sched_ule.c revision 148856
1/*-
2 * Copyright (c) 2002-2005, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 148856 2005-08-08 14:20:10Z davidxu $");
29
30#include "opt_hwpmc_hooks.h"
31#include "opt_sched.h"
32
33#define kse td_sched
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kdb.h>
38#include <sys/kernel.h>
39#include <sys/ktr.h>
40#include <sys/lock.h>
41#include <sys/mutex.h>
42#include <sys/proc.h>
43#include <sys/resource.h>
44#include <sys/resourcevar.h>
45#include <sys/sched.h>
46#include <sys/smp.h>
47#include <sys/sx.h>
48#include <sys/sysctl.h>
49#include <sys/sysproto.h>
50#include <sys/turnstile.h>
51#include <sys/vmmeter.h>
52#ifdef KTRACE
53#include <sys/uio.h>
54#include <sys/ktrace.h>
55#endif
56
57#ifdef HWPMC_HOOKS
58#include <sys/pmckern.h>
59#endif
60
61#include <machine/cpu.h>
62#include <machine/smp.h>
63
64/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
65/* XXX This is bogus compatability crap for ps */
66static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
67SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
68
69static void sched_setup(void *dummy);
70SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
71
72static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
73
74SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
75    "Scheduler name");
76
77static int slice_min = 1;
78SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
79
80static int slice_max = 10;
81SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
82
83int realstathz;
84int tickincr = 1;
85
86/*
87 * The following datastructures are allocated within their parent structure
88 * but are scheduler specific.
89 */
90/*
91 * The schedulable entity that can be given a context to run.  A process may
92 * have several of these.
93 */
94struct kse {
95	TAILQ_ENTRY(kse) ke_procq;	/* (j/z) Run queue. */
96	int		ke_flags;	/* (j) KEF_* flags. */
97	struct thread	*ke_thread;	/* (*) Active associated thread. */
98	fixpt_t		ke_pctcpu;	/* (j) %cpu during p_swtime. */
99	char		ke_rqindex;	/* (j) Run queue index. */
100	enum {
101		KES_THREAD = 0x0,	/* slaved to thread state */
102		KES_ONRUNQ
103	} ke_state;			/* (j) thread sched specific status. */
104	int		ke_slptime;
105	int		ke_slice;
106	struct runq	*ke_runq;
107	u_char		ke_cpu;		/* CPU that we have affinity for. */
108	/* The following variables are only used for pctcpu calculation */
109	int		ke_ltick;	/* Last tick that we were running on */
110	int		ke_ftick;	/* First tick that we were running on */
111	int		ke_ticks;	/* Tick count */
112
113};
114#define	td_kse			td_sched
115#define	td_slptime		td_kse->ke_slptime
116#define ke_proc			ke_thread->td_proc
117#define ke_ksegrp		ke_thread->td_ksegrp
118#define	ke_assign		ke_procq.tqe_next
119/* flags kept in ke_flags */
120#define	KEF_ASSIGNED	0x0001		/* Thread is being migrated. */
121#define	KEF_BOUND	0x0002		/* Thread can not migrate. */
122#define	KEF_XFERABLE	0x0004		/* Thread was added as transferable. */
123#define	KEF_HOLD	0x0008		/* Thread is temporarily bound. */
124#define	KEF_REMOVED	0x0010		/* Thread was removed while ASSIGNED */
125#define	KEF_INTERNAL	0x0020		/* Thread added due to migration. */
126#define	KEF_PREEMPTED	0x0040		/* Thread was preempted */
127#define	KEF_DIDRUN	0x02000		/* Thread actually ran. */
128#define	KEF_EXIT	0x04000		/* Thread is being killed. */
129
130struct kg_sched {
131	struct thread	*skg_last_assigned; /* (j) Last thread assigned to */
132					   /* the system scheduler */
133	int	skg_slptime;		/* Number of ticks we vol. slept */
134	int	skg_runtime;		/* Number of ticks we were running */
135	int	skg_avail_opennings;	/* (j) Num unfilled slots in group.*/
136	int	skg_concurrency;	/* (j) Num threads requested in group.*/
137};
138#define kg_last_assigned	kg_sched->skg_last_assigned
139#define kg_avail_opennings	kg_sched->skg_avail_opennings
140#define kg_concurrency		kg_sched->skg_concurrency
141#define kg_runtime		kg_sched->skg_runtime
142#define kg_slptime		kg_sched->skg_slptime
143
144#define SLOT_RELEASE(kg)	(kg)->kg_avail_opennings++
145#define	SLOT_USE(kg)		(kg)->kg_avail_opennings--
146
147static struct kse kse0;
148static struct kg_sched kg_sched0;
149
150/*
151 * The priority is primarily determined by the interactivity score.  Thus, we
152 * give lower(better) priorities to kse groups that use less CPU.  The nice
153 * value is then directly added to this to allow nice to have some effect
154 * on latency.
155 *
156 * PRI_RANGE:	Total priority range for timeshare threads.
157 * PRI_NRESV:	Number of nice values.
158 * PRI_BASE:	The start of the dynamic range.
159 */
160#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
161#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
162#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
163#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
164#define	SCHED_PRI_INTERACT(score)					\
165    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
166
167/*
168 * These determine the interactivity of a process.
169 *
170 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
171 *		before throttling back.
172 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
173 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
174 * INTERACT_THRESH:	Threshhold for placement on the current runq.
175 */
176#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
177#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
178#define	SCHED_INTERACT_MAX	(100)
179#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
180#define	SCHED_INTERACT_THRESH	(30)
181
182/*
183 * These parameters and macros determine the size of the time slice that is
184 * granted to each thread.
185 *
186 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
187 * SLICE_MAX:	Maximum time slice granted.
188 * SLICE_RANGE:	Range of available time slices scaled by hz.
189 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
190 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
191 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
192 */
193#define	SCHED_SLICE_MIN			(slice_min)
194#define	SCHED_SLICE_MAX			(slice_max)
195#define	SCHED_SLICE_INTERACTIVE		(slice_max)
196#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
197#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
198#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
199#define	SCHED_SLICE_NICE(nice)						\
200    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
201
202/*
203 * This macro determines whether or not the thread belongs on the current or
204 * next run queue.
205 */
206#define	SCHED_INTERACTIVE(kg)						\
207    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
208#define	SCHED_CURR(kg, ke)						\
209    ((ke->ke_thread->td_flags & TDF_BORROWING) ||			\
210     (ke->ke_flags & KEF_PREEMPTED) || SCHED_INTERACTIVE(kg))
211
212/*
213 * Cpu percentage computation macros and defines.
214 *
215 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
216 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
217 */
218
219#define	SCHED_CPU_TIME	10
220#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
221
222/*
223 * kseq - per processor runqs and statistics.
224 */
225struct kseq {
226	struct runq	ksq_idle;		/* Queue of IDLE threads. */
227	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
228	struct runq	*ksq_next;		/* Next timeshare queue. */
229	struct runq	*ksq_curr;		/* Current queue. */
230	int		ksq_load_timeshare;	/* Load for timeshare. */
231	int		ksq_load;		/* Aggregate load. */
232	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
233	short		ksq_nicemin;		/* Least nice. */
234#ifdef SMP
235	int			ksq_transferable;
236	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
237	struct kseq_group	*ksq_group;	/* Our processor group. */
238	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
239#else
240	int		ksq_sysload;		/* For loadavg, !ITHD load. */
241#endif
242};
243
244#ifdef SMP
245/*
246 * kseq groups are groups of processors which can cheaply share threads.  When
247 * one processor in the group goes idle it will check the runqs of the other
248 * processors in its group prior to halting and waiting for an interrupt.
249 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
250 * In a numa environment we'd want an idle bitmap per group and a two tiered
251 * load balancer.
252 */
253struct kseq_group {
254	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
255	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
256	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
257	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
258	int	ksg_load;		/* Total load of this group. */
259	int	ksg_transferable;	/* Transferable load of this group. */
260	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
261};
262#endif
263
264/*
265 * One kse queue per processor.
266 */
267#ifdef SMP
268static cpumask_t kseq_idle;
269static int ksg_maxid;
270static struct kseq	kseq_cpu[MAXCPU];
271static struct kseq_group kseq_groups[MAXCPU];
272static int bal_tick;
273static int gbal_tick;
274static int balance_groups;
275
276#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
277#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
278#define	KSEQ_ID(x)	((x) - kseq_cpu)
279#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
280#else	/* !SMP */
281static struct kseq	kseq_cpu;
282
283#define	KSEQ_SELF()	(&kseq_cpu)
284#define	KSEQ_CPU(x)	(&kseq_cpu)
285#endif
286
287static void slot_fill(struct ksegrp *);
288static struct kse *sched_choose(void);		/* XXX Should be thread * */
289static void sched_slice(struct kse *);
290static void sched_priority(struct ksegrp *);
291static void sched_thread_priority(struct thread *, u_char);
292static int sched_interact_score(struct ksegrp *);
293static void sched_interact_update(struct ksegrp *);
294static void sched_interact_fork(struct ksegrp *);
295static void sched_pctcpu_update(struct kse *);
296
297/* Operations on per processor queues */
298static struct kse * kseq_choose(struct kseq *);
299static void kseq_setup(struct kseq *);
300static void kseq_load_add(struct kseq *, struct kse *);
301static void kseq_load_rem(struct kseq *, struct kse *);
302static __inline void kseq_runq_add(struct kseq *, struct kse *, int);
303static __inline void kseq_runq_rem(struct kseq *, struct kse *);
304static void kseq_nice_add(struct kseq *, int);
305static void kseq_nice_rem(struct kseq *, int);
306void kseq_print(int cpu);
307#ifdef SMP
308static int kseq_transfer(struct kseq *, struct kse *, int);
309static struct kse *runq_steal(struct runq *);
310static void sched_balance(void);
311static void sched_balance_groups(void);
312static void sched_balance_group(struct kseq_group *);
313static void sched_balance_pair(struct kseq *, struct kseq *);
314static void kseq_move(struct kseq *, int);
315static int kseq_idled(struct kseq *);
316static void kseq_notify(struct kse *, int);
317static void kseq_assign(struct kseq *);
318static struct kse *kseq_steal(struct kseq *, int);
319#define	KSE_CAN_MIGRATE(ke)						\
320    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
321#endif
322
323void
324kseq_print(int cpu)
325{
326	struct kseq *kseq;
327	int i;
328
329	kseq = KSEQ_CPU(cpu);
330
331	printf("kseq:\n");
332	printf("\tload:           %d\n", kseq->ksq_load);
333	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
334#ifdef SMP
335	printf("\tload transferable: %d\n", kseq->ksq_transferable);
336#endif
337	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
338	printf("\tnice counts:\n");
339	for (i = 0; i < SCHED_PRI_NRESV; i++)
340		if (kseq->ksq_nice[i])
341			printf("\t\t%d = %d\n",
342			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
343}
344
345static __inline void
346kseq_runq_add(struct kseq *kseq, struct kse *ke, int flags)
347{
348#ifdef SMP
349	if (KSE_CAN_MIGRATE(ke)) {
350		kseq->ksq_transferable++;
351		kseq->ksq_group->ksg_transferable++;
352		ke->ke_flags |= KEF_XFERABLE;
353	}
354#endif
355	if (ke->ke_flags & KEF_PREEMPTED)
356		flags |= SRQ_PREEMPTED;
357	runq_add(ke->ke_runq, ke, flags);
358}
359
360static __inline void
361kseq_runq_rem(struct kseq *kseq, struct kse *ke)
362{
363#ifdef SMP
364	if (ke->ke_flags & KEF_XFERABLE) {
365		kseq->ksq_transferable--;
366		kseq->ksq_group->ksg_transferable--;
367		ke->ke_flags &= ~KEF_XFERABLE;
368	}
369#endif
370	runq_remove(ke->ke_runq, ke);
371}
372
373static void
374kseq_load_add(struct kseq *kseq, struct kse *ke)
375{
376	int class;
377	mtx_assert(&sched_lock, MA_OWNED);
378	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
379	if (class == PRI_TIMESHARE)
380		kseq->ksq_load_timeshare++;
381	kseq->ksq_load++;
382	CTR1(KTR_SCHED, "load: %d", kseq->ksq_load);
383	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
384#ifdef SMP
385		kseq->ksq_group->ksg_load++;
386#else
387		kseq->ksq_sysload++;
388#endif
389	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
390		kseq_nice_add(kseq, ke->ke_proc->p_nice);
391}
392
393static void
394kseq_load_rem(struct kseq *kseq, struct kse *ke)
395{
396	int class;
397	mtx_assert(&sched_lock, MA_OWNED);
398	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
399	if (class == PRI_TIMESHARE)
400		kseq->ksq_load_timeshare--;
401	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
402#ifdef SMP
403		kseq->ksq_group->ksg_load--;
404#else
405		kseq->ksq_sysload--;
406#endif
407	kseq->ksq_load--;
408	CTR1(KTR_SCHED, "load: %d", kseq->ksq_load);
409	ke->ke_runq = NULL;
410	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
411		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
412}
413
414static void
415kseq_nice_add(struct kseq *kseq, int nice)
416{
417	mtx_assert(&sched_lock, MA_OWNED);
418	/* Normalize to zero. */
419	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
420	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
421		kseq->ksq_nicemin = nice;
422}
423
424static void
425kseq_nice_rem(struct kseq *kseq, int nice)
426{
427	int n;
428
429	mtx_assert(&sched_lock, MA_OWNED);
430	/* Normalize to zero. */
431	n = nice + SCHED_PRI_NHALF;
432	kseq->ksq_nice[n]--;
433	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
434
435	/*
436	 * If this wasn't the smallest nice value or there are more in
437	 * this bucket we can just return.  Otherwise we have to recalculate
438	 * the smallest nice.
439	 */
440	if (nice != kseq->ksq_nicemin ||
441	    kseq->ksq_nice[n] != 0 ||
442	    kseq->ksq_load_timeshare == 0)
443		return;
444
445	for (; n < SCHED_PRI_NRESV; n++)
446		if (kseq->ksq_nice[n]) {
447			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
448			return;
449		}
450}
451
452#ifdef SMP
453/*
454 * sched_balance is a simple CPU load balancing algorithm.  It operates by
455 * finding the least loaded and most loaded cpu and equalizing their load
456 * by migrating some processes.
457 *
458 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
459 * installations will only have 2 cpus.  Secondly, load balancing too much at
460 * once can have an unpleasant effect on the system.  The scheduler rarely has
461 * enough information to make perfect decisions.  So this algorithm chooses
462 * algorithm simplicity and more gradual effects on load in larger systems.
463 *
464 * It could be improved by considering the priorities and slices assigned to
465 * each task prior to balancing them.  There are many pathological cases with
466 * any approach and so the semi random algorithm below may work as well as any.
467 *
468 */
469static void
470sched_balance(void)
471{
472	struct kseq_group *high;
473	struct kseq_group *low;
474	struct kseq_group *ksg;
475	int cnt;
476	int i;
477
478	bal_tick = ticks + (random() % (hz * 2));
479	if (smp_started == 0)
480		return;
481	low = high = NULL;
482	i = random() % (ksg_maxid + 1);
483	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
484		ksg = KSEQ_GROUP(i);
485		/*
486		 * Find the CPU with the highest load that has some
487		 * threads to transfer.
488		 */
489		if ((high == NULL || ksg->ksg_load > high->ksg_load)
490		    && ksg->ksg_transferable)
491			high = ksg;
492		if (low == NULL || ksg->ksg_load < low->ksg_load)
493			low = ksg;
494		if (++i > ksg_maxid)
495			i = 0;
496	}
497	if (low != NULL && high != NULL && high != low)
498		sched_balance_pair(LIST_FIRST(&high->ksg_members),
499		    LIST_FIRST(&low->ksg_members));
500}
501
502static void
503sched_balance_groups(void)
504{
505	int i;
506
507	gbal_tick = ticks + (random() % (hz * 2));
508	mtx_assert(&sched_lock, MA_OWNED);
509	if (smp_started)
510		for (i = 0; i <= ksg_maxid; i++)
511			sched_balance_group(KSEQ_GROUP(i));
512}
513
514static void
515sched_balance_group(struct kseq_group *ksg)
516{
517	struct kseq *kseq;
518	struct kseq *high;
519	struct kseq *low;
520	int load;
521
522	if (ksg->ksg_transferable == 0)
523		return;
524	low = NULL;
525	high = NULL;
526	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
527		load = kseq->ksq_load;
528		if (high == NULL || load > high->ksq_load)
529			high = kseq;
530		if (low == NULL || load < low->ksq_load)
531			low = kseq;
532	}
533	if (high != NULL && low != NULL && high != low)
534		sched_balance_pair(high, low);
535}
536
537static void
538sched_balance_pair(struct kseq *high, struct kseq *low)
539{
540	int transferable;
541	int high_load;
542	int low_load;
543	int move;
544	int diff;
545	int i;
546
547	/*
548	 * If we're transfering within a group we have to use this specific
549	 * kseq's transferable count, otherwise we can steal from other members
550	 * of the group.
551	 */
552	if (high->ksq_group == low->ksq_group) {
553		transferable = high->ksq_transferable;
554		high_load = high->ksq_load;
555		low_load = low->ksq_load;
556	} else {
557		transferable = high->ksq_group->ksg_transferable;
558		high_load = high->ksq_group->ksg_load;
559		low_load = low->ksq_group->ksg_load;
560	}
561	if (transferable == 0)
562		return;
563	/*
564	 * Determine what the imbalance is and then adjust that to how many
565	 * kses we actually have to give up (transferable).
566	 */
567	diff = high_load - low_load;
568	move = diff / 2;
569	if (diff & 0x1)
570		move++;
571	move = min(move, transferable);
572	for (i = 0; i < move; i++)
573		kseq_move(high, KSEQ_ID(low));
574	return;
575}
576
577static void
578kseq_move(struct kseq *from, int cpu)
579{
580	struct kseq *kseq;
581	struct kseq *to;
582	struct kse *ke;
583
584	kseq = from;
585	to = KSEQ_CPU(cpu);
586	ke = kseq_steal(kseq, 1);
587	if (ke == NULL) {
588		struct kseq_group *ksg;
589
590		ksg = kseq->ksq_group;
591		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
592			if (kseq == from || kseq->ksq_transferable == 0)
593				continue;
594			ke = kseq_steal(kseq, 1);
595			break;
596		}
597		if (ke == NULL)
598			panic("kseq_move: No KSEs available with a "
599			    "transferable count of %d\n",
600			    ksg->ksg_transferable);
601	}
602	if (kseq == to)
603		return;
604	ke->ke_state = KES_THREAD;
605	kseq_runq_rem(kseq, ke);
606	kseq_load_rem(kseq, ke);
607	kseq_notify(ke, cpu);
608}
609
610static int
611kseq_idled(struct kseq *kseq)
612{
613	struct kseq_group *ksg;
614	struct kseq *steal;
615	struct kse *ke;
616
617	ksg = kseq->ksq_group;
618	/*
619	 * If we're in a cpu group, try and steal kses from another cpu in
620	 * the group before idling.
621	 */
622	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
623		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
624			if (steal == kseq || steal->ksq_transferable == 0)
625				continue;
626			ke = kseq_steal(steal, 0);
627			if (ke == NULL)
628				continue;
629			ke->ke_state = KES_THREAD;
630			kseq_runq_rem(steal, ke);
631			kseq_load_rem(steal, ke);
632			ke->ke_cpu = PCPU_GET(cpuid);
633			ke->ke_flags |= KEF_INTERNAL | KEF_HOLD;
634			sched_add(ke->ke_thread, SRQ_YIELDING);
635			return (0);
636		}
637	}
638	/*
639	 * We only set the idled bit when all of the cpus in the group are
640	 * idle.  Otherwise we could get into a situation where a KSE bounces
641	 * back and forth between two idle cores on seperate physical CPUs.
642	 */
643	ksg->ksg_idlemask |= PCPU_GET(cpumask);
644	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
645		return (1);
646	atomic_set_int(&kseq_idle, ksg->ksg_mask);
647	return (1);
648}
649
650static void
651kseq_assign(struct kseq *kseq)
652{
653	struct kse *nke;
654	struct kse *ke;
655
656	do {
657		*(volatile struct kse **)&ke = kseq->ksq_assigned;
658	} while(!atomic_cmpset_ptr((volatile uintptr_t *)&kseq->ksq_assigned,
659		(uintptr_t)ke, (uintptr_t)NULL));
660	for (; ke != NULL; ke = nke) {
661		nke = ke->ke_assign;
662		kseq->ksq_group->ksg_load--;
663		kseq->ksq_load--;
664		ke->ke_flags &= ~KEF_ASSIGNED;
665		if (ke->ke_flags & KEF_REMOVED) {
666			ke->ke_flags &= ~KEF_REMOVED;
667			continue;
668		}
669		ke->ke_flags |= KEF_INTERNAL | KEF_HOLD;
670		sched_add(ke->ke_thread, SRQ_YIELDING);
671	}
672}
673
674static void
675kseq_notify(struct kse *ke, int cpu)
676{
677	struct kseq *kseq;
678	struct thread *td;
679	struct pcpu *pcpu;
680	int class;
681	int prio;
682
683	kseq = KSEQ_CPU(cpu);
684	/* XXX */
685	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
686	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
687	    (kseq_idle & kseq->ksq_group->ksg_mask))
688		atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
689	kseq->ksq_group->ksg_load++;
690	kseq->ksq_load++;
691	ke->ke_cpu = cpu;
692	ke->ke_flags |= KEF_ASSIGNED;
693	prio = ke->ke_thread->td_priority;
694
695	/*
696	 * Place a KSE on another cpu's queue and force a resched.
697	 */
698	do {
699		*(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned;
700	} while(!atomic_cmpset_ptr((volatile uintptr_t *)&kseq->ksq_assigned,
701		(uintptr_t)ke->ke_assign, (uintptr_t)ke));
702	/*
703	 * Without sched_lock we could lose a race where we set NEEDRESCHED
704	 * on a thread that is switched out before the IPI is delivered.  This
705	 * would lead us to miss the resched.  This will be a problem once
706	 * sched_lock is pushed down.
707	 */
708	pcpu = pcpu_find(cpu);
709	td = pcpu->pc_curthread;
710	if (ke->ke_thread->td_priority < td->td_priority ||
711	    td == pcpu->pc_idlethread) {
712		td->td_flags |= TDF_NEEDRESCHED;
713		ipi_selected(1 << cpu, IPI_AST);
714	}
715}
716
717static struct kse *
718runq_steal(struct runq *rq)
719{
720	struct rqhead *rqh;
721	struct rqbits *rqb;
722	struct kse *ke;
723	int word;
724	int bit;
725
726	mtx_assert(&sched_lock, MA_OWNED);
727	rqb = &rq->rq_status;
728	for (word = 0; word < RQB_LEN; word++) {
729		if (rqb->rqb_bits[word] == 0)
730			continue;
731		for (bit = 0; bit < RQB_BPW; bit++) {
732			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
733				continue;
734			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
735			TAILQ_FOREACH(ke, rqh, ke_procq) {
736				if (KSE_CAN_MIGRATE(ke))
737					return (ke);
738			}
739		}
740	}
741	return (NULL);
742}
743
744static struct kse *
745kseq_steal(struct kseq *kseq, int stealidle)
746{
747	struct kse *ke;
748
749	/*
750	 * Steal from next first to try to get a non-interactive task that
751	 * may not have run for a while.
752	 */
753	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
754		return (ke);
755	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
756		return (ke);
757	if (stealidle)
758		return (runq_steal(&kseq->ksq_idle));
759	return (NULL);
760}
761
762int
763kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
764{
765	struct kseq_group *nksg;
766	struct kseq_group *ksg;
767	struct kseq *old;
768	int cpu;
769	int idx;
770
771	if (smp_started == 0)
772		return (0);
773	cpu = 0;
774	/*
775	 * If our load exceeds a certain threshold we should attempt to
776	 * reassign this thread.  The first candidate is the cpu that
777	 * originally ran the thread.  If it is idle, assign it there,
778	 * otherwise, pick an idle cpu.
779	 *
780	 * The threshold at which we start to reassign kses has a large impact
781	 * on the overall performance of the system.  Tuned too high and
782	 * some CPUs may idle.  Too low and there will be excess migration
783	 * and context switches.
784	 */
785	old = KSEQ_CPU(ke->ke_cpu);
786	nksg = old->ksq_group;
787	ksg = kseq->ksq_group;
788	if (kseq_idle) {
789		if (kseq_idle & nksg->ksg_mask) {
790			cpu = ffs(nksg->ksg_idlemask);
791			if (cpu) {
792				CTR2(KTR_SCHED,
793				    "kseq_transfer: %p found old cpu %X "
794				    "in idlemask.", ke, cpu);
795				goto migrate;
796			}
797		}
798		/*
799		 * Multiple cpus could find this bit simultaneously
800		 * but the race shouldn't be terrible.
801		 */
802		cpu = ffs(kseq_idle);
803		if (cpu) {
804			CTR2(KTR_SCHED, "kseq_transfer: %p found %X "
805			    "in idlemask.", ke, cpu);
806			goto migrate;
807		}
808	}
809	idx = 0;
810#if 0
811	if (old->ksq_load < kseq->ksq_load) {
812		cpu = ke->ke_cpu + 1;
813		CTR2(KTR_SCHED, "kseq_transfer: %p old cpu %X "
814		    "load less than ours.", ke, cpu);
815		goto migrate;
816	}
817	/*
818	 * No new CPU was found, look for one with less load.
819	 */
820	for (idx = 0; idx <= ksg_maxid; idx++) {
821		nksg = KSEQ_GROUP(idx);
822		if (nksg->ksg_load /*+ (nksg->ksg_cpus  * 2)*/ < ksg->ksg_load) {
823			cpu = ffs(nksg->ksg_cpumask);
824			CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X load less "
825			    "than ours.", ke, cpu);
826			goto migrate;
827		}
828	}
829#endif
830	/*
831	 * If another cpu in this group has idled, assign a thread over
832	 * to them after checking to see if there are idled groups.
833	 */
834	if (ksg->ksg_idlemask) {
835		cpu = ffs(ksg->ksg_idlemask);
836		if (cpu) {
837			CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X idle in "
838			    "group.", ke, cpu);
839			goto migrate;
840		}
841	}
842	return (0);
843migrate:
844	/*
845	 * Now that we've found an idle CPU, migrate the thread.
846	 */
847	cpu--;
848	ke->ke_runq = NULL;
849	kseq_notify(ke, cpu);
850
851	return (1);
852}
853
854#endif	/* SMP */
855
856/*
857 * Pick the highest priority task we have and return it.
858 */
859
860static struct kse *
861kseq_choose(struct kseq *kseq)
862{
863	struct runq *swap;
864	struct kse *ke;
865	int nice;
866
867	mtx_assert(&sched_lock, MA_OWNED);
868	swap = NULL;
869
870	for (;;) {
871		ke = runq_choose(kseq->ksq_curr);
872		if (ke == NULL) {
873			/*
874			 * We already swapped once and didn't get anywhere.
875			 */
876			if (swap)
877				break;
878			swap = kseq->ksq_curr;
879			kseq->ksq_curr = kseq->ksq_next;
880			kseq->ksq_next = swap;
881			continue;
882		}
883		/*
884		 * If we encounter a slice of 0 the kse is in a
885		 * TIMESHARE kse group and its nice was too far out
886		 * of the range that receives slices.
887		 */
888		nice = ke->ke_proc->p_nice + (0 - kseq->ksq_nicemin);
889		if (ke->ke_slice == 0 || (nice > SCHED_SLICE_NTHRESH &&
890		    ke->ke_proc->p_nice != 0)) {
891			runq_remove(ke->ke_runq, ke);
892			sched_slice(ke);
893			ke->ke_runq = kseq->ksq_next;
894			runq_add(ke->ke_runq, ke, 0);
895			continue;
896		}
897		return (ke);
898	}
899
900	return (runq_choose(&kseq->ksq_idle));
901}
902
903static void
904kseq_setup(struct kseq *kseq)
905{
906	runq_init(&kseq->ksq_timeshare[0]);
907	runq_init(&kseq->ksq_timeshare[1]);
908	runq_init(&kseq->ksq_idle);
909	kseq->ksq_curr = &kseq->ksq_timeshare[0];
910	kseq->ksq_next = &kseq->ksq_timeshare[1];
911	kseq->ksq_load = 0;
912	kseq->ksq_load_timeshare = 0;
913}
914
915static void
916sched_setup(void *dummy)
917{
918#ifdef SMP
919	int i;
920#endif
921
922	slice_min = (hz/100);	/* 10ms */
923	slice_max = (hz/7);	/* ~140ms */
924
925#ifdef SMP
926	balance_groups = 0;
927	/*
928	 * Initialize the kseqs.
929	 */
930	for (i = 0; i < MAXCPU; i++) {
931		struct kseq *ksq;
932
933		ksq = &kseq_cpu[i];
934		ksq->ksq_assigned = NULL;
935		kseq_setup(&kseq_cpu[i]);
936	}
937	if (smp_topology == NULL) {
938		struct kseq_group *ksg;
939		struct kseq *ksq;
940		int cpus;
941
942		for (cpus = 0, i = 0; i < MAXCPU; i++) {
943			if (CPU_ABSENT(i))
944				continue;
945			ksq = &kseq_cpu[cpus];
946			ksg = &kseq_groups[cpus];
947			/*
948			 * Setup a kseq group with one member.
949			 */
950			ksq->ksq_transferable = 0;
951			ksq->ksq_group = ksg;
952			ksg->ksg_cpus = 1;
953			ksg->ksg_idlemask = 0;
954			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
955			ksg->ksg_load = 0;
956			ksg->ksg_transferable = 0;
957			LIST_INIT(&ksg->ksg_members);
958			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
959			cpus++;
960		}
961		ksg_maxid = cpus - 1;
962	} else {
963		struct kseq_group *ksg;
964		struct cpu_group *cg;
965		int j;
966
967		for (i = 0; i < smp_topology->ct_count; i++) {
968			cg = &smp_topology->ct_group[i];
969			ksg = &kseq_groups[i];
970			/*
971			 * Initialize the group.
972			 */
973			ksg->ksg_idlemask = 0;
974			ksg->ksg_load = 0;
975			ksg->ksg_transferable = 0;
976			ksg->ksg_cpus = cg->cg_count;
977			ksg->ksg_cpumask = cg->cg_mask;
978			LIST_INIT(&ksg->ksg_members);
979			/*
980			 * Find all of the group members and add them.
981			 */
982			for (j = 0; j < MAXCPU; j++) {
983				if ((cg->cg_mask & (1 << j)) != 0) {
984					if (ksg->ksg_mask == 0)
985						ksg->ksg_mask = 1 << j;
986					kseq_cpu[j].ksq_transferable = 0;
987					kseq_cpu[j].ksq_group = ksg;
988					LIST_INSERT_HEAD(&ksg->ksg_members,
989					    &kseq_cpu[j], ksq_siblings);
990				}
991			}
992			if (ksg->ksg_cpus > 1)
993				balance_groups = 1;
994		}
995		ksg_maxid = smp_topology->ct_count - 1;
996	}
997	/*
998	 * Stagger the group and global load balancer so they do not
999	 * interfere with each other.
1000	 */
1001	bal_tick = ticks + hz;
1002	if (balance_groups)
1003		gbal_tick = ticks + (hz / 2);
1004#else
1005	kseq_setup(KSEQ_SELF());
1006#endif
1007	mtx_lock_spin(&sched_lock);
1008	kseq_load_add(KSEQ_SELF(), &kse0);
1009	mtx_unlock_spin(&sched_lock);
1010}
1011
1012/*
1013 * Scale the scheduling priority according to the "interactivity" of this
1014 * process.
1015 */
1016static void
1017sched_priority(struct ksegrp *kg)
1018{
1019	int pri;
1020
1021	if (kg->kg_pri_class != PRI_TIMESHARE)
1022		return;
1023
1024	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
1025	pri += SCHED_PRI_BASE;
1026	pri += kg->kg_proc->p_nice;
1027
1028	if (pri > PRI_MAX_TIMESHARE)
1029		pri = PRI_MAX_TIMESHARE;
1030	else if (pri < PRI_MIN_TIMESHARE)
1031		pri = PRI_MIN_TIMESHARE;
1032
1033	kg->kg_user_pri = pri;
1034
1035	return;
1036}
1037
1038/*
1039 * Calculate a time slice based on the properties of the kseg and the runq
1040 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
1041 */
1042static void
1043sched_slice(struct kse *ke)
1044{
1045	struct kseq *kseq;
1046	struct ksegrp *kg;
1047
1048	kg = ke->ke_ksegrp;
1049	kseq = KSEQ_CPU(ke->ke_cpu);
1050
1051	if (ke->ke_thread->td_flags & TDF_BORROWING) {
1052		ke->ke_slice = SCHED_SLICE_MIN;
1053		return;
1054	}
1055
1056	/*
1057	 * Rationale:
1058	 * KSEs in interactive ksegs get a minimal slice so that we
1059	 * quickly notice if it abuses its advantage.
1060	 *
1061	 * KSEs in non-interactive ksegs are assigned a slice that is
1062	 * based on the ksegs nice value relative to the least nice kseg
1063	 * on the run queue for this cpu.
1064	 *
1065	 * If the KSE is less nice than all others it gets the maximum
1066	 * slice and other KSEs will adjust their slice relative to
1067	 * this when they first expire.
1068	 *
1069	 * There is 20 point window that starts relative to the least
1070	 * nice kse on the run queue.  Slice size is determined by
1071	 * the kse distance from the last nice ksegrp.
1072	 *
1073	 * If the kse is outside of the window it will get no slice
1074	 * and will be reevaluated each time it is selected on the
1075	 * run queue.  The exception to this is nice 0 ksegs when
1076	 * a nice -20 is running.  They are always granted a minimum
1077	 * slice.
1078	 */
1079	if (!SCHED_INTERACTIVE(kg)) {
1080		int nice;
1081
1082		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
1083		if (kseq->ksq_load_timeshare == 0 ||
1084		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
1085			ke->ke_slice = SCHED_SLICE_MAX;
1086		else if (nice <= SCHED_SLICE_NTHRESH)
1087			ke->ke_slice = SCHED_SLICE_NICE(nice);
1088		else if (kg->kg_proc->p_nice == 0)
1089			ke->ke_slice = SCHED_SLICE_MIN;
1090		else
1091			ke->ke_slice = 0;
1092	} else
1093		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1094
1095	return;
1096}
1097
1098/*
1099 * This routine enforces a maximum limit on the amount of scheduling history
1100 * kept.  It is called after either the slptime or runtime is adjusted.
1101 * This routine will not operate correctly when slp or run times have been
1102 * adjusted to more than double their maximum.
1103 */
1104static void
1105sched_interact_update(struct ksegrp *kg)
1106{
1107	int sum;
1108
1109	sum = kg->kg_runtime + kg->kg_slptime;
1110	if (sum < SCHED_SLP_RUN_MAX)
1111		return;
1112	/*
1113	 * If we have exceeded by more than 1/5th then the algorithm below
1114	 * will not bring us back into range.  Dividing by two here forces
1115	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1116	 */
1117	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1118		kg->kg_runtime /= 2;
1119		kg->kg_slptime /= 2;
1120		return;
1121	}
1122	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1123	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1124}
1125
1126static void
1127sched_interact_fork(struct ksegrp *kg)
1128{
1129	int ratio;
1130	int sum;
1131
1132	sum = kg->kg_runtime + kg->kg_slptime;
1133	if (sum > SCHED_SLP_RUN_FORK) {
1134		ratio = sum / SCHED_SLP_RUN_FORK;
1135		kg->kg_runtime /= ratio;
1136		kg->kg_slptime /= ratio;
1137	}
1138}
1139
1140static int
1141sched_interact_score(struct ksegrp *kg)
1142{
1143	int div;
1144
1145	if (kg->kg_runtime > kg->kg_slptime) {
1146		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1147		return (SCHED_INTERACT_HALF +
1148		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1149	} if (kg->kg_slptime > kg->kg_runtime) {
1150		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1151		return (kg->kg_runtime / div);
1152	}
1153
1154	/*
1155	 * This can happen if slptime and runtime are 0.
1156	 */
1157	return (0);
1158
1159}
1160
1161/*
1162 * Very early in the boot some setup of scheduler-specific
1163 * parts of proc0 and of soem scheduler resources needs to be done.
1164 * Called from:
1165 *  proc0_init()
1166 */
1167void
1168schedinit(void)
1169{
1170	/*
1171	 * Set up the scheduler specific parts of proc0.
1172	 */
1173	proc0.p_sched = NULL; /* XXX */
1174	ksegrp0.kg_sched = &kg_sched0;
1175	thread0.td_sched = &kse0;
1176	kse0.ke_thread = &thread0;
1177	kse0.ke_state = KES_THREAD;
1178	kg_sched0.skg_concurrency = 1;
1179	kg_sched0.skg_avail_opennings = 0; /* we are already running */
1180}
1181
1182/*
1183 * This is only somewhat accurate since given many processes of the same
1184 * priority they will switch when their slices run out, which will be
1185 * at most SCHED_SLICE_MAX.
1186 */
1187int
1188sched_rr_interval(void)
1189{
1190	return (SCHED_SLICE_MAX);
1191}
1192
1193static void
1194sched_pctcpu_update(struct kse *ke)
1195{
1196	/*
1197	 * Adjust counters and watermark for pctcpu calc.
1198	 */
1199	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1200		/*
1201		 * Shift the tick count out so that the divide doesn't
1202		 * round away our results.
1203		 */
1204		ke->ke_ticks <<= 10;
1205		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1206			    SCHED_CPU_TICKS;
1207		ke->ke_ticks >>= 10;
1208	} else
1209		ke->ke_ticks = 0;
1210	ke->ke_ltick = ticks;
1211	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1212}
1213
1214void
1215sched_thread_priority(struct thread *td, u_char prio)
1216{
1217	struct kse *ke;
1218
1219	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1220	    td, td->td_proc->p_comm, td->td_priority, prio, curthread,
1221	    curthread->td_proc->p_comm);
1222	ke = td->td_kse;
1223	mtx_assert(&sched_lock, MA_OWNED);
1224	if (td->td_priority == prio)
1225		return;
1226	if (TD_ON_RUNQ(td)) {
1227		/*
1228		 * If the priority has been elevated due to priority
1229		 * propagation, we may have to move ourselves to a new
1230		 * queue.  We still call adjustrunqueue below in case kse
1231		 * needs to fix things up.
1232		 */
1233		if (prio < td->td_priority && ke->ke_runq != NULL &&
1234		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1235		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1236			runq_remove(ke->ke_runq, ke);
1237			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1238			runq_add(ke->ke_runq, ke, 0);
1239		}
1240		/*
1241		 * Hold this kse on this cpu so that sched_prio() doesn't
1242		 * cause excessive migration.  We only want migration to
1243		 * happen as the result of a wakeup.
1244		 */
1245		ke->ke_flags |= KEF_HOLD;
1246		adjustrunqueue(td, prio);
1247		ke->ke_flags &= ~KEF_HOLD;
1248	} else
1249		td->td_priority = prio;
1250}
1251
1252/*
1253 * Update a thread's priority when it is lent another thread's
1254 * priority.
1255 */
1256void
1257sched_lend_prio(struct thread *td, u_char prio)
1258{
1259
1260	td->td_flags |= TDF_BORROWING;
1261	sched_thread_priority(td, prio);
1262}
1263
1264/*
1265 * Restore a thread's priority when priority propagation is
1266 * over.  The prio argument is the minimum priority the thread
1267 * needs to have to satisfy other possible priority lending
1268 * requests.  If the thread's regular priority is less
1269 * important than prio, the thread will keep a priority boost
1270 * of prio.
1271 */
1272void
1273sched_unlend_prio(struct thread *td, u_char prio)
1274{
1275	u_char base_pri;
1276
1277	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1278	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1279		base_pri = td->td_ksegrp->kg_user_pri;
1280	else
1281		base_pri = td->td_base_pri;
1282	if (prio >= base_pri) {
1283		td->td_flags &= ~TDF_BORROWING;
1284		sched_thread_priority(td, base_pri);
1285	} else
1286		sched_lend_prio(td, prio);
1287}
1288
1289void
1290sched_prio(struct thread *td, u_char prio)
1291{
1292	u_char oldprio;
1293
1294	/* First, update the base priority. */
1295	td->td_base_pri = prio;
1296
1297	/*
1298	 * If the thread is borrowing another thread's priority, don't
1299	 * ever lower the priority.
1300	 */
1301	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1302		return;
1303
1304	/* Change the real priority. */
1305	oldprio = td->td_priority;
1306	sched_thread_priority(td, prio);
1307
1308	/*
1309	 * If the thread is on a turnstile, then let the turnstile update
1310	 * its state.
1311	 */
1312	if (TD_ON_LOCK(td) && oldprio != prio)
1313		turnstile_adjust(td, oldprio);
1314}
1315
1316void
1317sched_switch(struct thread *td, struct thread *newtd, int flags)
1318{
1319	struct kseq *ksq;
1320	struct kse *ke;
1321
1322	mtx_assert(&sched_lock, MA_OWNED);
1323
1324	ke = td->td_kse;
1325	ksq = KSEQ_SELF();
1326
1327	td->td_lastcpu = td->td_oncpu;
1328	td->td_oncpu = NOCPU;
1329	td->td_flags &= ~TDF_NEEDRESCHED;
1330	td->td_owepreempt = 0;
1331
1332	/*
1333	 * If the KSE has been assigned it may be in the process of switching
1334	 * to the new cpu.  This is the case in sched_bind().
1335	 */
1336	if (td == PCPU_GET(idlethread)) {
1337		TD_SET_CAN_RUN(td);
1338	} else if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1339		/* We are ending our run so make our slot available again */
1340		SLOT_RELEASE(td->td_ksegrp);
1341		kseq_load_rem(ksq, ke);
1342		if (TD_IS_RUNNING(td)) {
1343			/*
1344			 * Don't allow the thread to migrate
1345			 * from a preemption.
1346			 */
1347			ke->ke_flags |= KEF_HOLD;
1348			setrunqueue(td, (flags & SW_PREEMPT) ?
1349			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1350			    SRQ_OURSELF|SRQ_YIELDING);
1351			ke->ke_flags &= ~KEF_HOLD;
1352		} else if ((td->td_proc->p_flag & P_HADTHREADS) &&
1353		    (newtd == NULL || newtd->td_ksegrp != td->td_ksegrp))
1354			/*
1355			 * We will not be on the run queue.
1356			 * So we must be sleeping or similar.
1357			 * Don't use the slot if we will need it
1358			 * for newtd.
1359			 */
1360			slot_fill(td->td_ksegrp);
1361	}
1362	if (newtd != NULL) {
1363		/*
1364		 * If we bring in a thread account for it as if it had been
1365		 * added to the run queue and then chosen.
1366		 */
1367		newtd->td_kse->ke_flags |= KEF_DIDRUN;
1368		newtd->td_kse->ke_runq = ksq->ksq_curr;
1369		TD_SET_RUNNING(newtd);
1370		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1371		/*
1372		 * XXX When we preempt, we've already consumed a slot because
1373		 * we got here through sched_add().  However, newtd can come
1374		 * from thread_switchout() which can't SLOT_USE() because
1375		 * the SLOT code is scheduler dependent.  We must use the
1376		 * slot here otherwise.
1377		 */
1378		if ((flags & SW_PREEMPT) == 0)
1379			SLOT_USE(newtd->td_ksegrp);
1380	} else
1381		newtd = choosethread();
1382	if (td != newtd) {
1383#ifdef	HWPMC_HOOKS
1384		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1385			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1386#endif
1387		cpu_switch(td, newtd);
1388#ifdef	HWPMC_HOOKS
1389		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1390			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1391#endif
1392	}
1393
1394	sched_lock.mtx_lock = (uintptr_t)td;
1395
1396	td->td_oncpu = PCPU_GET(cpuid);
1397}
1398
1399void
1400sched_nice(struct proc *p, int nice)
1401{
1402	struct ksegrp *kg;
1403	struct kse *ke;
1404	struct thread *td;
1405	struct kseq *kseq;
1406
1407	PROC_LOCK_ASSERT(p, MA_OWNED);
1408	mtx_assert(&sched_lock, MA_OWNED);
1409	/*
1410	 * We need to adjust the nice counts for running KSEs.
1411	 */
1412	FOREACH_KSEGRP_IN_PROC(p, kg) {
1413		if (kg->kg_pri_class == PRI_TIMESHARE) {
1414			FOREACH_THREAD_IN_GROUP(kg, td) {
1415				ke = td->td_kse;
1416				if (ke->ke_runq == NULL)
1417					continue;
1418				kseq = KSEQ_CPU(ke->ke_cpu);
1419				kseq_nice_rem(kseq, p->p_nice);
1420				kseq_nice_add(kseq, nice);
1421			}
1422		}
1423	}
1424	p->p_nice = nice;
1425	FOREACH_KSEGRP_IN_PROC(p, kg) {
1426		sched_priority(kg);
1427		FOREACH_THREAD_IN_GROUP(kg, td)
1428			td->td_flags |= TDF_NEEDRESCHED;
1429	}
1430}
1431
1432void
1433sched_sleep(struct thread *td)
1434{
1435	mtx_assert(&sched_lock, MA_OWNED);
1436
1437	td->td_slptime = ticks;
1438}
1439
1440void
1441sched_wakeup(struct thread *td)
1442{
1443	mtx_assert(&sched_lock, MA_OWNED);
1444
1445	/*
1446	 * Let the kseg know how long we slept for.  This is because process
1447	 * interactivity behavior is modeled in the kseg.
1448	 */
1449	if (td->td_slptime) {
1450		struct ksegrp *kg;
1451		int hzticks;
1452
1453		kg = td->td_ksegrp;
1454		hzticks = (ticks - td->td_slptime) << 10;
1455		if (hzticks >= SCHED_SLP_RUN_MAX) {
1456			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1457			kg->kg_runtime = 1;
1458		} else {
1459			kg->kg_slptime += hzticks;
1460			sched_interact_update(kg);
1461		}
1462		sched_priority(kg);
1463		sched_slice(td->td_kse);
1464		td->td_slptime = 0;
1465	}
1466	setrunqueue(td, SRQ_BORING);
1467}
1468
1469/*
1470 * Penalize the parent for creating a new child and initialize the child's
1471 * priority.
1472 */
1473void
1474sched_fork(struct thread *td, struct thread *childtd)
1475{
1476
1477	mtx_assert(&sched_lock, MA_OWNED);
1478
1479	sched_fork_ksegrp(td, childtd->td_ksegrp);
1480	sched_fork_thread(td, childtd);
1481}
1482
1483void
1484sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1485{
1486	struct ksegrp *kg = td->td_ksegrp;
1487	mtx_assert(&sched_lock, MA_OWNED);
1488
1489	child->kg_slptime = kg->kg_slptime;
1490	child->kg_runtime = kg->kg_runtime;
1491	child->kg_user_pri = kg->kg_user_pri;
1492	sched_interact_fork(child);
1493	kg->kg_runtime += tickincr << 10;
1494	sched_interact_update(kg);
1495}
1496
1497void
1498sched_fork_thread(struct thread *td, struct thread *child)
1499{
1500	struct kse *ke;
1501	struct kse *ke2;
1502
1503	sched_newthread(child);
1504	ke = td->td_kse;
1505	ke2 = child->td_kse;
1506	ke2->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1507	ke2->ke_cpu = ke->ke_cpu;
1508	ke2->ke_runq = NULL;
1509
1510	/* Grab our parents cpu estimation information. */
1511	ke2->ke_ticks = ke->ke_ticks;
1512	ke2->ke_ltick = ke->ke_ltick;
1513	ke2->ke_ftick = ke->ke_ftick;
1514}
1515
1516void
1517sched_class(struct ksegrp *kg, int class)
1518{
1519	struct kseq *kseq;
1520	struct kse *ke;
1521	struct thread *td;
1522	int nclass;
1523	int oclass;
1524
1525	mtx_assert(&sched_lock, MA_OWNED);
1526	if (kg->kg_pri_class == class)
1527		return;
1528
1529	nclass = PRI_BASE(class);
1530	oclass = PRI_BASE(kg->kg_pri_class);
1531	FOREACH_THREAD_IN_GROUP(kg, td) {
1532		ke = td->td_kse;
1533		if ((ke->ke_state != KES_ONRUNQ &&
1534		    ke->ke_state != KES_THREAD) || ke->ke_runq == NULL)
1535			continue;
1536		kseq = KSEQ_CPU(ke->ke_cpu);
1537
1538#ifdef SMP
1539		/*
1540		 * On SMP if we're on the RUNQ we must adjust the transferable
1541		 * count because could be changing to or from an interrupt
1542		 * class.
1543		 */
1544		if (ke->ke_state == KES_ONRUNQ) {
1545			if (KSE_CAN_MIGRATE(ke)) {
1546				kseq->ksq_transferable--;
1547				kseq->ksq_group->ksg_transferable--;
1548			}
1549			if (KSE_CAN_MIGRATE(ke)) {
1550				kseq->ksq_transferable++;
1551				kseq->ksq_group->ksg_transferable++;
1552			}
1553		}
1554#endif
1555		if (oclass == PRI_TIMESHARE) {
1556			kseq->ksq_load_timeshare--;
1557			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1558		}
1559		if (nclass == PRI_TIMESHARE) {
1560			kseq->ksq_load_timeshare++;
1561			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1562		}
1563	}
1564
1565	kg->kg_pri_class = class;
1566}
1567
1568/*
1569 * Return some of the child's priority and interactivity to the parent.
1570 */
1571void
1572sched_exit(struct proc *p, struct thread *childtd)
1573{
1574	mtx_assert(&sched_lock, MA_OWNED);
1575	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd);
1576	sched_exit_thread(NULL, childtd);
1577}
1578
1579void
1580sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1581{
1582	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1583	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1584	sched_interact_update(kg);
1585}
1586
1587void
1588sched_exit_thread(struct thread *td, struct thread *childtd)
1589{
1590	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
1591	    childtd, childtd->td_proc->p_comm, childtd->td_priority);
1592	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1593}
1594
1595void
1596sched_clock(struct thread *td)
1597{
1598	struct kseq *kseq;
1599	struct ksegrp *kg;
1600	struct kse *ke;
1601
1602	mtx_assert(&sched_lock, MA_OWNED);
1603	kseq = KSEQ_SELF();
1604#ifdef SMP
1605	if (ticks >= bal_tick)
1606		sched_balance();
1607	if (ticks >= gbal_tick && balance_groups)
1608		sched_balance_groups();
1609	/*
1610	 * We could have been assigned a non real-time thread without an
1611	 * IPI.
1612	 */
1613	if (kseq->ksq_assigned)
1614		kseq_assign(kseq);	/* Potentially sets NEEDRESCHED */
1615#endif
1616	/*
1617	 * sched_setup() apparently happens prior to stathz being set.  We
1618	 * need to resolve the timers earlier in the boot so we can avoid
1619	 * calculating this here.
1620	 */
1621	if (realstathz == 0) {
1622		realstathz = stathz ? stathz : hz;
1623		tickincr = hz / realstathz;
1624		/*
1625		 * XXX This does not work for values of stathz that are much
1626		 * larger than hz.
1627		 */
1628		if (tickincr == 0)
1629			tickincr = 1;
1630	}
1631
1632	ke = td->td_kse;
1633	kg = ke->ke_ksegrp;
1634
1635	/* Adjust ticks for pctcpu */
1636	ke->ke_ticks++;
1637	ke->ke_ltick = ticks;
1638
1639	/* Go up to one second beyond our max and then trim back down */
1640	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1641		sched_pctcpu_update(ke);
1642
1643	if (td->td_flags & TDF_IDLETD)
1644		return;
1645	/*
1646	 * We only do slicing code for TIMESHARE ksegrps.
1647	 */
1648	if (kg->kg_pri_class != PRI_TIMESHARE)
1649		return;
1650	/*
1651	 * We used a tick charge it to the ksegrp so that we can compute our
1652	 * interactivity.
1653	 */
1654	kg->kg_runtime += tickincr << 10;
1655	sched_interact_update(kg);
1656
1657	/*
1658	 * We used up one time slice.
1659	 */
1660	if (--ke->ke_slice > 0)
1661		return;
1662	/*
1663	 * We're out of time, recompute priorities and requeue.
1664	 */
1665	kseq_load_rem(kseq, ke);
1666	sched_priority(kg);
1667	sched_slice(ke);
1668	if (SCHED_CURR(kg, ke))
1669		ke->ke_runq = kseq->ksq_curr;
1670	else
1671		ke->ke_runq = kseq->ksq_next;
1672	kseq_load_add(kseq, ke);
1673	td->td_flags |= TDF_NEEDRESCHED;
1674}
1675
1676int
1677sched_runnable(void)
1678{
1679	struct kseq *kseq;
1680	int load;
1681
1682	load = 1;
1683
1684	kseq = KSEQ_SELF();
1685#ifdef SMP
1686	if (kseq->ksq_assigned) {
1687		mtx_lock_spin(&sched_lock);
1688		kseq_assign(kseq);
1689		mtx_unlock_spin(&sched_lock);
1690	}
1691#endif
1692	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1693		if (kseq->ksq_load > 0)
1694			goto out;
1695	} else
1696		if (kseq->ksq_load - 1 > 0)
1697			goto out;
1698	load = 0;
1699out:
1700	return (load);
1701}
1702
1703void
1704sched_userret(struct thread *td)
1705{
1706	struct ksegrp *kg;
1707
1708	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1709	    ("thread with borrowed priority returning to userland"));
1710	kg = td->td_ksegrp;
1711	if (td->td_priority != kg->kg_user_pri) {
1712		mtx_lock_spin(&sched_lock);
1713		td->td_priority = kg->kg_user_pri;
1714		td->td_base_pri = kg->kg_user_pri;
1715		mtx_unlock_spin(&sched_lock);
1716	}
1717}
1718
1719struct kse *
1720sched_choose(void)
1721{
1722	struct kseq *kseq;
1723	struct kse *ke;
1724
1725	mtx_assert(&sched_lock, MA_OWNED);
1726	kseq = KSEQ_SELF();
1727#ifdef SMP
1728restart:
1729	if (kseq->ksq_assigned)
1730		kseq_assign(kseq);
1731#endif
1732	ke = kseq_choose(kseq);
1733	if (ke) {
1734#ifdef SMP
1735		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1736			if (kseq_idled(kseq) == 0)
1737				goto restart;
1738#endif
1739		kseq_runq_rem(kseq, ke);
1740		ke->ke_state = KES_THREAD;
1741		ke->ke_flags &= ~KEF_PREEMPTED;
1742		return (ke);
1743	}
1744#ifdef SMP
1745	if (kseq_idled(kseq) == 0)
1746		goto restart;
1747#endif
1748	return (NULL);
1749}
1750
1751void
1752sched_add(struct thread *td, int flags)
1753{
1754	struct kseq *kseq;
1755	struct ksegrp *kg;
1756	struct kse *ke;
1757	int preemptive;
1758	int canmigrate;
1759	int class;
1760
1761	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1762	    td, td->td_proc->p_comm, td->td_priority, curthread,
1763	    curthread->td_proc->p_comm);
1764	mtx_assert(&sched_lock, MA_OWNED);
1765	ke = td->td_kse;
1766	kg = td->td_ksegrp;
1767	canmigrate = 1;
1768	preemptive = !(flags & SRQ_YIELDING);
1769	class = PRI_BASE(kg->kg_pri_class);
1770	kseq = KSEQ_SELF();
1771	if ((ke->ke_flags & KEF_INTERNAL) == 0)
1772		SLOT_USE(td->td_ksegrp);
1773	ke->ke_flags &= ~KEF_INTERNAL;
1774#ifdef SMP
1775	if (ke->ke_flags & KEF_ASSIGNED) {
1776		if (ke->ke_flags & KEF_REMOVED)
1777			ke->ke_flags &= ~KEF_REMOVED;
1778		return;
1779	}
1780	canmigrate = KSE_CAN_MIGRATE(ke);
1781#endif
1782	KASSERT(ke->ke_state != KES_ONRUNQ,
1783	    ("sched_add: kse %p (%s) already in run queue", ke,
1784	    ke->ke_proc->p_comm));
1785	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1786	    ("sched_add: process swapped out"));
1787	KASSERT(ke->ke_runq == NULL,
1788	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1789	if (flags & SRQ_PREEMPTED)
1790		ke->ke_flags |= KEF_PREEMPTED;
1791	switch (class) {
1792	case PRI_ITHD:
1793	case PRI_REALTIME:
1794		ke->ke_runq = kseq->ksq_curr;
1795		ke->ke_slice = SCHED_SLICE_MAX;
1796		if (canmigrate)
1797			ke->ke_cpu = PCPU_GET(cpuid);
1798		break;
1799	case PRI_TIMESHARE:
1800		if (SCHED_CURR(kg, ke))
1801			ke->ke_runq = kseq->ksq_curr;
1802		else
1803			ke->ke_runq = kseq->ksq_next;
1804		break;
1805	case PRI_IDLE:
1806		/*
1807		 * This is for priority prop.
1808		 */
1809		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1810			ke->ke_runq = kseq->ksq_curr;
1811		else
1812			ke->ke_runq = &kseq->ksq_idle;
1813		ke->ke_slice = SCHED_SLICE_MIN;
1814		break;
1815	default:
1816		panic("Unknown pri class.");
1817		break;
1818	}
1819#ifdef SMP
1820	/*
1821	 * Don't migrate running threads here.  Force the long term balancer
1822	 * to do it.
1823	 */
1824	if (ke->ke_flags & KEF_HOLD) {
1825		ke->ke_flags &= ~KEF_HOLD;
1826		canmigrate = 0;
1827	}
1828	/*
1829	 * If this thread is pinned or bound, notify the target cpu.
1830	 */
1831	if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) {
1832		ke->ke_runq = NULL;
1833		kseq_notify(ke, ke->ke_cpu);
1834		return;
1835	}
1836	/*
1837	 * If we had been idle, clear our bit in the group and potentially
1838	 * the global bitmap.  If not, see if we should transfer this thread.
1839	 */
1840	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1841	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1842		/*
1843		 * Check to see if our group is unidling, and if so, remove it
1844		 * from the global idle mask.
1845		 */
1846		if (kseq->ksq_group->ksg_idlemask ==
1847		    kseq->ksq_group->ksg_cpumask)
1848			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1849		/*
1850		 * Now remove ourselves from the group specific idle mask.
1851		 */
1852		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1853	} else if (canmigrate && kseq->ksq_load > 1 && class != PRI_ITHD)
1854		if (kseq_transfer(kseq, ke, class))
1855			return;
1856	ke->ke_cpu = PCPU_GET(cpuid);
1857#endif
1858	if (td->td_priority < curthread->td_priority &&
1859	    ke->ke_runq == kseq->ksq_curr)
1860		curthread->td_flags |= TDF_NEEDRESCHED;
1861	if (preemptive && maybe_preempt(td))
1862		return;
1863	ke->ke_state = KES_ONRUNQ;
1864
1865	kseq_runq_add(kseq, ke, flags);
1866	kseq_load_add(kseq, ke);
1867}
1868
1869void
1870sched_rem(struct thread *td)
1871{
1872	struct kseq *kseq;
1873	struct kse *ke;
1874
1875	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
1876	    td, td->td_proc->p_comm, td->td_priority, curthread,
1877	    curthread->td_proc->p_comm);
1878	mtx_assert(&sched_lock, MA_OWNED);
1879	ke = td->td_kse;
1880	SLOT_RELEASE(td->td_ksegrp);
1881	ke->ke_flags &= ~KEF_PREEMPTED;
1882	if (ke->ke_flags & KEF_ASSIGNED) {
1883		ke->ke_flags |= KEF_REMOVED;
1884		return;
1885	}
1886	KASSERT((ke->ke_state == KES_ONRUNQ),
1887	    ("sched_rem: KSE not on run queue"));
1888
1889	ke->ke_state = KES_THREAD;
1890	kseq = KSEQ_CPU(ke->ke_cpu);
1891	kseq_runq_rem(kseq, ke);
1892	kseq_load_rem(kseq, ke);
1893}
1894
1895fixpt_t
1896sched_pctcpu(struct thread *td)
1897{
1898	fixpt_t pctcpu;
1899	struct kse *ke;
1900
1901	pctcpu = 0;
1902	ke = td->td_kse;
1903	if (ke == NULL)
1904		return (0);
1905
1906	mtx_lock_spin(&sched_lock);
1907	if (ke->ke_ticks) {
1908		int rtick;
1909
1910		/*
1911		 * Don't update more frequently than twice a second.  Allowing
1912		 * this causes the cpu usage to decay away too quickly due to
1913		 * rounding errors.
1914		 */
1915		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1916		    ke->ke_ltick < (ticks - (hz / 2)))
1917			sched_pctcpu_update(ke);
1918		/* How many rtick per second ? */
1919		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1920		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1921	}
1922
1923	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1924	mtx_unlock_spin(&sched_lock);
1925
1926	return (pctcpu);
1927}
1928
1929void
1930sched_bind(struct thread *td, int cpu)
1931{
1932	struct kse *ke;
1933
1934	mtx_assert(&sched_lock, MA_OWNED);
1935	ke = td->td_kse;
1936	ke->ke_flags |= KEF_BOUND;
1937#ifdef SMP
1938	if (PCPU_GET(cpuid) == cpu)
1939		return;
1940	/* sched_rem without the runq_remove */
1941	ke->ke_state = KES_THREAD;
1942	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1943	kseq_notify(ke, cpu);
1944	/* When we return from mi_switch we'll be on the correct cpu. */
1945	mi_switch(SW_VOL, NULL);
1946#endif
1947}
1948
1949void
1950sched_unbind(struct thread *td)
1951{
1952	mtx_assert(&sched_lock, MA_OWNED);
1953	td->td_kse->ke_flags &= ~KEF_BOUND;
1954}
1955
1956int
1957sched_is_bound(struct thread *td)
1958{
1959	mtx_assert(&sched_lock, MA_OWNED);
1960	return (td->td_kse->ke_flags & KEF_BOUND);
1961}
1962
1963int
1964sched_load(void)
1965{
1966#ifdef SMP
1967	int total;
1968	int i;
1969
1970	total = 0;
1971	for (i = 0; i <= ksg_maxid; i++)
1972		total += KSEQ_GROUP(i)->ksg_load;
1973	return (total);
1974#else
1975	return (KSEQ_SELF()->ksq_sysload);
1976#endif
1977}
1978
1979int
1980sched_sizeof_ksegrp(void)
1981{
1982	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1983}
1984
1985int
1986sched_sizeof_proc(void)
1987{
1988	return (sizeof(struct proc));
1989}
1990
1991int
1992sched_sizeof_thread(void)
1993{
1994	return (sizeof(struct thread) + sizeof(struct td_sched));
1995}
1996#define KERN_SWITCH_INCLUDE 1
1997#include "kern/kern_switch.c"
1998