
111#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
112#define	THREAD_CAN_SCHED(td, cpu)	\
113    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
114
115/*
116 * Cpu percentage computation macros and defines.
117 *
118 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
119 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
120 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
121 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
122 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
123 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
124 */
125#define	SCHED_TICK_SECS		10
126#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
127#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
128#define	SCHED_TICK_SHIFT	10
129#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
130#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
131
132/*
133 * These macros determine priorities for non-interactive threads.  They are
134 * assigned a priority based on their recent cpu utilization as expressed
135 * by the ratio of ticks to the tick total.  NHALF priorities at the start
136 * and end of the MIN to MAX timeshare range are only reachable with negative
137 * or positive nice respectively.
138 *
139 * PRI_RANGE:	Priority range for utilization dependent priorities.
140 * PRI_NRESV:	Number of nice values.
141 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
142 * PRI_NICE:	Determines the part of the priority inherited from nice.
143 */
144#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
145#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
146#define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
147#define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
148#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN)
149#define	SCHED_PRI_TICKS(ts)						\
150    (SCHED_TICK_HZ((ts)) /						\
151    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
152#define	SCHED_PRI_NICE(nice)	(nice)
153
154/*
155 * These determine the interactivity of a process.  Interactivity differs from
156 * cpu utilization in that it expresses the voluntary time slept vs time ran
157 * while cpu utilization includes all time not running.  This more accurately
158 * models the intent of the thread.
159 *
160 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
161 *		before throttling back.
162 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
163 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
164 * INTERACT_THRESH:	Threshhold for placement on the current runq.
165 */
166#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
167#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
168#define	SCHED_INTERACT_MAX	(100)
169#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
170#define	SCHED_INTERACT_THRESH	(30)
171
172/*
173 * tickincr:		Converts a stathz tick into a hz domain scaled by
174 *			the shift factor.  Without the shift the error rate
175 *			due to rounding would be unacceptably high.
176 * realstathz:		stathz is sometimes 0 and run off of hz.
177 * sched_slice:		Runtime of each thread before rescheduling.
178 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
179 */
180static int sched_interact = SCHED_INTERACT_THRESH;
181static int realstathz;
182static int tickincr;
183static int sched_slice = 1;
184#ifdef PREEMPTION
185#ifdef FULL_PREEMPTION
186static int preempt_thresh = PRI_MAX_IDLE;
187#else
188static int preempt_thresh = PRI_MIN_KERN;
189#endif
190#else
191static int preempt_thresh = 0;
192#endif
193static int static_boost = PRI_MIN_TIMESHARE;
194static int sched_idlespins = 10000;
195static int sched_idlespinthresh = 4;
196
197/*
198 * tdq - per processor runqs and statistics.  All fields are protected by the
199 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
200 * locking in sched_pickcpu();
201 */
202struct tdq {
203	/* Ordered to improve efficiency of cpu_search() and switch(). */
204	struct mtx	tdq_lock;		/* run queue lock. */
205	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
206	volatile int	tdq_load;		/* Aggregate load. */
207	int		tdq_sysload;		/* For loadavg, !ITHD load. */
208	int		tdq_transferable;	/* Transferable thread count. */
209	volatile int	tdq_idlestate;		/* State of the idle thread. */
210	short		tdq_switchcnt;		/* Switches this tick. */
211	short		tdq_oldswitchcnt;	/* Switches last tick. */
212	u_char		tdq_lowpri;		/* Lowest priority thread. */
213	u_char		tdq_ipipending;		/* IPI pending. */
214	u_char		tdq_idx;		/* Current insert index. */
215	u_char		tdq_ridx;		/* Current removal index. */
216	struct runq	tdq_realtime;		/* real-time run queue. */
217	struct runq	tdq_timeshare;		/* timeshare run queue. */
218	struct runq	tdq_idle;		/* Queue of IDLE threads. */
219	char		tdq_name[sizeof("sched lock") + 6];
220} __aligned(64);
221
222/* Idle thread states and config. */
223#define	TDQ_RUNNING	1
224#define	TDQ_IDLE	2
225
226#ifdef SMP
227struct cpu_group *cpu_top;		/* CPU topology */
228
229#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
230#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
231
232/*
233 * Run-time tunables.
234 */
235static int rebalance = 1;
236static int balance_interval = 128;	/* Default set in sched_initticks(). */
237static int affinity;
238static int steal_htt = 1;
239static int steal_idle = 1;
240static int steal_thresh = 2;
241
242/*
243 * One thread queue per processor.
244 */
245static struct tdq	tdq_cpu[MAXCPU];
246static struct tdq	*balance_tdq;
247static int balance_ticks;
248
249#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
250#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
251#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
252#else	/* !SMP */
253static struct tdq	tdq_cpu;
254
255#define	TDQ_ID(x)	(0)
256#define	TDQ_SELF()	(&tdq_cpu)
257#define	TDQ_CPU(x)	(&tdq_cpu)
258#endif
259
260#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
261#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
262#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
263#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
264#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
265
266static void sched_priority(struct thread *);
267static void sched_thread_priority(struct thread *, u_char);
268static int sched_interact_score(struct thread *);
269static void sched_interact_update(struct thread *);
270static void sched_interact_fork(struct thread *);
271static void sched_pctcpu_update(struct td_sched *);
272
273/* Operations on per processor queues */
274static struct thread *tdq_choose(struct tdq *);
275static void tdq_setup(struct tdq *);
276static void tdq_load_add(struct tdq *, struct thread *);
277static void tdq_load_rem(struct tdq *, struct thread *);
278static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
279static __inline void tdq_runq_rem(struct tdq *, struct thread *);
280static inline int sched_shouldpreempt(int, int, int);
281void tdq_print(int cpu);
282static void runq_print(struct runq *rq);
283static void tdq_add(struct tdq *, struct thread *, int);
284#ifdef SMP
285static int tdq_move(struct tdq *, struct tdq *);
286static int tdq_idled(struct tdq *);
287static void tdq_notify(struct tdq *, struct thread *);
288static struct thread *tdq_steal(struct tdq *, int);
289static struct thread *runq_steal(struct runq *, int);
290static int sched_pickcpu(struct thread *, int);
291static void sched_balance(void);
292static int sched_balance_pair(struct tdq *, struct tdq *);
293static inline struct tdq *sched_setcpu(struct thread *, int, int);
294static inline struct mtx *thread_block_switch(struct thread *);
295static inline void thread_unblock_switch(struct thread *, struct mtx *);
296static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
297static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
298static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
299    struct cpu_group *cg, int indent);
300#endif
301
302static void sched_setup(void *dummy);
303SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
304
305static void sched_initticks(void *dummy);
306SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
307    NULL);
308
309/*
310 * Print the threads waiting on a run-queue.
311 */
312static void
313runq_print(struct runq *rq)
314{
315	struct rqhead *rqh;
316	struct thread *td;
317	int pri;
318	int j;
319	int i;
320
321	for (i = 0; i < RQB_LEN; i++) {
322		printf("\t\trunq bits %d 0x%zx\n",
323		    i, rq->rq_status.rqb_bits[i]);
324		for (j = 0; j < RQB_BPW; j++)
325			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
326				pri = j + (i << RQB_L2BPW);
327				rqh = &rq->rq_queues[pri];
328				TAILQ_FOREACH(td, rqh, td_runq) {
329					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
330					    td, td->td_name, td->td_priority,
331					    td->td_rqindex, pri);
332				}
333			}
334	}
335}
336
337/*
338 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
339 */
340void
341tdq_print(int cpu)
342{
343	struct tdq *tdq;
344
345	tdq = TDQ_CPU(cpu);
346
347	printf("tdq %d:\n", TDQ_ID(tdq));
348	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
349	printf("\tLock name:      %s\n", tdq->tdq_name);
350	printf("\tload:           %d\n", tdq->tdq_load);
351	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
352	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
353	printf("\tidle state:     %d\n", tdq->tdq_idlestate);
354	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
355	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
356	printf("\tload transferable: %d\n", tdq->tdq_transferable);
357	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
358	printf("\trealtime runq:\n");
359	runq_print(&tdq->tdq_realtime);
360	printf("\ttimeshare runq:\n");
361	runq_print(&tdq->tdq_timeshare);
362	printf("\tidle runq:\n");
363	runq_print(&tdq->tdq_idle);
364}
365
366static inline int
367sched_shouldpreempt(int pri, int cpri, int remote)
368{
369	/*
370	 * If the new priority is not better than the current priority there is
371	 * nothing to do.
372	 */
373	if (pri >= cpri)
374		return (0);
375	/*
376	 * Always preempt idle.
377	 */
378	if (cpri >= PRI_MIN_IDLE)
379		return (1);
380	/*
381	 * If preemption is disabled don't preempt others.
382	 */
383	if (preempt_thresh == 0)
384		return (0);
385	/*
386	 * Preempt if we exceed the threshold.
387	 */
388	if (pri <= preempt_thresh)
389		return (1);
390	/*
391	 * If we're realtime or better and there is timeshare or worse running
392	 * preempt only remote processors.
393	 */
394	if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
395		return (1);
396	return (0);
397}
398
399#define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
400/*
401 * Add a thread to the actual run-queue.  Keeps transferable counts up to
402 * date with what is actually on the run-queue.  Selects the correct
403 * queue position for timeshare threads.
404 */
405static __inline void
406tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
407{
408	struct td_sched *ts;
409	u_char pri;
410
411	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
412	THREAD_LOCK_ASSERT(td, MA_OWNED);
413
414	pri = td->td_priority;
415	ts = td->td_sched;
416	TD_SET_RUNQ(td);
417	if (THREAD_CAN_MIGRATE(td)) {
418		tdq->tdq_transferable++;
419		ts->ts_flags |= TSF_XFERABLE;
420	}
421	if (pri <= PRI_MAX_REALTIME) {
422		ts->ts_runq = &tdq->tdq_realtime;
423	} else if (pri <= PRI_MAX_TIMESHARE) {
424		ts->ts_runq = &tdq->tdq_timeshare;
425		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
426			("Invalid priority %d on timeshare runq", pri));
427		/*
428		 * This queue contains only priorities between MIN and MAX
429		 * realtime.  Use the whole queue to represent these values.
430		 */
431		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
432			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
433			pri = (pri + tdq->tdq_idx) % RQ_NQS;
434			/*
435			 * This effectively shortens the queue by one so we
436			 * can have a one slot difference between idx and
437			 * ridx while we wait for threads to drain.
438			 */
439			if (tdq->tdq_ridx != tdq->tdq_idx &&
440			    pri == tdq->tdq_ridx)
441				pri = (unsigned char)(pri - 1) % RQ_NQS;
442		} else
443			pri = tdq->tdq_ridx;
444		runq_add_pri(ts->ts_runq, td, pri, flags);
445		return;
446	} else
447		ts->ts_runq = &tdq->tdq_idle;
448	runq_add(ts->ts_runq, td, flags);
449}
450
451/*
452 * Remove a thread from a run-queue.  This typically happens when a thread
453 * is selected to run.  Running threads are not on the queue and the
454 * transferable count does not reflect them.
455 */
456static __inline void
457tdq_runq_rem(struct tdq *tdq, struct thread *td)
458{
459	struct td_sched *ts;
460
461	ts = td->td_sched;
462	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
463	KASSERT(ts->ts_runq != NULL,
464	    ("tdq_runq_remove: thread %p null ts_runq", td));
465	if (ts->ts_flags & TSF_XFERABLE) {
466		tdq->tdq_transferable--;
467		ts->ts_flags &= ~TSF_XFERABLE;
468	}
469	if (ts->ts_runq == &tdq->tdq_timeshare) {
470		if (tdq->tdq_idx != tdq->tdq_ridx)
471			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
472		else
473			runq_remove_idx(ts->ts_runq, td, NULL);
474	} else
475		runq_remove(ts->ts_runq, td);
476}
477
478/*
479 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
480 * for this thread to the referenced thread queue.
481 */
482static void
483tdq_load_add(struct tdq *tdq, struct thread *td)
484{
485
486	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
487	THREAD_LOCK_ASSERT(td, MA_OWNED);
488
489	tdq->tdq_load++;
490	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
491		tdq->tdq_sysload++;
492	CTR2(KTR_SCHED, "cpu %d load: %d", TDQ_ID(tdq), tdq->tdq_load);
493}
494
495/*
496 * Remove the load from a thread that is transitioning to a sleep state or
497 * exiting.
498 */
499static void
500tdq_load_rem(struct tdq *tdq, struct thread *td)
501{
502
503	THREAD_LOCK_ASSERT(td, MA_OWNED);
504	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
505	KASSERT(tdq->tdq_load != 0,
506	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
507
508	tdq->tdq_load--;
509	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
510		tdq->tdq_sysload--;
511	CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
512}
513
514/*
515 * Set lowpri to its exact value by searching the run-queue and
516 * evaluating curthread.  curthread may be passed as an optimization.
517 */
518static void
519tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
520{
521	struct thread *td;
522
523	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
524	if (ctd == NULL)
525		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
526	td = tdq_choose(tdq);
527	if (td == NULL || td->td_priority > ctd->td_priority)
528		tdq->tdq_lowpri = ctd->td_priority;
529	else
530		tdq->tdq_lowpri = td->td_priority;
531}
532
533#ifdef SMP
534struct cpu_search {
535	cpumask_t cs_mask;	/* Mask of valid cpus. */
536	u_int	cs_load;
537	u_int	cs_cpu;
538	int	cs_limit;	/* Min priority for low min load for high. */
539};
540
541#define	CPU_SEARCH_LOWEST	0x1
542#define	CPU_SEARCH_HIGHEST	0x2
543#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
544
545#define	CPUMASK_FOREACH(cpu, mask)				\
546	for ((cpu) = 0; (cpu) < sizeof((mask)) * 8; (cpu)++)	\
547		if ((mask) & 1 << (cpu))
548
549static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
550    struct cpu_search *high, const int match);
551int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
552int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
553int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
554    struct cpu_search *high);
555
556/*
557 * This routine compares according to the match argument and should be
558 * reduced in actual instantiations via constant propagation and dead code
559 * elimination.
560 */
561static __inline int
562cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
563    const int match)
564{
565	struct tdq *tdq;
566
567	tdq = TDQ_CPU(cpu);
568	if (match & CPU_SEARCH_LOWEST)
569		if (low->cs_mask & (1 << cpu) &&
570		    tdq->tdq_load < low->cs_load &&
571		    tdq->tdq_lowpri > low->cs_limit) {
572			low->cs_cpu = cpu;
573			low->cs_load = tdq->tdq_load;
574		}
575	if (match & CPU_SEARCH_HIGHEST)
576		if (high->cs_mask & (1 << cpu) &&
577		    tdq->tdq_load >= high->cs_limit &&
578		    tdq->tdq_load > high->cs_load &&
579		    tdq->tdq_transferable) {
580			high->cs_cpu = cpu;
581			high->cs_load = tdq->tdq_load;
582		}
583	return (tdq->tdq_load);
584}
585
586/*
587 * Search the tree of cpu_groups for the lowest or highest loaded cpu
588 * according to the match argument.  This routine actually compares the
589 * load on all paths through the tree and finds the least loaded cpu on
590 * the least loaded path, which may differ from the least loaded cpu in
591 * the system.  This balances work among caches and busses.
592 *
593 * This inline is instantiated in three forms below using constants for the
594 * match argument.  It is reduced to the minimum set for each case.  It is
595 * also recursive to the depth of the tree.
596 */
597static __inline int
598cpu_search(struct cpu_group *cg, struct cpu_search *low,
599    struct cpu_search *high, const int match)
600{
601	int total;
602
603	total = 0;
604	if (cg->cg_children) {
605		struct cpu_search lgroup;
606		struct cpu_search hgroup;
607		struct cpu_group *child;
608		u_int lload;
609		int hload;
610		int load;
611		int i;
612
613		lload = -1;
614		hload = -1;
615		for (i = 0; i < cg->cg_children; i++) {
616			child = &cg->cg_child[i];
617			if (match & CPU_SEARCH_LOWEST) {
618				lgroup = *low;
619				lgroup.cs_load = -1;
620			}
621			if (match & CPU_SEARCH_HIGHEST) {
622				hgroup = *high;
623				lgroup.cs_load = 0;
624			}
625			switch (match) {
626			case CPU_SEARCH_LOWEST:
627				load = cpu_search_lowest(child, &lgroup);
628				break;
629			case CPU_SEARCH_HIGHEST:
630				load = cpu_search_highest(child, &hgroup);
631				break;
632			case CPU_SEARCH_BOTH:
633				load = cpu_search_both(child, &lgroup, &hgroup);
634				break;
635			}
636			total += load;
637			if (match & CPU_SEARCH_LOWEST)
638				if (load < lload || low->cs_cpu == -1) {
639					*low = lgroup;
640					lload = load;
641				}
642			if (match & CPU_SEARCH_HIGHEST)
643				if (load > hload || high->cs_cpu == -1) {
644					hload = load;
645					*high = hgroup;
646				}
647		}
648	} else {
649		int cpu;
650
651		CPUMASK_FOREACH(cpu, cg->cg_mask)
652			total += cpu_compare(cpu, low, high, match);
653	}
654	return (total);
655}
656
657/*
658 * cpu_search instantiations must pass constants to maintain the inline
659 * optimization.
660 */
661int
662cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
663{
664	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
665}
666
667int
668cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
669{
670	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
671}
672
673int
674cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
675    struct cpu_search *high)
676{
677	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
678}
679
680/*
681 * Find the cpu with the least load via the least loaded path that has a
682 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
683 * acceptable.
684 */
685static inline int
686sched_lowest(struct cpu_group *cg, cpumask_t mask, int pri)
687{
688	struct cpu_search low;
689
690	low.cs_cpu = -1;
691	low.cs_load = -1;
692	low.cs_mask = mask;
693	low.cs_limit = pri;
694	cpu_search_lowest(cg, &low);
695	return low.cs_cpu;
696}
697
698/*
699 * Find the cpu with the highest load via the highest loaded path.
700 */
701static inline int
702sched_highest(struct cpu_group *cg, cpumask_t mask, int minload)
703{
704	struct cpu_search high;
705
706	high.cs_cpu = -1;
707	high.cs_load = 0;
708	high.cs_mask = mask;
709	high.cs_limit = minload;
710	cpu_search_highest(cg, &high);
711	return high.cs_cpu;
712}
713
714/*
715 * Simultaneously find the highest and lowest loaded cpu reachable via
716 * cg.
717 */
718static inline void
719sched_both(struct cpu_group *cg, cpumask_t mask, int *lowcpu, int *highcpu)
720{
721	struct cpu_search high;
722	struct cpu_search low;
723
724	low.cs_cpu = -1;
725	low.cs_limit = -1;
726	low.cs_load = -1;
727	low.cs_mask = mask;
728	high.cs_load = 0;
729	high.cs_cpu = -1;
730	high.cs_limit = -1;
731	high.cs_mask = mask;
732	cpu_search_both(cg, &low, &high);
733	*lowcpu = low.cs_cpu;
734	*highcpu = high.cs_cpu;
735	return;
736}
737
738static void
739sched_balance_group(struct cpu_group *cg)
740{
741	cpumask_t mask;
742	int high;
743	int low;
744	int i;
745
746	mask = -1;
747	for (;;) {
748		sched_both(cg, mask, &low, &high);
749		if (low == high || low == -1 || high == -1)
750			break;
751		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
752			break;
753		/*
754		 * If we failed to move any threads determine which cpu
755		 * to kick out of the set and try again.
756	 	 */
757		if (TDQ_CPU(high)->tdq_transferable == 0)
758			mask &= ~(1 << high);
759		else
760			mask &= ~(1 << low);
761	}
762
763	for (i = 0; i < cg->cg_children; i++)
764		sched_balance_group(&cg->cg_child[i]);
765}
766
767static void
768sched_balance()
769{
770	struct tdq *tdq;
771
772	/*
773	 * Select a random time between .5 * balance_interval and
774	 * 1.5 * balance_interval.
775	 */
776	balance_ticks = max(balance_interval / 2, 1);
777	balance_ticks += random() % balance_interval;
778	if (smp_started == 0 || rebalance == 0)
779		return;
780	tdq = TDQ_SELF();
781	TDQ_UNLOCK(tdq);
782	sched_balance_group(cpu_top);
783	TDQ_LOCK(tdq);
784}
785
786/*
787 * Lock two thread queues using their address to maintain lock order.
788 */
789static void
790tdq_lock_pair(struct tdq *one, struct tdq *two)
791{
792	if (one < two) {
793		TDQ_LOCK(one);
794		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
795	} else {
796		TDQ_LOCK(two);
797		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
798	}
799}
800
801/*
802 * Unlock two thread queues.  Order is not important here.
803 */
804static void
805tdq_unlock_pair(struct tdq *one, struct tdq *two)
806{
807	TDQ_UNLOCK(one);
808	TDQ_UNLOCK(two);
809}
810
811/*
812 * Transfer load between two imbalanced thread queues.
813 */
814static int
815sched_balance_pair(struct tdq *high, struct tdq *low)
816{
817	int transferable;
818	int high_load;
819	int low_load;
820	int moved;
821	int move;
822	int diff;
823	int i;
824
825	tdq_lock_pair(high, low);
826	transferable = high->tdq_transferable;
827	high_load = high->tdq_load;
828	low_load = low->tdq_load;
829	moved = 0;
830	/*
831	 * Determine what the imbalance is and then adjust that to how many
832	 * threads we actually have to give up (transferable).
833	 */
834	if (transferable != 0) {
835		diff = high_load - low_load;
836		move = diff / 2;
837		if (diff & 0x1)
838			move++;
839		move = min(move, transferable);
840		for (i = 0; i < move; i++)
841			moved += tdq_move(high, low);
842		/*
843		 * IPI the target cpu to force it to reschedule with the new
844		 * workload.
845		 */
846		ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT);
847	}
848	tdq_unlock_pair(high, low);
849	return (moved);
850}
851
852/*
853 * Move a thread from one thread queue to another.
854 */
855static int
856tdq_move(struct tdq *from, struct tdq *to)
857{
858	struct td_sched *ts;
859	struct thread *td;
860	struct tdq *tdq;
861	int cpu;
862
863	TDQ_LOCK_ASSERT(from, MA_OWNED);
864	TDQ_LOCK_ASSERT(to, MA_OWNED);
865
866	tdq = from;
867	cpu = TDQ_ID(to);
868	td = tdq_steal(tdq, cpu);
869	if (td == NULL)
870		return (0);
871	ts = td->td_sched;
872	/*
873	 * Although the run queue is locked the thread may be blocked.  Lock
874	 * it to clear this and acquire the run-queue lock.
875	 */
876	thread_lock(td);
877	/* Drop recursive lock on from acquired via thread_lock(). */
878	TDQ_UNLOCK(from);
879	sched_rem(td);
880	ts->ts_cpu = cpu;
881	td->td_lock = TDQ_LOCKPTR(to);
882	tdq_add(to, td, SRQ_YIELDING);
883	return (1);
884}
885
886/*
887 * This tdq has idled.  Try to steal a thread from another cpu and switch
888 * to it.
889 */
890static int
891tdq_idled(struct tdq *tdq)
892{
893	struct cpu_group *cg;
894	struct tdq *steal;
895	cpumask_t mask;
896	int thresh;
897	int cpu;
898
899	if (smp_started == 0 || steal_idle == 0)
900		return (1);
901	mask = -1;
902	mask &= ~PCPU_GET(cpumask);
903	/* We don't want to be preempted while we're iterating. */
904	spinlock_enter();
905	for (cg = tdq->tdq_cg; cg != NULL; ) {
906		if ((cg->cg_flags & (CG_FLAG_HTT | CG_FLAG_THREAD)) == 0)
907			thresh = steal_thresh;
908		else
909			thresh = 1;
910		cpu = sched_highest(cg, mask, thresh);
911		if (cpu == -1) {
912			cg = cg->cg_parent;
913			continue;
914		}
915		steal = TDQ_CPU(cpu);
916		mask &= ~(1 << cpu);
917		tdq_lock_pair(tdq, steal);
918		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
919			tdq_unlock_pair(tdq, steal);
920			continue;
921		}
922		/*
923		 * If a thread was added while interrupts were disabled don't
924		 * steal one here.  If we fail to acquire one due to affinity
925		 * restrictions loop again with this cpu removed from the
926		 * set.
927		 */
928		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
929			tdq_unlock_pair(tdq, steal);
930			continue;
931		}
932		spinlock_exit();
933		TDQ_UNLOCK(steal);
934		mi_switch(SW_VOL | SWT_IDLE, NULL);
935		thread_unlock(curthread);
936
937		return (0);
938	}
939	spinlock_exit();
940	return (1);
941}
942
943/*
944 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
945 */
946static void
947tdq_notify(struct tdq *tdq, struct thread *td)
948{
949	struct thread *ctd;
950	int pri;
951	int cpu;
952
953	if (tdq->tdq_ipipending)
954		return;
955	cpu = td->td_sched->ts_cpu;
956	pri = td->td_priority;
957	ctd = pcpu_find(cpu)->pc_curthread;
958	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
959		return;
960	if (TD_IS_IDLETHREAD(ctd)) {
961		/*
962		 * If the idle thread is still 'running' it's probably
963		 * waiting on us to release the tdq spinlock already.  No
964		 * need to ipi.
965		 */
966		if (tdq->tdq_idlestate == TDQ_RUNNING)
967			return;
968		/*
969		 * If the MD code has an idle wakeup routine try that before
970		 * falling back to IPI.
971		 */
972		if (cpu_idle_wakeup(cpu))
973			return;
974	}
975	tdq->tdq_ipipending = 1;
976	ipi_selected(1 << cpu, IPI_PREEMPT);
977}
978
979/*
980 * Steals load from a timeshare queue.  Honors the rotating queue head
981 * index.
982 */
983static struct thread *
984runq_steal_from(struct runq *rq, int cpu, u_char start)
985{
986	struct rqbits *rqb;
987	struct rqhead *rqh;
988	struct thread *td;
989	int first;
990	int bit;
991	int pri;
992	int i;
993
994	rqb = &rq->rq_status;
995	bit = start & (RQB_BPW -1);
996	pri = 0;
997	first = 0;
998again:
999	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1000		if (rqb->rqb_bits[i] == 0)
1001			continue;
1002		if (bit != 0) {
1003			for (pri = bit; pri < RQB_BPW; pri++)
1004				if (rqb->rqb_bits[i] & (1ul << pri))
1005					break;
1006			if (pri >= RQB_BPW)
1007				continue;
1008		} else
1009			pri = RQB_FFS(rqb->rqb_bits[i]);
1010		pri += (i << RQB_L2BPW);
1011		rqh = &rq->rq_queues[pri];
1012		TAILQ_FOREACH(td, rqh, td_runq) {
1013			if (first && THREAD_CAN_MIGRATE(td) &&
1014			    THREAD_CAN_SCHED(td, cpu))
1015				return (td);
1016			first = 1;
1017		}
1018	}
1019	if (start != 0) {
1020		start = 0;
1021		goto again;
1022	}
1023
1024	return (NULL);
1025}
1026
1027/*
1028 * Steals load from a standard linear queue.
1029 */
1030static struct thread *
1031runq_steal(struct runq *rq, int cpu)
1032{
1033	struct rqhead *rqh;
1034	struct rqbits *rqb;
1035	struct thread *td;
1036	int word;
1037	int bit;
1038
1039	rqb = &rq->rq_status;
1040	for (word = 0; word < RQB_LEN; word++) {
1041		if (rqb->rqb_bits[word] == 0)
1042			continue;
1043		for (bit = 0; bit < RQB_BPW; bit++) {
1044			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1045				continue;
1046			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1047			TAILQ_FOREACH(td, rqh, td_runq)
1048				if (THREAD_CAN_MIGRATE(td) &&
1049				    THREAD_CAN_SCHED(td, cpu))
1050					return (td);
1051		}
1052	}
1053	return (NULL);
1054}
1055
1056/*
1057 * Attempt to steal a thread in priority order from a thread queue.
1058 */
1059static struct thread *
1060tdq_steal(struct tdq *tdq, int cpu)
1061{
1062	struct thread *td;
1063
1064	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1065	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1066		return (td);
1067	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1068	    cpu, tdq->tdq_ridx)) != NULL)
1069		return (td);
1070	return (runq_steal(&tdq->tdq_idle, cpu));
1071}
1072
1073/*
1074 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1075 * current lock and returns with the assigned queue locked.
1076 */
1077static inline struct tdq *
1078sched_setcpu(struct thread *td, int cpu, int flags)
1079{
1080
1081	struct tdq *tdq;
1082
1083	THREAD_LOCK_ASSERT(td, MA_OWNED);
1084	tdq = TDQ_CPU(cpu);
1085	td->td_sched->ts_cpu = cpu;
1086	/*
1087	 * If the lock matches just return the queue.
1088	 */
1089	if (td->td_lock == TDQ_LOCKPTR(tdq))
1090		return (tdq);
1091#ifdef notyet
1092	/*
1093	 * If the thread isn't running its lockptr is a
1094	 * turnstile or a sleepqueue.  We can just lock_set without
1095	 * blocking.
1096	 */
1097	if (TD_CAN_RUN(td)) {
1098		TDQ_LOCK(tdq);
1099		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1100		return (tdq);
1101	}
1102#endif
1103	/*
1104	 * The hard case, migration, we need to block the thread first to
1105	 * prevent order reversals with other cpus locks.
1106	 */
1107	thread_lock_block(td);
1108	TDQ_LOCK(tdq);
1109	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1110	return (tdq);
1111}
1112
1113SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1114SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1115SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1116SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1117SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1118SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1119
1120static int
1121sched_pickcpu(struct thread *td, int flags)
1122{
1123	struct cpu_group *cg;
1124	struct td_sched *ts;
1125	struct tdq *tdq;
1126	cpumask_t mask;
1127	int self;
1128	int pri;
1129	int cpu;
1130
1131	self = PCPU_GET(cpuid);
1132	ts = td->td_sched;
1133	if (smp_started == 0)
1134		return (self);
1135	/*
1136	 * Don't migrate a running thread from sched_switch().
1137	 */
1138	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1139		return (ts->ts_cpu);
1140	/*
1141	 * Prefer to run interrupt threads on the processors that generate
1142	 * the interrupt.
1143	 */
1144	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1145	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1146		SCHED_STAT_INC(pickcpu_intrbind);
1147		ts->ts_cpu = self;
1148	}
1149	/*
1150	 * If the thread can run on the last cpu and the affinity has not
1151	 * expired or it is idle run it there.
1152	 */
1153	pri = td->td_priority;
1154	tdq = TDQ_CPU(ts->ts_cpu);
1155	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1156		if (tdq->tdq_lowpri > PRI_MIN_IDLE) {
1157			SCHED_STAT_INC(pickcpu_idle_affinity);
1158			return (ts->ts_cpu);
1159		}
1160		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) {
1161			SCHED_STAT_INC(pickcpu_affinity);
1162			return (ts->ts_cpu);
1163		}
1164	}
1165	/*
1166	 * Search for the highest level in the tree that still has affinity.
1167	 */
1168	cg = NULL;
1169	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1170		if (SCHED_AFFINITY(ts, cg->cg_level))
1171			break;
1172	cpu = -1;
1173	mask = td->td_cpuset->cs_mask.__bits[0];
1174	if (cg)
1175		cpu = sched_lowest(cg, mask, pri);
1176	if (cpu == -1)
1177		cpu = sched_lowest(cpu_top, mask, -1);
1178	/*
1179	 * Compare the lowest loaded cpu to current cpu.
1180	 */
1181	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1182	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) {
1183		SCHED_STAT_INC(pickcpu_local);
1184		cpu = self;
1185	} else
1186		SCHED_STAT_INC(pickcpu_lowest);
1187	if (cpu != ts->ts_cpu)
1188		SCHED_STAT_INC(pickcpu_migration);
1189	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1190	return (cpu);
1191}
1192#endif
1193
1194/*
1195 * Pick the highest priority task we have and return it.
1196 */
1197static struct thread *
1198tdq_choose(struct tdq *tdq)
1199{
1200	struct thread *td;
1201
1202	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1203	td = runq_choose(&tdq->tdq_realtime);
1204	if (td != NULL)
1205		return (td);
1206	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1207	if (td != NULL) {
1208		KASSERT(td->td_priority >= PRI_MIN_TIMESHARE,
1209		    ("tdq_choose: Invalid priority on timeshare queue %d",
1210		    td->td_priority));
1211		return (td);
1212	}
1213	td = runq_choose(&tdq->tdq_idle);
1214	if (td != NULL) {
1215		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1216		    ("tdq_choose: Invalid priority on idle queue %d",
1217		    td->td_priority));
1218		return (td);
1219	}
1220
1221	return (NULL);
1222}
1223
1224/*
1225 * Initialize a thread queue.
1226 */
1227static void
1228tdq_setup(struct tdq *tdq)
1229{
1230
1231	if (bootverbose)
1232		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1233	runq_init(&tdq->tdq_realtime);
1234	runq_init(&tdq->tdq_timeshare);
1235	runq_init(&tdq->tdq_idle);
1236	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1237	    "sched lock %d", (int)TDQ_ID(tdq));
1238	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1239	    MTX_SPIN | MTX_RECURSE);
1240}
1241
1242#ifdef SMP
1243static void
1244sched_setup_smp(void)
1245{
1246	struct tdq *tdq;
1247	int i;
1248
1249	cpu_top = smp_topo();
1250	for (i = 0; i < MAXCPU; i++) {
1251		if (CPU_ABSENT(i))
1252			continue;
1253		tdq = TDQ_CPU(i);
1254		tdq_setup(tdq);
1255		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1256		if (tdq->tdq_cg == NULL)
1257			panic("Can't find cpu group for %d\n", i);
1258	}
1259	balance_tdq = TDQ_SELF();
1260	sched_balance();
1261}
1262#endif
1263
1264/*
1265 * Setup the thread queues and initialize the topology based on MD
1266 * information.
1267 */
1268static void
1269sched_setup(void *dummy)
1270{
1271	struct tdq *tdq;
1272
1273	tdq = TDQ_SELF();
1274#ifdef SMP
1275	sched_setup_smp();
1276#else
1277	tdq_setup(tdq);
1278#endif
1279	/*
1280	 * To avoid divide-by-zero, we set realstathz a dummy value
1281	 * in case which sched_clock() called before sched_initticks().
1282	 */
1283	realstathz = hz;
1284	sched_slice = (realstathz/10);	/* ~100ms */
1285	tickincr = 1 << SCHED_TICK_SHIFT;
1286
1287	/* Add thread0's load since it's running. */
1288	TDQ_LOCK(tdq);
1289	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1290	tdq_load_add(tdq, &thread0);
1291	tdq->tdq_lowpri = thread0.td_priority;
1292	TDQ_UNLOCK(tdq);
1293}
1294
1295/*
1296 * This routine determines the tickincr after stathz and hz are setup.
1297 */
1298/* ARGSUSED */
1299static void
1300sched_initticks(void *dummy)
1301{
1302	int incr;
1303
1304	realstathz = stathz ? stathz : hz;
1305	sched_slice = (realstathz/10);	/* ~100ms */
1306
1307	/*
1308	 * tickincr is shifted out by 10 to avoid rounding errors due to
1309	 * hz not being evenly divisible by stathz on all platforms.
1310	 */
1311	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1312	/*
1313	 * This does not work for values of stathz that are more than
1314	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1315	 */
1316	if (incr == 0)
1317		incr = 1;
1318	tickincr = incr;
1319#ifdef SMP
1320	/*
1321	 * Set the default balance interval now that we know
1322	 * what realstathz is.
1323	 */
1324	balance_interval = realstathz;
1325	/*
1326	 * Set steal thresh to log2(mp_ncpu) but no greater than 4.  This
1327	 * prevents excess thrashing on large machines and excess idle on
1328	 * smaller machines.
1329	 */
1330	steal_thresh = min(ffs(mp_ncpus) - 1, 3);
1331	affinity = SCHED_AFFINITY_DEFAULT;
1332#endif
1333}
1334
1335
1336/*
1337 * This is the core of the interactivity algorithm.  Determines a score based
1338 * on past behavior.  It is the ratio of sleep time to run time scaled to
1339 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1340 * differs from the cpu usage because it does not account for time spent
1341 * waiting on a run-queue.  Would be prettier if we had floating point.
1342 */
1343static int
1344sched_interact_score(struct thread *td)
1345{
1346	struct td_sched *ts;
1347	int div;
1348
1349	ts = td->td_sched;
1350	/*
1351	 * The score is only needed if this is likely to be an interactive
1352	 * task.  Don't go through the expense of computing it if there's
1353	 * no chance.
1354	 */
1355	if (sched_interact <= SCHED_INTERACT_HALF &&
1356		ts->ts_runtime >= ts->ts_slptime)
1357			return (SCHED_INTERACT_HALF);
1358
1359	if (ts->ts_runtime > ts->ts_slptime) {
1360		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1361		return (SCHED_INTERACT_HALF +
1362		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1363	}
1364	if (ts->ts_slptime > ts->ts_runtime) {
1365		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1366		return (ts->ts_runtime / div);
1367	}
1368	/* runtime == slptime */
1369	if (ts->ts_runtime)
1370		return (SCHED_INTERACT_HALF);
1371
1372	/*
1373	 * This can happen if slptime and runtime are 0.
1374	 */
1375	return (0);
1376
1377}
1378
1379/*
1380 * Scale the scheduling priority according to the "interactivity" of this
1381 * process.
1382 */
1383static void
1384sched_priority(struct thread *td)
1385{
1386	int score;
1387	int pri;
1388
1389	if (td->td_pri_class != PRI_TIMESHARE)
1390		return;
1391	/*
1392	 * If the score is interactive we place the thread in the realtime
1393	 * queue with a priority that is less than kernel and interrupt
1394	 * priorities.  These threads are not subject to nice restrictions.
1395	 *
1396	 * Scores greater than this are placed on the normal timeshare queue
1397	 * where the priority is partially decided by the most recent cpu
1398	 * utilization and the rest is decided by nice value.
1399	 *
1400	 * The nice value of the process has a linear effect on the calculated
1401	 * score.  Negative nice values make it easier for a thread to be
1402	 * considered interactive.
1403	 */
1404	score = imax(0, sched_interact_score(td) - td->td_proc->p_nice);
1405	if (score < sched_interact) {
1406		pri = PRI_MIN_REALTIME;
1407		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1408		    * score;
1409		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1410		    ("sched_priority: invalid interactive priority %d score %d",
1411		    pri, score));
1412	} else {
1413		pri = SCHED_PRI_MIN;
1414		if (td->td_sched->ts_ticks)
1415			pri += SCHED_PRI_TICKS(td->td_sched);
1416		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1417		KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
1418		    ("sched_priority: invalid priority %d: nice %d, "
1419		    "ticks %d ftick %d ltick %d tick pri %d",
1420		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1421		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1422		    SCHED_PRI_TICKS(td->td_sched)));
1423	}
1424	sched_user_prio(td, pri);
1425
1426	return;
1427}
1428
1429/*
1430 * This routine enforces a maximum limit on the amount of scheduling history
1431 * kept.  It is called after either the slptime or runtime is adjusted.  This
1432 * function is ugly due to integer math.
1433 */
1434static void
1435sched_interact_update(struct thread *td)
1436{
1437	struct td_sched *ts;
1438	u_int sum;
1439
1440	ts = td->td_sched;
1441	sum = ts->ts_runtime + ts->ts_slptime;
1442	if (sum < SCHED_SLP_RUN_MAX)
1443		return;
1444	/*
1445	 * This only happens from two places:
1446	 * 1) We have added an unusual amount of run time from fork_exit.
1447	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1448	 */
1449	if (sum > SCHED_SLP_RUN_MAX * 2) {
1450		if (ts->ts_runtime > ts->ts_slptime) {
1451			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1452			ts->ts_slptime = 1;
1453		} else {
1454			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1455			ts->ts_runtime = 1;
1456		}
1457		return;
1458	}
1459	/*
1460	 * If we have exceeded by more than 1/5th then the algorithm below
1461	 * will not bring us back into range.  Dividing by two here forces
1462	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1463	 */
1464	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1465		ts->ts_runtime /= 2;
1466		ts->ts_slptime /= 2;
1467		return;
1468	}
1469	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1470	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1471}
1472
1473/*
1474 * Scale back the interactivity history when a child thread is created.  The
1475 * history is inherited from the parent but the thread may behave totally
1476 * differently.  For example, a shell spawning a compiler process.  We want
1477 * to learn that the compiler is behaving badly very quickly.
1478 */
1479static void
1480sched_interact_fork(struct thread *td)
1481{
1482	int ratio;
1483	int sum;
1484
1485	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1486	if (sum > SCHED_SLP_RUN_FORK) {
1487		ratio = sum / SCHED_SLP_RUN_FORK;
1488		td->td_sched->ts_runtime /= ratio;
1489		td->td_sched->ts_slptime /= ratio;
1490	}
1491}
1492
1493/*
1494 * Called from proc0_init() to setup the scheduler fields.
1495 */
1496void
1497schedinit(void)
1498{
1499
1500	/*
1501	 * Set up the scheduler specific parts of proc0.
1502	 */
1503	proc0.p_sched = NULL; /* XXX */
1504	thread0.td_sched = &td_sched0;
1505	td_sched0.ts_ltick = ticks;
1506	td_sched0.ts_ftick = ticks;
1507	td_sched0.ts_slice = sched_slice;
1508}
1509
1510/*
1511 * This is only somewhat accurate since given many processes of the same
1512 * priority they will switch when their slices run out, which will be
1513 * at most sched_slice stathz ticks.
1514 */
1515int
1516sched_rr_interval(void)
1517{
1518
1519	/* Convert sched_slice to hz */
1520	return (hz/(realstathz/sched_slice));
1521}
1522
1523/*
1524 * Update the percent cpu tracking information when it is requested or
1525 * the total history exceeds the maximum.  We keep a sliding history of
1526 * tick counts that slowly decays.  This is less precise than the 4BSD
1527 * mechanism since it happens with less regular and frequent events.
1528 */
1529static void
1530sched_pctcpu_update(struct td_sched *ts)
1531{
1532
1533	if (ts->ts_ticks == 0)
1534		return;
1535	if (ticks - (hz / 10) < ts->ts_ltick &&
1536	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1537		return;
1538	/*
1539	 * Adjust counters and watermark for pctcpu calc.
1540	 */
1541	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1542		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1543			    SCHED_TICK_TARG;
1544	else
1545		ts->ts_ticks = 0;
1546	ts->ts_ltick = ticks;
1547	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1548}
1549
1550/*
1551 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1552 * if necessary.  This is the back-end for several priority related
1553 * functions.
1554 */
1555static void
1556sched_thread_priority(struct thread *td, u_char prio)
1557{
1558	struct td_sched *ts;
1559	struct tdq *tdq;
1560	int oldpri;
1561
1562	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1563	    td, td->td_name, td->td_priority, prio, curthread,
1564	    curthread->td_name);
1565	ts = td->td_sched;
1566	THREAD_LOCK_ASSERT(td, MA_OWNED);
1567	if (td->td_priority == prio)
1568		return;
1569	/*
1570	 * If the priority has been elevated due to priority
1571	 * propagation, we may have to move ourselves to a new
1572	 * queue.  This could be optimized to not re-add in some
1573	 * cases.
1574	 */
1575	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1576		sched_rem(td);
1577		td->td_priority = prio;
1578		sched_add(td, SRQ_BORROWING);
1579		return;
1580	}
1581	/*
1582	 * If the thread is currently running we may have to adjust the lowpri
1583	 * information so other cpus are aware of our current priority.
1584	 */
1585	if (TD_IS_RUNNING(td)) {
1586		tdq = TDQ_CPU(ts->ts_cpu);
1587		oldpri = td->td_priority;
1588		td->td_priority = prio;
1589		if (prio < tdq->tdq_lowpri)
1590			tdq->tdq_lowpri = prio;
1591		else if (tdq->tdq_lowpri == oldpri)
1592			tdq_setlowpri(tdq, td);
1593		return;
1594	}
1595	td->td_priority = prio;
1596}
1597
1598/*
1599 * Update a thread's priority when it is lent another thread's
1600 * priority.
1601 */
1602void
1603sched_lend_prio(struct thread *td, u_char prio)
1604{
1605
1606	td->td_flags |= TDF_BORROWING;
1607	sched_thread_priority(td, prio);
1608}
1609
1610/*
1611 * Restore a thread's priority when priority propagation is
1612 * over.  The prio argument is the minimum priority the thread
1613 * needs to have to satisfy other possible priority lending
1614 * requests.  If the thread's regular priority is less
1615 * important than prio, the thread will keep a priority boost
1616 * of prio.
1617 */
1618void
1619sched_unlend_prio(struct thread *td, u_char prio)
1620{
1621	u_char base_pri;
1622
1623	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1624	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1625		base_pri = td->td_user_pri;
1626	else
1627		base_pri = td->td_base_pri;
1628	if (prio >= base_pri) {
1629		td->td_flags &= ~TDF_BORROWING;
1630		sched_thread_priority(td, base_pri);
1631	} else
1632		sched_lend_prio(td, prio);
1633}
1634
1635/*
1636 * Standard entry for setting the priority to an absolute value.
1637 */
1638void
1639sched_prio(struct thread *td, u_char prio)
1640{
1641	u_char oldprio;
1642
1643	/* First, update the base priority. */
1644	td->td_base_pri = prio;
1645
1646	/*
1647	 * If the thread is borrowing another thread's priority, don't
1648	 * ever lower the priority.
1649	 */
1650	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1651		return;
1652
1653	/* Change the real priority. */
1654	oldprio = td->td_priority;
1655	sched_thread_priority(td, prio);
1656
1657	/*
1658	 * If the thread is on a turnstile, then let the turnstile update
1659	 * its state.
1660	 */
1661	if (TD_ON_LOCK(td) && oldprio != prio)
1662		turnstile_adjust(td, oldprio);
1663}
1664
1665/*
1666 * Set the base user priority, does not effect current running priority.
1667 */
1668void
1669sched_user_prio(struct thread *td, u_char prio)
1670{
1671	u_char oldprio;
1672
1673	td->td_base_user_pri = prio;
1674	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1675                return;
1676	oldprio = td->td_user_pri;
1677	td->td_user_pri = prio;
1678}
1679
1680void
1681sched_lend_user_prio(struct thread *td, u_char prio)
1682{
1683	u_char oldprio;
1684
1685	THREAD_LOCK_ASSERT(td, MA_OWNED);
1686	td->td_flags |= TDF_UBORROWING;
1687	oldprio = td->td_user_pri;
1688	td->td_user_pri = prio;
1689}
1690
1691void
1692sched_unlend_user_prio(struct thread *td, u_char prio)
1693{
1694	u_char base_pri;
1695
1696	THREAD_LOCK_ASSERT(td, MA_OWNED);
1697	base_pri = td->td_base_user_pri;
1698	if (prio >= base_pri) {
1699		td->td_flags &= ~TDF_UBORROWING;
1700		sched_user_prio(td, base_pri);
1701	} else {
1702		sched_lend_user_prio(td, prio);
1703	}
1704}
1705
1706/*
1707 * Block a thread for switching.  Similar to thread_block() but does not
1708 * bump the spin count.
1709 */
1710static inline struct mtx *
1711thread_block_switch(struct thread *td)
1712{
1713	struct mtx *lock;
1714
1715	THREAD_LOCK_ASSERT(td, MA_OWNED);
1716	lock = td->td_lock;
1717	td->td_lock = &blocked_lock;
1718	mtx_unlock_spin(lock);
1719
1720	return (lock);
1721}
1722
1723/*
1724 * Handle migration from sched_switch().  This happens only for
1725 * cpu binding.
1726 */
1727static struct mtx *
1728sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1729{
1730	struct tdq *tdn;
1731
1732	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1733#ifdef SMP
1734	tdq_load_rem(tdq, td);
1735	/*
1736	 * Do the lock dance required to avoid LOR.  We grab an extra
1737	 * spinlock nesting to prevent preemption while we're
1738	 * not holding either run-queue lock.
1739	 */
1740	spinlock_enter();
1741	thread_block_switch(td);	/* This releases the lock on tdq. */
1742	TDQ_LOCK(tdn);
1743	tdq_add(tdn, td, flags);
1744	tdq_notify(tdn, td);
1745	/*
1746	 * After we unlock tdn the new cpu still can't switch into this
1747	 * thread until we've unblocked it in cpu_switch().  The lock
1748	 * pointers may match in the case of HTT cores.  Don't unlock here
1749	 * or we can deadlock when the other CPU runs the IPI handler.
1750	 */
1751	if (TDQ_LOCKPTR(tdn) != TDQ_LOCKPTR(tdq)) {
1752		TDQ_UNLOCK(tdn);
1753		TDQ_LOCK(tdq);
1754	}
1755	spinlock_exit();
1756#endif
1757	return (TDQ_LOCKPTR(tdn));
1758}
1759
1760/*
1761 * Release a thread that was blocked with thread_block_switch().
1762 */
1763static inline void
1764thread_unblock_switch(struct thread *td, struct mtx *mtx)
1765{
1766	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1767	    (uintptr_t)mtx);
1768}
1769
1770/*
1771 * Switch threads.  This function has to handle threads coming in while
1772 * blocked for some reason, running, or idle.  It also must deal with
1773 * migrating a thread from one queue to another as running threads may
1774 * be assigned elsewhere via binding.
1775 */
1776void
1777sched_switch(struct thread *td, struct thread *newtd, int flags)
1778{
1779	struct tdq *tdq;
1780	struct td_sched *ts;
1781	struct mtx *mtx;
1782	int srqflag;
1783	int cpuid;
1784
1785	THREAD_LOCK_ASSERT(td, MA_OWNED);
1786	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1787
1788	cpuid = PCPU_GET(cpuid);
1789	tdq = TDQ_CPU(cpuid);
1790	ts = td->td_sched;
1791	mtx = td->td_lock;
1792	ts->ts_rltick = ticks;
1793	td->td_lastcpu = td->td_oncpu;
1794	td->td_oncpu = NOCPU;
1795	td->td_flags &= ~TDF_NEEDRESCHED;
1796	td->td_owepreempt = 0;
1797	tdq->tdq_switchcnt++;
1798	/*
1799	 * The lock pointer in an idle thread should never change.  Reset it
1800	 * to CAN_RUN as well.
1801	 */
1802	if (TD_IS_IDLETHREAD(td)) {
1803		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1804		TD_SET_CAN_RUN(td);
1805	} else if (TD_IS_RUNNING(td)) {
1806		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1807		srqflag = (flags & SW_PREEMPT) ?
1808		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1809		    SRQ_OURSELF|SRQ_YIELDING;
1810		if (ts->ts_cpu == cpuid)
1811			tdq_runq_add(tdq, td, srqflag);
1812		else
1813			mtx = sched_switch_migrate(tdq, td, srqflag);
1814	} else {
1815		/* This thread must be going to sleep. */
1816		TDQ_LOCK(tdq);
1817		mtx = thread_block_switch(td);
1818		tdq_load_rem(tdq, td);
1819	}
1820	/*
1821	 * We enter here with the thread blocked and assigned to the
1822	 * appropriate cpu run-queue or sleep-queue and with the current
1823	 * thread-queue locked.
1824	 */
1825	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1826	newtd = choosethread();
1827	/*
1828	 * Call the MD code to switch contexts if necessary.
1829	 */
1830	if (td != newtd) {
1831#ifdef	HWPMC_HOOKS
1832		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1833			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1834#endif
1835		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1836		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1837
1838#ifdef KDTRACE_HOOKS
1839		/*
1840		 * If DTrace has set the active vtime enum to anything
1841		 * other than INACTIVE (0), then it should have set the
1842		 * function to call.
1843		 */
1844		if (dtrace_vtime_active)
1845			(*dtrace_vtime_switch_func)(newtd);
1846#endif
1847
1848		cpu_switch(td, newtd, mtx);
1849		/*
1850		 * We may return from cpu_switch on a different cpu.  However,
1851		 * we always return with td_lock pointing to the current cpu's
1852		 * run queue lock.
1853		 */
1854		cpuid = PCPU_GET(cpuid);
1855		tdq = TDQ_CPU(cpuid);
1856		lock_profile_obtain_lock_success(
1857		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1858#ifdef	HWPMC_HOOKS
1859		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1860			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1861#endif
1862	} else
1863		thread_unblock_switch(td, mtx);
1864	/*
1865	 * Assert that all went well and return.
1866	 */
1867	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1868	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1869	td->td_oncpu = cpuid;
1870}
1871
1872/*
1873 * Adjust thread priorities as a result of a nice request.
1874 */
1875void
1876sched_nice(struct proc *p, int nice)
1877{
1878	struct thread *td;
1879
1880	PROC_LOCK_ASSERT(p, MA_OWNED);
1881
1882	p->p_nice = nice;
1883	FOREACH_THREAD_IN_PROC(p, td) {
1884		thread_lock(td);
1885		sched_priority(td);
1886		sched_prio(td, td->td_base_user_pri);
1887		thread_unlock(td);
1888	}
1889}
1890
1891/*
1892 * Record the sleep time for the interactivity scorer.
1893 */
1894void
1895sched_sleep(struct thread *td, int prio)
1896{
1897
1898	THREAD_LOCK_ASSERT(td, MA_OWNED);
1899
1900	td->td_slptick = ticks;
1901	if (TD_IS_SUSPENDED(td) || prio <= PSOCK)
1902		td->td_flags |= TDF_CANSWAP;
1903	if (static_boost == 1 && prio)
1904		sched_prio(td, prio);
1905	else if (static_boost && td->td_priority > static_boost)
1906		sched_prio(td, static_boost);
1907}
1908
1909/*
1910 * Schedule a thread to resume execution and record how long it voluntarily
1911 * slept.  We also update the pctcpu, interactivity, and priority.
1912 */
1913void
1914sched_wakeup(struct thread *td)
1915{
1916	struct td_sched *ts;
1917	int slptick;
1918
1919	THREAD_LOCK_ASSERT(td, MA_OWNED);
1920	ts = td->td_sched;
1921	td->td_flags &= ~TDF_CANSWAP;
1922	/*
1923	 * If we slept for more than a tick update our interactivity and
1924	 * priority.
1925	 */
1926	slptick = td->td_slptick;
1927	td->td_slptick = 0;
1928	if (slptick && slptick != ticks) {
1929		u_int hzticks;
1930
1931		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1932		ts->ts_slptime += hzticks;
1933		sched_interact_update(td);
1934		sched_pctcpu_update(ts);
1935	}
1936	/* Reset the slice value after we sleep. */
1937	ts->ts_slice = sched_slice;
1938	sched_add(td, SRQ_BORING);
1939}
1940
1941/*
1942 * Penalize the parent for creating a new child and initialize the child's
1943 * priority.
1944 */
1945void
1946sched_fork(struct thread *td, struct thread *child)
1947{
1948	THREAD_LOCK_ASSERT(td, MA_OWNED);
1949	sched_fork_thread(td, child);
1950	/*
1951	 * Penalize the parent and child for forking.
1952	 */
1953	sched_interact_fork(child);
1954	sched_priority(child);
1955	td->td_sched->ts_runtime += tickincr;
1956	sched_interact_update(td);
1957	sched_priority(td);
1958}
1959
1960/*
1961 * Fork a new thread, may be within the same process.
1962 */
1963void
1964sched_fork_thread(struct thread *td, struct thread *child)
1965{
1966	struct td_sched *ts;
1967	struct td_sched *ts2;
1968
1969	THREAD_LOCK_ASSERT(td, MA_OWNED);
1970	/*
1971	 * Initialize child.
1972	 */
1973	ts = td->td_sched;
1974	ts2 = child->td_sched;
1975	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1976	child->td_cpuset = cpuset_ref(td->td_cpuset);
1977	ts2->ts_cpu = ts->ts_cpu;
1978	ts2->ts_flags = 0;
1979	/*
1980	 * Grab our parents cpu estimation information and priority.
1981	 */
1982	ts2->ts_ticks = ts->ts_ticks;
1983	ts2->ts_ltick = ts->ts_ltick;
1984	ts2->ts_ftick = ts->ts_ftick;
1985	child->td_user_pri = td->td_user_pri;
1986	child->td_base_user_pri = td->td_base_user_pri;
1987	/*
1988	 * And update interactivity score.
1989	 */
1990	ts2->ts_slptime = ts->ts_slptime;
1991	ts2->ts_runtime = ts->ts_runtime;
1992	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1993}
1994
1995/*
1996 * Adjust the priority class of a thread.
1997 */
1998void
1999sched_class(struct thread *td, int class)
2000{
2001
2002	THREAD_LOCK_ASSERT(td, MA_OWNED);
2003	if (td->td_pri_class == class)
2004		return;
2005	td->td_pri_class = class;
2006}
2007
2008/*
2009 * Return some of the child's priority and interactivity to the parent.
2010 */
2011void
2012sched_exit(struct proc *p, struct thread *child)
2013{
2014	struct thread *td;
2015
2016	CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
2017	    child, child->td_name, child->td_priority);
2018
2019	PROC_LOCK_ASSERT(p, MA_OWNED);
2020	td = FIRST_THREAD_IN_PROC(p);
2021	sched_exit_thread(td, child);
2022}
2023
2024/*
2025 * Penalize another thread for the time spent on this one.  This helps to
2026 * worsen the priority and interactivity of processes which schedule batch
2027 * jobs such as make.  This has little effect on the make process itself but
2028 * causes new processes spawned by it to receive worse scores immediately.
2029 */
2030void
2031sched_exit_thread(struct thread *td, struct thread *child)
2032{
2033
2034	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
2035	    child, child->td_name, child->td_priority);
2036
2037	/*
2038	 * Give the child's runtime to the parent without returning the
2039	 * sleep time as a penalty to the parent.  This causes shells that
2040	 * launch expensive things to mark their children as expensive.
2041	 */
2042	thread_lock(td);
2043	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2044	sched_interact_update(td);
2045	sched_priority(td);
2046	thread_unlock(td);
2047}
2048
2049void
2050sched_preempt(struct thread *td)
2051{
2052	struct tdq *tdq;
2053
2054	thread_lock(td);
2055	tdq = TDQ_SELF();
2056	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2057	tdq->tdq_ipipending = 0;
2058	if (td->td_priority > tdq->tdq_lowpri) {
2059		int flags;
2060
2061		flags = SW_INVOL | SW_PREEMPT;
2062		if (td->td_critnest > 1)
2063			td->td_owepreempt = 1;
2064		else if (TD_IS_IDLETHREAD(td))
2065			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2066		else
2067			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2068	}
2069	thread_unlock(td);
2070}
2071
2072/*
2073 * Fix priorities on return to user-space.  Priorities may be elevated due
2074 * to static priorities in msleep() or similar.
2075 */
2076void
2077sched_userret(struct thread *td)
2078{
2079	/*
2080	 * XXX we cheat slightly on the locking here to avoid locking in
2081	 * the usual case.  Setting td_priority here is essentially an
2082	 * incomplete workaround for not setting it properly elsewhere.
2083	 * Now that some interrupt handlers are threads, not setting it
2084	 * properly elsewhere can clobber it in the window between setting
2085	 * it here and returning to user mode, so don't waste time setting
2086	 * it perfectly here.
2087	 */
2088	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2089	    ("thread with borrowed priority returning to userland"));
2090	if (td->td_priority != td->td_user_pri) {
2091		thread_lock(td);
2092		td->td_priority = td->td_user_pri;
2093		td->td_base_pri = td->td_user_pri;
2094		tdq_setlowpri(TDQ_SELF(), td);
2095		thread_unlock(td);
2096        }
2097}
2098
2099/*
2100 * Handle a stathz tick.  This is really only relevant for timeshare
2101 * threads.
2102 */
2103void
2104sched_clock(struct thread *td)
2105{
2106	struct tdq *tdq;
2107	struct td_sched *ts;
2108
2109	THREAD_LOCK_ASSERT(td, MA_OWNED);
2110	tdq = TDQ_SELF();
2111#ifdef SMP
2112	/*
2113	 * We run the long term load balancer infrequently on the first cpu.
2114	 */
2115	if (balance_tdq == tdq) {
2116		if (balance_ticks && --balance_ticks == 0)
2117			sched_balance();
2118	}
2119#endif
2120	/*
2121	 * Save the old switch count so we have a record of the last ticks
2122	 * activity.   Initialize the new switch count based on our load.
2123	 * If there is some activity seed it to reflect that.
2124	 */
2125	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2126	tdq->tdq_switchcnt = tdq->tdq_load;
2127	/*
2128	 * Advance the insert index once for each tick to ensure that all
2129	 * threads get a chance to run.
2130	 */
2131	if (tdq->tdq_idx == tdq->tdq_ridx) {
2132		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2133		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2134			tdq->tdq_ridx = tdq->tdq_idx;
2135	}
2136	ts = td->td_sched;
2137	if (td->td_pri_class & PRI_FIFO_BIT)
2138		return;
2139	if (td->td_pri_class == PRI_TIMESHARE) {
2140		/*
2141		 * We used a tick; charge it to the thread so
2142		 * that we can compute our interactivity.
2143		 */
2144		td->td_sched->ts_runtime += tickincr;
2145		sched_interact_update(td);
2146		sched_priority(td);
2147	}
2148	/*
2149	 * We used up one time slice.
2150	 */
2151	if (--ts->ts_slice > 0)
2152		return;
2153	/*
2154	 * We're out of time, force a requeue at userret().
2155	 */
2156	ts->ts_slice = sched_slice;
2157	td->td_flags |= TDF_NEEDRESCHED;
2158}
2159
2160/*
2161 * Called once per hz tick.  Used for cpu utilization information.  This
2162 * is easier than trying to scale based on stathz.
2163 */
2164void
2165sched_tick(void)
2166{
2167	struct td_sched *ts;
2168
2169	ts = curthread->td_sched;
2170	/*
2171	 * Ticks is updated asynchronously on a single cpu.  Check here to
2172	 * avoid incrementing ts_ticks multiple times in a single tick.
2173	 */
2174	if (ts->ts_ltick == ticks)
2175		return;
2176	/* Adjust ticks for pctcpu */
2177	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
2178	ts->ts_ltick = ticks;
2179	/*
2180	 * Update if we've exceeded our desired tick threshhold by over one
2181	 * second.
2182	 */
2183	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2184		sched_pctcpu_update(ts);
2185}
2186
2187/*
2188 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2189 * cooperative idle threads.
2190 */
2191int
2192sched_runnable(void)
2193{
2194	struct tdq *tdq;
2195	int load;
2196
2197	load = 1;
2198
2199	tdq = TDQ_SELF();
2200	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2201		if (tdq->tdq_load > 0)
2202			goto out;
2203	} else
2204		if (tdq->tdq_load - 1 > 0)
2205			goto out;
2206	load = 0;
2207out:
2208	return (load);
2209}
2210
2211/*
2212 * Choose the highest priority thread to run.  The thread is removed from
2213 * the run-queue while running however the load remains.  For SMP we set
2214 * the tdq in the global idle bitmask if it idles here.
2215 */
2216struct thread *
2217sched_choose(void)
2218{
2219	struct thread *td;
2220	struct tdq *tdq;
2221
2222	tdq = TDQ_SELF();
2223	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2224	td = tdq_choose(tdq);
2225	if (td) {
2226		td->td_sched->ts_ltick = ticks;
2227		tdq_runq_rem(tdq, td);
2228		tdq->tdq_lowpri = td->td_priority;
2229		return (td);
2230	}
2231	tdq->tdq_lowpri = PRI_MAX_IDLE;
2232	return (PCPU_GET(idlethread));
2233}
2234
2235/*
2236 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2237 * we always request it once we exit a critical section.
2238 */
2239static inline void
2240sched_setpreempt(struct thread *td)
2241{
2242	struct thread *ctd;
2243	int cpri;
2244	int pri;
2245
2246	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2247
2248	ctd = curthread;
2249	pri = td->td_priority;
2250	cpri = ctd->td_priority;
2251	if (pri < cpri)
2252		ctd->td_flags |= TDF_NEEDRESCHED;
2253	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2254		return;
2255	if (!sched_shouldpreempt(pri, cpri, 0))
2256		return;
2257	ctd->td_owepreempt = 1;
2258}
2259
2260/*
2261 * Add a thread to a thread queue.  Select the appropriate runq and add the
2262 * thread to it.  This is the internal function called when the tdq is
2263 * predetermined.
2264 */
2265void
2266tdq_add(struct tdq *tdq, struct thread *td, int flags)
2267{
2268
2269	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2270	KASSERT((td->td_inhibitors == 0),
2271	    ("sched_add: trying to run inhibited thread"));
2272	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2273	    ("sched_add: bad thread state"));
2274	KASSERT(td->td_flags & TDF_INMEM,
2275	    ("sched_add: thread swapped out"));
2276
2277	if (td->td_priority < tdq->tdq_lowpri)
2278		tdq->tdq_lowpri = td->td_priority;
2279	tdq_runq_add(tdq, td, flags);
2280	tdq_load_add(tdq, td);
2281}
2282
2283/*
2284 * Select the target thread queue and add a thread to it.  Request
2285 * preemption or IPI a remote processor if required.
2286 */
2287void
2288sched_add(struct thread *td, int flags)
2289{
2290	struct tdq *tdq;
2291#ifdef SMP
2292	int cpu;
2293#endif
2294	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
2295	    td, td->td_name, td->td_priority, curthread,
2296	    curthread->td_name);
2297	THREAD_LOCK_ASSERT(td, MA_OWNED);
2298	/*
2299	 * Recalculate the priority before we select the target cpu or
2300	 * run-queue.
2301	 */
2302	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2303		sched_priority(td);
2304#ifdef SMP
2305	/*
2306	 * Pick the destination cpu and if it isn't ours transfer to the
2307	 * target cpu.
2308	 */
2309	cpu = sched_pickcpu(td, flags);
2310	tdq = sched_setcpu(td, cpu, flags);
2311	tdq_add(tdq, td, flags);
2312	if (cpu != PCPU_GET(cpuid)) {
2313		tdq_notify(tdq, td);
2314		return;
2315	}
2316#else
2317	tdq = TDQ_SELF();
2318	TDQ_LOCK(tdq);
2319	/*
2320	 * Now that the thread is moving to the run-queue, set the lock
2321	 * to the scheduler's lock.
2322	 */
2323	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2324	tdq_add(tdq, td, flags);
2325#endif
2326	if (!(flags & SRQ_YIELDING))
2327		sched_setpreempt(td);
2328}
2329
2330/*
2331 * Remove a thread from a run-queue without running it.  This is used
2332 * when we're stealing a thread from a remote queue.  Otherwise all threads
2333 * exit by calling sched_exit_thread() and sched_throw() themselves.
2334 */
2335void
2336sched_rem(struct thread *td)
2337{
2338	struct tdq *tdq;
2339
2340	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
2341	    td, td->td_name, td->td_priority, curthread,
2342	    curthread->td_name);
2343	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2344	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2345	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2346	KASSERT(TD_ON_RUNQ(td),
2347	    ("sched_rem: thread not on run queue"));
2348	tdq_runq_rem(tdq, td);
2349	tdq_load_rem(tdq, td);
2350	TD_SET_CAN_RUN(td);
2351	if (td->td_priority == tdq->tdq_lowpri)
2352		tdq_setlowpri(tdq, NULL);
2353}
2354
2355/*
2356 * Fetch cpu utilization information.  Updates on demand.
2357 */
2358fixpt_t
2359sched_pctcpu(struct thread *td)
2360{
2361	fixpt_t pctcpu;
2362	struct td_sched *ts;
2363
2364	pctcpu = 0;
2365	ts = td->td_sched;
2366	if (ts == NULL)
2367		return (0);
2368
2369	thread_lock(td);
2370	if (ts->ts_ticks) {
2371		int rtick;
2372
2373		sched_pctcpu_update(ts);
2374		/* How many rtick per second ? */
2375		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2376		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2377	}
2378	thread_unlock(td);
2379
2380	return (pctcpu);
2381}
2382
2383/*
2384 * Enforce affinity settings for a thread.  Called after adjustments to
2385 * cpumask.
2386 */
2387void
2388sched_affinity(struct thread *td)
2389{
2390#ifdef SMP
2391	struct td_sched *ts;
2392	int cpu;
2393
2394	THREAD_LOCK_ASSERT(td, MA_OWNED);
2395	ts = td->td_sched;
2396	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2397		return;
2398	if (!TD_IS_RUNNING(td))
2399		return;
2400	td->td_flags |= TDF_NEEDRESCHED;
2401	if (!THREAD_CAN_MIGRATE(td))
2402		return;
2403	/*
2404	 * Assign the new cpu and force a switch before returning to
2405	 * userspace.  If the target thread is not running locally send
2406	 * an ipi to force the issue.
2407	 */
2408	cpu = ts->ts_cpu;
2409	ts->ts_cpu = sched_pickcpu(td, 0);
2410	if (cpu != PCPU_GET(cpuid))
2411		ipi_selected(1 << cpu, IPI_PREEMPT);
2412#endif
2413}
2414
2415/*
2416 * Bind a thread to a target cpu.
2417 */
2418void
2419sched_bind(struct thread *td, int cpu)
2420{
2421	struct td_sched *ts;
2422
2423	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2424	ts = td->td_sched;
2425	if (ts->ts_flags & TSF_BOUND)
2426		sched_unbind(td);
2427	ts->ts_flags |= TSF_BOUND;
2428	sched_pin();
2429	if (PCPU_GET(cpuid) == cpu)
2430		return;
2431	ts->ts_cpu = cpu;
2432	/* When we return from mi_switch we'll be on the correct cpu. */
2433	mi_switch(SW_VOL, NULL);
2434}
2435
2436/*
2437 * Release a bound thread.
2438 */
2439void
2440sched_unbind(struct thread *td)
2441{
2442	struct td_sched *ts;
2443
2444	THREAD_LOCK_ASSERT(td, MA_OWNED);
2445	ts = td->td_sched;
2446	if ((ts->ts_flags & TSF_BOUND) == 0)
2447		return;
2448	ts->ts_flags &= ~TSF_BOUND;
2449	sched_unpin();
2450}
2451
2452int
2453sched_is_bound(struct thread *td)
2454{
2455	THREAD_LOCK_ASSERT(td, MA_OWNED);
2456	return (td->td_sched->ts_flags & TSF_BOUND);
2457}
2458
2459/*
2460 * Basic yield call.
2461 */
2462void
2463sched_relinquish(struct thread *td)
2464{
2465	thread_lock(td);
2466	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2467	thread_unlock(td);
2468}
2469
2470/*
2471 * Return the total system load.
2472 */
2473int
2474sched_load(void)
2475{
2476#ifdef SMP
2477	int total;
2478	int i;
2479
2480	total = 0;
2481	for (i = 0; i <= mp_maxid; i++)
2482		total += TDQ_CPU(i)->tdq_sysload;
2483	return (total);
2484#else
2485	return (TDQ_SELF()->tdq_sysload);
2486#endif
2487}
2488
2489int
2490sched_sizeof_proc(void)
2491{
2492	return (sizeof(struct proc));
2493}
2494
2495int
2496sched_sizeof_thread(void)
2497{
2498	return (sizeof(struct thread) + sizeof(struct td_sched));
2499}
2500
2501/*
2502 * The actual idle process.
2503 */
2504void
2505sched_idletd(void *dummy)
2506{
2507	struct thread *td;
2508	struct tdq *tdq;
2509	int switchcnt;
2510	int i;
2511
2512	td = curthread;
2513	tdq = TDQ_SELF();
2514	mtx_assert(&Giant, MA_NOTOWNED);
2515	/* ULE relies on preemption for idle interruption. */
2516	for (;;) {
2517		tdq->tdq_idlestate = TDQ_RUNNING;
2518#ifdef SMP
2519		if (tdq_idled(tdq) == 0)
2520			continue;
2521#endif
2522		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2523		/*
2524		 * If we're switching very frequently, spin while checking
2525		 * for load rather than entering a low power state that
2526		 * requires an IPI.
2527		 */
2528		if (switchcnt > sched_idlespinthresh) {
2529			for (i = 0; i < sched_idlespins; i++) {
2530				if (tdq->tdq_load)
2531					break;
2532				cpu_spinwait();
2533			}
2534		}
2535		/*
2536		 * We must set our state to IDLE before checking
2537		 * tdq_load for the last time to avoid a race with
2538		 * tdq_notify().
2539		 */
2540		if (tdq->tdq_load == 0) {
2541			switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2542			tdq->tdq_idlestate = TDQ_IDLE;
2543			if (tdq->tdq_load == 0)
2544				cpu_idle(switchcnt > 1);
2545		}
2546		if (tdq->tdq_load) {
2547			thread_lock(td);
2548			mi_switch(SW_VOL | SWT_IDLE, NULL);
2549			thread_unlock(td);
2550		}
2551	}
2552}
2553
2554/*
2555 * A CPU is entering for the first time or a thread is exiting.
2556 */
2557void
2558sched_throw(struct thread *td)
2559{
2560	struct thread *newtd;
2561	struct tdq *tdq;
2562
2563	tdq = TDQ_SELF();
2564	if (td == NULL) {
2565		/* Correct spinlock nesting and acquire the correct lock. */
2566		TDQ_LOCK(tdq);
2567		spinlock_exit();
2568	} else {
2569		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2570		tdq_load_rem(tdq, td);
2571		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2572	}
2573	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2574	newtd = choosethread();
2575	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2576	PCPU_SET(switchtime, cpu_ticks());
2577	PCPU_SET(switchticks, ticks);
2578	cpu_throw(td, newtd);		/* doesn't return */
2579}
2580
2581/*
2582 * This is called from fork_exit().  Just acquire the correct locks and
2583 * let fork do the rest of the work.
2584 */
2585void
2586sched_fork_exit(struct thread *td)
2587{
2588	struct td_sched *ts;
2589	struct tdq *tdq;
2590	int cpuid;
2591
2592	/*
2593	 * Finish setting up thread glue so that it begins execution in a
2594	 * non-nested critical section with the scheduler lock held.
2595	 */
2596	cpuid = PCPU_GET(cpuid);
2597	tdq = TDQ_CPU(cpuid);
2598	ts = td->td_sched;
2599	if (TD_IS_IDLETHREAD(td))
2600		td->td_lock = TDQ_LOCKPTR(tdq);
2601	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2602	td->td_oncpu = cpuid;
2603	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2604	lock_profile_obtain_lock_success(
2605	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2606}
2607
2608#ifdef SMP
2609
2610/*
2611 * Build the CPU topology dump string. Is recursively called to collect
2612 * the topology tree.
2613 */
2614static int
2615sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2616    int indent)
2617{
2618	int i, first;
2619
2620	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2621	    "", indent, cg->cg_level);
2622	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"0x%x\">", indent, "",
2623	    cg->cg_count, cg->cg_mask);
2624	first = TRUE;
2625	for (i = 0; i < MAXCPU; i++) {
2626		if ((cg->cg_mask & (1 << i)) != 0) {
2627			if (!first)
2628				sbuf_printf(sb, ", ");
2629			else
2630				first = FALSE;
2631			sbuf_printf(sb, "%d", i);
2632		}
2633	}
2634	sbuf_printf(sb, "</cpu>\n");
2635
2636	sbuf_printf(sb, "%*s <flags>", indent, "");
2637	if (cg->cg_flags != 0) {
2638		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2639			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>\n");
2640		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2641			sbuf_printf(sb, "<flag name=\"THREAD\">SMT group</flag>\n");
2642	}
2643	sbuf_printf(sb, "</flags>\n");
2644
2645	if (cg->cg_children > 0) {
2646		sbuf_printf(sb, "%*s <children>\n", indent, "");
2647		for (i = 0; i < cg->cg_children; i++)
2648			sysctl_kern_sched_topology_spec_internal(sb,
2649			    &cg->cg_child[i], indent+2);
2650		sbuf_printf(sb, "%*s </children>\n", indent, "");
2651	}
2652	sbuf_printf(sb, "%*s</group>\n", indent, "");
2653	return (0);
2654}
2655
2656/*
2657 * Sysctl handler for retrieving topology dump. It's a wrapper for
2658 * the recursive sysctl_kern_smp_topology_spec_internal().
2659 */
2660static int
2661sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2662{
2663	struct sbuf *topo;
2664	int err;
2665
2666	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2667
2668	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2669	if (topo == NULL)
2670		return (ENOMEM);
2671
2672	sbuf_printf(topo, "<groups>\n");
2673	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2674	sbuf_printf(topo, "</groups>\n");
2675
2676	if (err == 0) {
2677		sbuf_finish(topo);
2678		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2679	}
2680	sbuf_delete(topo);
2681	return (err);
2682}
2683#endif
2684
2685SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2686SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2687    "Scheduler name");
2688SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2689    "Slice size for timeshare threads");
2690SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2691     "Interactivity score threshold");
2692SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2693     0,"Min priority for preemption, lower priorities have greater precedence");
2694SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2695     0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2696SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2697     0,"Number of times idle will spin waiting for new work.");
2698SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2699     0,"Threshold before we will permit idle spinning.");
2700#ifdef SMP
2701SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2702    "Number of hz ticks to keep thread affinity for");
2703SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2704    "Enables the long-term load balancer");
2705SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2706    &balance_interval, 0,
2707    "Average frequency in stathz ticks to run the long-term balancer");
2708SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2709    "Steals work from another hyper-threaded core on idle");
2710SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2711    "Attempts to steal work from other cores before idling");
2712SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2713    "Minimum load on remote cpu before we'll steal");
2714
2715/* Retrieve SMP topology */
2716SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2717    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2718    "XML dump of detected CPU topology");
2719#endif
2720
2721/* ps compat.  All cpu percentages from ULE are weighted. */
2722static int ccpu = 0;
2723SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2724