sched_ule.c revision 170358
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 170358 2007-06-06 03:40:47Z jeff $");
29
30#include "opt_hwpmc_hooks.h"
31#include "opt_sched.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/kdb.h>
36#include <sys/kernel.h>
37#include <sys/ktr.h>
38#include <sys/lock.h>
39#include <sys/mutex.h>
40#include <sys/proc.h>
41#include <sys/resource.h>
42#include <sys/resourcevar.h>
43#include <sys/sched.h>
44#include <sys/smp.h>
45#include <sys/sx.h>
46#include <sys/sysctl.h>
47#include <sys/sysproto.h>
48#include <sys/turnstile.h>
49#include <sys/umtx.h>
50#include <sys/vmmeter.h>
51#ifdef KTRACE
52#include <sys/uio.h>
53#include <sys/ktrace.h>
54#endif
55
56#ifdef HWPMC_HOOKS
57#include <sys/pmckern.h>
58#endif
59
60#include <machine/cpu.h>
61#include <machine/smp.h>
62
63#ifndef PREEMPTION
64#error	"SCHED_ULE requires options PREEMPTION"
65#endif
66
67/*
68 * TODO:
69 *	Pick idle from affinity group or self group first.
70 *	Implement pick_score.
71 */
72
73#define	KTR_ULE	0x0		/* Enable for pickpri debugging. */
74
75/*
76 * Thread scheduler specific section.
77 */
78struct td_sched {
79	TAILQ_ENTRY(td_sched) ts_procq;	/* (j/z) Run queue. */
80	int		ts_flags;	/* (j) TSF_* flags. */
81	struct thread	*ts_thread;	/* (*) Active associated thread. */
82	u_char		ts_rqindex;	/* (j) Run queue index. */
83	int		ts_slptime;
84	int		ts_slice;
85	struct runq	*ts_runq;
86	u_char		ts_cpu;		/* CPU that we have affinity for. */
87	/* The following variables are only used for pctcpu calculation */
88	int		ts_ltick;	/* Last tick that we were running on */
89	int		ts_ftick;	/* First tick that we were running on */
90	int		ts_ticks;	/* Tick count */
91#ifdef SMP
92	int		ts_rltick;	/* Real last tick, for affinity. */
93#endif
94
95	/* originally from kg_sched */
96	u_int	skg_slptime;		/* Number of ticks we vol. slept */
97	u_int	skg_runtime;		/* Number of ticks we were running */
98};
99/* flags kept in ts_flags */
100#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
101#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
102
103static struct td_sched td_sched0;
104
105/*
106 * Cpu percentage computation macros and defines.
107 *
108 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
109 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
110 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
111 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
112 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
113 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
114 */
115#define	SCHED_TICK_SECS		10
116#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
117#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
118#define	SCHED_TICK_SHIFT	10
119#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
120#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
121
122/*
123 * These macros determine priorities for non-interactive threads.  They are
124 * assigned a priority based on their recent cpu utilization as expressed
125 * by the ratio of ticks to the tick total.  NHALF priorities at the start
126 * and end of the MIN to MAX timeshare range are only reachable with negative
127 * or positive nice respectively.
128 *
129 * PRI_RANGE:	Priority range for utilization dependent priorities.
130 * PRI_NRESV:	Number of nice values.
131 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
132 * PRI_NICE:	Determines the part of the priority inherited from nice.
133 */
134#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
135#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
136#define	SCHED_PRI_MIN		(PRI_MIN_TIMESHARE + SCHED_PRI_NHALF)
137#define	SCHED_PRI_MAX		(PRI_MAX_TIMESHARE - SCHED_PRI_NHALF)
138#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
139#define	SCHED_PRI_TICKS(ts)						\
140    (SCHED_TICK_HZ((ts)) /						\
141    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
142#define	SCHED_PRI_NICE(nice)	(nice)
143
144/*
145 * These determine the interactivity of a process.  Interactivity differs from
146 * cpu utilization in that it expresses the voluntary time slept vs time ran
147 * while cpu utilization includes all time not running.  This more accurately
148 * models the intent of the thread.
149 *
150 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
151 *		before throttling back.
152 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
153 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
154 * INTERACT_THRESH:	Threshhold for placement on the current runq.
155 */
156#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
157#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
158#define	SCHED_INTERACT_MAX	(100)
159#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
160#define	SCHED_INTERACT_THRESH	(30)
161
162/*
163 * tickincr:		Converts a stathz tick into a hz domain scaled by
164 *			the shift factor.  Without the shift the error rate
165 *			due to rounding would be unacceptably high.
166 * realstathz:		stathz is sometimes 0 and run off of hz.
167 * sched_slice:		Runtime of each thread before rescheduling.
168 */
169static int sched_interact = SCHED_INTERACT_THRESH;
170static int realstathz;
171static int tickincr;
172static int sched_slice;
173
174/*
175 * tdq - per processor runqs and statistics.
176 */
177struct tdq {
178	struct runq	tdq_idle;		/* Queue of IDLE threads. */
179	struct runq	tdq_timeshare;		/* timeshare run queue. */
180	struct runq	tdq_realtime;		/* real-time run queue. */
181	u_char		tdq_idx;		/* Current insert index. */
182	u_char		tdq_ridx;		/* Current removal index. */
183	short		tdq_flags;		/* Thread queue flags */
184	int		tdq_load;		/* Aggregate load. */
185#ifdef SMP
186	int		tdq_transferable;
187	LIST_ENTRY(tdq)	tdq_siblings;		/* Next in tdq group. */
188	struct tdq_group *tdq_group;		/* Our processor group. */
189#else
190	int		tdq_sysload;		/* For loadavg, !ITHD load. */
191#endif
192};
193
194#define	TDQF_BUSY	0x0001			/* Queue is marked as busy */
195
196#ifdef SMP
197/*
198 * tdq groups are groups of processors which can cheaply share threads.  When
199 * one processor in the group goes idle it will check the runqs of the other
200 * processors in its group prior to halting and waiting for an interrupt.
201 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
202 * In a numa environment we'd want an idle bitmap per group and a two tiered
203 * load balancer.
204 */
205struct tdq_group {
206	int	tdg_cpus;		/* Count of CPUs in this tdq group. */
207	cpumask_t tdg_cpumask;		/* Mask of cpus in this group. */
208	cpumask_t tdg_idlemask;		/* Idle cpus in this group. */
209	cpumask_t tdg_mask;		/* Bit mask for first cpu. */
210	int	tdg_load;		/* Total load of this group. */
211	int	tdg_transferable;	/* Transferable load of this group. */
212	LIST_HEAD(, tdq) tdg_members;	/* Linked list of all members. */
213};
214
215#define	SCHED_AFFINITY_DEFAULT	(hz / 100)
216#define	SCHED_AFFINITY(ts)	((ts)->ts_rltick > ticks - affinity)
217
218/*
219 * Run-time tunables.
220 */
221static int rebalance = 0;
222static int pick_pri = 0;
223static int affinity;
224static int tryself = 1;
225static int tryselfidle = 1;
226static int ipi_ast = 0;
227static int ipi_preempt = 1;
228static int ipi_thresh = PRI_MIN_KERN;
229static int steal_htt = 1;
230static int steal_busy = 1;
231static int busy_thresh = 4;
232static int topology = 0;
233
234/*
235 * One thread queue per processor.
236 */
237static volatile cpumask_t tdq_idle;
238static volatile cpumask_t tdq_busy;
239static int tdg_maxid;
240static struct tdq	tdq_cpu[MAXCPU];
241static struct tdq_group tdq_groups[MAXCPU];
242static int bal_tick;
243static int gbal_tick;
244static int balance_groups;
245
246#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
247#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
248#define	TDQ_ID(x)	((x) - tdq_cpu)
249#define	TDQ_GROUP(x)	(&tdq_groups[(x)])
250#else	/* !SMP */
251static struct tdq	tdq_cpu;
252
253#define	TDQ_ID(x)	(0)
254#define	TDQ_SELF()	(&tdq_cpu)
255#define	TDQ_CPU(x)	(&tdq_cpu)
256#endif
257
258static void sched_priority(struct thread *);
259static void sched_thread_priority(struct thread *, u_char);
260static int sched_interact_score(struct thread *);
261static void sched_interact_update(struct thread *);
262static void sched_interact_fork(struct thread *);
263static void sched_pctcpu_update(struct td_sched *);
264static inline void sched_pin_td(struct thread *td);
265static inline void sched_unpin_td(struct thread *td);
266
267/* Operations on per processor queues */
268static struct td_sched * tdq_choose(struct tdq *);
269static void tdq_setup(struct tdq *);
270static void tdq_load_add(struct tdq *, struct td_sched *);
271static void tdq_load_rem(struct tdq *, struct td_sched *);
272static __inline void tdq_runq_add(struct tdq *, struct td_sched *, int);
273static __inline void tdq_runq_rem(struct tdq *, struct td_sched *);
274void tdq_print(int cpu);
275static void runq_print(struct runq *rq);
276#ifdef SMP
277static int tdq_pickidle(struct tdq *, struct td_sched *);
278static int tdq_pickpri(struct tdq *, struct td_sched *, int);
279static struct td_sched *runq_steal(struct runq *);
280static void sched_balance(void);
281static void sched_balance_groups(void);
282static void sched_balance_group(struct tdq_group *);
283static void sched_balance_pair(struct tdq *, struct tdq *);
284static void sched_smp_tick(struct thread *);
285static void tdq_move(struct tdq *, int);
286static int tdq_idled(struct tdq *);
287static void tdq_notify(struct td_sched *);
288static struct td_sched *tdq_steal(struct tdq *, int);
289
290#define	THREAD_CAN_MIGRATE(td)	 ((td)->td_pinned == 0)
291#endif
292
293static void sched_setup(void *dummy);
294SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
295
296static void sched_initticks(void *dummy);
297SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, NULL)
298
299static inline void
300sched_pin_td(struct thread *td)
301{
302	td->td_pinned++;
303}
304
305static inline void
306sched_unpin_td(struct thread *td)
307{
308	td->td_pinned--;
309}
310
311static void
312runq_print(struct runq *rq)
313{
314	struct rqhead *rqh;
315	struct td_sched *ts;
316	int pri;
317	int j;
318	int i;
319
320	for (i = 0; i < RQB_LEN; i++) {
321		printf("\t\trunq bits %d 0x%zx\n",
322		    i, rq->rq_status.rqb_bits[i]);
323		for (j = 0; j < RQB_BPW; j++)
324			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
325				pri = j + (i << RQB_L2BPW);
326				rqh = &rq->rq_queues[pri];
327				TAILQ_FOREACH(ts, rqh, ts_procq) {
328					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
329					    ts->ts_thread, ts->ts_thread->td_proc->p_comm, ts->ts_thread->td_priority, ts->ts_rqindex, pri);
330				}
331			}
332	}
333}
334
335void
336tdq_print(int cpu)
337{
338	struct tdq *tdq;
339
340	tdq = TDQ_CPU(cpu);
341
342	printf("tdq:\n");
343	printf("\tload:           %d\n", tdq->tdq_load);
344	printf("\ttimeshare idx: %d\n", tdq->tdq_idx);
345	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
346	printf("\trealtime runq:\n");
347	runq_print(&tdq->tdq_realtime);
348	printf("\ttimeshare runq:\n");
349	runq_print(&tdq->tdq_timeshare);
350	printf("\tidle runq:\n");
351	runq_print(&tdq->tdq_idle);
352#ifdef SMP
353	printf("\tload transferable: %d\n", tdq->tdq_transferable);
354#endif
355}
356
357static __inline void
358tdq_runq_add(struct tdq *tdq, struct td_sched *ts, int flags)
359{
360#ifdef SMP
361	if (THREAD_CAN_MIGRATE(ts->ts_thread)) {
362		tdq->tdq_transferable++;
363		tdq->tdq_group->tdg_transferable++;
364		ts->ts_flags |= TSF_XFERABLE;
365		if (tdq->tdq_transferable >= busy_thresh &&
366		    (tdq->tdq_flags & TDQF_BUSY) == 0) {
367			tdq->tdq_flags |= TDQF_BUSY;
368			atomic_set_int(&tdq_busy, 1 << TDQ_ID(tdq));
369		}
370	}
371#endif
372	if (ts->ts_runq == &tdq->tdq_timeshare) {
373		u_char pri;
374
375		pri = ts->ts_thread->td_priority;
376		KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE,
377			("Invalid priority %d on timeshare runq", pri));
378		/*
379		 * This queue contains only priorities between MIN and MAX
380		 * realtime.  Use the whole queue to represent these values.
381		 */
382#define	TS_RQ_PPQ	(((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS)
383		if ((flags & SRQ_BORROWING) == 0) {
384			pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ;
385			pri = (pri + tdq->tdq_idx) % RQ_NQS;
386			/*
387			 * This effectively shortens the queue by one so we
388			 * can have a one slot difference between idx and
389			 * ridx while we wait for threads to drain.
390			 */
391			if (tdq->tdq_ridx != tdq->tdq_idx &&
392			    pri == tdq->tdq_ridx)
393				pri = (unsigned char)(pri - 1) % RQ_NQS;
394		} else
395			pri = tdq->tdq_ridx;
396		runq_add_pri(ts->ts_runq, ts, pri, flags);
397	} else
398		runq_add(ts->ts_runq, ts, flags);
399}
400
401static __inline void
402tdq_runq_rem(struct tdq *tdq, struct td_sched *ts)
403{
404#ifdef SMP
405	if (ts->ts_flags & TSF_XFERABLE) {
406		tdq->tdq_transferable--;
407		tdq->tdq_group->tdg_transferable--;
408		ts->ts_flags &= ~TSF_XFERABLE;
409		if (tdq->tdq_transferable < busy_thresh &&
410		    (tdq->tdq_flags & TDQF_BUSY)) {
411			atomic_clear_int(&tdq_busy, 1 << TDQ_ID(tdq));
412			tdq->tdq_flags &= ~TDQF_BUSY;
413		}
414	}
415#endif
416	if (ts->ts_runq == &tdq->tdq_timeshare) {
417		if (tdq->tdq_idx != tdq->tdq_ridx)
418			runq_remove_idx(ts->ts_runq, ts, &tdq->tdq_ridx);
419		else
420			runq_remove_idx(ts->ts_runq, ts, NULL);
421		/*
422		 * For timeshare threads we update the priority here so
423		 * the priority reflects the time we've been sleeping.
424		 */
425		ts->ts_ltick = ticks;
426		sched_pctcpu_update(ts);
427		sched_priority(ts->ts_thread);
428	} else
429		runq_remove(ts->ts_runq, ts);
430}
431
432static void
433tdq_load_add(struct tdq *tdq, struct td_sched *ts)
434{
435	int class;
436	mtx_assert(&sched_lock, MA_OWNED);
437	class = PRI_BASE(ts->ts_thread->td_pri_class);
438	tdq->tdq_load++;
439	CTR2(KTR_SCHED, "cpu %jd load: %d", TDQ_ID(tdq), tdq->tdq_load);
440	if (class != PRI_ITHD &&
441	    (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
442#ifdef SMP
443		tdq->tdq_group->tdg_load++;
444#else
445		tdq->tdq_sysload++;
446#endif
447}
448
449static void
450tdq_load_rem(struct tdq *tdq, struct td_sched *ts)
451{
452	int class;
453	mtx_assert(&sched_lock, MA_OWNED);
454	class = PRI_BASE(ts->ts_thread->td_pri_class);
455	if (class != PRI_ITHD &&
456	    (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0)
457#ifdef SMP
458		tdq->tdq_group->tdg_load--;
459#else
460		tdq->tdq_sysload--;
461#endif
462	tdq->tdq_load--;
463	CTR1(KTR_SCHED, "load: %d", tdq->tdq_load);
464	ts->ts_runq = NULL;
465}
466
467#ifdef SMP
468static void
469sched_smp_tick(struct thread *td)
470{
471	struct tdq *tdq;
472
473	tdq = TDQ_SELF();
474	if (rebalance) {
475		if (ticks >= bal_tick)
476			sched_balance();
477		if (ticks >= gbal_tick && balance_groups)
478			sched_balance_groups();
479	}
480	td->td_sched->ts_rltick = ticks;
481}
482
483/*
484 * sched_balance is a simple CPU load balancing algorithm.  It operates by
485 * finding the least loaded and most loaded cpu and equalizing their load
486 * by migrating some processes.
487 *
488 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
489 * installations will only have 2 cpus.  Secondly, load balancing too much at
490 * once can have an unpleasant effect on the system.  The scheduler rarely has
491 * enough information to make perfect decisions.  So this algorithm chooses
492 * algorithm simplicity and more gradual effects on load in larger systems.
493 *
494 * It could be improved by considering the priorities and slices assigned to
495 * each task prior to balancing them.  There are many pathological cases with
496 * any approach and so the semi random algorithm below may work as well as any.
497 *
498 */
499static void
500sched_balance(void)
501{
502	struct tdq_group *high;
503	struct tdq_group *low;
504	struct tdq_group *tdg;
505	int cnt;
506	int i;
507
508	bal_tick = ticks + (random() % (hz * 2));
509	if (smp_started == 0)
510		return;
511	low = high = NULL;
512	i = random() % (tdg_maxid + 1);
513	for (cnt = 0; cnt <= tdg_maxid; cnt++) {
514		tdg = TDQ_GROUP(i);
515		/*
516		 * Find the CPU with the highest load that has some
517		 * threads to transfer.
518		 */
519		if ((high == NULL || tdg->tdg_load > high->tdg_load)
520		    && tdg->tdg_transferable)
521			high = tdg;
522		if (low == NULL || tdg->tdg_load < low->tdg_load)
523			low = tdg;
524		if (++i > tdg_maxid)
525			i = 0;
526	}
527	if (low != NULL && high != NULL && high != low)
528		sched_balance_pair(LIST_FIRST(&high->tdg_members),
529		    LIST_FIRST(&low->tdg_members));
530}
531
532static void
533sched_balance_groups(void)
534{
535	int i;
536
537	gbal_tick = ticks + (random() % (hz * 2));
538	mtx_assert(&sched_lock, MA_OWNED);
539	if (smp_started)
540		for (i = 0; i <= tdg_maxid; i++)
541			sched_balance_group(TDQ_GROUP(i));
542}
543
544static void
545sched_balance_group(struct tdq_group *tdg)
546{
547	struct tdq *tdq;
548	struct tdq *high;
549	struct tdq *low;
550	int load;
551
552	if (tdg->tdg_transferable == 0)
553		return;
554	low = NULL;
555	high = NULL;
556	LIST_FOREACH(tdq, &tdg->tdg_members, tdq_siblings) {
557		load = tdq->tdq_load;
558		if (high == NULL || load > high->tdq_load)
559			high = tdq;
560		if (low == NULL || load < low->tdq_load)
561			low = tdq;
562	}
563	if (high != NULL && low != NULL && high != low)
564		sched_balance_pair(high, low);
565}
566
567static void
568sched_balance_pair(struct tdq *high, struct tdq *low)
569{
570	int transferable;
571	int high_load;
572	int low_load;
573	int move;
574	int diff;
575	int i;
576
577	/*
578	 * If we're transfering within a group we have to use this specific
579	 * tdq's transferable count, otherwise we can steal from other members
580	 * of the group.
581	 */
582	if (high->tdq_group == low->tdq_group) {
583		transferable = high->tdq_transferable;
584		high_load = high->tdq_load;
585		low_load = low->tdq_load;
586	} else {
587		transferable = high->tdq_group->tdg_transferable;
588		high_load = high->tdq_group->tdg_load;
589		low_load = low->tdq_group->tdg_load;
590	}
591	if (transferable == 0)
592		return;
593	/*
594	 * Determine what the imbalance is and then adjust that to how many
595	 * threads we actually have to give up (transferable).
596	 */
597	diff = high_load - low_load;
598	move = diff / 2;
599	if (diff & 0x1)
600		move++;
601	move = min(move, transferable);
602	for (i = 0; i < move; i++)
603		tdq_move(high, TDQ_ID(low));
604	return;
605}
606
607static void
608tdq_move(struct tdq *from, int cpu)
609{
610	struct tdq *tdq;
611	struct tdq *to;
612	struct td_sched *ts;
613
614	tdq = from;
615	to = TDQ_CPU(cpu);
616	ts = tdq_steal(tdq, 1);
617	if (ts == NULL) {
618		struct tdq_group *tdg;
619
620		tdg = tdq->tdq_group;
621		LIST_FOREACH(tdq, &tdg->tdg_members, tdq_siblings) {
622			if (tdq == from || tdq->tdq_transferable == 0)
623				continue;
624			ts = tdq_steal(tdq, 1);
625			break;
626		}
627		if (ts == NULL)
628			panic("tdq_move: No threads available with a "
629			    "transferable count of %d\n",
630			    tdg->tdg_transferable);
631	}
632	if (tdq == to)
633		return;
634	sched_rem(ts->ts_thread);
635	ts->ts_cpu = cpu;
636	sched_pin_td(ts->ts_thread);
637	sched_add(ts->ts_thread, SRQ_YIELDING);
638	sched_unpin_td(ts->ts_thread);
639}
640
641static int
642tdq_idled(struct tdq *tdq)
643{
644	struct tdq_group *tdg;
645	struct tdq *steal;
646	struct td_sched *ts;
647
648	tdg = tdq->tdq_group;
649	/*
650	 * If we're in a cpu group, try and steal threads from another cpu in
651	 * the group before idling.
652	 */
653	if (steal_htt && tdg->tdg_cpus > 1 && tdg->tdg_transferable) {
654		LIST_FOREACH(steal, &tdg->tdg_members, tdq_siblings) {
655			if (steal == tdq || steal->tdq_transferable == 0)
656				continue;
657			ts = tdq_steal(steal, 0);
658			if (ts)
659				goto steal;
660		}
661	}
662	if (steal_busy) {
663		while (tdq_busy) {
664			int cpu;
665
666			cpu = ffs(tdq_busy);
667			if (cpu == 0)
668				break;
669			cpu--;
670			steal = TDQ_CPU(cpu);
671			if (steal->tdq_transferable == 0)
672				continue;
673			ts = tdq_steal(steal, 1);
674			if (ts == NULL)
675				continue;
676			CTR5(KTR_ULE,
677			    "tdq_idled: stealing td %p(%s) pri %d from %d busy 0x%X",
678			    ts->ts_thread, ts->ts_thread->td_proc->p_comm,
679			    ts->ts_thread->td_priority, cpu, tdq_busy);
680			goto steal;
681		}
682	}
683	/*
684	 * We only set the idled bit when all of the cpus in the group are
685	 * idle.  Otherwise we could get into a situation where a thread bounces
686	 * back and forth between two idle cores on seperate physical CPUs.
687	 */
688	tdg->tdg_idlemask |= PCPU_GET(cpumask);
689	if (tdg->tdg_idlemask == tdg->tdg_cpumask)
690		atomic_set_int(&tdq_idle, tdg->tdg_mask);
691	return (1);
692steal:
693	sched_rem(ts->ts_thread);
694	ts->ts_cpu = PCPU_GET(cpuid);
695	sched_pin_td(ts->ts_thread);
696	sched_add(ts->ts_thread, SRQ_YIELDING);
697	sched_unpin_td(ts->ts_thread);
698
699	return (0);
700}
701
702static void
703tdq_notify(struct td_sched *ts)
704{
705	struct thread *ctd;
706	struct pcpu *pcpu;
707	int cpri;
708	int pri;
709	int cpu;
710
711	cpu = ts->ts_cpu;
712	pri = ts->ts_thread->td_priority;
713	pcpu = pcpu_find(cpu);
714	ctd = pcpu->pc_curthread;
715	cpri = ctd->td_priority;
716
717	/*
718	 * If our priority is not better than the current priority there is
719	 * nothing to do.
720	 */
721	if (pri > cpri)
722		return;
723	/*
724	 * Always IPI idle.
725	 */
726	if (cpri > PRI_MIN_IDLE)
727		goto sendipi;
728	/*
729	 * If we're realtime or better and there is timeshare or worse running
730	 * send an IPI.
731	 */
732	if (pri < PRI_MAX_REALTIME && cpri > PRI_MAX_REALTIME)
733		goto sendipi;
734	/*
735	 * Otherwise only IPI if we exceed the threshold.
736	 */
737	if (pri > ipi_thresh)
738		return;
739sendipi:
740	ctd->td_flags |= TDF_NEEDRESCHED;
741	if (cpri < PRI_MIN_IDLE) {
742		if (ipi_ast)
743			ipi_selected(1 << cpu, IPI_AST);
744		else if (ipi_preempt)
745			ipi_selected(1 << cpu, IPI_PREEMPT);
746	} else
747		ipi_selected(1 << cpu, IPI_PREEMPT);
748}
749
750static struct td_sched *
751runq_steal(struct runq *rq)
752{
753	struct rqhead *rqh;
754	struct rqbits *rqb;
755	struct td_sched *ts;
756	int word;
757	int bit;
758
759	mtx_assert(&sched_lock, MA_OWNED);
760	rqb = &rq->rq_status;
761	for (word = 0; word < RQB_LEN; word++) {
762		if (rqb->rqb_bits[word] == 0)
763			continue;
764		for (bit = 0; bit < RQB_BPW; bit++) {
765			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
766				continue;
767			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
768			TAILQ_FOREACH(ts, rqh, ts_procq) {
769				if (THREAD_CAN_MIGRATE(ts->ts_thread))
770					return (ts);
771			}
772		}
773	}
774	return (NULL);
775}
776
777static struct td_sched *
778tdq_steal(struct tdq *tdq, int stealidle)
779{
780	struct td_sched *ts;
781
782	/*
783	 * Steal from next first to try to get a non-interactive task that
784	 * may not have run for a while.
785	 * XXX Need to effect steal order for timeshare threads.
786	 */
787	if ((ts = runq_steal(&tdq->tdq_realtime)) != NULL)
788		return (ts);
789	if ((ts = runq_steal(&tdq->tdq_timeshare)) != NULL)
790		return (ts);
791	if (stealidle)
792		return (runq_steal(&tdq->tdq_idle));
793	return (NULL);
794}
795
796int
797tdq_pickidle(struct tdq *tdq, struct td_sched *ts)
798{
799	struct tdq_group *tdg;
800	int self;
801	int cpu;
802
803	self = PCPU_GET(cpuid);
804	if (smp_started == 0)
805		return (self);
806	/*
807	 * If the current CPU has idled, just run it here.
808	 */
809	if ((tdq->tdq_group->tdg_idlemask & PCPU_GET(cpumask)) != 0)
810		return (self);
811	/*
812	 * Try the last group we ran on.
813	 */
814	tdg = TDQ_CPU(ts->ts_cpu)->tdq_group;
815	cpu = ffs(tdg->tdg_idlemask);
816	if (cpu)
817		return (cpu - 1);
818	/*
819	 * Search for an idle group.
820	 */
821	cpu = ffs(tdq_idle);
822	if (cpu)
823		return (cpu - 1);
824	/*
825	 * XXX If there are no idle groups, check for an idle core.
826	 */
827	/*
828	 * No idle CPUs?
829	 */
830	return (self);
831}
832
833static int
834tdq_pickpri(struct tdq *tdq, struct td_sched *ts, int flags)
835{
836	struct pcpu *pcpu;
837	int lowpri;
838	int lowcpu;
839	int lowload;
840	int load;
841	int self;
842	int pri;
843	int cpu;
844
845	self = PCPU_GET(cpuid);
846	if (smp_started == 0)
847		return (self);
848
849	pri = ts->ts_thread->td_priority;
850	/*
851	 * Regardless of affinity, if the last cpu is idle send it there.
852	 */
853	pcpu = pcpu_find(ts->ts_cpu);
854	if (pcpu->pc_curthread->td_priority > PRI_MIN_IDLE) {
855		CTR5(KTR_ULE,
856		    "ts_cpu %d idle, ltick %d ticks %d pri %d curthread %d",
857		    ts->ts_cpu, ts->ts_rltick, ticks, pri,
858		    pcpu->pc_curthread->td_priority);
859		return (ts->ts_cpu);
860	}
861	/*
862	 * If we have affinity, try to place it on the cpu we last ran on.
863	 */
864	if (SCHED_AFFINITY(ts) && pcpu->pc_curthread->td_priority > pri) {
865		CTR5(KTR_ULE,
866		    "affinity for %d, ltick %d ticks %d pri %d curthread %d",
867		    ts->ts_cpu, ts->ts_rltick, ticks, pri,
868		    pcpu->pc_curthread->td_priority);
869		return (ts->ts_cpu);
870	}
871	/*
872	 * Try ourself first; If we're running something lower priority this
873	 * may have some locality with the waking thread and execute faster
874	 * here.
875	 */
876	if (tryself) {
877		/*
878		 * If we're being awoken by an interrupt thread or the waker
879		 * is going right to sleep run here as well.
880		 */
881		if ((TDQ_SELF()->tdq_load == 1) && (flags & SRQ_YIELDING ||
882		    curthread->td_pri_class == PRI_ITHD)) {
883			CTR2(KTR_ULE, "tryself load %d flags %d",
884			    TDQ_SELF()->tdq_load, flags);
885			return (self);
886		}
887	}
888	/*
889	 * Look for an idle group.
890	 */
891	CTR1(KTR_ULE, "tdq_idle %X", tdq_idle);
892	cpu = ffs(tdq_idle);
893	if (cpu)
894		return (cpu - 1);
895	if (tryselfidle && pri < curthread->td_priority) {
896		CTR1(KTR_ULE, "tryself %d",
897		    curthread->td_priority);
898		return (self);
899	}
900	/*
901 	 * Now search for the cpu running the lowest priority thread with
902	 * the least load.
903	 */
904	lowload = 0;
905	lowpri = lowcpu = 0;
906	for (cpu = 0; cpu <= mp_maxid; cpu++) {
907		if (CPU_ABSENT(cpu))
908			continue;
909		pcpu = pcpu_find(cpu);
910		pri = pcpu->pc_curthread->td_priority;
911		CTR4(KTR_ULE,
912		    "cpu %d pri %d lowcpu %d lowpri %d",
913		    cpu, pri, lowcpu, lowpri);
914		if (pri < lowpri)
915			continue;
916		load = TDQ_CPU(cpu)->tdq_load;
917		if (lowpri && lowpri == pri && load > lowload)
918			continue;
919		lowpri = pri;
920		lowcpu = cpu;
921		lowload = load;
922	}
923
924	return (lowcpu);
925}
926
927#endif	/* SMP */
928
929/*
930 * Pick the highest priority task we have and return it.
931 */
932
933static struct td_sched *
934tdq_choose(struct tdq *tdq)
935{
936	struct td_sched *ts;
937
938	mtx_assert(&sched_lock, MA_OWNED);
939
940	ts = runq_choose(&tdq->tdq_realtime);
941	if (ts != NULL) {
942		KASSERT(ts->ts_thread->td_priority <= PRI_MAX_REALTIME,
943		    ("tdq_choose: Invalid priority on realtime queue %d",
944		    ts->ts_thread->td_priority));
945		return (ts);
946	}
947	ts = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
948	if (ts != NULL) {
949		KASSERT(ts->ts_thread->td_priority <= PRI_MAX_TIMESHARE &&
950		    ts->ts_thread->td_priority >= PRI_MIN_TIMESHARE,
951		    ("tdq_choose: Invalid priority on timeshare queue %d",
952		    ts->ts_thread->td_priority));
953		return (ts);
954	}
955
956	ts = runq_choose(&tdq->tdq_idle);
957	if (ts != NULL) {
958		KASSERT(ts->ts_thread->td_priority >= PRI_MIN_IDLE,
959		    ("tdq_choose: Invalid priority on idle queue %d",
960		    ts->ts_thread->td_priority));
961		return (ts);
962	}
963
964	return (NULL);
965}
966
967static void
968tdq_setup(struct tdq *tdq)
969{
970	runq_init(&tdq->tdq_realtime);
971	runq_init(&tdq->tdq_timeshare);
972	runq_init(&tdq->tdq_idle);
973	tdq->tdq_load = 0;
974}
975
976static void
977sched_setup(void *dummy)
978{
979#ifdef SMP
980	int i;
981#endif
982
983	/*
984	 * To avoid divide-by-zero, we set realstathz a dummy value
985	 * in case which sched_clock() called before sched_initticks().
986	 */
987	realstathz = hz;
988	sched_slice = (realstathz/10);	/* ~100ms */
989	tickincr = 1 << SCHED_TICK_SHIFT;
990
991#ifdef SMP
992	balance_groups = 0;
993	/*
994	 * Initialize the tdqs.
995	 */
996	for (i = 0; i < MAXCPU; i++) {
997		struct tdq *tdq;
998
999		tdq = &tdq_cpu[i];
1000		tdq_setup(&tdq_cpu[i]);
1001	}
1002	if (smp_topology == NULL) {
1003		struct tdq_group *tdg;
1004		struct tdq *tdq;
1005		int cpus;
1006
1007		for (cpus = 0, i = 0; i < MAXCPU; i++) {
1008			if (CPU_ABSENT(i))
1009				continue;
1010			tdq = &tdq_cpu[i];
1011			tdg = &tdq_groups[cpus];
1012			/*
1013			 * Setup a tdq group with one member.
1014			 */
1015			tdq->tdq_transferable = 0;
1016			tdq->tdq_group = tdg;
1017			tdg->tdg_cpus = 1;
1018			tdg->tdg_idlemask = 0;
1019			tdg->tdg_cpumask = tdg->tdg_mask = 1 << i;
1020			tdg->tdg_load = 0;
1021			tdg->tdg_transferable = 0;
1022			LIST_INIT(&tdg->tdg_members);
1023			LIST_INSERT_HEAD(&tdg->tdg_members, tdq, tdq_siblings);
1024			cpus++;
1025		}
1026		tdg_maxid = cpus - 1;
1027	} else {
1028		struct tdq_group *tdg;
1029		struct cpu_group *cg;
1030		int j;
1031
1032		topology = 1;
1033		for (i = 0; i < smp_topology->ct_count; i++) {
1034			cg = &smp_topology->ct_group[i];
1035			tdg = &tdq_groups[i];
1036			/*
1037			 * Initialize the group.
1038			 */
1039			tdg->tdg_idlemask = 0;
1040			tdg->tdg_load = 0;
1041			tdg->tdg_transferable = 0;
1042			tdg->tdg_cpus = cg->cg_count;
1043			tdg->tdg_cpumask = cg->cg_mask;
1044			LIST_INIT(&tdg->tdg_members);
1045			/*
1046			 * Find all of the group members and add them.
1047			 */
1048			for (j = 0; j < MAXCPU; j++) {
1049				if ((cg->cg_mask & (1 << j)) != 0) {
1050					if (tdg->tdg_mask == 0)
1051						tdg->tdg_mask = 1 << j;
1052					tdq_cpu[j].tdq_transferable = 0;
1053					tdq_cpu[j].tdq_group = tdg;
1054					LIST_INSERT_HEAD(&tdg->tdg_members,
1055					    &tdq_cpu[j], tdq_siblings);
1056				}
1057			}
1058			if (tdg->tdg_cpus > 1)
1059				balance_groups = 1;
1060		}
1061		tdg_maxid = smp_topology->ct_count - 1;
1062	}
1063	/*
1064	 * Stagger the group and global load balancer so they do not
1065	 * interfere with each other.
1066	 */
1067	bal_tick = ticks + hz;
1068	if (balance_groups)
1069		gbal_tick = ticks + (hz / 2);
1070#else
1071	tdq_setup(TDQ_SELF());
1072#endif
1073	mtx_lock_spin(&sched_lock);
1074	tdq_load_add(TDQ_SELF(), &td_sched0);
1075	mtx_unlock_spin(&sched_lock);
1076}
1077
1078/* ARGSUSED */
1079static void
1080sched_initticks(void *dummy)
1081{
1082	mtx_lock_spin(&sched_lock);
1083	realstathz = stathz ? stathz : hz;
1084	sched_slice = (realstathz/10);	/* ~100ms */
1085
1086	/*
1087	 * tickincr is shifted out by 10 to avoid rounding errors due to
1088	 * hz not being evenly divisible by stathz on all platforms.
1089	 */
1090	tickincr = (hz << SCHED_TICK_SHIFT) / realstathz;
1091	/*
1092	 * This does not work for values of stathz that are more than
1093	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1094	 */
1095	if (tickincr == 0)
1096		tickincr = 1;
1097#ifdef SMP
1098	affinity = SCHED_AFFINITY_DEFAULT;
1099#endif
1100	mtx_unlock_spin(&sched_lock);
1101}
1102
1103
1104/*
1105 * Scale the scheduling priority according to the "interactivity" of this
1106 * process.
1107 */
1108static void
1109sched_priority(struct thread *td)
1110{
1111	int score;
1112	int pri;
1113
1114	if (td->td_pri_class != PRI_TIMESHARE)
1115		return;
1116	/*
1117	 * If the score is interactive we place the thread in the realtime
1118	 * queue with a priority that is less than kernel and interrupt
1119	 * priorities.  These threads are not subject to nice restrictions.
1120	 *
1121	 * Scores greater than this are placed on the normal realtime queue
1122	 * where the priority is partially decided by the most recent cpu
1123	 * utilization and the rest is decided by nice value.
1124	 */
1125	score = sched_interact_score(td);
1126	if (score < sched_interact) {
1127		pri = PRI_MIN_REALTIME;
1128		pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact)
1129		    * score;
1130		KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME,
1131		    ("sched_priority: invalid interactive priority %d score %d",
1132		    pri, score));
1133	} else {
1134		pri = SCHED_PRI_MIN;
1135		if (td->td_sched->ts_ticks)
1136			pri += SCHED_PRI_TICKS(td->td_sched);
1137		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1138		if (!(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE)) {
1139			static int once = 1;
1140			if (once) {
1141				printf("sched_priority: invalid priority %d",
1142				    pri);
1143				printf("nice %d, ticks %d ftick %d ltick %d tick pri %d\n",
1144				    td->td_proc->p_nice,
1145				    td->td_sched->ts_ticks,
1146				    td->td_sched->ts_ftick,
1147				    td->td_sched->ts_ltick,
1148				    SCHED_PRI_TICKS(td->td_sched));
1149				once = 0;
1150			}
1151			pri = min(max(pri, PRI_MIN_TIMESHARE),
1152			    PRI_MAX_TIMESHARE);
1153		}
1154	}
1155	sched_user_prio(td, pri);
1156
1157	return;
1158}
1159
1160/*
1161 * This routine enforces a maximum limit on the amount of scheduling history
1162 * kept.  It is called after either the slptime or runtime is adjusted.
1163 */
1164static void
1165sched_interact_update(struct thread *td)
1166{
1167	struct td_sched *ts;
1168	u_int sum;
1169
1170	ts = td->td_sched;
1171	sum = ts->skg_runtime + ts->skg_slptime;
1172	if (sum < SCHED_SLP_RUN_MAX)
1173		return;
1174	/*
1175	 * This only happens from two places:
1176	 * 1) We have added an unusual amount of run time from fork_exit.
1177	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1178	 */
1179	if (sum > SCHED_SLP_RUN_MAX * 2) {
1180		if (ts->skg_runtime > ts->skg_slptime) {
1181			ts->skg_runtime = SCHED_SLP_RUN_MAX;
1182			ts->skg_slptime = 1;
1183		} else {
1184			ts->skg_slptime = SCHED_SLP_RUN_MAX;
1185			ts->skg_runtime = 1;
1186		}
1187		return;
1188	}
1189	/*
1190	 * If we have exceeded by more than 1/5th then the algorithm below
1191	 * will not bring us back into range.  Dividing by two here forces
1192	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1193	 */
1194	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1195		ts->skg_runtime /= 2;
1196		ts->skg_slptime /= 2;
1197		return;
1198	}
1199	ts->skg_runtime = (ts->skg_runtime / 5) * 4;
1200	ts->skg_slptime = (ts->skg_slptime / 5) * 4;
1201}
1202
1203static void
1204sched_interact_fork(struct thread *td)
1205{
1206	int ratio;
1207	int sum;
1208
1209	sum = td->td_sched->skg_runtime + td->td_sched->skg_slptime;
1210	if (sum > SCHED_SLP_RUN_FORK) {
1211		ratio = sum / SCHED_SLP_RUN_FORK;
1212		td->td_sched->skg_runtime /= ratio;
1213		td->td_sched->skg_slptime /= ratio;
1214	}
1215}
1216
1217static int
1218sched_interact_score(struct thread *td)
1219{
1220	int div;
1221
1222	if (td->td_sched->skg_runtime > td->td_sched->skg_slptime) {
1223		div = max(1, td->td_sched->skg_runtime / SCHED_INTERACT_HALF);
1224		return (SCHED_INTERACT_HALF +
1225		    (SCHED_INTERACT_HALF - (td->td_sched->skg_slptime / div)));
1226	}
1227	if (td->td_sched->skg_slptime > td->td_sched->skg_runtime) {
1228		div = max(1, td->td_sched->skg_slptime / SCHED_INTERACT_HALF);
1229		return (td->td_sched->skg_runtime / div);
1230	}
1231	/* runtime == slptime */
1232	if (td->td_sched->skg_runtime)
1233		return (SCHED_INTERACT_HALF);
1234
1235	/*
1236	 * This can happen if slptime and runtime are 0.
1237	 */
1238	return (0);
1239
1240}
1241
1242/*
1243 * Called from proc0_init() to bootstrap the scheduler.
1244 */
1245void
1246schedinit(void)
1247{
1248
1249	/*
1250	 * Set up the scheduler specific parts of proc0.
1251	 */
1252	proc0.p_sched = NULL; /* XXX */
1253	thread0.td_sched = &td_sched0;
1254	thread0.td_lock = &sched_lock;
1255	td_sched0.ts_ltick = ticks;
1256	td_sched0.ts_ftick = ticks;
1257	td_sched0.ts_thread = &thread0;
1258}
1259
1260/*
1261 * This is only somewhat accurate since given many processes of the same
1262 * priority they will switch when their slices run out, which will be
1263 * at most sched_slice stathz ticks.
1264 */
1265int
1266sched_rr_interval(void)
1267{
1268
1269	/* Convert sched_slice to hz */
1270	return (hz/(realstathz/sched_slice));
1271}
1272
1273static void
1274sched_pctcpu_update(struct td_sched *ts)
1275{
1276
1277	if (ts->ts_ticks == 0)
1278		return;
1279	if (ticks - (hz / 10) < ts->ts_ltick &&
1280	    SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX)
1281		return;
1282	/*
1283	 * Adjust counters and watermark for pctcpu calc.
1284	 */
1285	if (ts->ts_ltick > ticks - SCHED_TICK_TARG)
1286		ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) *
1287			    SCHED_TICK_TARG;
1288	else
1289		ts->ts_ticks = 0;
1290	ts->ts_ltick = ticks;
1291	ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG;
1292}
1293
1294static void
1295sched_thread_priority(struct thread *td, u_char prio)
1296{
1297	struct td_sched *ts;
1298
1299	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1300	    td, td->td_proc->p_comm, td->td_priority, prio, curthread,
1301	    curthread->td_proc->p_comm);
1302	ts = td->td_sched;
1303	THREAD_LOCK_ASSERT(td, MA_OWNED);
1304	if (td->td_priority == prio)
1305		return;
1306
1307	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1308		/*
1309		 * If the priority has been elevated due to priority
1310		 * propagation, we may have to move ourselves to a new
1311		 * queue.  This could be optimized to not re-add in some
1312		 * cases.
1313		 */
1314		MPASS(td->td_lock == &sched_lock);
1315		sched_rem(td);
1316		td->td_priority = prio;
1317		sched_add(td, SRQ_BORROWING|SRQ_OURSELF);
1318	} else
1319		td->td_priority = prio;
1320}
1321
1322/*
1323 * Update a thread's priority when it is lent another thread's
1324 * priority.
1325 */
1326void
1327sched_lend_prio(struct thread *td, u_char prio)
1328{
1329
1330	td->td_flags |= TDF_BORROWING;
1331	sched_thread_priority(td, prio);
1332}
1333
1334/*
1335 * Restore a thread's priority when priority propagation is
1336 * over.  The prio argument is the minimum priority the thread
1337 * needs to have to satisfy other possible priority lending
1338 * requests.  If the thread's regular priority is less
1339 * important than prio, the thread will keep a priority boost
1340 * of prio.
1341 */
1342void
1343sched_unlend_prio(struct thread *td, u_char prio)
1344{
1345	u_char base_pri;
1346
1347	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1348	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1349		base_pri = td->td_user_pri;
1350	else
1351		base_pri = td->td_base_pri;
1352	if (prio >= base_pri) {
1353		td->td_flags &= ~TDF_BORROWING;
1354		sched_thread_priority(td, base_pri);
1355	} else
1356		sched_lend_prio(td, prio);
1357}
1358
1359void
1360sched_prio(struct thread *td, u_char prio)
1361{
1362	u_char oldprio;
1363
1364	/* First, update the base priority. */
1365	td->td_base_pri = prio;
1366
1367	/*
1368	 * If the thread is borrowing another thread's priority, don't
1369	 * ever lower the priority.
1370	 */
1371	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1372		return;
1373
1374	/* Change the real priority. */
1375	oldprio = td->td_priority;
1376	sched_thread_priority(td, prio);
1377
1378	/*
1379	 * If the thread is on a turnstile, then let the turnstile update
1380	 * its state.
1381	 */
1382	if (TD_ON_LOCK(td) && oldprio != prio)
1383		turnstile_adjust(td, oldprio);
1384}
1385
1386void
1387sched_user_prio(struct thread *td, u_char prio)
1388{
1389	u_char oldprio;
1390
1391	td->td_base_user_pri = prio;
1392	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
1393                return;
1394	oldprio = td->td_user_pri;
1395	td->td_user_pri = prio;
1396
1397	if (TD_ON_UPILOCK(td) && oldprio != prio)
1398		umtx_pi_adjust(td, oldprio);
1399}
1400
1401void
1402sched_lend_user_prio(struct thread *td, u_char prio)
1403{
1404	u_char oldprio;
1405
1406	td->td_flags |= TDF_UBORROWING;
1407
1408	oldprio = td->td_user_pri;
1409	td->td_user_pri = prio;
1410
1411	if (TD_ON_UPILOCK(td) && oldprio != prio)
1412		umtx_pi_adjust(td, oldprio);
1413}
1414
1415void
1416sched_unlend_user_prio(struct thread *td, u_char prio)
1417{
1418	u_char base_pri;
1419
1420	base_pri = td->td_base_user_pri;
1421	if (prio >= base_pri) {
1422		td->td_flags &= ~TDF_UBORROWING;
1423		sched_user_prio(td, base_pri);
1424	} else
1425		sched_lend_user_prio(td, prio);
1426}
1427
1428void
1429sched_switch(struct thread *td, struct thread *newtd, int flags)
1430{
1431	struct tdq *tdq;
1432	struct td_sched *ts;
1433	int preempt;
1434
1435	THREAD_LOCK_ASSERT(td, MA_OWNED);
1436
1437	preempt = flags & SW_PREEMPT;
1438	tdq = TDQ_SELF();
1439	ts = td->td_sched;
1440	td->td_lastcpu = td->td_oncpu;
1441	td->td_oncpu = NOCPU;
1442	td->td_flags &= ~TDF_NEEDRESCHED;
1443	td->td_owepreempt = 0;
1444	/*
1445	 * If the thread has been assigned it may be in the process of switching
1446	 * to the new cpu.  This is the case in sched_bind().
1447	 */
1448	/*
1449	 * Switch to the sched lock to fix things up and pick
1450	 * a new thread.
1451	 */
1452	if (td->td_lock != &sched_lock) {
1453		mtx_lock_spin(&sched_lock);
1454		thread_unlock(td);
1455	}
1456	if (TD_IS_IDLETHREAD(td)) {
1457		MPASS(td->td_lock == &sched_lock);
1458		TD_SET_CAN_RUN(td);
1459	} else if (TD_IS_RUNNING(td)) {
1460		/*
1461		 * Don't allow the thread to migrate
1462		 * from a preemption.
1463		 */
1464		tdq_load_rem(tdq, ts);
1465		if (preempt)
1466			sched_pin_td(td);
1467		sched_add(td, preempt ?
1468		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1469		    SRQ_OURSELF|SRQ_YIELDING);
1470		if (preempt)
1471			sched_unpin_td(td);
1472	} else
1473		tdq_load_rem(tdq, ts);
1474	mtx_assert(&sched_lock, MA_OWNED);
1475	if (newtd != NULL) {
1476		/*
1477		 * If we bring in a thread account for it as if it had been
1478		 * added to the run queue and then chosen.
1479		 */
1480		TD_SET_RUNNING(newtd);
1481		tdq_load_add(TDQ_SELF(), newtd->td_sched);
1482	} else
1483		newtd = choosethread();
1484	if (td != newtd) {
1485#ifdef	HWPMC_HOOKS
1486		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1487			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1488#endif
1489
1490		cpu_switch(td, newtd, td->td_lock);
1491#ifdef	HWPMC_HOOKS
1492		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1493			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1494#endif
1495	}
1496	sched_lock.mtx_lock = (uintptr_t)td;
1497	td->td_oncpu = PCPU_GET(cpuid);
1498	MPASS(td->td_lock == &sched_lock);
1499}
1500
1501void
1502sched_nice(struct proc *p, int nice)
1503{
1504	struct thread *td;
1505
1506	PROC_LOCK_ASSERT(p, MA_OWNED);
1507	PROC_SLOCK_ASSERT(p, MA_OWNED);
1508
1509	p->p_nice = nice;
1510	FOREACH_THREAD_IN_PROC(p, td) {
1511		thread_lock(td);
1512		sched_priority(td);
1513		sched_prio(td, td->td_base_user_pri);
1514		thread_unlock(td);
1515	}
1516}
1517
1518void
1519sched_sleep(struct thread *td)
1520{
1521
1522	THREAD_LOCK_ASSERT(td, MA_OWNED);
1523
1524	td->td_sched->ts_slptime = ticks;
1525}
1526
1527void
1528sched_wakeup(struct thread *td)
1529{
1530	struct td_sched *ts;
1531	int slptime;
1532
1533	THREAD_LOCK_ASSERT(td, MA_OWNED);
1534	ts = td->td_sched;
1535	/*
1536	 * If we slept for more than a tick update our interactivity and
1537	 * priority.
1538	 */
1539	slptime = ts->ts_slptime;
1540	ts->ts_slptime = 0;
1541	if (slptime && slptime != ticks) {
1542		u_int hzticks;
1543
1544		hzticks = (ticks - slptime) << SCHED_TICK_SHIFT;
1545		ts->skg_slptime += hzticks;
1546		sched_interact_update(td);
1547		sched_pctcpu_update(ts);
1548		sched_priority(td);
1549	}
1550	/* Reset the slice value after we sleep. */
1551	ts->ts_slice = sched_slice;
1552	sched_add(td, SRQ_BORING);
1553}
1554
1555/*
1556 * Penalize the parent for creating a new child and initialize the child's
1557 * priority.
1558 */
1559void
1560sched_fork(struct thread *td, struct thread *child)
1561{
1562	THREAD_LOCK_ASSERT(td, MA_OWNED);
1563	sched_fork_thread(td, child);
1564	/*
1565	 * Penalize the parent and child for forking.
1566	 */
1567	sched_interact_fork(child);
1568	sched_priority(child);
1569	td->td_sched->skg_runtime += tickincr;
1570	sched_interact_update(td);
1571	sched_priority(td);
1572}
1573
1574void
1575sched_fork_thread(struct thread *td, struct thread *child)
1576{
1577	struct td_sched *ts;
1578	struct td_sched *ts2;
1579
1580	/*
1581	 * Initialize child.
1582	 */
1583	THREAD_LOCK_ASSERT(td, MA_OWNED);
1584	sched_newthread(child);
1585	child->td_lock = &sched_lock;
1586	ts = td->td_sched;
1587	ts2 = child->td_sched;
1588	ts2->ts_cpu = ts->ts_cpu;
1589	ts2->ts_runq = NULL;
1590	/*
1591	 * Grab our parents cpu estimation information and priority.
1592	 */
1593	ts2->ts_ticks = ts->ts_ticks;
1594	ts2->ts_ltick = ts->ts_ltick;
1595	ts2->ts_ftick = ts->ts_ftick;
1596	child->td_user_pri = td->td_user_pri;
1597	child->td_base_user_pri = td->td_base_user_pri;
1598	/*
1599	 * And update interactivity score.
1600	 */
1601	ts2->skg_slptime = ts->skg_slptime;
1602	ts2->skg_runtime = ts->skg_runtime;
1603	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
1604}
1605
1606void
1607sched_class(struct thread *td, int class)
1608{
1609
1610	THREAD_LOCK_ASSERT(td, MA_OWNED);
1611	if (td->td_pri_class == class)
1612		return;
1613
1614#ifdef SMP
1615	/*
1616	 * On SMP if we're on the RUNQ we must adjust the transferable
1617	 * count because could be changing to or from an interrupt
1618	 * class.
1619	 */
1620	if (TD_ON_RUNQ(td)) {
1621		struct tdq *tdq;
1622
1623		tdq = TDQ_CPU(td->td_sched->ts_cpu);
1624		if (THREAD_CAN_MIGRATE(td)) {
1625			tdq->tdq_transferable--;
1626			tdq->tdq_group->tdg_transferable--;
1627		}
1628		td->td_pri_class = class;
1629		if (THREAD_CAN_MIGRATE(td)) {
1630			tdq->tdq_transferable++;
1631			tdq->tdq_group->tdg_transferable++;
1632		}
1633	}
1634#endif
1635	td->td_pri_class = class;
1636}
1637
1638/*
1639 * Return some of the child's priority and interactivity to the parent.
1640 */
1641void
1642sched_exit(struct proc *p, struct thread *child)
1643{
1644	struct thread *td;
1645
1646	CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
1647	    child, child->td_proc->p_comm, child->td_priority);
1648
1649	PROC_SLOCK_ASSERT(p, MA_OWNED);
1650	td = FIRST_THREAD_IN_PROC(p);
1651	sched_exit_thread(td, child);
1652}
1653
1654void
1655sched_exit_thread(struct thread *td, struct thread *child)
1656{
1657
1658	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
1659	    child, child->td_proc->p_comm, child->td_priority);
1660
1661	thread_lock(child);
1662	tdq_load_rem(TDQ_CPU(child->td_sched->ts_cpu), child->td_sched);
1663	thread_unlock(child);
1664#ifdef KSE
1665	/*
1666	 * KSE forks and exits so often that this penalty causes short-lived
1667	 * threads to always be non-interactive.  This causes mozilla to
1668	 * crawl under load.
1669	 */
1670	if ((td->td_pflags & TDP_SA) && td->td_proc == child->td_proc)
1671		return;
1672#endif
1673	/*
1674	 * Give the child's runtime to the parent without returning the
1675	 * sleep time as a penalty to the parent.  This causes shells that
1676	 * launch expensive things to mark their children as expensive.
1677	 */
1678	thread_lock(td);
1679	td->td_sched->skg_runtime += child->td_sched->skg_runtime;
1680	sched_interact_update(td);
1681	sched_priority(td);
1682	thread_unlock(td);
1683}
1684
1685void
1686sched_userret(struct thread *td)
1687{
1688	/*
1689	 * XXX we cheat slightly on the locking here to avoid locking in
1690	 * the usual case.  Setting td_priority here is essentially an
1691	 * incomplete workaround for not setting it properly elsewhere.
1692	 * Now that some interrupt handlers are threads, not setting it
1693	 * properly elsewhere can clobber it in the window between setting
1694	 * it here and returning to user mode, so don't waste time setting
1695	 * it perfectly here.
1696	 */
1697	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1698	    ("thread with borrowed priority returning to userland"));
1699	if (td->td_priority != td->td_user_pri) {
1700		thread_lock(td);
1701		td->td_priority = td->td_user_pri;
1702		td->td_base_pri = td->td_user_pri;
1703		thread_unlock(td);
1704        }
1705}
1706
1707void
1708sched_clock(struct thread *td)
1709{
1710	struct tdq *tdq;
1711	struct td_sched *ts;
1712
1713	mtx_assert(&sched_lock, MA_OWNED);
1714#ifdef SMP
1715	sched_smp_tick(td);
1716#endif
1717	tdq = TDQ_SELF();
1718	/*
1719	 * Advance the insert index once for each tick to ensure that all
1720	 * threads get a chance to run.
1721	 */
1722	if (tdq->tdq_idx == tdq->tdq_ridx) {
1723		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
1724		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
1725			tdq->tdq_ridx = tdq->tdq_idx;
1726	}
1727	ts = td->td_sched;
1728	/*
1729	 * We only do slicing code for TIMESHARE threads.
1730	 */
1731	if (td->td_pri_class != PRI_TIMESHARE)
1732		return;
1733	/*
1734	 * We used a tick; charge it to the thread so that we can compute our
1735	 * interactivity.
1736	 */
1737	td->td_sched->skg_runtime += tickincr;
1738	sched_interact_update(td);
1739	/*
1740	 * We used up one time slice.
1741	 */
1742	if (--ts->ts_slice > 0)
1743		return;
1744	/*
1745	 * We're out of time, recompute priorities and requeue.
1746	 */
1747	sched_priority(td);
1748	td->td_flags |= TDF_NEEDRESCHED;
1749}
1750
1751int
1752sched_runnable(void)
1753{
1754	struct tdq *tdq;
1755	int load;
1756
1757	load = 1;
1758
1759	tdq = TDQ_SELF();
1760#ifdef SMP
1761	if (tdq_busy)
1762		goto out;
1763#endif
1764	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1765		if (tdq->tdq_load > 0)
1766			goto out;
1767	} else
1768		if (tdq->tdq_load - 1 > 0)
1769			goto out;
1770	load = 0;
1771out:
1772	return (load);
1773}
1774
1775struct thread *
1776sched_choose(void)
1777{
1778	struct tdq *tdq;
1779	struct td_sched *ts;
1780
1781	mtx_assert(&sched_lock, MA_OWNED);
1782	tdq = TDQ_SELF();
1783#ifdef SMP
1784restart:
1785#endif
1786	ts = tdq_choose(tdq);
1787	if (ts) {
1788#ifdef SMP
1789		if (ts->ts_thread->td_priority > PRI_MIN_IDLE)
1790			if (tdq_idled(tdq) == 0)
1791				goto restart;
1792#endif
1793		tdq_runq_rem(tdq, ts);
1794		return (ts->ts_thread);
1795	}
1796#ifdef SMP
1797	if (tdq_idled(tdq) == 0)
1798		goto restart;
1799#endif
1800	return (PCPU_GET(idlethread));
1801}
1802
1803static int
1804sched_preempt(struct thread *td)
1805{
1806	struct thread *ctd;
1807	int cpri;
1808	int pri;
1809
1810	ctd = curthread;
1811	pri = td->td_priority;
1812	cpri = ctd->td_priority;
1813	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
1814		return (0);
1815	/*
1816	 * Always preempt IDLE threads.  Otherwise only if the preempting
1817	 * thread is an ithread.
1818	 */
1819	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
1820		return (0);
1821	if (ctd->td_critnest > 1) {
1822		CTR1(KTR_PROC, "sched_preempt: in critical section %d",
1823		    ctd->td_critnest);
1824		ctd->td_owepreempt = 1;
1825		return (0);
1826	}
1827	/*
1828	 * Thread is runnable but not yet put on system run queue.
1829	 */
1830	MPASS(TD_ON_RUNQ(td));
1831	TD_SET_RUNNING(td);
1832	MPASS(ctd->td_lock == &sched_lock);
1833	MPASS(td->td_lock == &sched_lock);
1834	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
1835	    td->td_proc->p_pid, td->td_proc->p_comm);
1836	/*
1837	 * We enter the switch with two runnable threads that both have
1838	 * the same lock.  When we return td may be sleeping so we need
1839	 * to switch locks to make sure he's locked correctly.
1840	 */
1841	SCHED_STAT_INC(switch_preempt);
1842	mi_switch(SW_INVOL|SW_PREEMPT, td);
1843	spinlock_enter();
1844	thread_unlock(ctd);
1845	thread_lock(td);
1846	spinlock_exit();
1847
1848	return (1);
1849}
1850
1851void
1852sched_add(struct thread *td, int flags)
1853{
1854	struct tdq *tdq;
1855	struct td_sched *ts;
1856	int preemptive;
1857	int class;
1858#ifdef SMP
1859	int cpuid;
1860	int cpumask;
1861#endif
1862	ts = td->td_sched;
1863
1864	THREAD_LOCK_ASSERT(td, MA_OWNED);
1865	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1866	    td, td->td_proc->p_comm, td->td_priority, curthread,
1867	    curthread->td_proc->p_comm);
1868	KASSERT((td->td_inhibitors == 0),
1869	    ("sched_add: trying to run inhibited thread"));
1870	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1871	    ("sched_add: bad thread state"));
1872	KASSERT(td->td_proc->p_sflag & PS_INMEM,
1873	    ("sched_add: process swapped out"));
1874	/*
1875	 * Now that the thread is moving to the run-queue, set the lock
1876	 * to the scheduler's lock.
1877	 */
1878	if (td->td_lock != &sched_lock) {
1879		mtx_lock_spin(&sched_lock);
1880		thread_lock_set(td, &sched_lock);
1881	}
1882	mtx_assert(&sched_lock, MA_OWNED);
1883        TD_SET_RUNQ(td);
1884	tdq = TDQ_SELF();
1885	class = PRI_BASE(td->td_pri_class);
1886	preemptive = !(flags & SRQ_YIELDING);
1887	/*
1888	 * Recalculate the priority before we select the target cpu or
1889	 * run-queue.
1890	 */
1891	if (class == PRI_TIMESHARE)
1892		sched_priority(td);
1893	if (ts->ts_slice == 0)
1894		ts->ts_slice = sched_slice;
1895#ifdef SMP
1896	cpuid = PCPU_GET(cpuid);
1897	/*
1898	 * Pick the destination cpu and if it isn't ours transfer to the
1899	 * target cpu.
1900	 */
1901	if (THREAD_CAN_MIGRATE(td)) {
1902		if (td->td_priority <= PRI_MAX_ITHD) {
1903			CTR2(KTR_ULE, "ithd %d < %d",
1904			    td->td_priority, PRI_MAX_ITHD);
1905			ts->ts_cpu = cpuid;
1906		} else if (pick_pri)
1907			ts->ts_cpu = tdq_pickpri(tdq, ts, flags);
1908		else
1909			ts->ts_cpu = tdq_pickidle(tdq, ts);
1910	} else
1911		CTR1(KTR_ULE, "pinned %d", td->td_pinned);
1912	if (ts->ts_cpu != cpuid)
1913		preemptive = 0;
1914	tdq = TDQ_CPU(ts->ts_cpu);
1915	cpumask = 1 << ts->ts_cpu;
1916	/*
1917	 * If we had been idle, clear our bit in the group and potentially
1918	 * the global bitmap.
1919	 */
1920	if ((class != PRI_IDLE && class != PRI_ITHD) &&
1921	    (tdq->tdq_group->tdg_idlemask & cpumask) != 0) {
1922		/*
1923		 * Check to see if our group is unidling, and if so, remove it
1924		 * from the global idle mask.
1925		 */
1926		if (tdq->tdq_group->tdg_idlemask ==
1927		    tdq->tdq_group->tdg_cpumask)
1928			atomic_clear_int(&tdq_idle, tdq->tdq_group->tdg_mask);
1929		/*
1930		 * Now remove ourselves from the group specific idle mask.
1931		 */
1932		tdq->tdq_group->tdg_idlemask &= ~cpumask;
1933	}
1934#endif
1935	/*
1936	 * Pick the run queue based on priority.
1937	 */
1938	if (td->td_priority <= PRI_MAX_REALTIME)
1939		ts->ts_runq = &tdq->tdq_realtime;
1940	else if (td->td_priority <= PRI_MAX_TIMESHARE)
1941		ts->ts_runq = &tdq->tdq_timeshare;
1942	else
1943		ts->ts_runq = &tdq->tdq_idle;
1944	if (preemptive && sched_preempt(td))
1945		return;
1946	tdq_runq_add(tdq, ts, flags);
1947	tdq_load_add(tdq, ts);
1948#ifdef SMP
1949	if (ts->ts_cpu != cpuid) {
1950		tdq_notify(ts);
1951		return;
1952	}
1953#endif
1954	if (td->td_priority < curthread->td_priority)
1955		curthread->td_flags |= TDF_NEEDRESCHED;
1956}
1957
1958void
1959sched_rem(struct thread *td)
1960{
1961	struct tdq *tdq;
1962	struct td_sched *ts;
1963
1964	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
1965	    td, td->td_proc->p_comm, td->td_priority, curthread,
1966	    curthread->td_proc->p_comm);
1967	THREAD_LOCK_ASSERT(td, MA_OWNED);
1968	ts = td->td_sched;
1969	KASSERT(TD_ON_RUNQ(td),
1970	    ("sched_rem: thread not on run queue"));
1971
1972	tdq = TDQ_CPU(ts->ts_cpu);
1973	tdq_runq_rem(tdq, ts);
1974	tdq_load_rem(tdq, ts);
1975	TD_SET_CAN_RUN(td);
1976}
1977
1978fixpt_t
1979sched_pctcpu(struct thread *td)
1980{
1981	fixpt_t pctcpu;
1982	struct td_sched *ts;
1983
1984	pctcpu = 0;
1985	ts = td->td_sched;
1986	if (ts == NULL)
1987		return (0);
1988
1989	thread_lock(td);
1990	if (ts->ts_ticks) {
1991		int rtick;
1992
1993		sched_pctcpu_update(ts);
1994		/* How many rtick per second ? */
1995		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
1996		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
1997	}
1998	td->td_proc->p_swtime = ts->ts_ltick - ts->ts_ftick;
1999	thread_unlock(td);
2000
2001	return (pctcpu);
2002}
2003
2004void
2005sched_bind(struct thread *td, int cpu)
2006{
2007	struct td_sched *ts;
2008
2009	THREAD_LOCK_ASSERT(td, MA_OWNED);
2010	ts = td->td_sched;
2011	if (ts->ts_flags & TSF_BOUND)
2012		sched_unbind(td);
2013	ts->ts_flags |= TSF_BOUND;
2014#ifdef SMP
2015	sched_pin();
2016	if (PCPU_GET(cpuid) == cpu)
2017		return;
2018	ts->ts_cpu = cpu;
2019	/* When we return from mi_switch we'll be on the correct cpu. */
2020	mi_switch(SW_VOL, NULL);
2021#endif
2022}
2023
2024void
2025sched_unbind(struct thread *td)
2026{
2027	struct td_sched *ts;
2028
2029	THREAD_LOCK_ASSERT(td, MA_OWNED);
2030	ts = td->td_sched;
2031	if ((ts->ts_flags & TSF_BOUND) == 0)
2032		return;
2033	ts->ts_flags &= ~TSF_BOUND;
2034#ifdef SMP
2035	sched_unpin();
2036#endif
2037}
2038
2039int
2040sched_is_bound(struct thread *td)
2041{
2042	THREAD_LOCK_ASSERT(td, MA_OWNED);
2043	return (td->td_sched->ts_flags & TSF_BOUND);
2044}
2045
2046void
2047sched_relinquish(struct thread *td)
2048{
2049	thread_lock(td);
2050	if (td->td_pri_class == PRI_TIMESHARE)
2051		sched_prio(td, PRI_MAX_TIMESHARE);
2052	SCHED_STAT_INC(switch_relinquish);
2053	mi_switch(SW_VOL, NULL);
2054	thread_unlock(td);
2055}
2056
2057int
2058sched_load(void)
2059{
2060#ifdef SMP
2061	int total;
2062	int i;
2063
2064	total = 0;
2065	for (i = 0; i <= tdg_maxid; i++)
2066		total += TDQ_GROUP(i)->tdg_load;
2067	return (total);
2068#else
2069	return (TDQ_SELF()->tdq_sysload);
2070#endif
2071}
2072
2073int
2074sched_sizeof_proc(void)
2075{
2076	return (sizeof(struct proc));
2077}
2078
2079int
2080sched_sizeof_thread(void)
2081{
2082	return (sizeof(struct thread) + sizeof(struct td_sched));
2083}
2084
2085void
2086sched_tick(void)
2087{
2088	struct td_sched *ts;
2089
2090	ts = curthread->td_sched;
2091	/* Adjust ticks for pctcpu */
2092	ts->ts_ticks += 1 << SCHED_TICK_SHIFT;
2093	ts->ts_ltick = ticks;
2094	/*
2095	 * Update if we've exceeded our desired tick threshhold by over one
2096	 * second.
2097	 */
2098	if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick)
2099		sched_pctcpu_update(ts);
2100}
2101
2102/*
2103 * The actual idle process.
2104 */
2105void
2106sched_idletd(void *dummy)
2107{
2108	struct proc *p;
2109	struct thread *td;
2110
2111	td = curthread;
2112	p = td->td_proc;
2113	mtx_assert(&Giant, MA_NOTOWNED);
2114	/* ULE Relies on preemption for idle interruption. */
2115	for (;;)
2116		cpu_idle();
2117}
2118
2119/*
2120 * A CPU is entering for the first time or a thread is exiting.
2121 */
2122void
2123sched_throw(struct thread *td)
2124{
2125	/*
2126	 * Correct spinlock nesting.  The idle thread context that we are
2127	 * borrowing was created so that it would start out with a single
2128	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
2129	 * explicitly acquired locks in this function, the nesting count
2130	 * is now 2 rather than 1.  Since we are nested, calling
2131	 * spinlock_exit() will simply adjust the counts without allowing
2132	 * spin lock using code to interrupt us.
2133	 */
2134	if (td == NULL) {
2135		mtx_lock_spin(&sched_lock);
2136		spinlock_exit();
2137	} else {
2138		MPASS(td->td_lock == &sched_lock);
2139	}
2140	mtx_assert(&sched_lock, MA_OWNED);
2141	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2142	PCPU_SET(switchtime, cpu_ticks());
2143	PCPU_SET(switchticks, ticks);
2144	cpu_throw(td, choosethread());	/* doesn't return */
2145}
2146
2147void
2148sched_fork_exit(struct thread *ctd)
2149{
2150	struct thread *td;
2151
2152	/*
2153	 * Finish setting up thread glue so that it begins execution in a
2154	 * non-nested critical section with sched_lock held but not recursed.
2155	 */
2156	ctd->td_oncpu = PCPU_GET(cpuid);
2157	sched_lock.mtx_lock = (uintptr_t)ctd;
2158	THREAD_LOCK_ASSERT(ctd, MA_OWNED | MA_NOTRECURSED);
2159	/*
2160	 * Processes normally resume in mi_switch() after being
2161	 * cpu_switch()'ed to, but when children start up they arrive here
2162	 * instead, so we must do much the same things as mi_switch() would.
2163	 */
2164	if ((td = PCPU_GET(deadthread))) {
2165		PCPU_SET(deadthread, NULL);
2166		thread_stash(td);
2167	}
2168	thread_unlock(ctd);
2169}
2170
2171static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2172SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
2173    "Scheduler name");
2174SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, "");
2175SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, "");
2176SYSCTL_INT(_kern_sched, OID_AUTO, tickincr, CTLFLAG_RD, &tickincr, 0, "");
2177SYSCTL_INT(_kern_sched, OID_AUTO, realstathz, CTLFLAG_RD, &realstathz, 0, "");
2178#ifdef SMP
2179SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri, CTLFLAG_RW, &pick_pri, 0, "");
2180SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri_affinity, CTLFLAG_RW,
2181    &affinity, 0, "");
2182SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri_tryself, CTLFLAG_RW,
2183    &tryself, 0, "");
2184SYSCTL_INT(_kern_sched, OID_AUTO, pick_pri_tryselfidle, CTLFLAG_RW,
2185    &tryselfidle, 0, "");
2186SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, "");
2187SYSCTL_INT(_kern_sched, OID_AUTO, ipi_preempt, CTLFLAG_RW, &ipi_preempt, 0, "");
2188SYSCTL_INT(_kern_sched, OID_AUTO, ipi_ast, CTLFLAG_RW, &ipi_ast, 0, "");
2189SYSCTL_INT(_kern_sched, OID_AUTO, ipi_thresh, CTLFLAG_RW, &ipi_thresh, 0, "");
2190SYSCTL_INT(_kern_sched, OID_AUTO, steal_htt, CTLFLAG_RW, &steal_htt, 0, "");
2191SYSCTL_INT(_kern_sched, OID_AUTO, steal_busy, CTLFLAG_RW, &steal_busy, 0, "");
2192SYSCTL_INT(_kern_sched, OID_AUTO, busy_thresh, CTLFLAG_RW, &busy_thresh, 0, "");
2193SYSCTL_INT(_kern_sched, OID_AUTO, topology, CTLFLAG_RD, &topology, 0, "");
2194#endif
2195
2196/* ps compat */
2197static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
2198SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2199
2200
2201#define KERN_SWITCH_INCLUDE 1
2202#include "kern/kern_switch.c"
2203