sched_ule.c revision 177085
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 177085 2008-03-12 06:31:06Z jeff $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_sched.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resource.h>
53#include <sys/resourcevar.h>
54#include <sys/sched.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/turnstile.h>
60#include <sys/umtx.h>
61#include <sys/vmmeter.h>
62#include <sys/cpuset.h>
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#ifdef HWPMC_HOOKS
69#include <sys/pmckern.h>
70#endif
71
72#include <machine/cpu.h>
73#include <machine/smp.h>
74
75#if !defined(__i386__) && !defined(__amd64__) && !defined(__powerpc__) && !defined(__arm__)
76#error "This architecture is not currently compatible with ULE"
77#endif
78
79#define	KTR_ULE	0
80
81/*
82 * Thread scheduler specific section.  All fields are protected
83 * by the thread lock.
84 */
85struct td_sched {
86	TAILQ_ENTRY(td_sched) ts_procq;	/* Run queue. */
87	struct thread	*ts_thread;	/* Active associated thread. */
88	struct runq	*ts_runq;	/* Run-queue we're queued on. */
89	short		ts_flags;	/* TSF_* flags. */
90	u_char		ts_rqindex;	/* Run queue index. */
91	u_char		ts_cpu;		/* CPU that we have affinity for. */
92	int		ts_rltick;	/* Real last tick, for affinity. */
93	int		ts_slice;	/* Ticks of slice remaining. */
94	u_int		ts_slptime;	/* Number of ticks we vol. slept */
95	u_int		ts_runtime;	/* Number of ticks we were running */
96	int		ts_ltick;	/* Last tick that we were running on */
97	int		ts_ftick;	/* First tick that we were running on */
98	int		ts_ticks;	/* Tick count */
99};
100/* flags kept in ts_flags */
101#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
102#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
103
104static struct td_sched td_sched0;
105
106#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
107#define	THREAD_CAN_SCHED(td, cpu)	\
108    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
109
110/*
111 * Cpu percentage computation macros and defines.
112 *
113 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
114 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
115 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
116 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
117 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
118 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
119 */
120#define	SCHED_TICK_SECS		10
121#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
122#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
123#define	SCHED_TICK_SHIFT	10
124#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
125#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
126
127/*
128 * These macros determine priorities for non-interactive threads.  They are
129 * assigned a priority based on their recent cpu utilization as expressed
130 * by the ratio of ticks to the tick total.  NHALF priorities at the start
131 * and end of the MIN to MAX timeshare range are only reachable with negative
132 * or positive nice respectively.
133 *
134 * PRI_RANGE:	Priority range for utilization dependent priorities.
135 * PRI_NRESV:	Number of nice values.
136 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
137 * PRI_NICE:	Determines the part of the priority inherited from nice.
138 */
139#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
140#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
141#define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
142#define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
143#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN)
144#define	SCHED_PRI_TICKS(ts)						\
145    (SCHED_TICK_HZ((ts)) /						\
146    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
147#define	SCHED_PRI_NICE(nice)	(nice)
148
149/*
150 * These determine the interactivity of a process.  Interactivity differs from
151 * cpu utilization in that it expresses the voluntary time slept vs time ran
152 * while cpu utilization includes all time not running.  This more accurately
153 * models the intent of the thread.
154 *
155 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
156 *		before throttling back.
157 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
158 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
159 * INTERACT_THRESH:	Threshhold for placement on the current runq.
160 */
161#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
162#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
163#define	SCHED_INTERACT_MAX	(100)
164#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
165#define	SCHED_INTERACT_THRESH	(30)
166
167/*
168 * tickincr:		Converts a stathz tick into a hz domain scaled by
169 *			the shift factor.  Without the shift the error rate
170 *			due to rounding would be unacceptably high.
171 * realstathz:		stathz is sometimes 0 and run off of hz.
172 * sched_slice:		Runtime of each thread before rescheduling.
173 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
174 */
175static int sched_interact = SCHED_INTERACT_THRESH;
176static int realstathz;
177static int tickincr;
178static int sched_slice = 1;
179#ifdef PREEMPTION
180#ifdef FULL_PREEMPTION
181static int preempt_thresh = PRI_MAX_IDLE;
182#else
183static int preempt_thresh = PRI_MIN_KERN;
184#endif
185#else
186static int preempt_thresh = 0;
187#endif
188static int static_boost = 1;
189
190/*
191 * tdq - per processor runqs and statistics.  All fields are protected by the
192 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
193 * locking in sched_pickcpu();
194 */
195struct tdq {
196	/* Ordered to improve efficiency of cpu_search() and switch(). */
197	struct mtx	tdq_lock;		/* run queue lock. */
198	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
199	int		tdq_load;		/* Aggregate load. */
200	int		tdq_sysload;		/* For loadavg, !ITHD load. */
201	int		tdq_transferable;	/* Transferable thread count. */
202	u_char		tdq_lowpri;		/* Lowest priority thread. */
203	u_char		tdq_ipipending;		/* IPI pending. */
204	u_char		tdq_idx;		/* Current insert index. */
205	u_char		tdq_ridx;		/* Current removal index. */
206	struct runq	tdq_realtime;		/* real-time run queue. */
207	struct runq	tdq_timeshare;		/* timeshare run queue. */
208	struct runq	tdq_idle;		/* Queue of IDLE threads. */
209	char		tdq_name[sizeof("sched lock") + 6];
210} __aligned(64);
211
212
213#ifdef SMP
214struct cpu_group *cpu_top;
215
216#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
217#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
218
219/*
220 * Run-time tunables.
221 */
222static int rebalance = 1;
223static int balance_interval = 128;	/* Default set in sched_initticks(). */
224static int affinity;
225static int steal_htt = 1;
226static int steal_idle = 1;
227static int steal_thresh = 2;
228
229/*
230 * One thread queue per processor.
231 */
232static struct tdq	tdq_cpu[MAXCPU];
233static struct tdq	*balance_tdq;
234static int balance_ticks;
235
236#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
237#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
238#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
239#else	/* !SMP */
240static struct tdq	tdq_cpu;
241
242#define	TDQ_ID(x)	(0)
243#define	TDQ_SELF()	(&tdq_cpu)
244#define	TDQ_CPU(x)	(&tdq_cpu)
245#endif
246
247#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
248#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
249#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
250#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
251#define	TDQ_LOCKPTR(t)		(&(t)->tdq_lock)
252
253static void sched_priority(struct thread *);
254static void sched_thread_priority(struct thread *, u_char);
255static int sched_interact_score(struct thread *);
256static void sched_interact_update(struct thread *);
257static void sched_interact_fork(struct thread *);
258static void sched_pctcpu_update(struct td_sched *);
259
260/* Operations on per processor queues */
261static struct td_sched * tdq_choose(struct tdq *);
262static void tdq_setup(struct tdq *);
263static void tdq_load_add(struct tdq *, struct td_sched *);
264static void tdq_load_rem(struct tdq *, struct td_sched *);
265static __inline void tdq_runq_add(struct tdq *, struct td_sched *, int);
266static __inline void tdq_runq_rem(struct tdq *, struct td_sched *);
267static inline int sched_shouldpreempt(int, int, int);
268void tdq_print(int cpu);
269static void runq_print(struct runq *rq);
270static void tdq_add(struct tdq *, struct thread *, int);
271#ifdef SMP
272static int tdq_move(struct tdq *, struct tdq *);
273static int tdq_idled(struct tdq *);
274static void tdq_notify(struct tdq *, struct td_sched *);
275static struct td_sched *tdq_steal(struct tdq *, int);
276static struct td_sched *runq_steal(struct runq *, int);
277static int sched_pickcpu(struct td_sched *, int);
278static void sched_balance(void);
279static int sched_balance_pair(struct tdq *, struct tdq *);
280static inline struct tdq *sched_setcpu(struct td_sched *, int, int);
281static inline struct mtx *thread_block_switch(struct thread *);
282static inline void thread_unblock_switch(struct thread *, struct mtx *);
283static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
284#endif
285
286static void sched_setup(void *dummy);
287SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
288
289static void sched_initticks(void *dummy);
290SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, NULL)
291
292/*
293 * Print the threads waiting on a run-queue.
294 */
295static void
296runq_print(struct runq *rq)
297{
298	struct rqhead *rqh;
299	struct td_sched *ts;
300	int pri;
301	int j;
302	int i;
303
304	for (i = 0; i < RQB_LEN; i++) {
305		printf("\t\trunq bits %d 0x%zx\n",
306		    i, rq->rq_status.rqb_bits[i]);
307		for (j = 0; j < RQB_BPW; j++)
308			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
309				pri = j + (i << RQB_L2BPW);
310				rqh = &rq->rq_queues[pri];
311				TAILQ_FOREACH(ts, rqh, ts_procq) {
312					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
313					    ts->ts_thread, ts->ts_thread->td_name, ts->ts_thread->td_priority, ts->ts_rqindex, pri);
314				}
315			}
316	}
317}
318
319/*
320 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
321 */
322void
323tdq_print(int cpu)
324{
325	struct tdq *tdq;
326
327	tdq = TDQ_CPU(cpu);
328
329	printf("tdq %d:\n", TDQ_ID(tdq));
330	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
331	printf("\tLock name:      %s\n", tdq->tdq_name);
332	printf("\tload:           %d\n", tdq->tdq_load);
333	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
334	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
335	printf("\trealtime runq:\n");
336	runq_print(&tdq->tdq_realtime);
337	printf("\ttimeshare runq:\n");
338	runq_print(&tdq->tdq_timeshare);
339	printf("\tidle runq:\n");
340	runq_print(&tdq->tdq_idle);
341	printf("\tload transferable: %d\n", tdq->tdq_transferable);
342	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
343}
344
345static inline int
346sched_shouldpreempt(int pri, int cpri, int remote)
347{
348	/*
349	 * If the new priority is not better than the current priority there is
350	 * nothing to do.
351	 */
352	if (pri >= cpri)
353		return (0);
354	/*
355	 * Always preempt idle.
356	 */
357	if (cpri >= PRI_MIN_IDLE)
358		return (1);
359	/*
360	 * If preemption is disabled don't preempt others.
361	 */
362	if (preempt_thresh == 0)
363		return (0);
364	/*
365	 * Preempt if we exceed the threshold.
366	 */
367	if (pri <= preempt_thresh)
368		return (1);
369	/*
370	 * If we're realtime or better and there is timeshare or worse running
371	 * preempt only remote processors.
372	 */
373	if (remote && pri <= PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
374		return (1);
375	return (0);
376}
377
378#define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
379/*
380 * Add a thread to the actual run-queue.  Keeps transferable counts up to
381 * date with what is actually on the run-queue.  Selects the correct
382 * queue position for timeshare threads.
383 */
384static __inline void
385tdq_runq_add(struct tdq *tdq, struct td_sched *ts, int flags)
386{
387	u_char pri;
388
389	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
390	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
391
392	TD_SET_RUNQ(ts->ts_thread);
393	if (THREAD_CAN_MIGRATE(ts->ts_thread)) {
394		tdq->tdq_transferable++;
395		ts->ts_flags |= TSF_XFERABLE;
396	}
397	pri = ts->ts_thread->td_priority;
398	if (pri <= PRI_MAX_REALTIME) {
399		ts->ts_runq = &tdq->tdq_realtime;
400	} else if (pri <= PRI_MAX_TIMESHARE) {
401		ts->ts_runq = &tdq->tdq_timeshare;
402		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
403			("Invalid priority %d on timeshare runq", pri));
404		/*
405		 * This queue contains only priorities between MIN and MAX
406		 * realtime.  Use the whole queue to represent these values.
407		 */
408		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
409			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
410			pri = (pri + tdq->tdq_idx) % RQ_NQS;
411			/*
412			 * This effectively shortens the queue by one so we
413			 * can have a one slot difference between idx and
414			 * ridx while we wait for threads to drain.
415			 */
416			if (tdq->tdq_ridx != tdq->tdq_idx &&
417			    pri == tdq->tdq_ridx)
418				pri = (unsigned char)(pri - 1) % RQ_NQS;
419		} else
420			pri = tdq->tdq_ridx;
421		runq_add_pri(ts->ts_runq, ts, pri, flags);
422		return;
423	} else
424		ts->ts_runq = &tdq->tdq_idle;
425	runq_add(ts->ts_runq, ts, flags);
426}
427
428/*
429 * Remove a thread from a run-queue.  This typically happens when a thread
430 * is selected to run.  Running threads are not on the queue and the
431 * transferable count does not reflect them.
432 */
433static __inline void
434tdq_runq_rem(struct tdq *tdq, struct td_sched *ts)
435{
436	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
437	KASSERT(ts->ts_runq != NULL,
438	    ("tdq_runq_remove: thread %p null ts_runq", ts->ts_thread));
439	if (ts->ts_flags & TSF_XFERABLE) {
440		tdq->tdq_transferable--;
441		ts->ts_flags &= ~TSF_XFERABLE;
442	}
443	if (ts->ts_runq == &tdq->tdq_timeshare) {
444		if (tdq->tdq_idx != tdq->tdq_ridx)
445			runq_remove_idx(ts->ts_runq, ts, &tdq->tdq_ridx);
446		else
447			runq_remove_idx(ts->ts_runq, ts, NULL);
448	} else
449		runq_remove(ts->ts_runq, ts);
450}
451
452/*
453 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
454 * for this thread to the referenced thread queue.
455 */
456static void
457tdq_load_add(struct tdq *tdq, struct td_sched *ts)
458{
459	int class;
460
461	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
462	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
463	class = PRI_BASE(ts->ts_thread->td_pri_class);
464	tdq->tdq_load++;
465	CTR2(KTR_SCHED, "cpu %d load: %d", TDQ_ID(tdq), tdq->tdq_load);
466	if (class != PRI_ITHD &&
467	    (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
468		tdq->tdq_sysload++;
469}
470
471/*
472 * Remove the load from a thread that is transitioning to a sleep state or
473 * exiting.
474 */
475static void
476tdq_load_rem(struct tdq *tdq, struct td_sched *ts)
477{
478	int class;
479
480	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
481	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
482	class = PRI_BASE(ts->ts_thread->td_pri_class);
483	if (class != PRI_ITHD &&
484	    (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
485		tdq->tdq_sysload--;
486	KASSERT(tdq->tdq_load != 0,
487	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
488	tdq->tdq_load--;
489	CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
490	ts->ts_runq = NULL;
491}
492
493/*
494 * Set lowpri to its exact value by searching the run-queue and
495 * evaluating curthread.  curthread may be passed as an optimization.
496 */
497static void
498tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
499{
500	struct td_sched *ts;
501	struct thread *td;
502
503	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
504	if (ctd == NULL)
505		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
506	ts = tdq_choose(tdq);
507	if (ts)
508		td = ts->ts_thread;
509	if (ts == NULL || td->td_priority > ctd->td_priority)
510		tdq->tdq_lowpri = ctd->td_priority;
511	else
512		tdq->tdq_lowpri = td->td_priority;
513}
514
515#ifdef SMP
516struct cpu_search {
517	cpumask_t cs_mask;	/* Mask of valid cpus. */
518	u_int	cs_load;
519	u_int	cs_cpu;
520	int	cs_limit;	/* Min priority for low min load for high. */
521};
522
523#define	CPU_SEARCH_LOWEST	0x1
524#define	CPU_SEARCH_HIGHEST	0x2
525#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
526
527#define	CPUMASK_FOREACH(cpu, mask)				\
528	for ((cpu) = 0; (cpu) < sizeof((mask)) * 8; (cpu)++)	\
529		if ((mask) & 1 << (cpu))
530
531__inline int cpu_search(struct cpu_group *cg, struct cpu_search *low,
532    struct cpu_search *high, const int match);
533int cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low);
534int cpu_search_highest(struct cpu_group *cg, struct cpu_search *high);
535int cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
536    struct cpu_search *high);
537
538/*
539 * This routine compares according to the match argument and should be
540 * reduced in actual instantiations via constant propagation and dead code
541 * elimination.
542 */
543static __inline int
544cpu_compare(int cpu, struct cpu_search *low, struct cpu_search *high,
545    const int match)
546{
547	struct tdq *tdq;
548
549	tdq = TDQ_CPU(cpu);
550	if (match & CPU_SEARCH_LOWEST)
551		if (low->cs_mask & (1 << cpu) &&
552		    tdq->tdq_load < low->cs_load &&
553		    tdq->tdq_lowpri > low->cs_limit) {
554			low->cs_cpu = cpu;
555			low->cs_load = tdq->tdq_load;
556		}
557	if (match & CPU_SEARCH_HIGHEST)
558		if (high->cs_mask & (1 << cpu) &&
559		    tdq->tdq_load >= high->cs_limit &&
560		    tdq->tdq_load > high->cs_load &&
561		    tdq->tdq_transferable) {
562			high->cs_cpu = cpu;
563			high->cs_load = tdq->tdq_load;
564		}
565	return (tdq->tdq_load);
566}
567
568/*
569 * Search the tree of cpu_groups for the lowest or highest loaded cpu
570 * according to the match argument.  This routine actually compares the
571 * load on all paths through the tree and finds the least loaded cpu on
572 * the least loaded path, which may differ from the least loaded cpu in
573 * the system.  This balances work among caches and busses.
574 *
575 * This inline is instantiated in three forms below using constants for the
576 * match argument.  It is reduced to the minimum set for each case.  It is
577 * also recursive to the depth of the tree.
578 */
579static inline int
580cpu_search(struct cpu_group *cg, struct cpu_search *low,
581    struct cpu_search *high, const int match)
582{
583	int total;
584
585	total = 0;
586	if (cg->cg_children) {
587		struct cpu_search lgroup;
588		struct cpu_search hgroup;
589		struct cpu_group *child;
590		u_int lload;
591		int hload;
592		int load;
593		int i;
594
595		lload = -1;
596		hload = -1;
597		for (i = 0; i < cg->cg_children; i++) {
598			child = &cg->cg_child[i];
599			if (match & CPU_SEARCH_LOWEST) {
600				lgroup = *low;
601				lgroup.cs_load = -1;
602			}
603			if (match & CPU_SEARCH_HIGHEST) {
604				hgroup = *high;
605				lgroup.cs_load = 0;
606			}
607			switch (match) {
608			case CPU_SEARCH_LOWEST:
609				load = cpu_search_lowest(child, &lgroup);
610				break;
611			case CPU_SEARCH_HIGHEST:
612				load = cpu_search_highest(child, &hgroup);
613				break;
614			case CPU_SEARCH_BOTH:
615				load = cpu_search_both(child, &lgroup, &hgroup);
616				break;
617			}
618			total += load;
619			if (match & CPU_SEARCH_LOWEST)
620				if (load < lload || low->cs_cpu == -1) {
621					*low = lgroup;
622					lload = load;
623				}
624			if (match & CPU_SEARCH_HIGHEST)
625				if (load > hload || high->cs_cpu == -1) {
626					hload = load;
627					*high = hgroup;
628				}
629		}
630	} else {
631		int cpu;
632
633		CPUMASK_FOREACH(cpu, cg->cg_mask)
634			total += cpu_compare(cpu, low, high, match);
635	}
636	return (total);
637}
638
639/*
640 * cpu_search instantiations must pass constants to maintain the inline
641 * optimization.
642 */
643int
644cpu_search_lowest(struct cpu_group *cg, struct cpu_search *low)
645{
646	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
647}
648
649int
650cpu_search_highest(struct cpu_group *cg, struct cpu_search *high)
651{
652	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
653}
654
655int
656cpu_search_both(struct cpu_group *cg, struct cpu_search *low,
657    struct cpu_search *high)
658{
659	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
660}
661
662/*
663 * Find the cpu with the least load via the least loaded path that has a
664 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
665 * acceptable.
666 */
667static inline int
668sched_lowest(struct cpu_group *cg, cpumask_t mask, int pri)
669{
670	struct cpu_search low;
671
672	low.cs_cpu = -1;
673	low.cs_load = -1;
674	low.cs_mask = mask;
675	low.cs_limit = pri;
676	cpu_search_lowest(cg, &low);
677	return low.cs_cpu;
678}
679
680/*
681 * Find the cpu with the highest load via the highest loaded path.
682 */
683static inline int
684sched_highest(struct cpu_group *cg, cpumask_t mask, int minload)
685{
686	struct cpu_search high;
687
688	high.cs_cpu = -1;
689	high.cs_load = 0;
690	high.cs_mask = mask;
691	high.cs_limit = minload;
692	cpu_search_highest(cg, &high);
693	return high.cs_cpu;
694}
695
696/*
697 * Simultaneously find the highest and lowest loaded cpu reachable via
698 * cg.
699 */
700static inline void
701sched_both(struct cpu_group *cg, cpumask_t mask, int *lowcpu, int *highcpu)
702{
703	struct cpu_search high;
704	struct cpu_search low;
705
706	low.cs_cpu = -1;
707	low.cs_limit = -1;
708	low.cs_load = -1;
709	low.cs_mask = mask;
710	high.cs_load = 0;
711	high.cs_cpu = -1;
712	high.cs_limit = -1;
713	high.cs_mask = mask;
714	cpu_search_both(cg, &low, &high);
715	*lowcpu = low.cs_cpu;
716	*highcpu = high.cs_cpu;
717	return;
718}
719
720static void
721sched_balance_group(struct cpu_group *cg)
722{
723	cpumask_t mask;
724	int high;
725	int low;
726	int i;
727
728	mask = -1;
729	for (;;) {
730		sched_both(cg, mask, &low, &high);
731		if (low == high || low == -1 || high == -1)
732			break;
733		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low)))
734			break;
735		/*
736		 * If we failed to move any threads determine which cpu
737		 * to kick out of the set and try again.
738	 	 */
739		if (TDQ_CPU(high)->tdq_transferable == 0)
740			mask &= ~(1 << high);
741		else
742			mask &= ~(1 << low);
743	}
744
745	for (i = 0; i < cg->cg_children; i++)
746		sched_balance_group(&cg->cg_child[i]);
747}
748
749static void
750sched_balance()
751{
752	struct tdq *tdq;
753
754	/*
755	 * Select a random time between .5 * balance_interval and
756	 * 1.5 * balance_interval.
757	 */
758	balance_ticks = max(balance_interval / 2, 1);
759	balance_ticks += random() % balance_interval;
760	if (smp_started == 0 || rebalance == 0)
761		return;
762	tdq = TDQ_SELF();
763	TDQ_UNLOCK(tdq);
764	sched_balance_group(cpu_top);
765	TDQ_LOCK(tdq);
766}
767
768/*
769 * Lock two thread queues using their address to maintain lock order.
770 */
771static void
772tdq_lock_pair(struct tdq *one, struct tdq *two)
773{
774	if (one < two) {
775		TDQ_LOCK(one);
776		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
777	} else {
778		TDQ_LOCK(two);
779		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
780	}
781}
782
783/*
784 * Unlock two thread queues.  Order is not important here.
785 */
786static void
787tdq_unlock_pair(struct tdq *one, struct tdq *two)
788{
789	TDQ_UNLOCK(one);
790	TDQ_UNLOCK(two);
791}
792
793/*
794 * Transfer load between two imbalanced thread queues.
795 */
796static int
797sched_balance_pair(struct tdq *high, struct tdq *low)
798{
799	int transferable;
800	int high_load;
801	int low_load;
802	int moved;
803	int move;
804	int diff;
805	int i;
806
807	tdq_lock_pair(high, low);
808	transferable = high->tdq_transferable;
809	high_load = high->tdq_load;
810	low_load = low->tdq_load;
811	moved = 0;
812	/*
813	 * Determine what the imbalance is and then adjust that to how many
814	 * threads we actually have to give up (transferable).
815	 */
816	if (transferable != 0) {
817		diff = high_load - low_load;
818		move = diff / 2;
819		if (diff & 0x1)
820			move++;
821		move = min(move, transferable);
822		for (i = 0; i < move; i++)
823			moved += tdq_move(high, low);
824		/*
825		 * IPI the target cpu to force it to reschedule with the new
826		 * workload.
827		 */
828		ipi_selected(1 << TDQ_ID(low), IPI_PREEMPT);
829	}
830	tdq_unlock_pair(high, low);
831	return (moved);
832}
833
834/*
835 * Move a thread from one thread queue to another.
836 */
837static int
838tdq_move(struct tdq *from, struct tdq *to)
839{
840	struct td_sched *ts;
841	struct thread *td;
842	struct tdq *tdq;
843	int cpu;
844
845	TDQ_LOCK_ASSERT(from, MA_OWNED);
846	TDQ_LOCK_ASSERT(to, MA_OWNED);
847
848	tdq = from;
849	cpu = TDQ_ID(to);
850	ts = tdq_steal(tdq, cpu);
851	if (ts == NULL)
852		return (0);
853	td = ts->ts_thread;
854	/*
855	 * Although the run queue is locked the thread may be blocked.  Lock
856	 * it to clear this and acquire the run-queue lock.
857	 */
858	thread_lock(td);
859	/* Drop recursive lock on from acquired via thread_lock(). */
860	TDQ_UNLOCK(from);
861	sched_rem(td);
862	ts->ts_cpu = cpu;
863	td->td_lock = TDQ_LOCKPTR(to);
864	tdq_add(to, td, SRQ_YIELDING);
865	return (1);
866}
867
868/*
869 * This tdq has idled.  Try to steal a thread from another cpu and switch
870 * to it.
871 */
872static int
873tdq_idled(struct tdq *tdq)
874{
875	struct cpu_group *cg;
876	struct tdq *steal;
877	cpumask_t mask;
878	int thresh;
879	int cpu;
880
881	if (smp_started == 0 || steal_idle == 0)
882		return (1);
883	mask = -1;
884	mask &= ~PCPU_GET(cpumask);
885	/* We don't want to be preempted while we're iterating. */
886	spinlock_enter();
887	for (cg = tdq->tdq_cg; cg != NULL; ) {
888		if ((cg->cg_flags & (CG_FLAG_HTT | CG_FLAG_THREAD)) == 0)
889			thresh = steal_thresh;
890		else
891			thresh = 1;
892		cpu = sched_highest(cg, mask, thresh);
893		if (cpu == -1) {
894			cg = cg->cg_parent;
895			continue;
896		}
897		steal = TDQ_CPU(cpu);
898		mask &= ~(1 << cpu);
899		tdq_lock_pair(tdq, steal);
900		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
901			tdq_unlock_pair(tdq, steal);
902			continue;
903		}
904		/*
905		 * If a thread was added while interrupts were disabled don't
906		 * steal one here.  If we fail to acquire one due to affinity
907		 * restrictions loop again with this cpu removed from the
908		 * set.
909		 */
910		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
911			tdq_unlock_pair(tdq, steal);
912			continue;
913		}
914		spinlock_exit();
915		TDQ_UNLOCK(steal);
916		mi_switch(SW_VOL, NULL);
917		thread_unlock(curthread);
918
919		return (0);
920	}
921	spinlock_exit();
922	return (1);
923}
924
925/*
926 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
927 */
928static void
929tdq_notify(struct tdq *tdq, struct td_sched *ts)
930{
931	int cpri;
932	int pri;
933	int cpu;
934
935	if (tdq->tdq_ipipending)
936		return;
937	cpu = ts->ts_cpu;
938	pri = ts->ts_thread->td_priority;
939	cpri = pcpu_find(cpu)->pc_curthread->td_priority;
940	if (!sched_shouldpreempt(pri, cpri, 1))
941		return;
942	tdq->tdq_ipipending = 1;
943	ipi_selected(1 << cpu, IPI_PREEMPT);
944}
945
946/*
947 * Steals load from a timeshare queue.  Honors the rotating queue head
948 * index.
949 */
950static struct td_sched *
951runq_steal_from(struct runq *rq, int cpu, u_char start)
952{
953	struct td_sched *ts;
954	struct rqbits *rqb;
955	struct rqhead *rqh;
956	int first;
957	int bit;
958	int pri;
959	int i;
960
961	rqb = &rq->rq_status;
962	bit = start & (RQB_BPW -1);
963	pri = 0;
964	first = 0;
965again:
966	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
967		if (rqb->rqb_bits[i] == 0)
968			continue;
969		if (bit != 0) {
970			for (pri = bit; pri < RQB_BPW; pri++)
971				if (rqb->rqb_bits[i] & (1ul << pri))
972					break;
973			if (pri >= RQB_BPW)
974				continue;
975		} else
976			pri = RQB_FFS(rqb->rqb_bits[i]);
977		pri += (i << RQB_L2BPW);
978		rqh = &rq->rq_queues[pri];
979		TAILQ_FOREACH(ts, rqh, ts_procq) {
980			if (first && THREAD_CAN_MIGRATE(ts->ts_thread) &&
981			    THREAD_CAN_SCHED(ts->ts_thread, cpu))
982				return (ts);
983			first = 1;
984		}
985	}
986	if (start != 0) {
987		start = 0;
988		goto again;
989	}
990
991	return (NULL);
992}
993
994/*
995 * Steals load from a standard linear queue.
996 */
997static struct td_sched *
998runq_steal(struct runq *rq, int cpu)
999{
1000	struct rqhead *rqh;
1001	struct rqbits *rqb;
1002	struct td_sched *ts;
1003	int word;
1004	int bit;
1005
1006	rqb = &rq->rq_status;
1007	for (word = 0; word < RQB_LEN; word++) {
1008		if (rqb->rqb_bits[word] == 0)
1009			continue;
1010		for (bit = 0; bit < RQB_BPW; bit++) {
1011			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1012				continue;
1013			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1014			TAILQ_FOREACH(ts, rqh, ts_procq)
1015				if (THREAD_CAN_MIGRATE(ts->ts_thread) &&
1016				    THREAD_CAN_SCHED(ts->ts_thread, cpu))
1017					return (ts);
1018		}
1019	}
1020	return (NULL);
1021}
1022
1023/*
1024 * Attempt to steal a thread in priority order from a thread queue.
1025 */
1026static struct td_sched *
1027tdq_steal(struct tdq *tdq, int cpu)
1028{
1029	struct td_sched *ts;
1030
1031	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1032	if ((ts = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1033		return (ts);
1034	if ((ts = runq_steal_from(&tdq->tdq_timeshare, cpu, tdq->tdq_ridx))
1035	    != NULL)
1036		return (ts);
1037	return (runq_steal(&tdq->tdq_idle, cpu));
1038}
1039
1040/*
1041 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1042 * current lock and returns with the assigned queue locked.
1043 */
1044static inline struct tdq *
1045sched_setcpu(struct td_sched *ts, int cpu, int flags)
1046{
1047	struct thread *td;
1048	struct tdq *tdq;
1049
1050	THREAD_LOCK_ASSERT(ts->ts_thread, MA_OWNED);
1051
1052	tdq = TDQ_CPU(cpu);
1053	td = ts->ts_thread;
1054	ts->ts_cpu = cpu;
1055
1056	/* If the lock matches just return the queue. */
1057	if (td->td_lock == TDQ_LOCKPTR(tdq))
1058		return (tdq);
1059#ifdef notyet
1060	/*
1061	 * If the thread isn't running its lockptr is a
1062	 * turnstile or a sleepqueue.  We can just lock_set without
1063	 * blocking.
1064	 */
1065	if (TD_CAN_RUN(td)) {
1066		TDQ_LOCK(tdq);
1067		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1068		return (tdq);
1069	}
1070#endif
1071	/*
1072	 * The hard case, migration, we need to block the thread first to
1073	 * prevent order reversals with other cpus locks.
1074	 */
1075	thread_lock_block(td);
1076	TDQ_LOCK(tdq);
1077	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1078	return (tdq);
1079}
1080
1081static int
1082sched_pickcpu(struct td_sched *ts, int flags)
1083{
1084	struct cpu_group *cg;
1085	struct thread *td;
1086	struct tdq *tdq;
1087	cpumask_t mask;
1088	int self;
1089	int pri;
1090	int cpu;
1091
1092	self = PCPU_GET(cpuid);
1093	td = ts->ts_thread;
1094	if (smp_started == 0)
1095		return (self);
1096	/*
1097	 * Don't migrate a running thread from sched_switch().
1098	 */
1099	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1100		return (ts->ts_cpu);
1101	/*
1102	 * Prefer to run interrupt threads on the processors that generate
1103	 * the interrupt.
1104	 */
1105	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1106	    curthread->td_intr_nesting_level)
1107		ts->ts_cpu = self;
1108	/*
1109	 * If the thread can run on the last cpu and the affinity has not
1110	 * expired or it is idle run it there.
1111	 */
1112	pri = td->td_priority;
1113	tdq = TDQ_CPU(ts->ts_cpu);
1114	if (THREAD_CAN_SCHED(td, ts->ts_cpu)) {
1115		if (tdq->tdq_lowpri > PRI_MIN_IDLE)
1116			return (ts->ts_cpu);
1117		if (SCHED_AFFINITY(ts, CG_SHARE_L2) && tdq->tdq_lowpri > pri)
1118			return (ts->ts_cpu);
1119	}
1120	/*
1121	 * Search for the highest level in the tree that still has affinity.
1122	 */
1123	cg = NULL;
1124	for (cg = tdq->tdq_cg; cg != NULL; cg = cg->cg_parent)
1125		if (SCHED_AFFINITY(ts, cg->cg_level))
1126			break;
1127	cpu = -1;
1128	mask = td->td_cpuset->cs_mask.__bits[0];
1129	if (cg)
1130		cpu = sched_lowest(cg, mask, pri);
1131	if (cpu == -1)
1132		cpu = sched_lowest(cpu_top, mask, -1);
1133	/*
1134	 * Compare the lowest loaded cpu to current cpu.
1135	 */
1136	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1137	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1138		cpu = self;
1139	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1140	return (cpu);
1141}
1142#endif
1143
1144/*
1145 * Pick the highest priority task we have and return it.
1146 */
1147static struct td_sched *
1148tdq_choose(struct tdq *tdq)
1149{
1150	struct td_sched *ts;
1151
1152	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1153	ts = runq_choose(&tdq->tdq_realtime);
1154	if (ts != NULL)
1155		return (ts);
1156	ts = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1157	if (ts != NULL) {
1158		KASSERT(ts->ts_thread->td_priority >= PRI_MIN_TIMESHARE,
1159		    ("tdq_choose: Invalid priority on timeshare queue %d",
1160		    ts->ts_thread->td_priority));
1161		return (ts);
1162	}
1163
1164	ts = runq_choose(&tdq->tdq_idle);
1165	if (ts != NULL) {
1166		KASSERT(ts->ts_thread->td_priority >= PRI_MIN_IDLE,
1167		    ("tdq_choose: Invalid priority on idle queue %d",
1168		    ts->ts_thread->td_priority));
1169		return (ts);
1170	}
1171
1172	return (NULL);
1173}
1174
1175/*
1176 * Initialize a thread queue.
1177 */
1178static void
1179tdq_setup(struct tdq *tdq)
1180{
1181
1182	if (bootverbose)
1183		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1184	runq_init(&tdq->tdq_realtime);
1185	runq_init(&tdq->tdq_timeshare);
1186	runq_init(&tdq->tdq_idle);
1187	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1188	    "sched lock %d", (int)TDQ_ID(tdq));
1189	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1190	    MTX_SPIN | MTX_RECURSE);
1191}
1192
1193#ifdef SMP
1194static void
1195sched_setup_smp(void)
1196{
1197	struct tdq *tdq;
1198	int i;
1199
1200	cpu_top = smp_topo();
1201	for (i = 0; i < MAXCPU; i++) {
1202		if (CPU_ABSENT(i))
1203			continue;
1204		tdq = TDQ_CPU(i);
1205		tdq_setup(tdq);
1206		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1207		if (tdq->tdq_cg == NULL)
1208			panic("Can't find cpu group for %d\n", i);
1209	}
1210	balance_tdq = TDQ_SELF();
1211	sched_balance();
1212}
1213#endif
1214
1215/*
1216 * Setup the thread queues and initialize the topology based on MD
1217 * information.
1218 */
1219static void
1220sched_setup(void *dummy)
1221{
1222	struct tdq *tdq;
1223
1224	tdq = TDQ_SELF();
1225#ifdef SMP
1226	sched_setup_smp();
1227#else
1228	tdq_setup(tdq);
1229#endif
1230	/*
1231	 * To avoid divide-by-zero, we set realstathz a dummy value
1232	 * in case which sched_clock() called before sched_initticks().
1233	 */
1234	realstathz = hz;
1235	sched_slice = (realstathz/10);	/* ~100ms */
1236	tickincr = 1 << SCHED_TICK_SHIFT;
1237
1238	/* Add thread0's load since it's running. */
1239	TDQ_LOCK(tdq);
1240	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1241	tdq_load_add(tdq, &td_sched0);
1242	tdq->tdq_lowpri = thread0.td_priority;
1243	TDQ_UNLOCK(tdq);
1244}
1245
1246/*
1247 * This routine determines the tickincr after stathz and hz are setup.
1248 */
1249/* ARGSUSED */
1250static void
1251sched_initticks(void *dummy)
1252{
1253	int incr;
1254
1255	realstathz = stathz ? stathz : hz;
1256	sched_slice = (realstathz/10);	/* ~100ms */
1257
1258	/*
1259	 * tickincr is shifted out by 10 to avoid rounding errors due to
1260	 * hz not being evenly divisible by stathz on all platforms.
1261	 */
1262	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1263	/*
1264	 * This does not work for values of stathz that are more than
1265	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1266	 */
1267	if (incr == 0)
1268		incr = 1;
1269	tickincr = incr;
1270#ifdef SMP
1271	/*
1272	 * Set the default balance interval now that we know
1273	 * what realstathz is.
1274	 */
1275	balance_interval = realstathz;
1276	/*
1277	 * Set steal thresh to log2(mp_ncpu) but no greater than 4.  This
1278	 * prevents excess thrashing on large machines and excess idle on
1279	 * smaller machines.
1280	 */
1281	steal_thresh = min(ffs(mp_ncpus) - 1, 3);
1282	affinity = SCHED_AFFINITY_DEFAULT;
1283#endif
1284}
1285
1286
1287/*
1288 * This is the core of the interactivity algorithm.  Determines a score based
1289 * on past behavior.  It is the ratio of sleep time to run time scaled to
1290 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1291 * differs from the cpu usage because it does not account for time spent
1292 * waiting on a run-queue.  Would be prettier if we had floating point.
1293 */
1294static int
1295sched_interact_score(struct thread *td)
1296{
1297	struct td_sched *ts;
1298	int div;
1299
1300	ts = td->td_sched;
1301	/*
1302	 * The score is only needed if this is likely to be an interactive
1303	 * task.  Don't go through the expense of computing it if there's
1304	 * no chance.
1305	 */
1306	if (sched_interact <= SCHED_INTERACT_HALF &&
1307		ts->ts_runtime >= ts->ts_slptime)
1308			return (SCHED_INTERACT_HALF);
1309
1310	if (ts->ts_runtime > ts->ts_slptime) {
1311		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1312		return (SCHED_INTERACT_HALF +
1313		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1314	}
1315	if (ts->ts_slptime > ts->ts_runtime) {
1316		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1317		return (ts->ts_runtime / div);
1318	}
1319	/* runtime == slptime */
1320	if (ts->ts_runtime)
1321		return (SCHED_INTERACT_HALF);
1322
1323	/*
1324	 * This can happen if slptime and runtime are 0.
1325	 */
1326	return (0);
1327
1328}
1329
1330/*
1331 * Scale the scheduling priority according to the "interactivity" of this
1332 * process.
1333 */
1334static void
1335sched_priority(struct thread *td)
1336{
1337	int score;
1338	int pri;
1339
1340	if (td->td_pri_class != PRI_TIMESHARE)
1341		return;
1342	/*
1343	 * If the score is interactive we place the thread in the realtime
1344	 * queue with a priority that is less than kernel and interrupt
1345	 * priorities.  These threads are not subject to nice restrictions.
1346	 *
1347	 * Scores greater than this are placed on the normal timeshare queue
1348	 * where the priority is partially decided by the most recent cpu
1349	 * utilization and the rest is decided by nice value.
1350	 *
1351	 * The nice value of the process has a linear effect on the calculated
1352	 * score.  Negative nice values make it easier for a thread to be
1353	 * considered interactive.
1354	 */
1355	score = imax(0, sched_interact_score(td) - td->td_proc->p_nice);
1356	if (score < sched_interact) {
1357		pri = PRI_MIN_REALTIME;
1358		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1359		    * score;
1360		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1361		    ("sched_priority: invalid interactive priority %d score %d",
1362		    pri, score));
1363	} else {
1364		pri = SCHED_PRI_MIN;
1365		if (td->td_sched->ts_ticks)
1366			pri += SCHED_PRI_TICKS(td->td_sched);
1367		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1368		KASSERT(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE,
1369		    ("sched_priority: invalid priority %d: nice %d, "
1370		    "ticks %d ftick %d ltick %d tick pri %d",
1371		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1372		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1373		    SCHED_PRI_TICKS(td->td_sched)));
1374	}
1375	sched_user_prio(td, pri);
1376
1377	return;
1378}
1379
1380/*
1381 * This routine enforces a maximum limit on the amount of scheduling history
1382 * kept.  It is called after either the slptime or runtime is adjusted.  This
1383 * function is ugly due to integer math.
1384 */
1385static void
1386sched_interact_update(struct thread *td)
1387{
1388	struct td_sched *ts;
1389	u_int sum;
1390
1391	ts = td->td_sched;
1392	sum = ts->ts_runtime + ts->ts_slptime;
1393	if (sum < SCHED_SLP_RUN_MAX)
1394		return;
1395	/*
1396	 * This only happens from two places:
1397	 * 1) We have added an unusual amount of run time from fork_exit.
1398	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1399	 */
1400	if (sum > SCHED_SLP_RUN_MAX * 2) {
1401		if (ts->ts_runtime > ts->ts_slptime) {
1402			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1403			ts->ts_slptime = 1;
1404		} else {
1405			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1406			ts->ts_runtime = 1;
1407		}
1408		return;
1409	}
1410	/*
1411	 * If we have exceeded by more than 1/5th then the algorithm below
1412	 * will not bring us back into range.  Dividing by two here forces
1413	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1414	 */
1415	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1416		ts->ts_runtime /= 2;
1417		ts->ts_slptime /= 2;
1418		return;
1419	}
1420	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1421	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1422}
1423
1424/*
1425 * Scale back the interactivity history when a child thread is created.  The
1426 * history is inherited from the parent but the thread may behave totally
1427 * differently.  For example, a shell spawning a compiler process.  We want
1428 * to learn that the compiler is behaving badly very quickly.
1429 */
1430static void
1431sched_interact_fork(struct thread *td)
1432{
1433	int ratio;
1434	int sum;
1435
1436	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1437	if (sum > SCHED_SLP_RUN_FORK) {
1438		ratio = sum / SCHED_SLP_RUN_FORK;
1439		td->td_sched->ts_runtime /= ratio;
1440		td->td_sched->ts_slptime /= ratio;
1441	}
1442}
1443
1444/*
1445 * Called from proc0_init() to setup the scheduler fields.
1446 */
1447void
1448schedinit(void)
1449{
1450
1451	/*
1452	 * Set up the scheduler specific parts of proc0.
1453	 */
1454	proc0.p_sched = NULL; /* XXX */
1455	thread0.td_sched = &td_sched0;
1456	td_sched0.ts_ltick = ticks;
1457	td_sched0.ts_ftick = ticks;
1458	td_sched0.ts_thread = &thread0;
1459	td_sched0.ts_slice = sched_slice;
1460}
1461
1462/*
1463 * This is only somewhat accurate since given many processes of the same
1464 * priority they will switch when their slices run out, which will be
1465 * at most sched_slice stathz ticks.
1466 */
1467int
1468sched_rr_interval(void)
1469{
1470
1471	/* Convert sched_slice to hz */
1472	return (hz/(realstathz/sched_slice));
1473}
1474
1475/*
1476 * Update the percent cpu tracking information when it is requested or
1477 * the total history exceeds the maximum.  We keep a sliding history of
1478 * tick counts that slowly decays.  This is less precise than the 4BSD
1479 * mechanism since it happens with less regular and frequent events.
1480 */
1481static void
1482sched_pctcpu_update(struct td_sched *ts)
1483{
1484
1485	if (ts->ts_ticks == 0)
1486		return;
1487	if (ticks - (hz / 10) < ts->ts_ltick &&
1488	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1489		return;
1490	/*
1491	 * Adjust counters and watermark for pctcpu calc.
1492	 */
1493	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1494		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1495			    SCHED_TICK_TARG;
1496	else
1497		ts->ts_ticks = 0;
1498	ts->ts_ltick = ticks;
1499	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1500}
1501
1502/*
1503 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1504 * if necessary.  This is the back-end for several priority related
1505 * functions.
1506 */
1507static void
1508sched_thread_priority(struct thread *td, u_char prio)
1509{
1510	struct td_sched *ts;
1511	struct tdq *tdq;
1512	int oldpri;
1513
1514	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1515	    td, td->td_name, td->td_priority, prio, curthread,
1516	    curthread->td_name);
1517	ts = td->td_sched;
1518	THREAD_LOCK_ASSERT(td, MA_OWNED);
1519	if (td->td_priority == prio)
1520		return;
1521
1522	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1523		/*
1524		 * If the priority has been elevated due to priority
1525		 * propagation, we may have to move ourselves to a new
1526		 * queue.  This could be optimized to not re-add in some
1527		 * cases.
1528		 */
1529		sched_rem(td);
1530		td->td_priority = prio;
1531		sched_add(td, SRQ_BORROWING);
1532		return;
1533	}
1534	tdq = TDQ_CPU(ts->ts_cpu);
1535	oldpri = td->td_priority;
1536	td->td_priority = prio;
1537	if (TD_IS_RUNNING(td)) {
1538		if (prio < tdq->tdq_lowpri)
1539			tdq->tdq_lowpri = prio;
1540		else if (tdq->tdq_lowpri == oldpri)
1541			tdq_setlowpri(tdq, td);
1542	}
1543}
1544
1545/*
1546 * Update a thread's priority when it is lent another thread's
1547 * priority.
1548 */
1549void
1550sched_lend_prio(struct thread *td, u_char prio)
1551{
1552
1553	td->td_flags |= TDF_BORROWING;
1554	sched_thread_priority(td, prio);
1555}
1556
1557/*
1558 * Restore a thread's priority when priority propagation is
1559 * over.  The prio argument is the minimum priority the thread
1560 * needs to have to satisfy other possible priority lending
1561 * requests.  If the thread's regular priority is less
1562 * important than prio, the thread will keep a priority boost
1563 * of prio.
1564 */
1565void
1566sched_unlend_prio(struct thread *td, u_char prio)
1567{
1568	u_char base_pri;
1569
1570	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1571	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1572		base_pri = td->td_user_pri;
1573	else
1574		base_pri = td->td_base_pri;
1575	if (prio >= base_pri) {
1576		td->td_flags &= ~TDF_BORROWING;
1577		sched_thread_priority(td, base_pri);
1578	} else
1579		sched_lend_prio(td, prio);
1580}
1581
1582/*
1583 * Standard entry for setting the priority to an absolute value.
1584 */
1585void
1586sched_prio(struct thread *td, u_char prio)
1587{
1588	u_char oldprio;
1589
1590	/* First, update the base priority. */
1591	td->td_base_pri = prio;
1592
1593	/*
1594	 * If the thread is borrowing another thread's priority, don't
1595	 * ever lower the priority.
1596	 */
1597	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1598		return;
1599
1600	/* Change the real priority. */
1601	oldprio = td->td_priority;
1602	sched_thread_priority(td, prio);
1603
1604	/*
1605	 * If the thread is on a turnstile, then let the turnstile update
1606	 * its state.
1607	 */
1608	if (TD_ON_LOCK(td) && oldprio != prio)
1609		turnstile_adjust(td, oldprio);
1610}
1611
1612/*
1613 * Set the base user priority, does not effect current running priority.
1614 */
1615void
1616sched_user_prio(struct thread *td, u_char prio)
1617{
1618	u_char oldprio;
1619
1620	td->td_base_user_pri = prio;
1621	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1622                return;
1623	oldprio = td->td_user_pri;
1624	td->td_user_pri = prio;
1625}
1626
1627void
1628sched_lend_user_prio(struct thread *td, u_char prio)
1629{
1630	u_char oldprio;
1631
1632	THREAD_LOCK_ASSERT(td, MA_OWNED);
1633	td->td_flags |= TDF_UBORROWING;
1634	oldprio = td->td_user_pri;
1635	td->td_user_pri = prio;
1636}
1637
1638void
1639sched_unlend_user_prio(struct thread *td, u_char prio)
1640{
1641	u_char base_pri;
1642
1643	THREAD_LOCK_ASSERT(td, MA_OWNED);
1644	base_pri = td->td_base_user_pri;
1645	if (prio >= base_pri) {
1646		td->td_flags &= ~TDF_UBORROWING;
1647		sched_user_prio(td, base_pri);
1648	} else {
1649		sched_lend_user_prio(td, prio);
1650	}
1651}
1652
1653/*
1654 * Add the thread passed as 'newtd' to the run queue before selecting
1655 * the next thread to run.  This is only used for KSE.
1656 */
1657static void
1658sched_switchin(struct tdq *tdq, struct thread *td)
1659{
1660#ifdef SMP
1661	spinlock_enter();
1662	TDQ_UNLOCK(tdq);
1663	thread_lock(td);
1664	spinlock_exit();
1665	sched_setcpu(td->td_sched, TDQ_ID(tdq), SRQ_YIELDING);
1666#else
1667	td->td_lock = TDQ_LOCKPTR(tdq);
1668#endif
1669	tdq_add(tdq, td, SRQ_YIELDING);
1670	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1671}
1672
1673/*
1674 * Block a thread for switching.  Similar to thread_block() but does not
1675 * bump the spin count.
1676 */
1677static inline struct mtx *
1678thread_block_switch(struct thread *td)
1679{
1680	struct mtx *lock;
1681
1682	THREAD_LOCK_ASSERT(td, MA_OWNED);
1683	lock = td->td_lock;
1684	td->td_lock = &blocked_lock;
1685	mtx_unlock_spin(lock);
1686
1687	return (lock);
1688}
1689
1690/*
1691 * Handle migration from sched_switch().  This happens only for
1692 * cpu binding.
1693 */
1694static struct mtx *
1695sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1696{
1697	struct tdq *tdn;
1698
1699	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1700#ifdef SMP
1701	tdq_load_rem(tdq, td->td_sched);
1702	/*
1703	 * Do the lock dance required to avoid LOR.  We grab an extra
1704	 * spinlock nesting to prevent preemption while we're
1705	 * not holding either run-queue lock.
1706	 */
1707	spinlock_enter();
1708	thread_block_switch(td);	/* This releases the lock on tdq. */
1709	TDQ_LOCK(tdn);
1710	tdq_add(tdn, td, flags);
1711	tdq_notify(tdn, td->td_sched);
1712	/*
1713	 * After we unlock tdn the new cpu still can't switch into this
1714	 * thread until we've unblocked it in cpu_switch().  The lock
1715	 * pointers may match in the case of HTT cores.  Don't unlock here
1716	 * or we can deadlock when the other CPU runs the IPI handler.
1717	 */
1718	if (TDQ_LOCKPTR(tdn) != TDQ_LOCKPTR(tdq)) {
1719		TDQ_UNLOCK(tdn);
1720		TDQ_LOCK(tdq);
1721	}
1722	spinlock_exit();
1723#endif
1724	return (TDQ_LOCKPTR(tdn));
1725}
1726
1727/*
1728 * Release a thread that was blocked with thread_block_switch().
1729 */
1730static inline void
1731thread_unblock_switch(struct thread *td, struct mtx *mtx)
1732{
1733	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1734	    (uintptr_t)mtx);
1735}
1736
1737/*
1738 * Switch threads.  This function has to handle threads coming in while
1739 * blocked for some reason, running, or idle.  It also must deal with
1740 * migrating a thread from one queue to another as running threads may
1741 * be assigned elsewhere via binding.
1742 */
1743void
1744sched_switch(struct thread *td, struct thread *newtd, int flags)
1745{
1746	struct tdq *tdq;
1747	struct td_sched *ts;
1748	struct mtx *mtx;
1749	int srqflag;
1750	int cpuid;
1751
1752	THREAD_LOCK_ASSERT(td, MA_OWNED);
1753
1754	cpuid = PCPU_GET(cpuid);
1755	tdq = TDQ_CPU(cpuid);
1756	ts = td->td_sched;
1757	mtx = td->td_lock;
1758	ts->ts_rltick = ticks;
1759	td->td_lastcpu = td->td_oncpu;
1760	td->td_oncpu = NOCPU;
1761	td->td_flags &= ~TDF_NEEDRESCHED;
1762	td->td_owepreempt = 0;
1763	/*
1764	 * The lock pointer in an idle thread should never change.  Reset it
1765	 * to CAN_RUN as well.
1766	 */
1767	if (TD_IS_IDLETHREAD(td)) {
1768		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1769		TD_SET_CAN_RUN(td);
1770	} else if (TD_IS_RUNNING(td)) {
1771		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1772		srqflag = (flags & SW_PREEMPT) ?
1773		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1774		    SRQ_OURSELF|SRQ_YIELDING;
1775		if (ts->ts_cpu == cpuid)
1776			tdq_runq_add(tdq, ts, srqflag);
1777		else
1778			mtx = sched_switch_migrate(tdq, td, srqflag);
1779	} else {
1780		/* This thread must be going to sleep. */
1781		TDQ_LOCK(tdq);
1782		mtx = thread_block_switch(td);
1783		tdq_load_rem(tdq, ts);
1784	}
1785	/*
1786	 * We enter here with the thread blocked and assigned to the
1787	 * appropriate cpu run-queue or sleep-queue and with the current
1788	 * thread-queue locked.
1789	 */
1790	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1791	/*
1792	 * If KSE assigned a new thread just add it here and let choosethread
1793	 * select the best one.
1794	 */
1795	if (newtd != NULL)
1796		sched_switchin(tdq, newtd);
1797	newtd = choosethread();
1798	/*
1799	 * Call the MD code to switch contexts if necessary.
1800	 */
1801	if (td != newtd) {
1802#ifdef	HWPMC_HOOKS
1803		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1804			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1805#endif
1806		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1807		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1808		cpu_switch(td, newtd, mtx);
1809		/*
1810		 * We may return from cpu_switch on a different cpu.  However,
1811		 * we always return with td_lock pointing to the current cpu's
1812		 * run queue lock.
1813		 */
1814		cpuid = PCPU_GET(cpuid);
1815		tdq = TDQ_CPU(cpuid);
1816		lock_profile_obtain_lock_success(
1817		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1818#ifdef	HWPMC_HOOKS
1819		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1820			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1821#endif
1822	} else
1823		thread_unblock_switch(td, mtx);
1824	/*
1825	 * We should always get here with the lowest priority td possible.
1826	 */
1827	tdq->tdq_lowpri = td->td_priority;
1828	/*
1829	 * Assert that all went well and return.
1830	 */
1831	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1832	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1833	td->td_oncpu = cpuid;
1834}
1835
1836/*
1837 * Adjust thread priorities as a result of a nice request.
1838 */
1839void
1840sched_nice(struct proc *p, int nice)
1841{
1842	struct thread *td;
1843
1844	PROC_LOCK_ASSERT(p, MA_OWNED);
1845	PROC_SLOCK_ASSERT(p, MA_OWNED);
1846
1847	p->p_nice = nice;
1848	FOREACH_THREAD_IN_PROC(p, td) {
1849		thread_lock(td);
1850		sched_priority(td);
1851		sched_prio(td, td->td_base_user_pri);
1852		thread_unlock(td);
1853	}
1854}
1855
1856/*
1857 * Record the sleep time for the interactivity scorer.
1858 */
1859void
1860sched_sleep(struct thread *td, int prio)
1861{
1862
1863	THREAD_LOCK_ASSERT(td, MA_OWNED);
1864
1865	td->td_slptick = ticks;
1866	if (TD_IS_SUSPENDED(td) || prio <= PSOCK)
1867		td->td_flags |= TDF_CANSWAP;
1868	if (static_boost && prio)
1869		sched_prio(td, prio);
1870}
1871
1872/*
1873 * Schedule a thread to resume execution and record how long it voluntarily
1874 * slept.  We also update the pctcpu, interactivity, and priority.
1875 */
1876void
1877sched_wakeup(struct thread *td)
1878{
1879	struct td_sched *ts;
1880	int slptick;
1881
1882	THREAD_LOCK_ASSERT(td, MA_OWNED);
1883	ts = td->td_sched;
1884	td->td_flags &= ~TDF_CANSWAP;
1885	/*
1886	 * If we slept for more than a tick update our interactivity and
1887	 * priority.
1888	 */
1889	slptick = td->td_slptick;
1890	td->td_slptick = 0;
1891	if (slptick && slptick != ticks) {
1892		u_int hzticks;
1893
1894		hzticks = (ticks - slptick) << SCHED_TICK_SHIFT;
1895		ts->ts_slptime += hzticks;
1896		sched_interact_update(td);
1897		sched_pctcpu_update(ts);
1898	}
1899	/* Reset the slice value after we sleep. */
1900	ts->ts_slice = sched_slice;
1901	sched_add(td, SRQ_BORING);
1902}
1903
1904/*
1905 * Penalize the parent for creating a new child and initialize the child's
1906 * priority.
1907 */
1908void
1909sched_fork(struct thread *td, struct thread *child)
1910{
1911	THREAD_LOCK_ASSERT(td, MA_OWNED);
1912	sched_fork_thread(td, child);
1913	/*
1914	 * Penalize the parent and child for forking.
1915	 */
1916	sched_interact_fork(child);
1917	sched_priority(child);
1918	td->td_sched->ts_runtime += tickincr;
1919	sched_interact_update(td);
1920	sched_priority(td);
1921}
1922
1923/*
1924 * Fork a new thread, may be within the same process.
1925 */
1926void
1927sched_fork_thread(struct thread *td, struct thread *child)
1928{
1929	struct td_sched *ts;
1930	struct td_sched *ts2;
1931
1932	/*
1933	 * Initialize child.
1934	 */
1935	THREAD_LOCK_ASSERT(td, MA_OWNED);
1936	sched_newthread(child);
1937	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1938	child->td_cpuset = cpuset_ref(td->td_cpuset);
1939	ts = td->td_sched;
1940	ts2 = child->td_sched;
1941	ts2->ts_cpu = ts->ts_cpu;
1942	ts2->ts_runq = NULL;
1943	/*
1944	 * Grab our parents cpu estimation information and priority.
1945	 */
1946	ts2->ts_ticks = ts->ts_ticks;
1947	ts2->ts_ltick = ts->ts_ltick;
1948	ts2->ts_ftick = ts->ts_ftick;
1949	child->td_user_pri = td->td_user_pri;
1950	child->td_base_user_pri = td->td_base_user_pri;
1951	/*
1952	 * And update interactivity score.
1953	 */
1954	ts2->ts_slptime = ts->ts_slptime;
1955	ts2->ts_runtime = ts->ts_runtime;
1956	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1957}
1958
1959/*
1960 * Adjust the priority class of a thread.
1961 */
1962void
1963sched_class(struct thread *td, int class)
1964{
1965
1966	THREAD_LOCK_ASSERT(td, MA_OWNED);
1967	if (td->td_pri_class == class)
1968		return;
1969	/*
1970	 * On SMP if we're on the RUNQ we must adjust the transferable
1971	 * count because could be changing to or from an interrupt
1972	 * class.
1973	 */
1974	if (TD_ON_RUNQ(td)) {
1975		struct tdq *tdq;
1976
1977		tdq = TDQ_CPU(td->td_sched->ts_cpu);
1978		if (THREAD_CAN_MIGRATE(td))
1979			tdq->tdq_transferable--;
1980		td->td_pri_class = class;
1981		if (THREAD_CAN_MIGRATE(td))
1982			tdq->tdq_transferable++;
1983	}
1984	td->td_pri_class = class;
1985}
1986
1987/*
1988 * Return some of the child's priority and interactivity to the parent.
1989 */
1990void
1991sched_exit(struct proc *p, struct thread *child)
1992{
1993	struct thread *td;
1994
1995	CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
1996	    child, child->td_name, child->td_priority);
1997
1998	PROC_SLOCK_ASSERT(p, MA_OWNED);
1999	td = FIRST_THREAD_IN_PROC(p);
2000	sched_exit_thread(td, child);
2001}
2002
2003/*
2004 * Penalize another thread for the time spent on this one.  This helps to
2005 * worsen the priority and interactivity of processes which schedule batch
2006 * jobs such as make.  This has little effect on the make process itself but
2007 * causes new processes spawned by it to receive worse scores immediately.
2008 */
2009void
2010sched_exit_thread(struct thread *td, struct thread *child)
2011{
2012
2013	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
2014	    child, child->td_name, child->td_priority);
2015
2016#ifdef KSE
2017	/*
2018	 * KSE forks and exits so often that this penalty causes short-lived
2019	 * threads to always be non-interactive.  This causes mozilla to
2020	 * crawl under load.
2021	 */
2022	if ((td->td_pflags & TDP_SA) && td->td_proc == child->td_proc)
2023		return;
2024#endif
2025	/*
2026	 * Give the child's runtime to the parent without returning the
2027	 * sleep time as a penalty to the parent.  This causes shells that
2028	 * launch expensive things to mark their children as expensive.
2029	 */
2030	thread_lock(td);
2031	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2032	sched_interact_update(td);
2033	sched_priority(td);
2034	thread_unlock(td);
2035}
2036
2037void
2038sched_preempt(struct thread *td)
2039{
2040	struct tdq *tdq;
2041
2042	thread_lock(td);
2043	tdq = TDQ_SELF();
2044	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2045	tdq->tdq_ipipending = 0;
2046	if (td->td_priority > tdq->tdq_lowpri) {
2047		if (td->td_critnest > 1)
2048			td->td_owepreempt = 1;
2049		else
2050			mi_switch(SW_INVOL | SW_PREEMPT, NULL);
2051	}
2052	thread_unlock(td);
2053}
2054
2055/*
2056 * Fix priorities on return to user-space.  Priorities may be elevated due
2057 * to static priorities in msleep() or similar.
2058 */
2059void
2060sched_userret(struct thread *td)
2061{
2062	/*
2063	 * XXX we cheat slightly on the locking here to avoid locking in
2064	 * the usual case.  Setting td_priority here is essentially an
2065	 * incomplete workaround for not setting it properly elsewhere.
2066	 * Now that some interrupt handlers are threads, not setting it
2067	 * properly elsewhere can clobber it in the window between setting
2068	 * it here and returning to user mode, so don't waste time setting
2069	 * it perfectly here.
2070	 */
2071	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2072	    ("thread with borrowed priority returning to userland"));
2073	if (td->td_priority != td->td_user_pri) {
2074		thread_lock(td);
2075		td->td_priority = td->td_user_pri;
2076		td->td_base_pri = td->td_user_pri;
2077		tdq_setlowpri(TDQ_SELF(), td);
2078		thread_unlock(td);
2079        }
2080}
2081
2082/*
2083 * Handle a stathz tick.  This is really only relevant for timeshare
2084 * threads.
2085 */
2086void
2087sched_clock(struct thread *td)
2088{
2089	struct tdq *tdq;
2090	struct td_sched *ts;
2091
2092	THREAD_LOCK_ASSERT(td, MA_OWNED);
2093	tdq = TDQ_SELF();
2094#ifdef SMP
2095	/*
2096	 * We run the long term load balancer infrequently on the first cpu.
2097	 */
2098	if (balance_tdq == tdq) {
2099		if (balance_ticks && --balance_ticks == 0)
2100			sched_balance();
2101	}
2102#endif
2103	/*
2104	 * Advance the insert index once for each tick to ensure that all
2105	 * threads get a chance to run.
2106	 */
2107	if (tdq->tdq_idx == tdq->tdq_ridx) {
2108		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2109		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2110			tdq->tdq_ridx = tdq->tdq_idx;
2111	}
2112	ts = td->td_sched;
2113	if (td->td_pri_class & PRI_FIFO_BIT)
2114		return;
2115	if (td->td_pri_class == PRI_TIMESHARE) {
2116		/*
2117		 * We used a tick; charge it to the thread so
2118		 * that we can compute our interactivity.
2119		 */
2120		td->td_sched->ts_runtime += tickincr;
2121		sched_interact_update(td);
2122		sched_priority(td);
2123	}
2124	/*
2125	 * We used up one time slice.
2126	 */
2127	if (--ts->ts_slice > 0)
2128		return;
2129	/*
2130	 * We're out of time, force a requeue at userret().
2131	 */
2132	ts->ts_slice = sched_slice;
2133	td->td_flags |= TDF_NEEDRESCHED;
2134}
2135
2136/*
2137 * Called once per hz tick.  Used for cpu utilization information.  This
2138 * is easier than trying to scale based on stathz.
2139 */
2140void
2141sched_tick(void)
2142{
2143	struct td_sched *ts;
2144
2145	ts = curthread->td_sched;
2146	/* Adjust ticks for pctcpu */
2147	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
2148	ts->ts_ltick = ticks;
2149	/*
2150	 * Update if we've exceeded our desired tick threshhold by over one
2151	 * second.
2152	 */
2153	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2154		sched_pctcpu_update(ts);
2155}
2156
2157/*
2158 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2159 * cooperative idle threads.
2160 */
2161int
2162sched_runnable(void)
2163{
2164	struct tdq *tdq;
2165	int load;
2166
2167	load = 1;
2168
2169	tdq = TDQ_SELF();
2170	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2171		if (tdq->tdq_load > 0)
2172			goto out;
2173	} else
2174		if (tdq->tdq_load - 1 > 0)
2175			goto out;
2176	load = 0;
2177out:
2178	return (load);
2179}
2180
2181/*
2182 * Choose the highest priority thread to run.  The thread is removed from
2183 * the run-queue while running however the load remains.  For SMP we set
2184 * the tdq in the global idle bitmask if it idles here.
2185 */
2186struct thread *
2187sched_choose(void)
2188{
2189	struct td_sched *ts;
2190	struct tdq *tdq;
2191
2192	tdq = TDQ_SELF();
2193	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2194	ts = tdq_choose(tdq);
2195	if (ts) {
2196		ts->ts_ltick = ticks;
2197		tdq_runq_rem(tdq, ts);
2198		return (ts->ts_thread);
2199	}
2200	return (PCPU_GET(idlethread));
2201}
2202
2203/*
2204 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2205 * we always request it once we exit a critical section.
2206 */
2207static inline void
2208sched_setpreempt(struct thread *td)
2209{
2210	struct thread *ctd;
2211	int cpri;
2212	int pri;
2213
2214	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2215
2216	ctd = curthread;
2217	pri = td->td_priority;
2218	cpri = ctd->td_priority;
2219	if (pri < cpri)
2220		ctd->td_flags |= TDF_NEEDRESCHED;
2221	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2222		return;
2223	if (!sched_shouldpreempt(pri, cpri, 0))
2224		return;
2225	ctd->td_owepreempt = 1;
2226}
2227
2228/*
2229 * Add a thread to a thread queue.  Select the appropriate runq and add the
2230 * thread to it.  This is the internal function called when the tdq is
2231 * predetermined.
2232 */
2233void
2234tdq_add(struct tdq *tdq, struct thread *td, int flags)
2235{
2236	struct td_sched *ts;
2237
2238	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2239	KASSERT((td->td_inhibitors == 0),
2240	    ("sched_add: trying to run inhibited thread"));
2241	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2242	    ("sched_add: bad thread state"));
2243	KASSERT(td->td_flags & TDF_INMEM,
2244	    ("sched_add: thread swapped out"));
2245
2246	ts = td->td_sched;
2247	if (td->td_priority < tdq->tdq_lowpri)
2248		tdq->tdq_lowpri = td->td_priority;
2249	tdq_runq_add(tdq, ts, flags);
2250	tdq_load_add(tdq, ts);
2251}
2252
2253/*
2254 * Select the target thread queue and add a thread to it.  Request
2255 * preemption or IPI a remote processor if required.
2256 */
2257void
2258sched_add(struct thread *td, int flags)
2259{
2260	struct tdq *tdq;
2261#ifdef SMP
2262	struct td_sched *ts;
2263	int cpu;
2264#endif
2265	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
2266	    td, td->td_name, td->td_priority, curthread,
2267	    curthread->td_name);
2268	THREAD_LOCK_ASSERT(td, MA_OWNED);
2269	/*
2270	 * Recalculate the priority before we select the target cpu or
2271	 * run-queue.
2272	 */
2273	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2274		sched_priority(td);
2275#ifdef SMP
2276	/*
2277	 * Pick the destination cpu and if it isn't ours transfer to the
2278	 * target cpu.
2279	 */
2280	ts = td->td_sched;
2281	cpu = sched_pickcpu(ts, flags);
2282	tdq = sched_setcpu(ts, cpu, flags);
2283	tdq_add(tdq, td, flags);
2284	if (cpu != PCPU_GET(cpuid)) {
2285		tdq_notify(tdq, ts);
2286		return;
2287	}
2288#else
2289	tdq = TDQ_SELF();
2290	TDQ_LOCK(tdq);
2291	/*
2292	 * Now that the thread is moving to the run-queue, set the lock
2293	 * to the scheduler's lock.
2294	 */
2295	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2296	tdq_add(tdq, td, flags);
2297#endif
2298	if (!(flags & SRQ_YIELDING))
2299		sched_setpreempt(td);
2300}
2301
2302/*
2303 * Remove a thread from a run-queue without running it.  This is used
2304 * when we're stealing a thread from a remote queue.  Otherwise all threads
2305 * exit by calling sched_exit_thread() and sched_throw() themselves.
2306 */
2307void
2308sched_rem(struct thread *td)
2309{
2310	struct tdq *tdq;
2311	struct td_sched *ts;
2312
2313	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
2314	    td, td->td_name, td->td_priority, curthread,
2315	    curthread->td_name);
2316	ts = td->td_sched;
2317	tdq = TDQ_CPU(ts->ts_cpu);
2318	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2319	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2320	KASSERT(TD_ON_RUNQ(td),
2321	    ("sched_rem: thread not on run queue"));
2322	tdq_runq_rem(tdq, ts);
2323	tdq_load_rem(tdq, ts);
2324	TD_SET_CAN_RUN(td);
2325	if (td->td_priority == tdq->tdq_lowpri)
2326		tdq_setlowpri(tdq, NULL);
2327}
2328
2329/*
2330 * Fetch cpu utilization information.  Updates on demand.
2331 */
2332fixpt_t
2333sched_pctcpu(struct thread *td)
2334{
2335	fixpt_t pctcpu;
2336	struct td_sched *ts;
2337
2338	pctcpu = 0;
2339	ts = td->td_sched;
2340	if (ts == NULL)
2341		return (0);
2342
2343	thread_lock(td);
2344	if (ts->ts_ticks) {
2345		int rtick;
2346
2347		sched_pctcpu_update(ts);
2348		/* How many rtick per second ? */
2349		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2350		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2351	}
2352	thread_unlock(td);
2353
2354	return (pctcpu);
2355}
2356
2357/*
2358 * Enforce affinity settings for a thread.  Called after adjustments to
2359 * cpumask.
2360 */
2361void
2362sched_affinity(struct thread *td)
2363{
2364#ifdef SMP
2365	struct td_sched *ts;
2366	int cpu;
2367
2368	THREAD_LOCK_ASSERT(td, MA_OWNED);
2369	ts = td->td_sched;
2370	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2371		return;
2372	if (!TD_IS_RUNNING(td))
2373		return;
2374	td->td_flags |= TDF_NEEDRESCHED;
2375	if (!THREAD_CAN_MIGRATE(td))
2376		return;
2377	/*
2378	 * Assign the new cpu and force a switch before returning to
2379	 * userspace.  If the target thread is not running locally send
2380	 * an ipi to force the issue.
2381	 */
2382	cpu = ts->ts_cpu;
2383	ts->ts_cpu = sched_pickcpu(ts, 0);
2384	if (cpu != PCPU_GET(cpuid))
2385		ipi_selected(1 << cpu, IPI_PREEMPT);
2386#endif
2387}
2388
2389/*
2390 * Bind a thread to a target cpu.
2391 */
2392void
2393sched_bind(struct thread *td, int cpu)
2394{
2395	struct td_sched *ts;
2396
2397	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2398	ts = td->td_sched;
2399	if (ts->ts_flags & TSF_BOUND)
2400		sched_unbind(td);
2401	ts->ts_flags |= TSF_BOUND;
2402	sched_pin();
2403	if (PCPU_GET(cpuid) == cpu)
2404		return;
2405	ts->ts_cpu = cpu;
2406	/* When we return from mi_switch we'll be on the correct cpu. */
2407	mi_switch(SW_VOL, NULL);
2408}
2409
2410/*
2411 * Release a bound thread.
2412 */
2413void
2414sched_unbind(struct thread *td)
2415{
2416	struct td_sched *ts;
2417
2418	THREAD_LOCK_ASSERT(td, MA_OWNED);
2419	ts = td->td_sched;
2420	if ((ts->ts_flags & TSF_BOUND) == 0)
2421		return;
2422	ts->ts_flags &= ~TSF_BOUND;
2423	sched_unpin();
2424}
2425
2426int
2427sched_is_bound(struct thread *td)
2428{
2429	THREAD_LOCK_ASSERT(td, MA_OWNED);
2430	return (td->td_sched->ts_flags & TSF_BOUND);
2431}
2432
2433/*
2434 * Basic yield call.
2435 */
2436void
2437sched_relinquish(struct thread *td)
2438{
2439	thread_lock(td);
2440	SCHED_STAT_INC(switch_relinquish);
2441	mi_switch(SW_VOL, NULL);
2442	thread_unlock(td);
2443}
2444
2445/*
2446 * Return the total system load.
2447 */
2448int
2449sched_load(void)
2450{
2451#ifdef SMP
2452	int total;
2453	int i;
2454
2455	total = 0;
2456	for (i = 0; i <= mp_maxid; i++)
2457		total += TDQ_CPU(i)->tdq_sysload;
2458	return (total);
2459#else
2460	return (TDQ_SELF()->tdq_sysload);
2461#endif
2462}
2463
2464int
2465sched_sizeof_proc(void)
2466{
2467	return (sizeof(struct proc));
2468}
2469
2470int
2471sched_sizeof_thread(void)
2472{
2473	return (sizeof(struct thread) + sizeof(struct td_sched));
2474}
2475
2476/*
2477 * The actual idle process.
2478 */
2479void
2480sched_idletd(void *dummy)
2481{
2482	struct thread *td;
2483	struct tdq *tdq;
2484
2485	td = curthread;
2486	tdq = TDQ_SELF();
2487	mtx_assert(&Giant, MA_NOTOWNED);
2488	/* ULE relies on preemption for idle interruption. */
2489	for (;;) {
2490#ifdef SMP
2491		if (tdq_idled(tdq))
2492			cpu_idle();
2493#else
2494		cpu_idle();
2495#endif
2496	}
2497}
2498
2499/*
2500 * A CPU is entering for the first time or a thread is exiting.
2501 */
2502void
2503sched_throw(struct thread *td)
2504{
2505	struct thread *newtd;
2506	struct tdq *tdq;
2507
2508	tdq = TDQ_SELF();
2509	if (td == NULL) {
2510		/* Correct spinlock nesting and acquire the correct lock. */
2511		TDQ_LOCK(tdq);
2512		spinlock_exit();
2513	} else {
2514		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2515		tdq_load_rem(tdq, td->td_sched);
2516		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2517	}
2518	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2519	newtd = choosethread();
2520	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2521	PCPU_SET(switchtime, cpu_ticks());
2522	PCPU_SET(switchticks, ticks);
2523	cpu_throw(td, newtd);		/* doesn't return */
2524}
2525
2526/*
2527 * This is called from fork_exit().  Just acquire the correct locks and
2528 * let fork do the rest of the work.
2529 */
2530void
2531sched_fork_exit(struct thread *td)
2532{
2533	struct td_sched *ts;
2534	struct tdq *tdq;
2535	int cpuid;
2536
2537	/*
2538	 * Finish setting up thread glue so that it begins execution in a
2539	 * non-nested critical section with the scheduler lock held.
2540	 */
2541	cpuid = PCPU_GET(cpuid);
2542	tdq = TDQ_CPU(cpuid);
2543	ts = td->td_sched;
2544	if (TD_IS_IDLETHREAD(td))
2545		td->td_lock = TDQ_LOCKPTR(tdq);
2546	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2547	td->td_oncpu = cpuid;
2548	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2549	lock_profile_obtain_lock_success(
2550	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2551	tdq->tdq_lowpri = td->td_priority;
2552}
2553
2554static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0,
2555    "Scheduler");
2556SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2557    "Scheduler name");
2558SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2559    "Slice size for timeshare threads");
2560SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2561     "Interactivity score threshold");
2562SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW, &preempt_thresh,
2563     0,"Min priority for preemption, lower priorities have greater precedence");
2564SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost,
2565     0,"Controls whether static kernel priorities are assigned to sleeping threads.");
2566#ifdef SMP
2567SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2568    "Number of hz ticks to keep thread affinity for");
2569SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2570    "Enables the long-term load balancer");
2571SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2572    &balance_interval, 0,
2573    "Average frequency in stathz ticks to run the long-term balancer");
2574SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0,
2575    "Steals work from another hyper-threaded core on idle");
2576SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2577    "Attempts to steal work from other cores before idling");
2578SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2579    "Minimum load on remote cpu before we'll steal");
2580#endif
2581
2582/* ps compat.  All cpu percentages from ULE are weighted. */
2583static int ccpu = 0;
2584SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2585
2586
2587#define KERN_SWITCH_INCLUDE 1
2588#include "kern/kern_switch.c"
2589