sched_ule.c revision 150442
1/*-
2 * Copyright (c) 2002-2005, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 150442 2005-09-22 01:19:37Z davidxu $");
29
30#include "opt_hwpmc_hooks.h"
31#include "opt_sched.h"
32
33#define kse td_sched
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kdb.h>
38#include <sys/kernel.h>
39#include <sys/ktr.h>
40#include <sys/lock.h>
41#include <sys/mutex.h>
42#include <sys/proc.h>
43#include <sys/resource.h>
44#include <sys/resourcevar.h>
45#include <sys/sched.h>
46#include <sys/smp.h>
47#include <sys/sx.h>
48#include <sys/sysctl.h>
49#include <sys/sysproto.h>
50#include <sys/turnstile.h>
51#include <sys/vmmeter.h>
52#ifdef KTRACE
53#include <sys/uio.h>
54#include <sys/ktrace.h>
55#endif
56
57#ifdef HWPMC_HOOKS
58#include <sys/pmckern.h>
59#endif
60
61#include <machine/cpu.h>
62#include <machine/smp.h>
63
64/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
65/* XXX This is bogus compatability crap for ps */
66static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
67SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
68
69static void sched_setup(void *dummy);
70SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
71
72static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
73
74SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
75    "Scheduler name");
76
77static int slice_min = 1;
78SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
79
80static int slice_max = 10;
81SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
82
83int realstathz;
84int tickincr = 1;
85
86/*
87 * The following datastructures are allocated within their parent structure
88 * but are scheduler specific.
89 */
90/*
91 * The schedulable entity that can be given a context to run.  A process may
92 * have several of these.
93 */
94struct kse {
95	TAILQ_ENTRY(kse) ke_procq;	/* (j/z) Run queue. */
96	int		ke_flags;	/* (j) KEF_* flags. */
97	struct thread	*ke_thread;	/* (*) Active associated thread. */
98	fixpt_t		ke_pctcpu;	/* (j) %cpu during p_swtime. */
99	char		ke_rqindex;	/* (j) Run queue index. */
100	enum {
101		KES_THREAD = 0x0,	/* slaved to thread state */
102		KES_ONRUNQ
103	} ke_state;			/* (j) thread sched specific status. */
104	int		ke_slptime;
105	int		ke_slice;
106	struct runq	*ke_runq;
107	u_char		ke_cpu;		/* CPU that we have affinity for. */
108	/* The following variables are only used for pctcpu calculation */
109	int		ke_ltick;	/* Last tick that we were running on */
110	int		ke_ftick;	/* First tick that we were running on */
111	int		ke_ticks;	/* Tick count */
112
113};
114#define	td_kse			td_sched
115#define	td_slptime		td_kse->ke_slptime
116#define ke_proc			ke_thread->td_proc
117#define ke_ksegrp		ke_thread->td_ksegrp
118#define	ke_assign		ke_procq.tqe_next
119/* flags kept in ke_flags */
120#define	KEF_ASSIGNED	0x0001		/* Thread is being migrated. */
121#define	KEF_BOUND	0x0002		/* Thread can not migrate. */
122#define	KEF_XFERABLE	0x0004		/* Thread was added as transferable. */
123#define	KEF_HOLD	0x0008		/* Thread is temporarily bound. */
124#define	KEF_REMOVED	0x0010		/* Thread was removed while ASSIGNED */
125#define	KEF_INTERNAL	0x0020		/* Thread added due to migration. */
126#define	KEF_PREEMPTED	0x0040		/* Thread was preempted */
127#define	KEF_DIDRUN	0x02000		/* Thread actually ran. */
128#define	KEF_EXIT	0x04000		/* Thread is being killed. */
129
130struct kg_sched {
131	struct thread	*skg_last_assigned; /* (j) Last thread assigned to */
132					   /* the system scheduler */
133	int	skg_slptime;		/* Number of ticks we vol. slept */
134	int	skg_runtime;		/* Number of ticks we were running */
135	int	skg_avail_opennings;	/* (j) Num unfilled slots in group.*/
136	int	skg_concurrency;	/* (j) Num threads requested in group.*/
137};
138#define kg_last_assigned	kg_sched->skg_last_assigned
139#define kg_avail_opennings	kg_sched->skg_avail_opennings
140#define kg_concurrency		kg_sched->skg_concurrency
141#define kg_runtime		kg_sched->skg_runtime
142#define kg_slptime		kg_sched->skg_slptime
143
144#define SLOT_RELEASE(kg)	(kg)->kg_avail_opennings++
145#define	SLOT_USE(kg)		(kg)->kg_avail_opennings--
146
147static struct kse kse0;
148static struct kg_sched kg_sched0;
149
150/*
151 * The priority is primarily determined by the interactivity score.  Thus, we
152 * give lower(better) priorities to kse groups that use less CPU.  The nice
153 * value is then directly added to this to allow nice to have some effect
154 * on latency.
155 *
156 * PRI_RANGE:	Total priority range for timeshare threads.
157 * PRI_NRESV:	Number of nice values.
158 * PRI_BASE:	The start of the dynamic range.
159 */
160#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
161#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
162#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
163#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
164#define	SCHED_PRI_INTERACT(score)					\
165    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
166
167/*
168 * These determine the interactivity of a process.
169 *
170 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
171 *		before throttling back.
172 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
173 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
174 * INTERACT_THRESH:	Threshhold for placement on the current runq.
175 */
176#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
177#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
178#define	SCHED_INTERACT_MAX	(100)
179#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
180#define	SCHED_INTERACT_THRESH	(30)
181
182/*
183 * These parameters and macros determine the size of the time slice that is
184 * granted to each thread.
185 *
186 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
187 * SLICE_MAX:	Maximum time slice granted.
188 * SLICE_RANGE:	Range of available time slices scaled by hz.
189 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
190 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
191 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
192 */
193#define	SCHED_SLICE_MIN			(slice_min)
194#define	SCHED_SLICE_MAX			(slice_max)
195#define	SCHED_SLICE_INTERACTIVE		(slice_max)
196#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
197#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
198#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
199#define	SCHED_SLICE_NICE(nice)						\
200    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
201
202/*
203 * This macro determines whether or not the thread belongs on the current or
204 * next run queue.
205 */
206#define	SCHED_INTERACTIVE(kg)						\
207    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
208#define	SCHED_CURR(kg, ke)						\
209    ((ke->ke_thread->td_flags & TDF_BORROWING) ||			\
210     (ke->ke_flags & KEF_PREEMPTED) || SCHED_INTERACTIVE(kg))
211
212/*
213 * Cpu percentage computation macros and defines.
214 *
215 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
216 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
217 */
218
219#define	SCHED_CPU_TIME	10
220#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
221
222/*
223 * kseq - per processor runqs and statistics.
224 */
225struct kseq {
226	struct runq	ksq_idle;		/* Queue of IDLE threads. */
227	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
228	struct runq	*ksq_next;		/* Next timeshare queue. */
229	struct runq	*ksq_curr;		/* Current queue. */
230	int		ksq_load_timeshare;	/* Load for timeshare. */
231	int		ksq_load;		/* Aggregate load. */
232	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
233	short		ksq_nicemin;		/* Least nice. */
234#ifdef SMP
235	int			ksq_transferable;
236	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
237	struct kseq_group	*ksq_group;	/* Our processor group. */
238	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
239#else
240	int		ksq_sysload;		/* For loadavg, !ITHD load. */
241#endif
242};
243
244#ifdef SMP
245/*
246 * kseq groups are groups of processors which can cheaply share threads.  When
247 * one processor in the group goes idle it will check the runqs of the other
248 * processors in its group prior to halting and waiting for an interrupt.
249 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
250 * In a numa environment we'd want an idle bitmap per group and a two tiered
251 * load balancer.
252 */
253struct kseq_group {
254	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
255	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
256	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
257	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
258	int	ksg_load;		/* Total load of this group. */
259	int	ksg_transferable;	/* Transferable load of this group. */
260	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
261};
262#endif
263
264/*
265 * One kse queue per processor.
266 */
267#ifdef SMP
268static cpumask_t kseq_idle;
269static int ksg_maxid;
270static struct kseq	kseq_cpu[MAXCPU];
271static struct kseq_group kseq_groups[MAXCPU];
272static int bal_tick;
273static int gbal_tick;
274static int balance_groups;
275
276#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
277#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
278#define	KSEQ_ID(x)	((x) - kseq_cpu)
279#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
280#else	/* !SMP */
281static struct kseq	kseq_cpu;
282
283#define	KSEQ_SELF()	(&kseq_cpu)
284#define	KSEQ_CPU(x)	(&kseq_cpu)
285#endif
286
287static void slot_fill(struct ksegrp *);
288static struct kse *sched_choose(void);		/* XXX Should be thread * */
289static void sched_slice(struct kse *);
290static void sched_priority(struct ksegrp *);
291static void sched_thread_priority(struct thread *, u_char);
292static int sched_interact_score(struct ksegrp *);
293static void sched_interact_update(struct ksegrp *);
294static void sched_interact_fork(struct ksegrp *);
295static void sched_pctcpu_update(struct kse *);
296
297/* Operations on per processor queues */
298static struct kse * kseq_choose(struct kseq *);
299static void kseq_setup(struct kseq *);
300static void kseq_load_add(struct kseq *, struct kse *);
301static void kseq_load_rem(struct kseq *, struct kse *);
302static __inline void kseq_runq_add(struct kseq *, struct kse *, int);
303static __inline void kseq_runq_rem(struct kseq *, struct kse *);
304static void kseq_nice_add(struct kseq *, int);
305static void kseq_nice_rem(struct kseq *, int);
306void kseq_print(int cpu);
307#ifdef SMP
308static int kseq_transfer(struct kseq *, struct kse *, int);
309static struct kse *runq_steal(struct runq *);
310static void sched_balance(void);
311static void sched_balance_groups(void);
312static void sched_balance_group(struct kseq_group *);
313static void sched_balance_pair(struct kseq *, struct kseq *);
314static void kseq_move(struct kseq *, int);
315static int kseq_idled(struct kseq *);
316static void kseq_notify(struct kse *, int);
317static void kseq_assign(struct kseq *);
318static struct kse *kseq_steal(struct kseq *, int);
319#define	KSE_CAN_MIGRATE(ke)						\
320    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
321#endif
322
323void
324kseq_print(int cpu)
325{
326	struct kseq *kseq;
327	int i;
328
329	kseq = KSEQ_CPU(cpu);
330
331	printf("kseq:\n");
332	printf("\tload:           %d\n", kseq->ksq_load);
333	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
334#ifdef SMP
335	printf("\tload transferable: %d\n", kseq->ksq_transferable);
336#endif
337	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
338	printf("\tnice counts:\n");
339	for (i = 0; i < SCHED_PRI_NRESV; i++)
340		if (kseq->ksq_nice[i])
341			printf("\t\t%d = %d\n",
342			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
343}
344
345static __inline void
346kseq_runq_add(struct kseq *kseq, struct kse *ke, int flags)
347{
348#ifdef SMP
349	if (KSE_CAN_MIGRATE(ke)) {
350		kseq->ksq_transferable++;
351		kseq->ksq_group->ksg_transferable++;
352		ke->ke_flags |= KEF_XFERABLE;
353	}
354#endif
355	if (ke->ke_flags & KEF_PREEMPTED)
356		flags |= SRQ_PREEMPTED;
357	runq_add(ke->ke_runq, ke, flags);
358}
359
360static __inline void
361kseq_runq_rem(struct kseq *kseq, struct kse *ke)
362{
363#ifdef SMP
364	if (ke->ke_flags & KEF_XFERABLE) {
365		kseq->ksq_transferable--;
366		kseq->ksq_group->ksg_transferable--;
367		ke->ke_flags &= ~KEF_XFERABLE;
368	}
369#endif
370	runq_remove(ke->ke_runq, ke);
371}
372
373static void
374kseq_load_add(struct kseq *kseq, struct kse *ke)
375{
376	int class;
377	mtx_assert(&sched_lock, MA_OWNED);
378	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
379	if (class == PRI_TIMESHARE)
380		kseq->ksq_load_timeshare++;
381	kseq->ksq_load++;
382	CTR1(KTR_SCHED, "load: %d", kseq->ksq_load);
383	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
384#ifdef SMP
385		kseq->ksq_group->ksg_load++;
386#else
387		kseq->ksq_sysload++;
388#endif
389	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
390		kseq_nice_add(kseq, ke->ke_proc->p_nice);
391}
392
393static void
394kseq_load_rem(struct kseq *kseq, struct kse *ke)
395{
396	int class;
397	mtx_assert(&sched_lock, MA_OWNED);
398	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
399	if (class == PRI_TIMESHARE)
400		kseq->ksq_load_timeshare--;
401	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
402#ifdef SMP
403		kseq->ksq_group->ksg_load--;
404#else
405		kseq->ksq_sysload--;
406#endif
407	kseq->ksq_load--;
408	CTR1(KTR_SCHED, "load: %d", kseq->ksq_load);
409	ke->ke_runq = NULL;
410	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
411		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
412}
413
414static void
415kseq_nice_add(struct kseq *kseq, int nice)
416{
417	mtx_assert(&sched_lock, MA_OWNED);
418	/* Normalize to zero. */
419	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
420	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
421		kseq->ksq_nicemin = nice;
422}
423
424static void
425kseq_nice_rem(struct kseq *kseq, int nice)
426{
427	int n;
428
429	mtx_assert(&sched_lock, MA_OWNED);
430	/* Normalize to zero. */
431	n = nice + SCHED_PRI_NHALF;
432	kseq->ksq_nice[n]--;
433	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
434
435	/*
436	 * If this wasn't the smallest nice value or there are more in
437	 * this bucket we can just return.  Otherwise we have to recalculate
438	 * the smallest nice.
439	 */
440	if (nice != kseq->ksq_nicemin ||
441	    kseq->ksq_nice[n] != 0 ||
442	    kseq->ksq_load_timeshare == 0)
443		return;
444
445	for (; n < SCHED_PRI_NRESV; n++)
446		if (kseq->ksq_nice[n]) {
447			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
448			return;
449		}
450}
451
452#ifdef SMP
453/*
454 * sched_balance is a simple CPU load balancing algorithm.  It operates by
455 * finding the least loaded and most loaded cpu and equalizing their load
456 * by migrating some processes.
457 *
458 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
459 * installations will only have 2 cpus.  Secondly, load balancing too much at
460 * once can have an unpleasant effect on the system.  The scheduler rarely has
461 * enough information to make perfect decisions.  So this algorithm chooses
462 * algorithm simplicity and more gradual effects on load in larger systems.
463 *
464 * It could be improved by considering the priorities and slices assigned to
465 * each task prior to balancing them.  There are many pathological cases with
466 * any approach and so the semi random algorithm below may work as well as any.
467 *
468 */
469static void
470sched_balance(void)
471{
472	struct kseq_group *high;
473	struct kseq_group *low;
474	struct kseq_group *ksg;
475	int cnt;
476	int i;
477
478	bal_tick = ticks + (random() % (hz * 2));
479	if (smp_started == 0)
480		return;
481	low = high = NULL;
482	i = random() % (ksg_maxid + 1);
483	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
484		ksg = KSEQ_GROUP(i);
485		/*
486		 * Find the CPU with the highest load that has some
487		 * threads to transfer.
488		 */
489		if ((high == NULL || ksg->ksg_load > high->ksg_load)
490		    && ksg->ksg_transferable)
491			high = ksg;
492		if (low == NULL || ksg->ksg_load < low->ksg_load)
493			low = ksg;
494		if (++i > ksg_maxid)
495			i = 0;
496	}
497	if (low != NULL && high != NULL && high != low)
498		sched_balance_pair(LIST_FIRST(&high->ksg_members),
499		    LIST_FIRST(&low->ksg_members));
500}
501
502static void
503sched_balance_groups(void)
504{
505	int i;
506
507	gbal_tick = ticks + (random() % (hz * 2));
508	mtx_assert(&sched_lock, MA_OWNED);
509	if (smp_started)
510		for (i = 0; i <= ksg_maxid; i++)
511			sched_balance_group(KSEQ_GROUP(i));
512}
513
514static void
515sched_balance_group(struct kseq_group *ksg)
516{
517	struct kseq *kseq;
518	struct kseq *high;
519	struct kseq *low;
520	int load;
521
522	if (ksg->ksg_transferable == 0)
523		return;
524	low = NULL;
525	high = NULL;
526	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
527		load = kseq->ksq_load;
528		if (high == NULL || load > high->ksq_load)
529			high = kseq;
530		if (low == NULL || load < low->ksq_load)
531			low = kseq;
532	}
533	if (high != NULL && low != NULL && high != low)
534		sched_balance_pair(high, low);
535}
536
537static void
538sched_balance_pair(struct kseq *high, struct kseq *low)
539{
540	int transferable;
541	int high_load;
542	int low_load;
543	int move;
544	int diff;
545	int i;
546
547	/*
548	 * If we're transfering within a group we have to use this specific
549	 * kseq's transferable count, otherwise we can steal from other members
550	 * of the group.
551	 */
552	if (high->ksq_group == low->ksq_group) {
553		transferable = high->ksq_transferable;
554		high_load = high->ksq_load;
555		low_load = low->ksq_load;
556	} else {
557		transferable = high->ksq_group->ksg_transferable;
558		high_load = high->ksq_group->ksg_load;
559		low_load = low->ksq_group->ksg_load;
560	}
561	if (transferable == 0)
562		return;
563	/*
564	 * Determine what the imbalance is and then adjust that to how many
565	 * kses we actually have to give up (transferable).
566	 */
567	diff = high_load - low_load;
568	move = diff / 2;
569	if (diff & 0x1)
570		move++;
571	move = min(move, transferable);
572	for (i = 0; i < move; i++)
573		kseq_move(high, KSEQ_ID(low));
574	return;
575}
576
577static void
578kseq_move(struct kseq *from, int cpu)
579{
580	struct kseq *kseq;
581	struct kseq *to;
582	struct kse *ke;
583
584	kseq = from;
585	to = KSEQ_CPU(cpu);
586	ke = kseq_steal(kseq, 1);
587	if (ke == NULL) {
588		struct kseq_group *ksg;
589
590		ksg = kseq->ksq_group;
591		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
592			if (kseq == from || kseq->ksq_transferable == 0)
593				continue;
594			ke = kseq_steal(kseq, 1);
595			break;
596		}
597		if (ke == NULL)
598			panic("kseq_move: No KSEs available with a "
599			    "transferable count of %d\n",
600			    ksg->ksg_transferable);
601	}
602	if (kseq == to)
603		return;
604	ke->ke_state = KES_THREAD;
605	kseq_runq_rem(kseq, ke);
606	kseq_load_rem(kseq, ke);
607	kseq_notify(ke, cpu);
608}
609
610static int
611kseq_idled(struct kseq *kseq)
612{
613	struct kseq_group *ksg;
614	struct kseq *steal;
615	struct kse *ke;
616
617	ksg = kseq->ksq_group;
618	/*
619	 * If we're in a cpu group, try and steal kses from another cpu in
620	 * the group before idling.
621	 */
622	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
623		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
624			if (steal == kseq || steal->ksq_transferable == 0)
625				continue;
626			ke = kseq_steal(steal, 0);
627			if (ke == NULL)
628				continue;
629			ke->ke_state = KES_THREAD;
630			kseq_runq_rem(steal, ke);
631			kseq_load_rem(steal, ke);
632			ke->ke_cpu = PCPU_GET(cpuid);
633			ke->ke_flags |= KEF_INTERNAL | KEF_HOLD;
634			sched_add(ke->ke_thread, SRQ_YIELDING);
635			return (0);
636		}
637	}
638	/*
639	 * We only set the idled bit when all of the cpus in the group are
640	 * idle.  Otherwise we could get into a situation where a KSE bounces
641	 * back and forth between two idle cores on seperate physical CPUs.
642	 */
643	ksg->ksg_idlemask |= PCPU_GET(cpumask);
644	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
645		return (1);
646	atomic_set_int(&kseq_idle, ksg->ksg_mask);
647	return (1);
648}
649
650static void
651kseq_assign(struct kseq *kseq)
652{
653	struct kse *nke;
654	struct kse *ke;
655
656	do {
657		*(volatile struct kse **)&ke = kseq->ksq_assigned;
658	} while(!atomic_cmpset_ptr((volatile uintptr_t *)&kseq->ksq_assigned,
659		(uintptr_t)ke, (uintptr_t)NULL));
660	for (; ke != NULL; ke = nke) {
661		nke = ke->ke_assign;
662		kseq->ksq_group->ksg_load--;
663		kseq->ksq_load--;
664		ke->ke_flags &= ~KEF_ASSIGNED;
665		if (ke->ke_flags & KEF_REMOVED) {
666			ke->ke_flags &= ~KEF_REMOVED;
667			continue;
668		}
669		ke->ke_flags |= KEF_INTERNAL | KEF_HOLD;
670		sched_add(ke->ke_thread, SRQ_YIELDING);
671	}
672}
673
674static void
675kseq_notify(struct kse *ke, int cpu)
676{
677	struct kseq *kseq;
678	struct thread *td;
679	struct pcpu *pcpu;
680	int class;
681	int prio;
682
683	kseq = KSEQ_CPU(cpu);
684	/* XXX */
685	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
686	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
687	    (kseq_idle & kseq->ksq_group->ksg_mask))
688		atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
689	kseq->ksq_group->ksg_load++;
690	kseq->ksq_load++;
691	ke->ke_cpu = cpu;
692	ke->ke_flags |= KEF_ASSIGNED;
693	prio = ke->ke_thread->td_priority;
694
695	/*
696	 * Place a KSE on another cpu's queue and force a resched.
697	 */
698	do {
699		*(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned;
700	} while(!atomic_cmpset_ptr((volatile uintptr_t *)&kseq->ksq_assigned,
701		(uintptr_t)ke->ke_assign, (uintptr_t)ke));
702	/*
703	 * Without sched_lock we could lose a race where we set NEEDRESCHED
704	 * on a thread that is switched out before the IPI is delivered.  This
705	 * would lead us to miss the resched.  This will be a problem once
706	 * sched_lock is pushed down.
707	 */
708	pcpu = pcpu_find(cpu);
709	td = pcpu->pc_curthread;
710	if (ke->ke_thread->td_priority < td->td_priority ||
711	    td == pcpu->pc_idlethread) {
712		td->td_flags |= TDF_NEEDRESCHED;
713		ipi_selected(1 << cpu, IPI_AST);
714	}
715}
716
717static struct kse *
718runq_steal(struct runq *rq)
719{
720	struct rqhead *rqh;
721	struct rqbits *rqb;
722	struct kse *ke;
723	int word;
724	int bit;
725
726	mtx_assert(&sched_lock, MA_OWNED);
727	rqb = &rq->rq_status;
728	for (word = 0; word < RQB_LEN; word++) {
729		if (rqb->rqb_bits[word] == 0)
730			continue;
731		for (bit = 0; bit < RQB_BPW; bit++) {
732			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
733				continue;
734			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
735			TAILQ_FOREACH(ke, rqh, ke_procq) {
736				if (KSE_CAN_MIGRATE(ke))
737					return (ke);
738			}
739		}
740	}
741	return (NULL);
742}
743
744static struct kse *
745kseq_steal(struct kseq *kseq, int stealidle)
746{
747	struct kse *ke;
748
749	/*
750	 * Steal from next first to try to get a non-interactive task that
751	 * may not have run for a while.
752	 */
753	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
754		return (ke);
755	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
756		return (ke);
757	if (stealidle)
758		return (runq_steal(&kseq->ksq_idle));
759	return (NULL);
760}
761
762int
763kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
764{
765	struct kseq_group *nksg;
766	struct kseq_group *ksg;
767	struct kseq *old;
768	int cpu;
769	int idx;
770
771	if (smp_started == 0)
772		return (0);
773	cpu = 0;
774	/*
775	 * If our load exceeds a certain threshold we should attempt to
776	 * reassign this thread.  The first candidate is the cpu that
777	 * originally ran the thread.  If it is idle, assign it there,
778	 * otherwise, pick an idle cpu.
779	 *
780	 * The threshold at which we start to reassign kses has a large impact
781	 * on the overall performance of the system.  Tuned too high and
782	 * some CPUs may idle.  Too low and there will be excess migration
783	 * and context switches.
784	 */
785	old = KSEQ_CPU(ke->ke_cpu);
786	nksg = old->ksq_group;
787	ksg = kseq->ksq_group;
788	if (kseq_idle) {
789		if (kseq_idle & nksg->ksg_mask) {
790			cpu = ffs(nksg->ksg_idlemask);
791			if (cpu) {
792				CTR2(KTR_SCHED,
793				    "kseq_transfer: %p found old cpu %X "
794				    "in idlemask.", ke, cpu);
795				goto migrate;
796			}
797		}
798		/*
799		 * Multiple cpus could find this bit simultaneously
800		 * but the race shouldn't be terrible.
801		 */
802		cpu = ffs(kseq_idle);
803		if (cpu) {
804			CTR2(KTR_SCHED, "kseq_transfer: %p found %X "
805			    "in idlemask.", ke, cpu);
806			goto migrate;
807		}
808	}
809	idx = 0;
810#if 0
811	if (old->ksq_load < kseq->ksq_load) {
812		cpu = ke->ke_cpu + 1;
813		CTR2(KTR_SCHED, "kseq_transfer: %p old cpu %X "
814		    "load less than ours.", ke, cpu);
815		goto migrate;
816	}
817	/*
818	 * No new CPU was found, look for one with less load.
819	 */
820	for (idx = 0; idx <= ksg_maxid; idx++) {
821		nksg = KSEQ_GROUP(idx);
822		if (nksg->ksg_load /*+ (nksg->ksg_cpus  * 2)*/ < ksg->ksg_load) {
823			cpu = ffs(nksg->ksg_cpumask);
824			CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X load less "
825			    "than ours.", ke, cpu);
826			goto migrate;
827		}
828	}
829#endif
830	/*
831	 * If another cpu in this group has idled, assign a thread over
832	 * to them after checking to see if there are idled groups.
833	 */
834	if (ksg->ksg_idlemask) {
835		cpu = ffs(ksg->ksg_idlemask);
836		if (cpu) {
837			CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X idle in "
838			    "group.", ke, cpu);
839			goto migrate;
840		}
841	}
842	return (0);
843migrate:
844	/*
845	 * Now that we've found an idle CPU, migrate the thread.
846	 */
847	cpu--;
848	ke->ke_runq = NULL;
849	kseq_notify(ke, cpu);
850
851	return (1);
852}
853
854#endif	/* SMP */
855
856/*
857 * Pick the highest priority task we have and return it.
858 */
859
860static struct kse *
861kseq_choose(struct kseq *kseq)
862{
863	struct runq *swap;
864	struct kse *ke;
865	int nice;
866
867	mtx_assert(&sched_lock, MA_OWNED);
868	swap = NULL;
869
870	for (;;) {
871		ke = runq_choose(kseq->ksq_curr);
872		if (ke == NULL) {
873			/*
874			 * We already swapped once and didn't get anywhere.
875			 */
876			if (swap)
877				break;
878			swap = kseq->ksq_curr;
879			kseq->ksq_curr = kseq->ksq_next;
880			kseq->ksq_next = swap;
881			continue;
882		}
883		/*
884		 * If we encounter a slice of 0 the kse is in a
885		 * TIMESHARE kse group and its nice was too far out
886		 * of the range that receives slices.
887		 */
888		nice = ke->ke_proc->p_nice + (0 - kseq->ksq_nicemin);
889#if 0
890		if (ke->ke_slice == 0 || (nice > SCHED_SLICE_NTHRESH &&
891		    ke->ke_proc->p_nice != 0)) {
892			runq_remove(ke->ke_runq, ke);
893			sched_slice(ke);
894			ke->ke_runq = kseq->ksq_next;
895			runq_add(ke->ke_runq, ke, 0);
896			continue;
897		}
898#endif
899		return (ke);
900	}
901
902	return (runq_choose(&kseq->ksq_idle));
903}
904
905static void
906kseq_setup(struct kseq *kseq)
907{
908	runq_init(&kseq->ksq_timeshare[0]);
909	runq_init(&kseq->ksq_timeshare[1]);
910	runq_init(&kseq->ksq_idle);
911	kseq->ksq_curr = &kseq->ksq_timeshare[0];
912	kseq->ksq_next = &kseq->ksq_timeshare[1];
913	kseq->ksq_load = 0;
914	kseq->ksq_load_timeshare = 0;
915}
916
917static void
918sched_setup(void *dummy)
919{
920#ifdef SMP
921	int i;
922#endif
923
924	slice_min = (hz/100);	/* 10ms */
925	slice_max = (hz/7);	/* ~140ms */
926
927#ifdef SMP
928	balance_groups = 0;
929	/*
930	 * Initialize the kseqs.
931	 */
932	for (i = 0; i < MAXCPU; i++) {
933		struct kseq *ksq;
934
935		ksq = &kseq_cpu[i];
936		ksq->ksq_assigned = NULL;
937		kseq_setup(&kseq_cpu[i]);
938	}
939	if (smp_topology == NULL) {
940		struct kseq_group *ksg;
941		struct kseq *ksq;
942		int cpus;
943
944		for (cpus = 0, i = 0; i < MAXCPU; i++) {
945			if (CPU_ABSENT(i))
946				continue;
947			ksq = &kseq_cpu[cpus];
948			ksg = &kseq_groups[cpus];
949			/*
950			 * Setup a kseq group with one member.
951			 */
952			ksq->ksq_transferable = 0;
953			ksq->ksq_group = ksg;
954			ksg->ksg_cpus = 1;
955			ksg->ksg_idlemask = 0;
956			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
957			ksg->ksg_load = 0;
958			ksg->ksg_transferable = 0;
959			LIST_INIT(&ksg->ksg_members);
960			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
961			cpus++;
962		}
963		ksg_maxid = cpus - 1;
964	} else {
965		struct kseq_group *ksg;
966		struct cpu_group *cg;
967		int j;
968
969		for (i = 0; i < smp_topology->ct_count; i++) {
970			cg = &smp_topology->ct_group[i];
971			ksg = &kseq_groups[i];
972			/*
973			 * Initialize the group.
974			 */
975			ksg->ksg_idlemask = 0;
976			ksg->ksg_load = 0;
977			ksg->ksg_transferable = 0;
978			ksg->ksg_cpus = cg->cg_count;
979			ksg->ksg_cpumask = cg->cg_mask;
980			LIST_INIT(&ksg->ksg_members);
981			/*
982			 * Find all of the group members and add them.
983			 */
984			for (j = 0; j < MAXCPU; j++) {
985				if ((cg->cg_mask & (1 << j)) != 0) {
986					if (ksg->ksg_mask == 0)
987						ksg->ksg_mask = 1 << j;
988					kseq_cpu[j].ksq_transferable = 0;
989					kseq_cpu[j].ksq_group = ksg;
990					LIST_INSERT_HEAD(&ksg->ksg_members,
991					    &kseq_cpu[j], ksq_siblings);
992				}
993			}
994			if (ksg->ksg_cpus > 1)
995				balance_groups = 1;
996		}
997		ksg_maxid = smp_topology->ct_count - 1;
998	}
999	/*
1000	 * Stagger the group and global load balancer so they do not
1001	 * interfere with each other.
1002	 */
1003	bal_tick = ticks + hz;
1004	if (balance_groups)
1005		gbal_tick = ticks + (hz / 2);
1006#else
1007	kseq_setup(KSEQ_SELF());
1008#endif
1009	mtx_lock_spin(&sched_lock);
1010	kseq_load_add(KSEQ_SELF(), &kse0);
1011	mtx_unlock_spin(&sched_lock);
1012}
1013
1014/*
1015 * Scale the scheduling priority according to the "interactivity" of this
1016 * process.
1017 */
1018static void
1019sched_priority(struct ksegrp *kg)
1020{
1021	int pri;
1022
1023	if (kg->kg_pri_class != PRI_TIMESHARE)
1024		return;
1025
1026	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
1027	pri += SCHED_PRI_BASE;
1028	pri += kg->kg_proc->p_nice;
1029
1030	if (pri > PRI_MAX_TIMESHARE)
1031		pri = PRI_MAX_TIMESHARE;
1032	else if (pri < PRI_MIN_TIMESHARE)
1033		pri = PRI_MIN_TIMESHARE;
1034
1035	kg->kg_user_pri = pri;
1036
1037	return;
1038}
1039
1040/*
1041 * Calculate a time slice based on the properties of the kseg and the runq
1042 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
1043 */
1044static void
1045sched_slice(struct kse *ke)
1046{
1047	struct kseq *kseq;
1048	struct ksegrp *kg;
1049
1050	kg = ke->ke_ksegrp;
1051	kseq = KSEQ_CPU(ke->ke_cpu);
1052
1053	if (ke->ke_thread->td_flags & TDF_BORROWING) {
1054		ke->ke_slice = SCHED_SLICE_MIN;
1055		return;
1056	}
1057
1058	/*
1059	 * Rationale:
1060	 * KSEs in interactive ksegs get a minimal slice so that we
1061	 * quickly notice if it abuses its advantage.
1062	 *
1063	 * KSEs in non-interactive ksegs are assigned a slice that is
1064	 * based on the ksegs nice value relative to the least nice kseg
1065	 * on the run queue for this cpu.
1066	 *
1067	 * If the KSE is less nice than all others it gets the maximum
1068	 * slice and other KSEs will adjust their slice relative to
1069	 * this when they first expire.
1070	 *
1071	 * There is 20 point window that starts relative to the least
1072	 * nice kse on the run queue.  Slice size is determined by
1073	 * the kse distance from the last nice ksegrp.
1074	 *
1075	 * If the kse is outside of the window it will get no slice
1076	 * and will be reevaluated each time it is selected on the
1077	 * run queue.  The exception to this is nice 0 ksegs when
1078	 * a nice -20 is running.  They are always granted a minimum
1079	 * slice.
1080	 */
1081	if (!SCHED_INTERACTIVE(kg)) {
1082		int nice;
1083
1084		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
1085		if (kseq->ksq_load_timeshare == 0 ||
1086		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
1087			ke->ke_slice = SCHED_SLICE_MAX;
1088		else if (nice <= SCHED_SLICE_NTHRESH)
1089			ke->ke_slice = SCHED_SLICE_NICE(nice);
1090		else if (kg->kg_proc->p_nice == 0)
1091			ke->ke_slice = SCHED_SLICE_MIN;
1092		else
1093			ke->ke_slice = SCHED_SLICE_MIN; /* 0 */
1094	} else
1095		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1096
1097	return;
1098}
1099
1100/*
1101 * This routine enforces a maximum limit on the amount of scheduling history
1102 * kept.  It is called after either the slptime or runtime is adjusted.
1103 * This routine will not operate correctly when slp or run times have been
1104 * adjusted to more than double their maximum.
1105 */
1106static void
1107sched_interact_update(struct ksegrp *kg)
1108{
1109	int sum;
1110
1111	sum = kg->kg_runtime + kg->kg_slptime;
1112	if (sum < SCHED_SLP_RUN_MAX)
1113		return;
1114	/*
1115	 * If we have exceeded by more than 1/5th then the algorithm below
1116	 * will not bring us back into range.  Dividing by two here forces
1117	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1118	 */
1119	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1120		kg->kg_runtime /= 2;
1121		kg->kg_slptime /= 2;
1122		return;
1123	}
1124	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1125	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1126}
1127
1128static void
1129sched_interact_fork(struct ksegrp *kg)
1130{
1131	int ratio;
1132	int sum;
1133
1134	sum = kg->kg_runtime + kg->kg_slptime;
1135	if (sum > SCHED_SLP_RUN_FORK) {
1136		ratio = sum / SCHED_SLP_RUN_FORK;
1137		kg->kg_runtime /= ratio;
1138		kg->kg_slptime /= ratio;
1139	}
1140}
1141
1142static int
1143sched_interact_score(struct ksegrp *kg)
1144{
1145	int div;
1146
1147	if (kg->kg_runtime > kg->kg_slptime) {
1148		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1149		return (SCHED_INTERACT_HALF +
1150		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1151	} if (kg->kg_slptime > kg->kg_runtime) {
1152		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1153		return (kg->kg_runtime / div);
1154	}
1155
1156	/*
1157	 * This can happen if slptime and runtime are 0.
1158	 */
1159	return (0);
1160
1161}
1162
1163/*
1164 * Very early in the boot some setup of scheduler-specific
1165 * parts of proc0 and of soem scheduler resources needs to be done.
1166 * Called from:
1167 *  proc0_init()
1168 */
1169void
1170schedinit(void)
1171{
1172	/*
1173	 * Set up the scheduler specific parts of proc0.
1174	 */
1175	proc0.p_sched = NULL; /* XXX */
1176	ksegrp0.kg_sched = &kg_sched0;
1177	thread0.td_sched = &kse0;
1178	kse0.ke_thread = &thread0;
1179	kse0.ke_state = KES_THREAD;
1180	kg_sched0.skg_concurrency = 1;
1181	kg_sched0.skg_avail_opennings = 0; /* we are already running */
1182}
1183
1184/*
1185 * This is only somewhat accurate since given many processes of the same
1186 * priority they will switch when their slices run out, which will be
1187 * at most SCHED_SLICE_MAX.
1188 */
1189int
1190sched_rr_interval(void)
1191{
1192	return (SCHED_SLICE_MAX);
1193}
1194
1195static void
1196sched_pctcpu_update(struct kse *ke)
1197{
1198	/*
1199	 * Adjust counters and watermark for pctcpu calc.
1200	 */
1201	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1202		/*
1203		 * Shift the tick count out so that the divide doesn't
1204		 * round away our results.
1205		 */
1206		ke->ke_ticks <<= 10;
1207		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1208			    SCHED_CPU_TICKS;
1209		ke->ke_ticks >>= 10;
1210	} else
1211		ke->ke_ticks = 0;
1212	ke->ke_ltick = ticks;
1213	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1214}
1215
1216void
1217sched_thread_priority(struct thread *td, u_char prio)
1218{
1219	struct kse *ke;
1220
1221	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1222	    td, td->td_proc->p_comm, td->td_priority, prio, curthread,
1223	    curthread->td_proc->p_comm);
1224	ke = td->td_kse;
1225	mtx_assert(&sched_lock, MA_OWNED);
1226	if (td->td_priority == prio)
1227		return;
1228	if (TD_ON_RUNQ(td)) {
1229		/*
1230		 * If the priority has been elevated due to priority
1231		 * propagation, we may have to move ourselves to a new
1232		 * queue.  We still call adjustrunqueue below in case kse
1233		 * needs to fix things up.
1234		 */
1235		if (prio < td->td_priority && ke->ke_runq != NULL &&
1236		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1237		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1238			runq_remove(ke->ke_runq, ke);
1239			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1240			runq_add(ke->ke_runq, ke, 0);
1241		}
1242		/*
1243		 * Hold this kse on this cpu so that sched_prio() doesn't
1244		 * cause excessive migration.  We only want migration to
1245		 * happen as the result of a wakeup.
1246		 */
1247		ke->ke_flags |= KEF_HOLD;
1248		adjustrunqueue(td, prio);
1249		ke->ke_flags &= ~KEF_HOLD;
1250	} else
1251		td->td_priority = prio;
1252}
1253
1254/*
1255 * Update a thread's priority when it is lent another thread's
1256 * priority.
1257 */
1258void
1259sched_lend_prio(struct thread *td, u_char prio)
1260{
1261
1262	td->td_flags |= TDF_BORROWING;
1263	sched_thread_priority(td, prio);
1264}
1265
1266/*
1267 * Restore a thread's priority when priority propagation is
1268 * over.  The prio argument is the minimum priority the thread
1269 * needs to have to satisfy other possible priority lending
1270 * requests.  If the thread's regular priority is less
1271 * important than prio, the thread will keep a priority boost
1272 * of prio.
1273 */
1274void
1275sched_unlend_prio(struct thread *td, u_char prio)
1276{
1277	u_char base_pri;
1278
1279	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1280	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1281		base_pri = td->td_ksegrp->kg_user_pri;
1282	else
1283		base_pri = td->td_base_pri;
1284	if (prio >= base_pri) {
1285		td->td_flags &= ~TDF_BORROWING;
1286		sched_thread_priority(td, base_pri);
1287	} else
1288		sched_lend_prio(td, prio);
1289}
1290
1291void
1292sched_prio(struct thread *td, u_char prio)
1293{
1294	u_char oldprio;
1295
1296	/* First, update the base priority. */
1297	td->td_base_pri = prio;
1298
1299	/*
1300	 * If the thread is borrowing another thread's priority, don't
1301	 * ever lower the priority.
1302	 */
1303	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1304		return;
1305
1306	/* Change the real priority. */
1307	oldprio = td->td_priority;
1308	sched_thread_priority(td, prio);
1309
1310	/*
1311	 * If the thread is on a turnstile, then let the turnstile update
1312	 * its state.
1313	 */
1314	if (TD_ON_LOCK(td) && oldprio != prio)
1315		turnstile_adjust(td, oldprio);
1316}
1317
1318void
1319sched_switch(struct thread *td, struct thread *newtd, int flags)
1320{
1321	struct kseq *ksq;
1322	struct kse *ke;
1323
1324	mtx_assert(&sched_lock, MA_OWNED);
1325
1326	ke = td->td_kse;
1327	ksq = KSEQ_SELF();
1328
1329	td->td_lastcpu = td->td_oncpu;
1330	td->td_oncpu = NOCPU;
1331	td->td_flags &= ~TDF_NEEDRESCHED;
1332	td->td_owepreempt = 0;
1333
1334	/*
1335	 * If the KSE has been assigned it may be in the process of switching
1336	 * to the new cpu.  This is the case in sched_bind().
1337	 */
1338	if (td == PCPU_GET(idlethread)) {
1339		TD_SET_CAN_RUN(td);
1340	} else if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1341		/* We are ending our run so make our slot available again */
1342		SLOT_RELEASE(td->td_ksegrp);
1343		kseq_load_rem(ksq, ke);
1344		if (TD_IS_RUNNING(td)) {
1345			/*
1346			 * Don't allow the thread to migrate
1347			 * from a preemption.
1348			 */
1349			ke->ke_flags |= KEF_HOLD;
1350			setrunqueue(td, (flags & SW_PREEMPT) ?
1351			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1352			    SRQ_OURSELF|SRQ_YIELDING);
1353			ke->ke_flags &= ~KEF_HOLD;
1354		} else if ((td->td_proc->p_flag & P_HADTHREADS) &&
1355		    (newtd == NULL || newtd->td_ksegrp != td->td_ksegrp))
1356			/*
1357			 * We will not be on the run queue.
1358			 * So we must be sleeping or similar.
1359			 * Don't use the slot if we will need it
1360			 * for newtd.
1361			 */
1362			slot_fill(td->td_ksegrp);
1363	}
1364	if (newtd != NULL) {
1365		/*
1366		 * If we bring in a thread account for it as if it had been
1367		 * added to the run queue and then chosen.
1368		 */
1369		newtd->td_kse->ke_flags |= KEF_DIDRUN;
1370		newtd->td_kse->ke_runq = ksq->ksq_curr;
1371		TD_SET_RUNNING(newtd);
1372		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1373		/*
1374		 * XXX When we preempt, we've already consumed a slot because
1375		 * we got here through sched_add().  However, newtd can come
1376		 * from thread_switchout() which can't SLOT_USE() because
1377		 * the SLOT code is scheduler dependent.  We must use the
1378		 * slot here otherwise.
1379		 */
1380		if ((flags & SW_PREEMPT) == 0)
1381			SLOT_USE(newtd->td_ksegrp);
1382	} else
1383		newtd = choosethread();
1384	if (td != newtd) {
1385#ifdef	HWPMC_HOOKS
1386		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1387			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1388#endif
1389		cpu_switch(td, newtd);
1390#ifdef	HWPMC_HOOKS
1391		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1392			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1393#endif
1394	}
1395
1396	sched_lock.mtx_lock = (uintptr_t)td;
1397
1398	td->td_oncpu = PCPU_GET(cpuid);
1399}
1400
1401void
1402sched_nice(struct proc *p, int nice)
1403{
1404	struct ksegrp *kg;
1405	struct kse *ke;
1406	struct thread *td;
1407	struct kseq *kseq;
1408
1409	PROC_LOCK_ASSERT(p, MA_OWNED);
1410	mtx_assert(&sched_lock, MA_OWNED);
1411	/*
1412	 * We need to adjust the nice counts for running KSEs.
1413	 */
1414	FOREACH_KSEGRP_IN_PROC(p, kg) {
1415		if (kg->kg_pri_class == PRI_TIMESHARE) {
1416			FOREACH_THREAD_IN_GROUP(kg, td) {
1417				ke = td->td_kse;
1418				if (ke->ke_runq == NULL)
1419					continue;
1420				kseq = KSEQ_CPU(ke->ke_cpu);
1421				kseq_nice_rem(kseq, p->p_nice);
1422				kseq_nice_add(kseq, nice);
1423			}
1424		}
1425	}
1426	p->p_nice = nice;
1427	FOREACH_KSEGRP_IN_PROC(p, kg) {
1428		sched_priority(kg);
1429		FOREACH_THREAD_IN_GROUP(kg, td)
1430			td->td_flags |= TDF_NEEDRESCHED;
1431	}
1432}
1433
1434void
1435sched_sleep(struct thread *td)
1436{
1437	mtx_assert(&sched_lock, MA_OWNED);
1438
1439	td->td_slptime = ticks;
1440}
1441
1442void
1443sched_wakeup(struct thread *td)
1444{
1445	mtx_assert(&sched_lock, MA_OWNED);
1446
1447	/*
1448	 * Let the kseg know how long we slept for.  This is because process
1449	 * interactivity behavior is modeled in the kseg.
1450	 */
1451	if (td->td_slptime) {
1452		struct ksegrp *kg;
1453		int hzticks;
1454
1455		kg = td->td_ksegrp;
1456		hzticks = (ticks - td->td_slptime) << 10;
1457		if (hzticks >= SCHED_SLP_RUN_MAX) {
1458			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1459			kg->kg_runtime = 1;
1460		} else {
1461			kg->kg_slptime += hzticks;
1462			sched_interact_update(kg);
1463		}
1464		sched_priority(kg);
1465		sched_slice(td->td_kse);
1466		td->td_slptime = 0;
1467	}
1468	setrunqueue(td, SRQ_BORING);
1469}
1470
1471/*
1472 * Penalize the parent for creating a new child and initialize the child's
1473 * priority.
1474 */
1475void
1476sched_fork(struct thread *td, struct thread *childtd)
1477{
1478
1479	mtx_assert(&sched_lock, MA_OWNED);
1480
1481	sched_fork_ksegrp(td, childtd->td_ksegrp);
1482	sched_fork_thread(td, childtd);
1483}
1484
1485void
1486sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1487{
1488	struct ksegrp *kg = td->td_ksegrp;
1489	mtx_assert(&sched_lock, MA_OWNED);
1490
1491	child->kg_slptime = kg->kg_slptime;
1492	child->kg_runtime = kg->kg_runtime;
1493	child->kg_user_pri = kg->kg_user_pri;
1494	sched_interact_fork(child);
1495	kg->kg_runtime += tickincr << 10;
1496	sched_interact_update(kg);
1497}
1498
1499void
1500sched_fork_thread(struct thread *td, struct thread *child)
1501{
1502	struct kse *ke;
1503	struct kse *ke2;
1504
1505	sched_newthread(child);
1506	ke = td->td_kse;
1507	ke2 = child->td_kse;
1508	ke2->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1509	ke2->ke_cpu = ke->ke_cpu;
1510	ke2->ke_runq = NULL;
1511
1512	/* Grab our parents cpu estimation information. */
1513	ke2->ke_ticks = ke->ke_ticks;
1514	ke2->ke_ltick = ke->ke_ltick;
1515	ke2->ke_ftick = ke->ke_ftick;
1516}
1517
1518void
1519sched_class(struct ksegrp *kg, int class)
1520{
1521	struct kseq *kseq;
1522	struct kse *ke;
1523	struct thread *td;
1524	int nclass;
1525	int oclass;
1526
1527	mtx_assert(&sched_lock, MA_OWNED);
1528	if (kg->kg_pri_class == class)
1529		return;
1530
1531	nclass = PRI_BASE(class);
1532	oclass = PRI_BASE(kg->kg_pri_class);
1533	FOREACH_THREAD_IN_GROUP(kg, td) {
1534		ke = td->td_kse;
1535		if ((ke->ke_state != KES_ONRUNQ &&
1536		    ke->ke_state != KES_THREAD) || ke->ke_runq == NULL)
1537			continue;
1538		kseq = KSEQ_CPU(ke->ke_cpu);
1539
1540#ifdef SMP
1541		/*
1542		 * On SMP if we're on the RUNQ we must adjust the transferable
1543		 * count because could be changing to or from an interrupt
1544		 * class.
1545		 */
1546		if (ke->ke_state == KES_ONRUNQ) {
1547			if (KSE_CAN_MIGRATE(ke)) {
1548				kseq->ksq_transferable--;
1549				kseq->ksq_group->ksg_transferable--;
1550			}
1551			if (KSE_CAN_MIGRATE(ke)) {
1552				kseq->ksq_transferable++;
1553				kseq->ksq_group->ksg_transferable++;
1554			}
1555		}
1556#endif
1557		if (oclass == PRI_TIMESHARE) {
1558			kseq->ksq_load_timeshare--;
1559			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1560		}
1561		if (nclass == PRI_TIMESHARE) {
1562			kseq->ksq_load_timeshare++;
1563			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1564		}
1565	}
1566
1567	kg->kg_pri_class = class;
1568}
1569
1570/*
1571 * Return some of the child's priority and interactivity to the parent.
1572 */
1573void
1574sched_exit(struct proc *p, struct thread *childtd)
1575{
1576	mtx_assert(&sched_lock, MA_OWNED);
1577	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd);
1578	sched_exit_thread(NULL, childtd);
1579}
1580
1581void
1582sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1583{
1584	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1585	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1586	sched_interact_update(kg);
1587}
1588
1589void
1590sched_exit_thread(struct thread *td, struct thread *childtd)
1591{
1592	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
1593	    childtd, childtd->td_proc->p_comm, childtd->td_priority);
1594	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1595}
1596
1597void
1598sched_clock(struct thread *td)
1599{
1600	struct kseq *kseq;
1601	struct ksegrp *kg;
1602	struct kse *ke;
1603
1604	mtx_assert(&sched_lock, MA_OWNED);
1605	kseq = KSEQ_SELF();
1606#ifdef SMP
1607	if (ticks >= bal_tick)
1608		sched_balance();
1609	if (ticks >= gbal_tick && balance_groups)
1610		sched_balance_groups();
1611	/*
1612	 * We could have been assigned a non real-time thread without an
1613	 * IPI.
1614	 */
1615	if (kseq->ksq_assigned)
1616		kseq_assign(kseq);	/* Potentially sets NEEDRESCHED */
1617#endif
1618	/*
1619	 * sched_setup() apparently happens prior to stathz being set.  We
1620	 * need to resolve the timers earlier in the boot so we can avoid
1621	 * calculating this here.
1622	 */
1623	if (realstathz == 0) {
1624		realstathz = stathz ? stathz : hz;
1625		tickincr = hz / realstathz;
1626		/*
1627		 * XXX This does not work for values of stathz that are much
1628		 * larger than hz.
1629		 */
1630		if (tickincr == 0)
1631			tickincr = 1;
1632	}
1633
1634	ke = td->td_kse;
1635	kg = ke->ke_ksegrp;
1636
1637	/* Adjust ticks for pctcpu */
1638	ke->ke_ticks++;
1639	ke->ke_ltick = ticks;
1640
1641	/* Go up to one second beyond our max and then trim back down */
1642	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1643		sched_pctcpu_update(ke);
1644
1645	if (td->td_flags & TDF_IDLETD)
1646		return;
1647	/*
1648	 * We only do slicing code for TIMESHARE ksegrps.
1649	 */
1650	if (kg->kg_pri_class != PRI_TIMESHARE)
1651		return;
1652	/*
1653	 * We used a tick charge it to the ksegrp so that we can compute our
1654	 * interactivity.
1655	 */
1656	kg->kg_runtime += tickincr << 10;
1657	sched_interact_update(kg);
1658
1659	/*
1660	 * We used up one time slice.
1661	 */
1662	if (--ke->ke_slice > 0)
1663		return;
1664	/*
1665	 * We're out of time, recompute priorities and requeue.
1666	 */
1667	kseq_load_rem(kseq, ke);
1668	sched_priority(kg);
1669	sched_slice(ke);
1670	if (SCHED_CURR(kg, ke))
1671		ke->ke_runq = kseq->ksq_curr;
1672	else
1673		ke->ke_runq = kseq->ksq_next;
1674	kseq_load_add(kseq, ke);
1675	td->td_flags |= TDF_NEEDRESCHED;
1676}
1677
1678int
1679sched_runnable(void)
1680{
1681	struct kseq *kseq;
1682	int load;
1683
1684	load = 1;
1685
1686	kseq = KSEQ_SELF();
1687#ifdef SMP
1688	if (kseq->ksq_assigned) {
1689		mtx_lock_spin(&sched_lock);
1690		kseq_assign(kseq);
1691		mtx_unlock_spin(&sched_lock);
1692	}
1693#endif
1694	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1695		if (kseq->ksq_load > 0)
1696			goto out;
1697	} else
1698		if (kseq->ksq_load - 1 > 0)
1699			goto out;
1700	load = 0;
1701out:
1702	return (load);
1703}
1704
1705void
1706sched_userret(struct thread *td)
1707{
1708	struct ksegrp *kg;
1709
1710	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1711	    ("thread with borrowed priority returning to userland"));
1712	kg = td->td_ksegrp;
1713	if (td->td_priority != kg->kg_user_pri) {
1714		mtx_lock_spin(&sched_lock);
1715		td->td_priority = kg->kg_user_pri;
1716		td->td_base_pri = kg->kg_user_pri;
1717		mtx_unlock_spin(&sched_lock);
1718	}
1719}
1720
1721struct kse *
1722sched_choose(void)
1723{
1724	struct kseq *kseq;
1725	struct kse *ke;
1726
1727	mtx_assert(&sched_lock, MA_OWNED);
1728	kseq = KSEQ_SELF();
1729#ifdef SMP
1730restart:
1731	if (kseq->ksq_assigned)
1732		kseq_assign(kseq);
1733#endif
1734	ke = kseq_choose(kseq);
1735	if (ke) {
1736#ifdef SMP
1737		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1738			if (kseq_idled(kseq) == 0)
1739				goto restart;
1740#endif
1741		kseq_runq_rem(kseq, ke);
1742		ke->ke_state = KES_THREAD;
1743		ke->ke_flags &= ~KEF_PREEMPTED;
1744		return (ke);
1745	}
1746#ifdef SMP
1747	if (kseq_idled(kseq) == 0)
1748		goto restart;
1749#endif
1750	return (NULL);
1751}
1752
1753void
1754sched_add(struct thread *td, int flags)
1755{
1756	struct kseq *kseq;
1757	struct ksegrp *kg;
1758	struct kse *ke;
1759	int preemptive;
1760	int canmigrate;
1761	int class;
1762
1763	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1764	    td, td->td_proc->p_comm, td->td_priority, curthread,
1765	    curthread->td_proc->p_comm);
1766	mtx_assert(&sched_lock, MA_OWNED);
1767	ke = td->td_kse;
1768	kg = td->td_ksegrp;
1769	canmigrate = 1;
1770	preemptive = !(flags & SRQ_YIELDING);
1771	class = PRI_BASE(kg->kg_pri_class);
1772	kseq = KSEQ_SELF();
1773	if ((ke->ke_flags & KEF_INTERNAL) == 0)
1774		SLOT_USE(td->td_ksegrp);
1775	ke->ke_flags &= ~KEF_INTERNAL;
1776#ifdef SMP
1777	if (ke->ke_flags & KEF_ASSIGNED) {
1778		if (ke->ke_flags & KEF_REMOVED)
1779			ke->ke_flags &= ~KEF_REMOVED;
1780		return;
1781	}
1782	canmigrate = KSE_CAN_MIGRATE(ke);
1783	/*
1784	 * Don't migrate running threads here.  Force the long term balancer
1785	 * to do it.
1786	 */
1787	if (ke->ke_flags & KEF_HOLD) {
1788		ke->ke_flags &= ~KEF_HOLD;
1789		canmigrate = 0;
1790	}
1791#endif
1792	KASSERT(ke->ke_state != KES_ONRUNQ,
1793	    ("sched_add: kse %p (%s) already in run queue", ke,
1794	    ke->ke_proc->p_comm));
1795	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1796	    ("sched_add: process swapped out"));
1797	KASSERT(ke->ke_runq == NULL,
1798	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1799	if (flags & SRQ_PREEMPTED)
1800		ke->ke_flags |= KEF_PREEMPTED;
1801	switch (class) {
1802	case PRI_ITHD:
1803	case PRI_REALTIME:
1804		ke->ke_runq = kseq->ksq_curr;
1805		ke->ke_slice = SCHED_SLICE_MAX;
1806		if (canmigrate)
1807			ke->ke_cpu = PCPU_GET(cpuid);
1808		break;
1809	case PRI_TIMESHARE:
1810		if (SCHED_CURR(kg, ke))
1811			ke->ke_runq = kseq->ksq_curr;
1812		else
1813			ke->ke_runq = kseq->ksq_next;
1814		break;
1815	case PRI_IDLE:
1816		/*
1817		 * This is for priority prop.
1818		 */
1819		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1820			ke->ke_runq = kseq->ksq_curr;
1821		else
1822			ke->ke_runq = &kseq->ksq_idle;
1823		ke->ke_slice = SCHED_SLICE_MIN;
1824		break;
1825	default:
1826		panic("Unknown pri class.");
1827		break;
1828	}
1829#ifdef SMP
1830	/*
1831	 * If this thread is pinned or bound, notify the target cpu.
1832	 */
1833	if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) {
1834		ke->ke_runq = NULL;
1835		kseq_notify(ke, ke->ke_cpu);
1836		return;
1837	}
1838	/*
1839	 * If we had been idle, clear our bit in the group and potentially
1840	 * the global bitmap.  If not, see if we should transfer this thread.
1841	 */
1842	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1843	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1844		/*
1845		 * Check to see if our group is unidling, and if so, remove it
1846		 * from the global idle mask.
1847		 */
1848		if (kseq->ksq_group->ksg_idlemask ==
1849		    kseq->ksq_group->ksg_cpumask)
1850			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1851		/*
1852		 * Now remove ourselves from the group specific idle mask.
1853		 */
1854		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1855	} else if (canmigrate && kseq->ksq_load > 1 && class != PRI_ITHD)
1856		if (kseq_transfer(kseq, ke, class))
1857			return;
1858	ke->ke_cpu = PCPU_GET(cpuid);
1859#endif
1860	if (td->td_priority < curthread->td_priority &&
1861	    ke->ke_runq == kseq->ksq_curr)
1862		curthread->td_flags |= TDF_NEEDRESCHED;
1863	if (preemptive && maybe_preempt(td))
1864		return;
1865	ke->ke_state = KES_ONRUNQ;
1866
1867	kseq_runq_add(kseq, ke, flags);
1868	kseq_load_add(kseq, ke);
1869}
1870
1871void
1872sched_rem(struct thread *td)
1873{
1874	struct kseq *kseq;
1875	struct kse *ke;
1876
1877	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
1878	    td, td->td_proc->p_comm, td->td_priority, curthread,
1879	    curthread->td_proc->p_comm);
1880	mtx_assert(&sched_lock, MA_OWNED);
1881	ke = td->td_kse;
1882	SLOT_RELEASE(td->td_ksegrp);
1883	ke->ke_flags &= ~KEF_PREEMPTED;
1884	if (ke->ke_flags & KEF_ASSIGNED) {
1885		ke->ke_flags |= KEF_REMOVED;
1886		return;
1887	}
1888	KASSERT((ke->ke_state == KES_ONRUNQ),
1889	    ("sched_rem: KSE not on run queue"));
1890
1891	ke->ke_state = KES_THREAD;
1892	kseq = KSEQ_CPU(ke->ke_cpu);
1893	kseq_runq_rem(kseq, ke);
1894	kseq_load_rem(kseq, ke);
1895}
1896
1897fixpt_t
1898sched_pctcpu(struct thread *td)
1899{
1900	fixpt_t pctcpu;
1901	struct kse *ke;
1902
1903	pctcpu = 0;
1904	ke = td->td_kse;
1905	if (ke == NULL)
1906		return (0);
1907
1908	mtx_lock_spin(&sched_lock);
1909	if (ke->ke_ticks) {
1910		int rtick;
1911
1912		/*
1913		 * Don't update more frequently than twice a second.  Allowing
1914		 * this causes the cpu usage to decay away too quickly due to
1915		 * rounding errors.
1916		 */
1917		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1918		    ke->ke_ltick < (ticks - (hz / 2)))
1919			sched_pctcpu_update(ke);
1920		/* How many rtick per second ? */
1921		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1922		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1923	}
1924
1925	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1926	mtx_unlock_spin(&sched_lock);
1927
1928	return (pctcpu);
1929}
1930
1931void
1932sched_bind(struct thread *td, int cpu)
1933{
1934	struct kse *ke;
1935
1936	mtx_assert(&sched_lock, MA_OWNED);
1937	ke = td->td_kse;
1938	ke->ke_flags |= KEF_BOUND;
1939#ifdef SMP
1940	if (PCPU_GET(cpuid) == cpu)
1941		return;
1942	/* sched_rem without the runq_remove */
1943	ke->ke_state = KES_THREAD;
1944	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1945	kseq_notify(ke, cpu);
1946	/* When we return from mi_switch we'll be on the correct cpu. */
1947	mi_switch(SW_VOL, NULL);
1948#endif
1949}
1950
1951void
1952sched_unbind(struct thread *td)
1953{
1954	mtx_assert(&sched_lock, MA_OWNED);
1955	td->td_kse->ke_flags &= ~KEF_BOUND;
1956}
1957
1958int
1959sched_is_bound(struct thread *td)
1960{
1961	mtx_assert(&sched_lock, MA_OWNED);
1962	return (td->td_kse->ke_flags & KEF_BOUND);
1963}
1964
1965int
1966sched_load(void)
1967{
1968#ifdef SMP
1969	int total;
1970	int i;
1971
1972	total = 0;
1973	for (i = 0; i <= ksg_maxid; i++)
1974		total += KSEQ_GROUP(i)->ksg_load;
1975	return (total);
1976#else
1977	return (KSEQ_SELF()->ksq_sysload);
1978#endif
1979}
1980
1981int
1982sched_sizeof_ksegrp(void)
1983{
1984	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1985}
1986
1987int
1988sched_sizeof_proc(void)
1989{
1990	return (sizeof(struct proc));
1991}
1992
1993int
1994sched_sizeof_thread(void)
1995{
1996	return (sizeof(struct thread) + sizeof(struct td_sched));
1997}
1998#define KERN_SWITCH_INCLUDE 1
1999#include "kern/kern_switch.c"
2000