sched_ule.c revision 179297
113546Sjulian/*-
235509Sjb * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
313546Sjulian * All rights reserved.
413546Sjulian *
513546Sjulian * Redistribution and use in source and binary forms, with or without
613546Sjulian * modification, are permitted provided that the following conditions
713546Sjulian * are met:
813546Sjulian * 1. Redistributions of source code must retain the above copyright
913546Sjulian *    notice unmodified, this list of conditions, and the following
1013546Sjulian *    disclaimer.
1113546Sjulian * 2. Redistributions in binary form must reproduce the above copyright
1213546Sjulian *    notice, this list of conditions and the following disclaimer in the
13165967Simp *    documentation and/or other materials provided with the distribution.
1413546Sjulian *
1513546Sjulian * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
1613546Sjulian * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1713546Sjulian * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
1813546Sjulian * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
1913546Sjulian * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
2049439Sdeischen * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2113546Sjulian * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2213546Sjulian * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2313546Sjulian * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
2413546Sjulian * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2513546Sjulian */
2613546Sjulian
2713546Sjulian/*
2813546Sjulian * This file implements the ULE scheduler.  ULE supports independent CPU
2950476Speter * run queues and fine grain locking.  It has superior interactive
3013546Sjulian * performance under load even on uni-processor systems.
31174112Sdeischen *
32174112Sdeischen * etymology:
3313546Sjulian *   ULE is the last three letters in schedule.  It owes its name to a
3417706Sjulian * generic user created for a scheduling system by Paul Mikesell at
3555194Sdeischen * Isilon Systems and a general lack of creativity on the part of the author.
3617706Sjulian */
3713546Sjulian
3813546Sjulian#include <sys/cdefs.h>
39122075Sdeischen__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 179297 2008-05-25 01:44:58Z jb $");
40118746Sdavidxu
41174112Sdeischen#include "opt_hwpmc_hooks.h"
42122130Sdeischen#include "opt_kdtrace.h"
43122130Sdeischen#include "opt_sched.h"
44103388Smini
4513546Sjulian#include <sys/param.h>
46174112Sdeischen#include <sys/systm.h>
47174112Sdeischen#include <sys/kdb.h>
4875369Sdeischen#include <sys/kernel.h>
4971581Sdeischen#include <sys/ktr.h>
5013546Sjulian#include <sys/lock.h>
5156698Sjasone#include <sys/mutex.h>
5213546Sjulian#include <sys/proc.h>
53118746Sdavidxu#include <sys/resource.h>
54113658Sdeischen#include <sys/resourcevar.h>
55122075Sdeischen#include <sys/sched.h>
56113658Sdeischen#include <sys/smp.h>
57119099Sdavidxu#include <sys/sx.h>
5813546Sjulian#include <sys/sysctl.h>
59113658Sdeischen#include <sys/sysproto.h>
6034381Sjb#include <sys/turnstile.h>
61139023Sdeischen#include <sys/umtx.h>
62139023Sdeischen#include <sys/vmmeter.h>
63139023Sdeischen#include <sys/cpuset.h>
64139023Sdeischen#ifdef KTRACE
65139023Sdeischen#include <sys/uio.h>
66139023Sdeischen#include <sys/ktrace.h>
67139023Sdeischen#endif
68139023Sdeischen
69139023Sdeischen#ifdef HWPMC_HOOKS
70139023Sdeischen#include <sys/pmckern.h>
71139023Sdeischen#endif
72139023Sdeischen
73139023Sdeischen#ifdef KDTRACE_HOOKS
74118746Sdavidxu#include <sys/dtrace_bsd.h>
75118746Sdavidxuint				dtrace_vtime_active;
76118746Sdavidxudtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
77118746Sdavidxu#endif
78118746Sdavidxu
79118746Sdavidxu#include <machine/cpu.h>
80118746Sdavidxu#include <machine/smp.h>
81118746Sdavidxu
82118746Sdavidxu#if defined(__sparc64__) || defined(__mips__)
83118746Sdavidxu#error "This architecture is not currently compatible with ULE"
84118746Sdavidxu#endif
85122075Sdeischen
86122075Sdeischen#define	KTR_ULE	0
87122075Sdeischen
88122075Sdeischen/*
89122075Sdeischen * Thread scheduler specific section.  All fields are protected
90122075Sdeischen * by the thread lock.
91122075Sdeischen */
92122075Sdeischenstruct td_sched {
93122075Sdeischen	struct runq	*ts_runq;	/* Run-queue we're queued on. */
9413546Sjulian	short		ts_flags;	/* TSF_* flags. */
95139023Sdeischen	u_char		ts_cpu;		/* CPU that we have affinity for. */
96154248Sjasone	int		ts_rltick;	/* Real last tick, for affinity. */
97122075Sdeischen	int		ts_slice;	/* Ticks of slice remaining. */
98118746Sdavidxu	u_int		ts_slptime;	/* Number of ticks we vol. slept */
99113658Sdeischen	u_int		ts_runtime;	/* Number of ticks we were running */
100122075Sdeischen	int		ts_ltick;	/* Last tick that we were running on */
101122075Sdeischen	int		ts_ftick;	/* First tick that we were running on */
102122075Sdeischen	int		ts_ticks;	/* Tick count */
103113658Sdeischen};
104122075Sdeischen/* flags kept in ts_flags */
105122075Sdeischen#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
106122075Sdeischen#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
107122075Sdeischen
108122075Sdeischenstatic struct td_sched td_sched0;
109122075Sdeischen
110122075Sdeischen#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
111118746Sdavidxu#define	THREAD_CAN_SCHED(td, cpu)	\
112154248Sjasone    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
113154248Sjasone
114122075Sdeischen/*
115122075Sdeischen * Cpu percentage computation macros and defines.
116119099Sdavidxu *
117118746Sdavidxu * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
118122075Sdeischen * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
119122075Sdeischen * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
120122075Sdeischen * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
121122075Sdeischen * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
122122075Sdeischen * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
123122075Sdeischen */
124122075Sdeischen#define	SCHED_TICK_SECS		10
125118746Sdavidxu#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
126122075Sdeischen#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
12748046Sjb#define	SCHED_TICK_SHIFT	10
12813546Sjulian#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
12913546Sjulian#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
13013546Sjulian
131/*
132 * These macros determine priorities for non-interactive threads.  They are
133 * assigned a priority based on their recent cpu utilization as expressed
134 * by the ratio of ticks to the tick total.  NHALF priorities at the start
135 * and end of the MIN to MAX timeshare range are only reachable with negative
136 * or positive nice respectively.
137 *
138 * PRI_RANGE:	Priority range for utilization dependent priorities.
139 * PRI_NRESV:	Number of nice values.
140 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
141 * PRI_NICE:	Determines the part of the priority inherited from nice.
142 */
143#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
144#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
145#define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
146#define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
147#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN)
148#define	SCHED_PRI_TICKS(ts)						\
149    (SCHED_TICK_HZ((ts)) /						\
150    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
151#define	SCHED_PRI_NICE(nice)	(nice)
152
153/*
154 * These determine the interactivity of a process.  Interactivity differs from
155 * cpu utilization in that it expresses the voluntary time slept vs time ran
156 * while cpu utilization includes all time not running.  This more accurately
157 * models the intent of the thread.
158 *
159 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
160 *		before throttling back.
161 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
162 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
163 * INTERACT_THRESH:	Threshhold for placement on the current runq.
164 */
165#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
166#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
167#define	SCHED_INTERACT_MAX	(100)
168#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
169#define	SCHED_INTERACT_THRESH	(30)
170
171/*
172 * tickincr:		Converts a stathz tick into a hz domain scaled by
173 *			the shift factor.  Without the shift the error rate
174 *			due to rounding would be unacceptably high.
175 * realstathz:		stathz is sometimes 0 and run off of hz.
176 * sched_slice:		Runtime of each thread before rescheduling.
177 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
178 */
179static int sched_interact = SCHED_INTERACT_THRESH;
180static int realstathz;
181static int tickincr;
182static int sched_slice = 1;
183#ifdef PREEMPTION
184#ifdef FULL_PREEMPTION
185static int preempt_thresh = PRI_MAX_IDLE;
186#else
187static int preempt_thresh = PRI_MIN_KERN;
188#endif
189#else
190static int preempt_thresh = 0;
191#endif
192static int static_boost = PRI_MIN_TIMESHARE;
193static int sched_idlespins = 10000;
194static int sched_idlespinthresh = 4;
195
196/*
197 * tdq - per processor runqs and statistics.  All fields are protected by the
198 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
199 * locking in sched_pickcpu();
200 */
201struct tdq {
202	/* Ordered to improve efficiency of cpu_search() and switch(). */
203	struct mtx	tdq_lock;		/* run queue lock. */
204	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
205	volatile int	tdq_load;		/* Aggregate load. */
206	int		tdq_sysload;		/* For loadavg, !ITHD load. */
207	int		tdq_transferable;	/* Transferable thread count. */
208	volatile int	tdq_idlestate;		/* State of the idle thread. */
209	short		tdq_switchcnt;		/* Switches this tick. */
210	short		tdq_oldswitchcnt;	/* Switches last tick. */
211	u_char		tdq_lowpri;		/* Lowest priority thread. */
212	u_char		tdq_ipipending;		/* IPI pending. */
213	u_char		tdq_idx;		/* Current insert index. */
214	u_char		tdq_ridx;		/* Current removal index. */
215	struct runq	tdq_realtime;		/* real-time run queue. */
216	struct runq	tdq_timeshare;		/* timeshare run queue. */
217	struct runq	tdq_idle;		/* Queue of IDLE threads. */
218	char		tdq_name[sizeof("sched lock") + 6];
219} __aligned(64);
220
221/* Idle thread states and config. */
222#define	TDQ_RUNNING	1
223#define	TDQ_IDLE	2
224
225#ifdef SMP
226struct cpu_group *cpu_top;
227
228#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
229#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
230
231/*
232 * Run-time tunables.
233 */
234static int rebalance = 1;
235static int balance_interval = 128;	/* Default set in sched_initticks(). */
236static int affinity;
237static int steal_htt = 1;
238static int steal_idle = 1;
239static int steal_thresh = 2;
240
241/*
242 * One thread queue per processor.
243 */
244static struct tdq	tdq_cpu[MAXCPU];
245static struct tdq	*balance_tdq;
246static int balance_ticks;
247
248#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
249#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
250#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
251#else	/* !SMP */
252static struct tdq	tdq_cpu;
253
254#define	TDQ_ID(x)	(0)
255#define	TDQ_SELF()	(&tdq_cpu)
256#define	TDQ_CPU(x)	(&tdq_cpu)
257#endif
258
259#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
260#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
261#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
262#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
263#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
264
265static void sched_priority(struct thread *);
266static void sched_thread_priority(struct thread *, u_char);
267static int sched_interact_score(struct thread *);
268static void sched_interact_update(struct thread *);
269static void sched_interact_fork(struct thread *);
270static void sched_pctcpu_update(struct td_sched *);
271
272/* Operations on per processor queues */
273static struct thread *tdq_choose(struct tdq *);
274static void tdq_setup(struct tdq *);
275static void tdq_load_add(struct tdq *, struct thread *);
276static void tdq_load_rem(struct tdq *, struct thread *);
277static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
278static __inline void tdq_runq_rem(struct tdq *, struct thread *);
279static inline int sched_shouldpreempt(int, int, int);
280void tdq_print(int cpu);
281static void runq_print(struct runq *rq);
282static void tdq_add(struct tdq *, struct thread *, int);
283#ifdef SMP
284static int tdq_move(struct tdq *, struct tdq *);
285static int tdq_idled(struct tdq *);
286static void tdq_notify(struct tdq *, struct thread *);
287static struct thread *tdq_steal(struct tdq *, int);
288static struct thread *runq_steal(struct runq *, int);
289static int sched_pickcpu(struct thread *, int);
290static void sched_balance(void);
291static int sched_balance_pair(struct tdq *, struct tdq *);
292static inline struct tdq *sched_setcpu(struct thread *, int, int);
293static inline struct mtx *thread_block_switch(struct thread *);
294static inline void thread_unblock_switch(struct thread *, struct mtx *);
295static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
296#endif
297
298static void sched_setup(void *dummy);
299SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
300
301static void sched_initticks(void *dummy);
302SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
303    NULL);
304
305/*
306 * Print the threads waiting on a run-queue.
307 */
308static void
309runq_print(struct runq *rq)
310{
311	struct rqhead *rqh;
312	struct thread *td;
313	int pri;
314	int j;
315	int i;
316
317	for (i = 0; i < RQB_LEN; i++) {
318		printf("\t\trunq bits %d 0x%zx\n",
319		    i, rq->rq_status.rqb_bits[i]);
320		for (j = 0; j < RQB_BPW; j++)
321			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
322				pri = j + (i << RQB_L2BPW);
323				rqh = &rq->rq_queues[pri];
324				TAILQ_FOREACH(td, rqh, td_runq) {
325					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
326					    td, td->td_name, td->td_priority,
327					    td->td_rqindex, pri);
328				}
329			}
330	}
331}
332
333/*
334 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
335 */
336void
337tdq_print(int cpu)
338{
339	struct tdq *tdq;
340
341	tdq = TDQ_CPU(cpu);
342
343	printf("tdq %d:\n", TDQ_ID(tdq));
344	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
345	printf("\tLock name:      %s\n", tdq->tdq_name);
346	printf("\tload:           %d\n", tdq->tdq_load);
347	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
348	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
349	printf("\tidle state:     %d\n", tdq->tdq_idlestate);
350	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
351	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
352	printf("\tload transferable: %d\n", tdq->tdq_transferable);
353	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
354	printf("\trealtime runq:\n");
355	runq_print(&tdq->tdq_realtime);
356	printf("\ttimeshare runq:\n");
357	runq_print(&tdq->tdq_timeshare);
358	printf("\tidle runq:\n");
359	runq_print(&tdq->tdq_idle);
360}
361
362static inline int
363sched_shouldpreempt(int pri, int cpri, int remote)
364{
365	/*
366	 * If the new priority is not better than the current priority there is
367	 * nothing to do.
368	 */
369	if (pri >= cpri)
370		return (0);
371	/*
372	 * Always preempt idle.
373	 */
374	if (cpri >= PRI_MIN_IDLE)
375		return (1);
376	/*
377	 * If preemption is disabled don't preempt others.
378	 */
379	if (preempt_thresh == 0)
380		return (0);
381	/*
382	 * Preempt if we exceed the threshold.
383	 */
384	if (pri <= preempt_thresh)
385		return (1);
386	/*
387	 * If we're realtime or better and there is timeshare or worse running
388	 * preempt only remote processors.
389	 */
390	if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
391		return (1);
392	return (0);
393}
394
395#define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
396/*
397 * Add a thread to the actual run-queue.  Keeps transferable counts up to
398 * date with what is actually on the run-queue.  Selects the correct
399 * queue position for timeshare threads.
400 */
401static __inline void
402tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
403{
404	struct td_sched *ts;
405	u_char pri;
406
407	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
408	THREAD_LOCK_ASSERT(td, MA_OWNED);
409
410	pri = td->td_priority;
411	ts = td->td_sched;
412	TD_SET_RUNQ(td);
413	if (THREAD_CAN_MIGRATE(td)) {
414		tdq->tdq_transferable++;
415		ts->ts_flags |= TSF_XFERABLE;
416	}
417	if (pri <= PRI_MAX_REALTIME) {
418		ts->ts_runq = &tdq->tdq_realtime;
419	} else if (pri <= PRI_MAX_TIMESHARE) {
420		ts->ts_runq = &tdq->tdq_timeshare;
421		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
422			("Invalid priority %d on timeshare runq", pri));
423		/*
424		 * This queue contains only priorities between MIN and MAX
425		 * realtime.  Use the whole queue to represent these values.
426		 */
427		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
428			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
429			pri = (pri + tdq->tdq_idx) % RQ_NQS;
430			/*
431			 * This effectively shortens the queue by one so we
432			 * can have a one slot difference between idx and
433			 * ridx while we wait for threads to drain.
434			 */
435			if (tdq->tdq_ridx != tdq->tdq_idx &&
436			    pri == tdq->tdq_ridx)
437				pri = (unsigned char)(pri - 1) % RQ_NQS;
438		} else
439			pri = tdq->tdq_ridx;
440		runq_add_pri(ts->ts_runq, td, pri, flags);
441		return;
442	} else
443		ts->ts_runq = &tdq->tdq_idle;
444	runq_add(ts->ts_runq, td, flags);
445}
446
447/*
448 * Remove a thread from a run-queue.  This typically happens when a thread
449 * is selected to run.  Running threads are not on the queue and the
450 * transferable count does not reflect them.
451 */
452static __inline void
453tdq_runq_rem(struct tdq *tdq, struct thread *td)
454{
455	struct td_sched *ts;
456
457	ts = td->td_sched;
458	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
459	KASSERT(ts->ts_runq != NULL,
460	    ("tdq_runq_remove: thread %p null ts_runq", td));
461	if (ts->ts_flags & TSF_XFERABLE) {
462		tdq->tdq_transferable--;
463		ts->ts_flags &= ~TSF_XFERABLE;
464	}
465	if (ts->ts_runq == &tdq->tdq_timeshare) {
466		if (tdq->tdq_idx != tdq->tdq_ridx)
467			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
468		else
469			runq_remove_idx(ts->ts_runq, td, NULL);
470	} else
471		runq_remove(ts->ts_runq, td);
472}
473
474/*
475 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
476 * for this thread to the referenced thread queue.
477 */
478static void
479tdq_load_add(struct tdq *tdq, struct thread *td)
480{
481
482	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
483	THREAD_LOCK_ASSERT(td, MA_OWNED);
484
485	tdq->tdq_load++;
486	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
487		tdq->tdq_sysload++;
488	CTR2(KTR_SCHED, "cpu %d load: %d", TDQ_ID(tdq), tdq->tdq_load);
489}
490
491/*
492 * Remove the load from a thread that is transitioning to a sleep state or
493 * exiting.
494 */
495static void
496tdq_load_rem(struct tdq *tdq, struct thread *td)
497{
498
499	THREAD_LOCK_ASSERT(td, MA_OWNED);
500	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
501	KASSERT(tdq->tdq_load != 0,
502	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
503
504	tdq->tdq_load--;
505	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
506		tdq->tdq_sysload--;
507	CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
508}
509
510/*
511 * Set lowpri to its exact value by searching the run-queue and
512 * evaluating curthread.  curthread may be passed as an optimization.
513 */
514static void
515tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
516{
517	struct thread *td;
518
519	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
520	if (ctd == NULL)
521		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
522	td = tdq_choose(tdq);
523	if (td == NULL || td->td_priority > ctd->td_priority)
524		tdq->tdq_lowpri = ctd->td_priority;
525	else
526		tdq->tdq_lowpri = td->td_priority;
527}
528
529#ifdef SMP
530struct cpu_search {
531	cpumask_t cs_mask;	/* Mask of valid cpus. */
532	u_int	cs_load;
533	u_int	cs_cpu;
534	int	cs_limit;	/* Min priority for low min load for high. */
535};
536
537#define	CPU_SEARCH_LOWEST	0x1
538#define	CPU_SEARCH_HIGHEST	0x2
539#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
540
541#define	CPUMASK_FOREACH(cpu, mask)				\
542	for ((cpu) = 0; (cpu) < sizeof((mask)) * 8; (cpu)++)	\
543		if ((mask) & 1 << (cpu))
544
545static __inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
546    struct cpu_search *high, const int match);
547int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
548int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
549int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
550    struct cpu_search *high);
551
552/*
553 * This routine compares according to the match argument and should be
554 * reduced in actual instantiations via constant propagation and dead code
555 * elimination.
556 */
557static __inline int
558cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
559    const int match)
560{
561	struct tdq *tdq;
562
563	tdq = TDQ_CPU(cpu);
564	if (match & CPU_SEARCH_LOWEST)
565		if (low->cs_mask & (1 << cpu) &&
566		    tdq->tdq_load < low->cs_load &&
567		    tdq->tdq_lowpri > low->cs_limit) {
568			low->cs_cpu = cpu;
569			low->cs_load = tdq->tdq_load;
570		}
571	if (match & CPU_SEARCH_HIGHEST)
572		if (high->cs_mask & (1 << cpu) &&
573		    tdq->tdq_load >= high->cs_limit &&
574		    tdq->tdq_load > high->cs_load &&
575		    tdq->tdq_transferable) {
576			high->cs_cpu = cpu;
577			high->cs_load = tdq->tdq_load;
578		}
579	return (tdq->tdq_load);
580}
581
582/*
583 * Search the tree of cpu_groups for the lowest or highest loaded cpu
584 * according to the match argument.  This routine actually compares the
585 * load on all paths through the tree and finds the least loaded cpu on
586 * the least loaded path, which may differ from the least loaded cpu in
587 * the system.  This balances work among caches and busses.
588 *
589 * This inline is instantiated in three forms below using constants for the
590 * match argument.  It is reduced to the minimum set for each case.  It is
591 * also recursive to the depth of the tree.
592 */
593static __inline int
594cpu_search(struct cpu_group *cg, struct cpu_search *low,
595    struct cpu_search *high, const int match)
596{
597	int total;
598
599	total = 0;
600	if (cg->cg_children) {
601		struct cpu_search lgroup;
602		struct cpu_search hgroup;
603		struct cpu_group *child;
604		u_int lload;
605		int hload;
606		int load;
607		int i;
608
609		lload = -1;
610		hload = -1;
611		for (i = 0; i < cg->cg_children; i++) {
612			child = &cg->cg_child[i];
613			if (match & CPU_SEARCH_LOWEST) {
614				lgroup = *low;
615				lgroup.cs_load = -1;
616			}
617			if (match & CPU_SEARCH_HIGHEST) {
618				hgroup = *high;
619				lgroup.cs_load = 0;
620			}
621			switch (match) {
622			case CPU_SEARCH_LOWEST:
623				load = cpu_search_lowest(child, &lgroup);
624				break;
625			case CPU_SEARCH_HIGHEST:
626				load = cpu_search_highest(child, &hgroup);
627				break;
628			case CPU_SEARCH_BOTH:
629				load = cpu_search_both(child, &lgroup, &hgroup);
630				break;
631			}
632			total += load;
633			if (match & CPU_SEARCH_LOWEST)
634				if (load < lload || low->cs_cpu == -1) {
635					*low = lgroup;
636					lload = load;
637				}
638			if (match & CPU_SEARCH_HIGHEST)
639				if (load > hload || high->cs_cpu == -1) {
640					hload = load;
641					*high = hgroup;
642				}
643		}
644	} else {
645		int cpu;
646
647		CPUMASK_FOREACH(cpu, cg->cg_mask)
648			total += cpu_compare(cpu, low, high, match);
649	}
650	return (total);
651}
652
653/*
654 * cpu_search instantiations must pass constants to maintain the inline
655 * optimization.
656 */
657int
658cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
659{
660	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
661}
662
663int
664cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
665{
666	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
667}
668
669int
670cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
671    struct cpu_search *high)
672{
673	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
674}
675
676/*
677 * Find the cpu with the least load via the least loaded path that has a
678 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
679 * acceptable.
680 */
681static inline int
682sched_lowest(struct cpu_group *cg, cpumask_t mask, int pri)
683{
684	struct cpu_search low;
685
686	low.cs_cpu = -1;
687	low.cs_load = -1;
688	low.cs_mask = mask;
689	low.cs_limit = pri;
690	cpu_search_lowest(cg, &low);
691	return low.cs_cpu;
692}
693
694/*
695 * Find the cpu with the highest load via the highest loaded path.
696 */
697static inline int
698sched_highest(struct cpu_group *cg, cpumask_t mask, int minload)
699{
700	struct cpu_search high;
701
702	high.cs_cpu = -1;
703	high.cs_load = 0;
704	high.cs_mask = mask;
705	high.cs_limit = minload;
706	cpu_search_highest(cg, &high);
707	return high.cs_cpu;
708}
709
710/*
711 * Simultaneously find the highest and lowest loaded cpu reachable via
712 * cg.
713 */
714static inline void
715sched_both(struct cpu_group *cg, cpumask_t mask, int *lowcpu, int *highcpu)
716{
717	struct cpu_search high;
718	struct cpu_search low;
719
720	low.cs_cpu = -1;
721	low.cs_limit = -1;
722	low.cs_load = -1;
723	low.cs_mask = mask;
724	high.cs_load = 0;
725	high.cs_cpu = -1;
726	high.cs_limit = -1;
727	high.cs_mask = mask;
728	cpu_search_both(cg, &low, &high);
729	*lowcpu = low.cs_cpu;
730	*highcpu = high.cs_cpu;
731	return;
732}
733
734static void
735sched_balance_group(struct cpu_group *cg)
736{
737	cpumask_t mask;
738	int high;
739	int low;
740	int i;
741
742	mask = -1;
743	for (;;) {
744		sched_both(cg, mask, &low, &high);
745		if (low == high || low == -1 || high == -1)
746			break;
747		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
748			break;
749		/*
750		 * If we failed to move any threads determine which cpu
751		 * to kick out of the set and try again.
752	 	 */
753		if (TDQ_CPU(high)->tdq_transferable == 0)
754			mask &= ~(1 << high);
755		else
756			mask &= ~(1 << low);
757	}
758
759	for (i = 0; i < cg->cg_children; i++)
760		sched_balance_group(&cg->cg_child[i]);
761}
762
763static void
764sched_balance()
765{
766	struct tdq *tdq;
767
768	/*
769	 * Select a random time between .5 * balance_interval and
770	 * 1.5 * balance_interval.
771	 */
772	balance_ticks = max(balance_interval / 2, 1);
773	balance_ticks += random() % balance_interval;
774	if (smp_started == 0 || rebalance == 0)
775		return;
776	tdq = TDQ_SELF();
777	TDQ_UNLOCK(tdq);
778	sched_balance_group(cpu_top);
779	TDQ_LOCK(tdq);
780}
781
782/*
783 * Lock two thread queues using their address to maintain lock order.
784 */
785static void
786tdq_lock_pair(struct tdq *one, struct tdq *two)
787{
788	if (one < two) {
789		TDQ_LOCK(one);
790		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
791	} else {
792		TDQ_LOCK(two);
793		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
794	}
795}
796
797/*
798 * Unlock two thread queues.  Order is not important here.
799 */
800static void
801tdq_unlock_pair(struct tdq *one, struct tdq *two)
802{
803	TDQ_UNLOCK(one);
804	TDQ_UNLOCK(two);
805}
806
807/*
808 * Transfer load between two imbalanced thread queues.
809 */
810static int
811sched_balance_pair(struct tdq *high, struct tdq *low)
812{
813	int transferable;
814	int high_load;
815	int low_load;
816	int moved;
817	int move;
818	int diff;
819	int i;
820
821	tdq_lock_pair(high, low);
822	transferable = high->tdq_transferable;
823	high_load = high->tdq_load;
824	low_load = low->tdq_load;
825	moved = 0;
826	/*
827	 * Determine what the imbalance is and then adjust that to how many
828	 * threads we actually have to give up (transferable).
829	 */
830	if (transferable != 0) {
831		diff = high_load - low_load;
832		move = diff / 2;
833		if (diff & 0x1)
834			move++;
835		move = min(move, transferable);
836		for (i = 0; i < move; i++)
837			moved += tdq_move(high, low);
838		/*
839		 * IPI the target cpu to force it to reschedule with the new
840		 * workload.
841		 */
842		ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT);
843	}
844	tdq_unlock_pair(high, low);
845	return (moved);
846}
847
848/*
849 * Move a thread from one thread queue to another.
850 */
851static int
852tdq_move(struct tdq *from, struct tdq *to)
853{
854	struct td_sched *ts;
855	struct thread *td;
856	struct tdq *tdq;
857	int cpu;
858
859	TDQ_LOCK_ASSERT(from, MA_OWNED);
860	TDQ_LOCK_ASSERT(to, MA_OWNED);
861
862	tdq = from;
863	cpu = TDQ_ID(to);
864	td = tdq_steal(tdq, cpu);
865	if (td == NULL)
866		return (0);
867	ts = td->td_sched;
868	/*
869	 * Although the run queue is locked the thread may be blocked.  Lock
870	 * it to clear this and acquire the run-queue lock.
871	 */
872	thread_lock(td);
873	/* Drop recursive lock on from acquired via thread_lock(). */
874	TDQ_UNLOCK(from);
875	sched_rem(td);
876	ts->ts_cpu = cpu;
877	td->td_lock = TDQ_LOCKPTR(to);
878	tdq_add(to, td, SRQ_YIELDING);
879	return (1);
880}
881
882/*
883 * This tdq has idled.  Try to steal a thread from another cpu and switch
884 * to it.
885 */
886static int
887tdq_idled(struct tdq *tdq)
888{
889	struct cpu_group *cg;
890	struct tdq *steal;
891	cpumask_t mask;
892	int thresh;
893	int cpu;
894
895	if (smp_started == 0 || steal_idle == 0)
896		return (1);
897	mask = -1;
898	mask &= ~PCPU_GET(cpumask);
899	/* We don't want to be preempted while we're iterating. */
900	spinlock_enter();
901	for (cg = tdq->tdq_cg; cg != NULL; ) {
902		if ((cg->cg_flags & (CG_FLAG_HTT | CG_FLAG_THREAD)) == 0)
903			thresh = steal_thresh;
904		else
905			thresh = 1;
906		cpu = sched_highest(cg, mask, thresh);
907		if (cpu == -1) {
908			cg = cg->cg_parent;
909			continue;
910		}
911		steal = TDQ_CPU(cpu);
912		mask &= ~(1 << cpu);
913		tdq_lock_pair(tdq, steal);
914		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
915			tdq_unlock_pair(tdq, steal);
916			continue;
917		}
918		/*
919		 * If a thread was added while interrupts were disabled don't
920		 * steal one here.  If we fail to acquire one due to affinity
921		 * restrictions loop again with this cpu removed from the
922		 * set.
923		 */
924		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
925			tdq_unlock_pair(tdq, steal);
926			continue;
927		}
928		spinlock_exit();
929		TDQ_UNLOCK(steal);
930		mi_switch(SW_VOL | SWT_IDLE, NULL);
931		thread_unlock(curthread);
932
933		return (0);
934	}
935	spinlock_exit();
936	return (1);
937}
938
939/*
940 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
941 */
942static void
943tdq_notify(struct tdq *tdq, struct thread *td)
944{
945	int cpri;
946	int pri;
947	int cpu;
948
949	if (tdq->tdq_ipipending)
950		return;
951	cpu = td->td_sched->ts_cpu;
952	pri = td->td_priority;
953	cpri = pcpu_find(cpu)->pc_curthread->td_priority;
954	if (!sched_shouldpreempt(pri, cpri, 1))
955		return;
956	if (TD_IS_IDLETHREAD(td)) {
957		/*
958		 * If the idle thread is still 'running' it's probably
959		 * waiting on us to release the tdq spinlock already.  No
960		 * need to ipi.
961		 */
962		if (tdq->tdq_idlestate == TDQ_RUNNING)
963			return;
964		/*
965		 * If the MD code has an idle wakeup routine try that before
966		 * falling back to IPI.
967		 */
968		if (cpu_idle_wakeup(cpu))
969			return;
970	}
971	tdq->tdq_ipipending = 1;
972	ipi_selected(1 << cpu, IPI_PREEMPT);
973}
974
975/*
976 * Steals load from a timeshare queue.  Honors the rotating queue head
977 * index.
978 */
979static struct thread *
980runq_steal_from(struct runq *rq, int cpu, u_char start)
981{
982	struct rqbits *rqb;
983	struct rqhead *rqh;
984	struct thread *td;
985	int first;
986	int bit;
987	int pri;
988	int i;
989
990	rqb = &rq->rq_status;
991	bit = start & (RQB_BPW -1);
992	pri = 0;
993	first = 0;
994again:
995	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
996		if (rqb->rqb_bits[i] == 0)
997			continue;
998		if (bit != 0) {
999			for (pri = bit; pri < RQB_BPW; pri++)
1000				if (rqb->rqb_bits[i] & (1ul << pri))
1001					break;
1002			if (pri >= RQB_BPW)
1003				continue;
1004		} else
1005			pri = RQB_FFS(rqb->rqb_bits[i]);
1006		pri += (i << RQB_L2BPW);
1007		rqh = &rq->rq_queues[pri];
1008		TAILQ_FOREACH(td, rqh, td_runq) {
1009			if (first && THREAD_CAN_MIGRATE(td) &&
1010			    THREAD_CAN_SCHED(td, cpu))
1011				return (td);
1012			first = 1;
1013		}
1014	}
1015	if (start != 0) {
1016		start = 0;
1017		goto again;
1018	}
1019
1020	return (NULL);
1021}
1022
1023/*
1024 * Steals load from a standard linear queue.
1025 */
1026static struct thread *
1027runq_steal(struct runq *rq, int cpu)
1028{
1029	struct rqhead *rqh;
1030	struct rqbits *rqb;
1031	struct thread *td;
1032	int word;
1033	int bit;
1034
1035	rqb = &rq->rq_status;
1036	for (word = 0; word < RQB_LEN; word++) {
1037		if (rqb->rqb_bits[word] == 0)
1038			continue;
1039		for (bit = 0; bit < RQB_BPW; bit++) {
1040			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1041				continue;
1042			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1043			TAILQ_FOREACH(td, rqh, td_runq)
1044				if (THREAD_CAN_MIGRATE(td) &&
1045				    THREAD_CAN_SCHED(td, cpu))
1046					return (td);
1047		}
1048	}
1049	return (NULL);
1050}
1051
1052/*
1053 * Attempt to steal a thread in priority order from a thread queue.
1054 */
1055static struct thread *
1056tdq_steal(struct tdq *tdq, int cpu)
1057{
1058	struct thread *td;
1059
1060	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1061	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1062		return (td);
1063	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1064	    cpu, tdq->tdq_ridx)) != NULL)
1065		return (td);
1066	return (runq_steal(&tdq->tdq_idle, cpu));
1067}
1068
1069/*
1070 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1071 * current lock and returns with the assigned queue locked.
1072 */
1073static inline struct tdq *
1074sched_setcpu(struct thread *td, int cpu, int flags)
1075{
1076
1077	struct tdq *tdq;
1078
1079	THREAD_LOCK_ASSERT(td, MA_OWNED);
1080	tdq = TDQ_CPU(cpu);
1081	td->td_sched->ts_cpu = cpu;
1082	/*
1083	 * If the lock matches just return the queue.
1084	 */
1085	if (td->td_lock == TDQ_LOCKPTR(tdq))
1086		return (tdq);
1087#ifdef notyet
1088	/*
1089	 * If the thread isn't running its lockptr is a
1090	 * turnstile or a sleepqueue.  We can just lock_set without
1091	 * blocking.
1092	 */
1093	if (TD_CAN_RUN(td)) {
1094		TDQ_LOCK(tdq);
1095		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1096		return (tdq);
1097	}
1098#endif
1099	/*
1100	 * The hard case, migration, we need to block the thread first to
1101	 * prevent order reversals with other cpus locks.
1102	 */
1103	thread_lock_block(td);
1104	TDQ_LOCK(tdq);
1105	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1106	return (tdq);
1107}
1108
1109SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1110SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1111SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1112SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1113SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1114SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1115
1116static int
1117sched_pickcpu(struct thread *td, int flags)
1118{
1119	struct cpu_group *cg;
1120	struct td_sched *ts;
1121	struct tdq *tdq;
1122	cpumask_t mask;
1123	int self;
1124	int pri;
1125	int cpu;
1126
1127	self = PCPU_GET(cpuid);
1128	ts = td->td_sched;
1129	if (smp_started == 0)
1130		return (self);
1131	/*
1132	 * Don't migrate a running thread from sched_switch().
1133	 */
1134	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1135		return (ts->ts_cpu);
1136	/*
1137	 * Prefer to run interrupt threads on the processors that generate
1138	 * the interrupt.
1139	 */
1140	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1141	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1142		SCHED_STAT_INC(pickcpu_intrbind);
1143		ts->ts_cpu = self;
1144	}
1145	/*
1146	 * If the thread can run on the last cpu and the affinity has not
1147	 * expired or it is idle run it there.
1148	 */
1149	pri = td->td_priority;
1150	tdq = TDQ_CPU(ts->ts_cpu);
1151	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1152		if (tdq->tdq_lowpri > PRI_MIN_IDLE) {
1153			SCHED_STAT_INC(pickcpu_idle_affinity);
1154			return (ts->ts_cpu);
1155		}
1156		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri) {
1157			SCHED_STAT_INC(pickcpu_affinity);
1158			return (ts->ts_cpu);
1159		}
1160	}
1161	/*
1162	 * Search for the highest level in the tree that still has affinity.
1163	 */
1164	cg = NULL;
1165	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1166		if (SCHED_AFFINITY(ts, cg->cg_level))
1167			break;
1168	cpu = -1;
1169	mask = td->td_cpuset->cs_mask.__bits[0];
1170	if (cg)
1171		cpu = sched_lowest(cg, mask, pri);
1172	if (cpu == -1)
1173		cpu = sched_lowest(cpu_top, mask, -1);
1174	/*
1175	 * Compare the lowest loaded cpu to current cpu.
1176	 */
1177	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1178	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE) {
1179		SCHED_STAT_INC(pickcpu_local);
1180		cpu = self;
1181	} else
1182		SCHED_STAT_INC(pickcpu_lowest);
1183	if (cpu != ts->ts_cpu)
1184		SCHED_STAT_INC(pickcpu_migration);
1185	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1186	return (cpu);
1187}
1188#endif
1189
1190/*
1191 * Pick the highest priority task we have and return it.
1192 */
1193static struct thread *
1194tdq_choose(struct tdq *tdq)
1195{
1196	struct thread *td;
1197
1198	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1199	td = runq_choose(&tdq->tdq_realtime);
1200	if (td != NULL)
1201		return (td);
1202	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1203	if (td != NULL) {
1204		KASSERT(td->td_priority >= PRI_MIN_TIMESHARE,
1205		    ("tdq_choose: Invalid priority on timeshare queue %d",
1206		    td->td_priority));
1207		return (td);
1208	}
1209	td = runq_choose(&tdq->tdq_idle);
1210	if (td != NULL) {
1211		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1212		    ("tdq_choose: Invalid priority on idle queue %d",
1213		    td->td_priority));
1214		return (td);
1215	}
1216
1217	return (NULL);
1218}
1219
1220/*
1221 * Initialize a thread queue.
1222 */
1223static void
1224tdq_setup(struct tdq *tdq)
1225{
1226
1227	if (bootverbose)
1228		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1229	runq_init(&tdq->tdq_realtime);
1230	runq_init(&tdq->tdq_timeshare);
1231	runq_init(&tdq->tdq_idle);
1232	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1233	    "sched lock %d", (int)TDQ_ID(tdq));
1234	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1235	    MTX_SPIN | MTX_RECURSE);
1236}
1237
1238#ifdef SMP
1239static void
1240sched_setup_smp(void)
1241{
1242	struct tdq *tdq;
1243	int i;
1244
1245	cpu_top = smp_topo();
1246	for (i = 0; i < MAXCPU; i++) {
1247		if (CPU_ABSENT(i))
1248			continue;
1249		tdq = TDQ_CPU(i);
1250		tdq_setup(tdq);
1251		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1252		if (tdq->tdq_cg == NULL)
1253			panic("Can't find cpu group for %d\n", i);
1254	}
1255	balance_tdq = TDQ_SELF();
1256	sched_balance();
1257}
1258#endif
1259
1260/*
1261 * Setup the thread queues and initialize the topology based on MD
1262 * information.
1263 */
1264static void
1265sched_setup(void *dummy)
1266{
1267	struct tdq *tdq;
1268
1269	tdq = TDQ_SELF();
1270#ifdef SMP
1271	sched_setup_smp();
1272#else
1273	tdq_setup(tdq);
1274#endif
1275	/*
1276	 * To avoid divide-by-zero, we set realstathz a dummy value
1277	 * in case which sched_clock() called before sched_initticks().
1278	 */
1279	realstathz = hz;
1280	sched_slice = (realstathz/10);	/* ~100ms */
1281	tickincr = 1 << SCHED_TICK_SHIFT;
1282
1283	/* Add thread0's load since it's running. */
1284	TDQ_LOCK(tdq);
1285	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1286	tdq_load_add(tdq, &thread0);
1287	tdq->tdq_lowpri = thread0.td_priority;
1288	TDQ_UNLOCK(tdq);
1289}
1290
1291/*
1292 * This routine determines the tickincr after stathz and hz are setup.
1293 */
1294/* ARGSUSED */
1295static void
1296sched_initticks(void *dummy)
1297{
1298	int incr;
1299
1300	realstathz = stathz ? stathz : hz;
1301	sched_slice = (realstathz/10);	/* ~100ms */
1302
1303	/*
1304	 * tickincr is shifted out by 10 to avoid rounding errors due to
1305	 * hz not being evenly divisible by stathz on all platforms.
1306	 */
1307	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1308	/*
1309	 * This does not work for values of stathz that are more than
1310	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1311	 */
1312	if (incr == 0)
1313		incr = 1;
1314	tickincr = incr;
1315#ifdef SMP
1316	/*
1317	 * Set the default balance interval now that we know
1318	 * what realstathz is.
1319	 */
1320	balance_interval = realstathz;
1321	/*
1322	 * Set steal thresh to log2(mp_ncpu) but no greater than 4.  This
1323	 * prevents excess thrashing on large machines and excess idle on
1324	 * smaller machines.
1325	 */
1326	steal_thresh = min(ffs(mp_ncpus) - 1, 3);
1327	affinity = SCHED_AFFINITY_DEFAULT;
1328#endif
1329}
1330
1331
1332/*
1333 * This is the core of the interactivity algorithm.  Determines a score based
1334 * on past behavior.  It is the ratio of sleep time to run time scaled to
1335 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1336 * differs from the cpu usage because it does not account for time spent
1337 * waiting on a run-queue.  Would be prettier if we had floating point.
1338 */
1339static int
1340sched_interact_score(struct thread *td)
1341{
1342	struct td_sched *ts;
1343	int div;
1344
1345	ts = td->td_sched;
1346	/*
1347	 * The score is only needed if this is likely to be an interactive
1348	 * task.  Don't go through the expense of computing it if there's
1349	 * no chance.
1350	 */
1351	if (sched_interact <= SCHED_INTERACT_HALF &&
1352		ts->ts_runtime >= ts->ts_slptime)
1353			return (SCHED_INTERACT_HALF);
1354
1355	if (ts->ts_runtime > ts->ts_slptime) {
1356		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1357		return (SCHED_INTERACT_HALF +
1358		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1359	}
1360	if (ts->ts_slptime > ts->ts_runtime) {
1361		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1362		return (ts->ts_runtime / div);
1363	}
1364	/* runtime == slptime */
1365	if (ts->ts_runtime)
1366		return (SCHED_INTERACT_HALF);
1367
1368	/*
1369	 * This can happen if slptime and runtime are 0.
1370	 */
1371	return (0);
1372
1373}
1374
1375/*
1376 * Scale the scheduling priority according to the "interactivity" of this
1377 * process.
1378 */
1379static void
1380sched_priority(struct thread *td)
1381{
1382	int score;
1383	int pri;
1384
1385	if (td->td_pri_class != PRI_TIMESHARE)
1386		return;
1387	/*
1388	 * If the score is interactive we place the thread in the realtime
1389	 * queue with a priority that is less than kernel and interrupt
1390	 * priorities.  These threads are not subject to nice restrictions.
1391	 *
1392	 * Scores greater than this are placed on the normal timeshare queue
1393	 * where the priority is partially decided by the most recent cpu
1394	 * utilization and the rest is decided by nice value.
1395	 *
1396	 * The nice value of the process has a linear effect on the calculated
1397	 * score.  Negative nice values make it easier for a thread to be
1398	 * considered interactive.
1399	 */
1400	score = imax(0, sched_interact_score(td) - td->td_proc->p_nice);
1401	if (score < sched_interact) {
1402		pri = PRI_MIN_REALTIME;
1403		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1404		    * score;
1405		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1406		    ("sched_priority: invalid interactive priority %d score %d",
1407		    pri, score));
1408	} else {
1409		pri = SCHED_PRI_MIN;
1410		if (td->td_sched->ts_ticks)
1411			pri += SCHED_PRI_TICKS(td->td_sched);
1412		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1413		KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
1414		    ("sched_priority: invalid priority %d: nice %d, "
1415		    "ticks %d ftick %d ltick %d tick pri %d",
1416		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1417		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1418		    SCHED_PRI_TICKS(td->td_sched)));
1419	}
1420	sched_user_prio(td, pri);
1421
1422	return;
1423}
1424
1425/*
1426 * This routine enforces a maximum limit on the amount of scheduling history
1427 * kept.  It is called after either the slptime or runtime is adjusted.  This
1428 * function is ugly due to integer math.
1429 */
1430static void
1431sched_interact_update(struct thread *td)
1432{
1433	struct td_sched *ts;
1434	u_int sum;
1435
1436	ts = td->td_sched;
1437	sum = ts->ts_runtime + ts->ts_slptime;
1438	if (sum < SCHED_SLP_RUN_MAX)
1439		return;
1440	/*
1441	 * This only happens from two places:
1442	 * 1) We have added an unusual amount of run time from fork_exit.
1443	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1444	 */
1445	if (sum > SCHED_SLP_RUN_MAX * 2) {
1446		if (ts->ts_runtime > ts->ts_slptime) {
1447			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1448			ts->ts_slptime = 1;
1449		} else {
1450			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1451			ts->ts_runtime = 1;
1452		}
1453		return;
1454	}
1455	/*
1456	 * If we have exceeded by more than 1/5th then the algorithm below
1457	 * will not bring us back into range.  Dividing by two here forces
1458	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1459	 */
1460	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1461		ts->ts_runtime /= 2;
1462		ts->ts_slptime /= 2;
1463		return;
1464	}
1465	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1466	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1467}
1468
1469/*
1470 * Scale back the interactivity history when a child thread is created.  The
1471 * history is inherited from the parent but the thread may behave totally
1472 * differently.  For example, a shell spawning a compiler process.  We want
1473 * to learn that the compiler is behaving badly very quickly.
1474 */
1475static void
1476sched_interact_fork(struct thread *td)
1477{
1478	int ratio;
1479	int sum;
1480
1481	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1482	if (sum > SCHED_SLP_RUN_FORK) {
1483		ratio = sum / SCHED_SLP_RUN_FORK;
1484		td->td_sched->ts_runtime /= ratio;
1485		td->td_sched->ts_slptime /= ratio;
1486	}
1487}
1488
1489/*
1490 * Called from proc0_init() to setup the scheduler fields.
1491 */
1492void
1493schedinit(void)
1494{
1495
1496	/*
1497	 * Set up the scheduler specific parts of proc0.
1498	 */
1499	proc0.p_sched = NULL; /* XXX */
1500	thread0.td_sched = &td_sched0;
1501	td_sched0.ts_ltick = ticks;
1502	td_sched0.ts_ftick = ticks;
1503	td_sched0.ts_slice = sched_slice;
1504}
1505
1506/*
1507 * This is only somewhat accurate since given many processes of the same
1508 * priority they will switch when their slices run out, which will be
1509 * at most sched_slice stathz ticks.
1510 */
1511int
1512sched_rr_interval(void)
1513{
1514
1515	/* Convert sched_slice to hz */
1516	return (hz/(realstathz/sched_slice));
1517}
1518
1519/*
1520 * Update the percent cpu tracking information when it is requested or
1521 * the total history exceeds the maximum.  We keep a sliding history of
1522 * tick counts that slowly decays.  This is less precise than the 4BSD
1523 * mechanism since it happens with less regular and frequent events.
1524 */
1525static void
1526sched_pctcpu_update(struct td_sched *ts)
1527{
1528
1529	if (ts->ts_ticks == 0)
1530		return;
1531	if (ticks - (hz / 10) < ts->ts_ltick &&
1532	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1533		return;
1534	/*
1535	 * Adjust counters and watermark for pctcpu calc.
1536	 */
1537	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1538		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1539			    SCHED_TICK_TARG;
1540	else
1541		ts->ts_ticks = 0;
1542	ts->ts_ltick = ticks;
1543	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1544}
1545
1546/*
1547 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1548 * if necessary.  This is the back-end for several priority related
1549 * functions.
1550 */
1551static void
1552sched_thread_priority(struct thread *td, u_char prio)
1553{
1554	struct td_sched *ts;
1555	struct tdq *tdq;
1556	int oldpri;
1557
1558	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1559	    td, td->td_name, td->td_priority, prio, curthread,
1560	    curthread->td_name);
1561	ts = td->td_sched;
1562	THREAD_LOCK_ASSERT(td, MA_OWNED);
1563	if (td->td_priority == prio)
1564		return;
1565	/*
1566	 * If the priority has been elevated due to priority
1567	 * propagation, we may have to move ourselves to a new
1568	 * queue.  This could be optimized to not re-add in some
1569	 * cases.
1570	 */
1571	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1572		sched_rem(td);
1573		td->td_priority = prio;
1574		sched_add(td, SRQ_BORROWING);
1575		return;
1576	}
1577	/*
1578	 * If the thread is currently running we may have to adjust the lowpri
1579	 * information so other cpus are aware of our current priority.
1580	 */
1581	if (TD_IS_RUNNING(td)) {
1582		tdq = TDQ_CPU(ts->ts_cpu);
1583		oldpri = td->td_priority;
1584		td->td_priority = prio;
1585		if (prio < tdq->tdq_lowpri)
1586			tdq->tdq_lowpri = prio;
1587		else if (tdq->tdq_lowpri == oldpri)
1588			tdq_setlowpri(tdq, td);
1589		return;
1590	}
1591	td->td_priority = prio;
1592}
1593
1594/*
1595 * Update a thread's priority when it is lent another thread's
1596 * priority.
1597 */
1598void
1599sched_lend_prio(struct thread *td, u_char prio)
1600{
1601
1602	td->td_flags |= TDF_BORROWING;
1603	sched_thread_priority(td, prio);
1604}
1605
1606/*
1607 * Restore a thread's priority when priority propagation is
1608 * over.  The prio argument is the minimum priority the thread
1609 * needs to have to satisfy other possible priority lending
1610 * requests.  If the thread's regular priority is less
1611 * important than prio, the thread will keep a priority boost
1612 * of prio.
1613 */
1614void
1615sched_unlend_prio(struct thread *td, u_char prio)
1616{
1617	u_char base_pri;
1618
1619	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1620	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1621		base_pri = td->td_user_pri;
1622	else
1623		base_pri = td->td_base_pri;
1624	if (prio >= base_pri) {
1625		td->td_flags &= ~TDF_BORROWING;
1626		sched_thread_priority(td, base_pri);
1627	} else
1628		sched_lend_prio(td, prio);
1629}
1630
1631/*
1632 * Standard entry for setting the priority to an absolute value.
1633 */
1634void
1635sched_prio(struct thread *td, u_char prio)
1636{
1637	u_char oldprio;
1638
1639	/* First, update the base priority. */
1640	td->td_base_pri = prio;
1641
1642	/*
1643	 * If the thread is borrowing another thread's priority, don't
1644	 * ever lower the priority.
1645	 */
1646	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1647		return;
1648
1649	/* Change the real priority. */
1650	oldprio = td->td_priority;
1651	sched_thread_priority(td, prio);
1652
1653	/*
1654	 * If the thread is on a turnstile, then let the turnstile update
1655	 * its state.
1656	 */
1657	if (TD_ON_LOCK(td) && oldprio != prio)
1658		turnstile_adjust(td, oldprio);
1659}
1660
1661/*
1662 * Set the base user priority, does not effect current running priority.
1663 */
1664void
1665sched_user_prio(struct thread *td, u_char prio)
1666{
1667	u_char oldprio;
1668
1669	td->td_base_user_pri = prio;
1670	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1671                return;
1672	oldprio = td->td_user_pri;
1673	td->td_user_pri = prio;
1674}
1675
1676void
1677sched_lend_user_prio(struct thread *td, u_char prio)
1678{
1679	u_char oldprio;
1680
1681	THREAD_LOCK_ASSERT(td, MA_OWNED);
1682	td->td_flags |= TDF_UBORROWING;
1683	oldprio = td->td_user_pri;
1684	td->td_user_pri = prio;
1685}
1686
1687void
1688sched_unlend_user_prio(struct thread *td, u_char prio)
1689{
1690	u_char base_pri;
1691
1692	THREAD_LOCK_ASSERT(td, MA_OWNED);
1693	base_pri = td->td_base_user_pri;
1694	if (prio >= base_pri) {
1695		td->td_flags &= ~TDF_UBORROWING;
1696		sched_user_prio(td, base_pri);
1697	} else {
1698		sched_lend_user_prio(td, prio);
1699	}
1700}
1701
1702/*
1703 * Block a thread for switching.  Similar to thread_block() but does not
1704 * bump the spin count.
1705 */
1706static inline struct mtx *
1707thread_block_switch(struct thread *td)
1708{
1709	struct mtx *lock;
1710
1711	THREAD_LOCK_ASSERT(td, MA_OWNED);
1712	lock = td->td_lock;
1713	td->td_lock = &blocked_lock;
1714	mtx_unlock_spin(lock);
1715
1716	return (lock);
1717}
1718
1719/*
1720 * Handle migration from sched_switch().  This happens only for
1721 * cpu binding.
1722 */
1723static struct mtx *
1724sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1725{
1726	struct tdq *tdn;
1727
1728	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1729#ifdef SMP
1730	tdq_load_rem(tdq, td);
1731	/*
1732	 * Do the lock dance required to avoid LOR.  We grab an extra
1733	 * spinlock nesting to prevent preemption while we're
1734	 * not holding either run-queue lock.
1735	 */
1736	spinlock_enter();
1737	thread_block_switch(td);	/* This releases the lock on tdq. */
1738	TDQ_LOCK(tdn);
1739	tdq_add(tdn, td, flags);
1740	tdq_notify(tdn, td);
1741	/*
1742	 * After we unlock tdn the new cpu still can't switch into this
1743	 * thread until we've unblocked it in cpu_switch().  The lock
1744	 * pointers may match in the case of HTT cores.  Don't unlock here
1745	 * or we can deadlock when the other CPU runs the IPI handler.
1746	 */
1747	if (TDQ_LOCKPTR(tdn) != TDQ_LOCKPTR(tdq)) {
1748		TDQ_UNLOCK(tdn);
1749		TDQ_LOCK(tdq);
1750	}
1751	spinlock_exit();
1752#endif
1753	return (TDQ_LOCKPTR(tdn));
1754}
1755
1756/*
1757 * Release a thread that was blocked with thread_block_switch().
1758 */
1759static inline void
1760thread_unblock_switch(struct thread *td, struct mtx *mtx)
1761{
1762	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1763	    (uintptr_t)mtx);
1764}
1765
1766/*
1767 * Switch threads.  This function has to handle threads coming in while
1768 * blocked for some reason, running, or idle.  It also must deal with
1769 * migrating a thread from one queue to another as running threads may
1770 * be assigned elsewhere via binding.
1771 */
1772void
1773sched_switch(struct thread *td, struct thread *newtd, int flags)
1774{
1775	struct tdq *tdq;
1776	struct td_sched *ts;
1777	struct mtx *mtx;
1778	int srqflag;
1779	int cpuid;
1780
1781	THREAD_LOCK_ASSERT(td, MA_OWNED);
1782	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1783
1784	cpuid = PCPU_GET(cpuid);
1785	tdq = TDQ_CPU(cpuid);
1786	ts = td->td_sched;
1787	mtx = td->td_lock;
1788	ts->ts_rltick = ticks;
1789	td->td_lastcpu = td->td_oncpu;
1790	td->td_oncpu = NOCPU;
1791	td->td_flags &= ~TDF_NEEDRESCHED;
1792	td->td_owepreempt = 0;
1793	tdq->tdq_switchcnt++;
1794	/*
1795	 * The lock pointer in an idle thread should never change.  Reset it
1796	 * to CAN_RUN as well.
1797	 */
1798	if (TD_IS_IDLETHREAD(td)) {
1799		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1800		TD_SET_CAN_RUN(td);
1801	} else if (TD_IS_RUNNING(td)) {
1802		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1803		srqflag = (flags & SW_PREEMPT) ?
1804		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1805		    SRQ_OURSELF|SRQ_YIELDING;
1806		if (ts->ts_cpu == cpuid)
1807			tdq_runq_add(tdq, td, srqflag);
1808		else
1809			mtx = sched_switch_migrate(tdq, td, srqflag);
1810	} else {
1811		/* This thread must be going to sleep. */
1812		TDQ_LOCK(tdq);
1813		mtx = thread_block_switch(td);
1814		tdq_load_rem(tdq, td);
1815	}
1816	/*
1817	 * We enter here with the thread blocked and assigned to the
1818	 * appropriate cpu run-queue or sleep-queue and with the current
1819	 * thread-queue locked.
1820	 */
1821	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1822	newtd = choosethread();
1823	/*
1824	 * Call the MD code to switch contexts if necessary.
1825	 */
1826	if (td != newtd) {
1827#ifdef	HWPMC_HOOKS
1828		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1829			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1830#endif
1831		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1832		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1833
1834#ifdef KDTRACE_HOOKS
1835		/*
1836		 * If DTrace has set the active vtime enum to anything
1837		 * other than INACTIVE (0), then it should have set the
1838		 * function to call.
1839		 */
1840		if (dtrace_vtime_active)
1841			(*dtrace_vtime_switch_func)(newtd);
1842#endif
1843
1844		cpu_switch(td, newtd, mtx);
1845		/*
1846		 * We may return from cpu_switch on a different cpu.  However,
1847		 * we always return with td_lock pointing to the current cpu's
1848		 * run queue lock.
1849		 */
1850		cpuid = PCPU_GET(cpuid);
1851		tdq = TDQ_CPU(cpuid);
1852		lock_profile_obtain_lock_success(
1853		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1854#ifdef	HWPMC_HOOKS
1855		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1856			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1857#endif
1858	} else
1859		thread_unblock_switch(td, mtx);
1860	/*
1861	 * Assert that all went well and return.
1862	 */
1863	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1864	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1865	td->td_oncpu = cpuid;
1866}
1867
1868/*
1869 * Adjust thread priorities as a result of a nice request.
1870 */
1871void
1872sched_nice(struct proc *p, int nice)
1873{
1874	struct thread *td;
1875
1876	PROC_LOCK_ASSERT(p, MA_OWNED);
1877
1878	p->p_nice = nice;
1879	FOREACH_THREAD_IN_PROC(p, td) {
1880		thread_lock(td);
1881		sched_priority(td);
1882		sched_prio(td, td->td_base_user_pri);
1883		thread_unlock(td);
1884	}
1885}
1886
1887/*
1888 * Record the sleep time for the interactivity scorer.
1889 */
1890void
1891sched_sleep(struct thread *td, int prio)
1892{
1893
1894	THREAD_LOCK_ASSERT(td, MA_OWNED);
1895
1896	td->td_slptick = ticks;
1897	if (TD_IS_SUSPENDED(td) || prio <= PSOCK)
1898		td->td_flags |= TDF_CANSWAP;
1899	if (static_boost == 1 && prio)
1900		sched_prio(td, prio);
1901	else if (static_boost && td->td_priority > static_boost)
1902		sched_prio(td, static_boost);
1903}
1904
1905/*
1906 * Schedule a thread to resume execution and record how long it voluntarily
1907 * slept.  We also update the pctcpu, interactivity, and priority.
1908 */
1909void
1910sched_wakeup(struct thread *td)
1911{
1912	struct td_sched *ts;
1913	int slptick;
1914
1915	THREAD_LOCK_ASSERT(td, MA_OWNED);
1916	ts = td->td_sched;
1917	td->td_flags &= ~TDF_CANSWAP;
1918	/*
1919	 * If we slept for more than a tick update our interactivity and
1920	 * priority.
1921	 */
1922	slptick = td->td_slptick;
1923	td->td_slptick = 0;
1924	if (slptick && slptick != ticks) {
1925		u_int hzticks;
1926
1927		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1928		ts->ts_slptime += hzticks;
1929		sched_interact_update(td);
1930		sched_pctcpu_update(ts);
1931	}
1932	/* Reset the slice value after we sleep. */
1933	ts->ts_slice = sched_slice;
1934	sched_add(td, SRQ_BORING);
1935}
1936
1937/*
1938 * Penalize the parent for creating a new child and initialize the child's
1939 * priority.
1940 */
1941void
1942sched_fork(struct thread *td, struct thread *child)
1943{
1944	THREAD_LOCK_ASSERT(td, MA_OWNED);
1945	sched_fork_thread(td, child);
1946	/*
1947	 * Penalize the parent and child for forking.
1948	 */
1949	sched_interact_fork(child);
1950	sched_priority(child);
1951	td->td_sched->ts_runtime += tickincr;
1952	sched_interact_update(td);
1953	sched_priority(td);
1954}
1955
1956/*
1957 * Fork a new thread, may be within the same process.
1958 */
1959void
1960sched_fork_thread(struct thread *td, struct thread *child)
1961{
1962	struct td_sched *ts;
1963	struct td_sched *ts2;
1964
1965	THREAD_LOCK_ASSERT(td, MA_OWNED);
1966	/*
1967	 * Initialize child.
1968	 */
1969	ts = td->td_sched;
1970	ts2 = child->td_sched;
1971	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1972	child->td_cpuset = cpuset_ref(td->td_cpuset);
1973	ts2->ts_cpu = ts->ts_cpu;
1974	ts2->ts_flags = 0;
1975	/*
1976	 * Grab our parents cpu estimation information and priority.
1977	 */
1978	ts2->ts_ticks = ts->ts_ticks;
1979	ts2->ts_ltick = ts->ts_ltick;
1980	ts2->ts_ftick = ts->ts_ftick;
1981	child->td_user_pri = td->td_user_pri;
1982	child->td_base_user_pri = td->td_base_user_pri;
1983	/*
1984	 * And update interactivity score.
1985	 */
1986	ts2->ts_slptime = ts->ts_slptime;
1987	ts2->ts_runtime = ts->ts_runtime;
1988	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1989}
1990
1991/*
1992 * Adjust the priority class of a thread.
1993 */
1994void
1995sched_class(struct thread *td, int class)
1996{
1997
1998	THREAD_LOCK_ASSERT(td, MA_OWNED);
1999	if (td->td_pri_class == class)
2000		return;
2001	td->td_pri_class = class;
2002}
2003
2004/*
2005 * Return some of the child's priority and interactivity to the parent.
2006 */
2007void
2008sched_exit(struct proc *p, struct thread *child)
2009{
2010	struct thread *td;
2011
2012	CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
2013	    child, child->td_name, child->td_priority);
2014
2015	PROC_LOCK_ASSERT(p, MA_OWNED);
2016	td = FIRST_THREAD_IN_PROC(p);
2017	sched_exit_thread(td, child);
2018}
2019
2020/*
2021 * Penalize another thread for the time spent on this one.  This helps to
2022 * worsen the priority and interactivity of processes which schedule batch
2023 * jobs such as make.  This has little effect on the make process itself but
2024 * causes new processes spawned by it to receive worse scores immediately.
2025 */
2026void
2027sched_exit_thread(struct thread *td, struct thread *child)
2028{
2029
2030	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
2031	    child, child->td_name, child->td_priority);
2032
2033	/*
2034	 * Give the child's runtime to the parent without returning the
2035	 * sleep time as a penalty to the parent.  This causes shells that
2036	 * launch expensive things to mark their children as expensive.
2037	 */
2038	thread_lock(td);
2039	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2040	sched_interact_update(td);
2041	sched_priority(td);
2042	thread_unlock(td);
2043}
2044
2045void
2046sched_preempt(struct thread *td)
2047{
2048	struct tdq *tdq;
2049
2050	thread_lock(td);
2051	tdq = TDQ_SELF();
2052	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2053	tdq->tdq_ipipending = 0;
2054	if (td->td_priority > tdq->tdq_lowpri) {
2055		int flags;
2056
2057		flags = SW_INVOL | SW_PREEMPT;
2058		if (td->td_critnest > 1)
2059			td->td_owepreempt = 1;
2060		else if (TD_IS_IDLETHREAD(td))
2061			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2062		else
2063			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2064	}
2065	thread_unlock(td);
2066}
2067
2068/*
2069 * Fix priorities on return to user-space.  Priorities may be elevated due
2070 * to static priorities in msleep() or similar.
2071 */
2072void
2073sched_userret(struct thread *td)
2074{
2075	/*
2076	 * XXX we cheat slightly on the locking here to avoid locking in
2077	 * the usual case.  Setting td_priority here is essentially an
2078	 * incomplete workaround for not setting it properly elsewhere.
2079	 * Now that some interrupt handlers are threads, not setting it
2080	 * properly elsewhere can clobber it in the window between setting
2081	 * it here and returning to user mode, so don't waste time setting
2082	 * it perfectly here.
2083	 */
2084	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2085	    ("thread with borrowed priority returning to userland"));
2086	if (td->td_priority != td->td_user_pri) {
2087		thread_lock(td);
2088		td->td_priority = td->td_user_pri;
2089		td->td_base_pri = td->td_user_pri;
2090		tdq_setlowpri(TDQ_SELF(), td);
2091		thread_unlock(td);
2092        }
2093}
2094
2095/*
2096 * Handle a stathz tick.  This is really only relevant for timeshare
2097 * threads.
2098 */
2099void
2100sched_clock(struct thread *td)
2101{
2102	struct tdq *tdq;
2103	struct td_sched *ts;
2104
2105	THREAD_LOCK_ASSERT(td, MA_OWNED);
2106	tdq = TDQ_SELF();
2107#ifdef SMP
2108	/*
2109	 * We run the long term load balancer infrequently on the first cpu.
2110	 */
2111	if (balance_tdq == tdq) {
2112		if (balance_ticks && --balance_ticks == 0)
2113			sched_balance();
2114	}
2115#endif
2116	/*
2117	 * Save the old switch count so we have a record of the last ticks
2118	 * activity.   Initialize the new switch count based on our load.
2119	 * If there is some activity seed it to reflect that.
2120	 */
2121	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2122	tdq->tdq_switchcnt = tdq->tdq_load;
2123	/*
2124	 * Advance the insert index once for each tick to ensure that all
2125	 * threads get a chance to run.
2126	 */
2127	if (tdq->tdq_idx == tdq->tdq_ridx) {
2128		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2129		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2130			tdq->tdq_ridx = tdq->tdq_idx;
2131	}
2132	ts = td->td_sched;
2133	if (td->td_pri_class & PRI_FIFO_BIT)
2134		return;
2135	if (td->td_pri_class == PRI_TIMESHARE) {
2136		/*
2137		 * We used a tick; charge it to the thread so
2138		 * that we can compute our interactivity.
2139		 */
2140		td->td_sched->ts_runtime += tickincr;
2141		sched_interact_update(td);
2142		sched_priority(td);
2143	}
2144	/*
2145	 * We used up one time slice.
2146	 */
2147	if (--ts->ts_slice > 0)
2148		return;
2149	/*
2150	 * We're out of time, force a requeue at userret().
2151	 */
2152	ts->ts_slice = sched_slice;
2153	td->td_flags |= TDF_NEEDRESCHED;
2154}
2155
2156/*
2157 * Called once per hz tick.  Used for cpu utilization information.  This
2158 * is easier than trying to scale based on stathz.
2159 */
2160void
2161sched_tick(void)
2162{
2163	struct td_sched *ts;
2164
2165	ts = curthread->td_sched;
2166	/* Adjust ticks for pctcpu */
2167	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
2168	ts->ts_ltick = ticks;
2169	/*
2170	 * Update if we've exceeded our desired tick threshhold by over one
2171	 * second.
2172	 */
2173	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2174		sched_pctcpu_update(ts);
2175}
2176
2177/*
2178 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2179 * cooperative idle threads.
2180 */
2181int
2182sched_runnable(void)
2183{
2184	struct tdq *tdq;
2185	int load;
2186
2187	load = 1;
2188
2189	tdq = TDQ_SELF();
2190	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2191		if (tdq->tdq_load > 0)
2192			goto out;
2193	} else
2194		if (tdq->tdq_load - 1 > 0)
2195			goto out;
2196	load = 0;
2197out:
2198	return (load);
2199}
2200
2201/*
2202 * Choose the highest priority thread to run.  The thread is removed from
2203 * the run-queue while running however the load remains.  For SMP we set
2204 * the tdq in the global idle bitmask if it idles here.
2205 */
2206struct thread *
2207sched_choose(void)
2208{
2209	struct thread *td;
2210	struct tdq *tdq;
2211
2212	tdq = TDQ_SELF();
2213	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2214	td = tdq_choose(tdq);
2215	if (td) {
2216		td->td_sched->ts_ltick = ticks;
2217		tdq_runq_rem(tdq, td);
2218		tdq->tdq_lowpri = td->td_priority;
2219		return (td);
2220	}
2221	tdq->tdq_lowpri = PRI_MAX_IDLE;
2222	return (PCPU_GET(idlethread));
2223}
2224
2225/*
2226 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2227 * we always request it once we exit a critical section.
2228 */
2229static inline void
2230sched_setpreempt(struct thread *td)
2231{
2232	struct thread *ctd;
2233	int cpri;
2234	int pri;
2235
2236	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2237
2238	ctd = curthread;
2239	pri = td->td_priority;
2240	cpri = ctd->td_priority;
2241	if (pri < cpri)
2242		ctd->td_flags |= TDF_NEEDRESCHED;
2243	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2244		return;
2245	if (!sched_shouldpreempt(pri, cpri, 0))
2246		return;
2247	ctd->td_owepreempt = 1;
2248}
2249
2250/*
2251 * Add a thread to a thread queue.  Select the appropriate runq and add the
2252 * thread to it.  This is the internal function called when the tdq is
2253 * predetermined.
2254 */
2255void
2256tdq_add(struct tdq *tdq, struct thread *td, int flags)
2257{
2258
2259	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2260	KASSERT((td->td_inhibitors == 0),
2261	    ("sched_add: trying to run inhibited thread"));
2262	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2263	    ("sched_add: bad thread state"));
2264	KASSERT(td->td_flags & TDF_INMEM,
2265	    ("sched_add: thread swapped out"));
2266
2267	if (td->td_priority < tdq->tdq_lowpri)
2268		tdq->tdq_lowpri = td->td_priority;
2269	tdq_runq_add(tdq, td, flags);
2270	tdq_load_add(tdq, td);
2271}
2272
2273/*
2274 * Select the target thread queue and add a thread to it.  Request
2275 * preemption or IPI a remote processor if required.
2276 */
2277void
2278sched_add(struct thread *td, int flags)
2279{
2280	struct tdq *tdq;
2281#ifdef SMP
2282	int cpu;
2283#endif
2284	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
2285	    td, td->td_name, td->td_priority, curthread,
2286	    curthread->td_name);
2287	THREAD_LOCK_ASSERT(td, MA_OWNED);
2288	/*
2289	 * Recalculate the priority before we select the target cpu or
2290	 * run-queue.
2291	 */
2292	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2293		sched_priority(td);
2294#ifdef SMP
2295	/*
2296	 * Pick the destination cpu and if it isn't ours transfer to the
2297	 * target cpu.
2298	 */
2299	cpu = sched_pickcpu(td, flags);
2300	tdq = sched_setcpu(td, cpu, flags);
2301	tdq_add(tdq, td, flags);
2302	if (cpu != PCPU_GET(cpuid)) {
2303		tdq_notify(tdq, td);
2304		return;
2305	}
2306#else
2307	tdq = TDQ_SELF();
2308	TDQ_LOCK(tdq);
2309	/*
2310	 * Now that the thread is moving to the run-queue, set the lock
2311	 * to the scheduler's lock.
2312	 */
2313	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2314	tdq_add(tdq, td, flags);
2315#endif
2316	if (!(flags & SRQ_YIELDING))
2317		sched_setpreempt(td);
2318}
2319
2320/*
2321 * Remove a thread from a run-queue without running it.  This is used
2322 * when we're stealing a thread from a remote queue.  Otherwise all threads
2323 * exit by calling sched_exit_thread() and sched_throw() themselves.
2324 */
2325void
2326sched_rem(struct thread *td)
2327{
2328	struct tdq *tdq;
2329
2330	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
2331	    td, td->td_name, td->td_priority, curthread,
2332	    curthread->td_name);
2333	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2334	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2335	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2336	KASSERT(TD_ON_RUNQ(td),
2337	    ("sched_rem: thread not on run queue"));
2338	tdq_runq_rem(tdq, td);
2339	tdq_load_rem(tdq, td);
2340	TD_SET_CAN_RUN(td);
2341	if (td->td_priority == tdq->tdq_lowpri)
2342		tdq_setlowpri(tdq, NULL);
2343}
2344
2345/*
2346 * Fetch cpu utilization information.  Updates on demand.
2347 */
2348fixpt_t
2349sched_pctcpu(struct thread *td)
2350{
2351	fixpt_t pctcpu;
2352	struct td_sched *ts;
2353
2354	pctcpu = 0;
2355	ts = td->td_sched;
2356	if (ts == NULL)
2357		return (0);
2358
2359	thread_lock(td);
2360	if (ts->ts_ticks) {
2361		int rtick;
2362
2363		sched_pctcpu_update(ts);
2364		/* How many rtick per second ? */
2365		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2366		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2367	}
2368	thread_unlock(td);
2369
2370	return (pctcpu);
2371}
2372
2373/*
2374 * Enforce affinity settings for a thread.  Called after adjustments to
2375 * cpumask.
2376 */
2377void
2378sched_affinity(struct thread *td)
2379{
2380#ifdef SMP
2381	struct td_sched *ts;
2382	int cpu;
2383
2384	THREAD_LOCK_ASSERT(td, MA_OWNED);
2385	ts = td->td_sched;
2386	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2387		return;
2388	if (!TD_IS_RUNNING(td))
2389		return;
2390	td->td_flags |= TDF_NEEDRESCHED;
2391	if (!THREAD_CAN_MIGRATE(td))
2392		return;
2393	/*
2394	 * Assign the new cpu and force a switch before returning to
2395	 * userspace.  If the target thread is not running locally send
2396	 * an ipi to force the issue.
2397	 */
2398	cpu = ts->ts_cpu;
2399	ts->ts_cpu = sched_pickcpu(td, 0);
2400	if (cpu != PCPU_GET(cpuid))
2401		ipi_selected(1 << cpu, IPI_PREEMPT);
2402#endif
2403}
2404
2405/*
2406 * Bind a thread to a target cpu.
2407 */
2408void
2409sched_bind(struct thread *td, int cpu)
2410{
2411	struct td_sched *ts;
2412
2413	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2414	ts = td->td_sched;
2415	if (ts->ts_flags & TSF_BOUND)
2416		sched_unbind(td);
2417	ts->ts_flags |= TSF_BOUND;
2418	sched_pin();
2419	if (PCPU_GET(cpuid) == cpu)
2420		return;
2421	ts->ts_cpu = cpu;
2422	/* When we return from mi_switch we'll be on the correct cpu. */
2423	mi_switch(SW_VOL, NULL);
2424}
2425
2426/*
2427 * Release a bound thread.
2428 */
2429void
2430sched_unbind(struct thread *td)
2431{
2432	struct td_sched *ts;
2433
2434	THREAD_LOCK_ASSERT(td, MA_OWNED);
2435	ts = td->td_sched;
2436	if ((ts->ts_flags & TSF_BOUND) == 0)
2437		return;
2438	ts->ts_flags &= ~TSF_BOUND;
2439	sched_unpin();
2440}
2441
2442int
2443sched_is_bound(struct thread *td)
2444{
2445	THREAD_LOCK_ASSERT(td, MA_OWNED);
2446	return (td->td_sched->ts_flags & TSF_BOUND);
2447}
2448
2449/*
2450 * Basic yield call.
2451 */
2452void
2453sched_relinquish(struct thread *td)
2454{
2455	thread_lock(td);
2456	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2457	thread_unlock(td);
2458}
2459
2460/*
2461 * Return the total system load.
2462 */
2463int
2464sched_load(void)
2465{
2466#ifdef SMP
2467	int total;
2468	int i;
2469
2470	total = 0;
2471	for (i = 0; i <= mp_maxid; i++)
2472		total += TDQ_CPU(i)->tdq_sysload;
2473	return (total);
2474#else
2475	return (TDQ_SELF()->tdq_sysload);
2476#endif
2477}
2478
2479int
2480sched_sizeof_proc(void)
2481{
2482	return (sizeof(struct proc));
2483}
2484
2485int
2486sched_sizeof_thread(void)
2487{
2488	return (sizeof(struct thread) + sizeof(struct td_sched));
2489}
2490
2491/*
2492 * The actual idle process.
2493 */
2494void
2495sched_idletd(void *dummy)
2496{
2497	struct thread *td;
2498	struct tdq *tdq;
2499	int switchcnt;
2500	int i;
2501
2502	td = curthread;
2503	tdq = TDQ_SELF();
2504	mtx_assert(&Giant, MA_NOTOWNED);
2505	/* ULE relies on preemption for idle interruption. */
2506	for (;;) {
2507		tdq->tdq_idlestate = TDQ_RUNNING;
2508#ifdef SMP
2509		if (tdq_idled(tdq) == 0)
2510			continue;
2511#endif
2512		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2513		/*
2514		 * If we're switching very frequently, spin while checking
2515		 * for load rather than entering a low power state that
2516		 * requires an IPI.
2517		 */
2518		if (switchcnt > sched_idlespinthresh) {
2519			for (i = 0; i < sched_idlespins; i++) {
2520				if (tdq->tdq_load)
2521					break;
2522				cpu_spinwait();
2523			}
2524		}
2525		/*
2526		 * We must set our state to IDLE before checking
2527		 * tdq_load for the last time to avoid a race with
2528		 * tdq_notify().
2529		 */
2530		if (tdq->tdq_load == 0) {
2531			switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2532			tdq->tdq_idlestate = TDQ_IDLE;
2533			if (tdq->tdq_load == 0)
2534				cpu_idle(switchcnt > 1);
2535		}
2536		if (tdq->tdq_load) {
2537			thread_lock(td);
2538			mi_switch(SW_VOL | SWT_IDLE, NULL);
2539			thread_unlock(td);
2540		}
2541	}
2542}
2543
2544/*
2545 * A CPU is entering for the first time or a thread is exiting.
2546 */
2547void
2548sched_throw(struct thread *td)
2549{
2550	struct thread *newtd;
2551	struct tdq *tdq;
2552
2553	tdq = TDQ_SELF();
2554	if (td == NULL) {
2555		/* Correct spinlock nesting and acquire the correct lock. */
2556		TDQ_LOCK(tdq);
2557		spinlock_exit();
2558	} else {
2559		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2560		tdq_load_rem(tdq, td);
2561		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2562	}
2563	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2564	newtd = choosethread();
2565	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2566	PCPU_SET(switchtime, cpu_ticks());
2567	PCPU_SET(switchticks, ticks);
2568	cpu_throw(td, newtd);		/* doesn't return */
2569}
2570
2571/*
2572 * This is called from fork_exit().  Just acquire the correct locks and
2573 * let fork do the rest of the work.
2574 */
2575void
2576sched_fork_exit(struct thread *td)
2577{
2578	struct td_sched *ts;
2579	struct tdq *tdq;
2580	int cpuid;
2581
2582	/*
2583	 * Finish setting up thread glue so that it begins execution in a
2584	 * non-nested critical section with the scheduler lock held.
2585	 */
2586	cpuid = PCPU_GET(cpuid);
2587	tdq = TDQ_CPU(cpuid);
2588	ts = td->td_sched;
2589	if (TD_IS_IDLETHREAD(td))
2590		td->td_lock = TDQ_LOCKPTR(tdq);
2591	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2592	td->td_oncpu = cpuid;
2593	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2594	lock_profile_obtain_lock_success(
2595	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2596}
2597
2598SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2599SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2600    "Scheduler name");
2601SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2602    "Slice size for timeshare threads");
2603SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2604     "Interactivity score threshold");
2605SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2606     0,"Min priority for preemption, lower priorities have greater precedence");
2607SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2608     0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2609SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins,
2610     0,"Number of times idle will spin waiting for new work.");
2611SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW, &sched_idlespinthresh,
2612     0,"Threshold before we will permit idle spinning.");
2613#ifdef SMP
2614SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2615    "Number of hz ticks to keep thread affinity for");
2616SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2617    "Enables the long-term load balancer");
2618SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2619    &balance_interval, 0,
2620    "Average frequency in stathz ticks to run the long-term balancer");
2621SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2622    "Steals work from another hyper-threaded core on idle");
2623SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2624    "Attempts to steal work from other cores before idling");
2625SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2626    "Minimum load on remote cpu before we'll steal");
2627#endif
2628
2629/* ps compat.  All cpu percentages from ULE are weighted. */
2630static int ccpu = 0;
2631SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2632