sched_ule.c revision 148383
1/*-
2 * Copyright (c) 2002-2005, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 148383 2005-07-25 10:21:49Z delphij $");
29
30#include "opt_hwpmc_hooks.h"
31#include "opt_sched.h"
32
33#define kse td_sched
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kdb.h>
38#include <sys/kernel.h>
39#include <sys/ktr.h>
40#include <sys/lock.h>
41#include <sys/mutex.h>
42#include <sys/proc.h>
43#include <sys/resource.h>
44#include <sys/resourcevar.h>
45#include <sys/sched.h>
46#include <sys/smp.h>
47#include <sys/sx.h>
48#include <sys/sysctl.h>
49#include <sys/sysproto.h>
50#include <sys/turnstile.h>
51#include <sys/vmmeter.h>
52#ifdef KTRACE
53#include <sys/uio.h>
54#include <sys/ktrace.h>
55#endif
56
57#ifdef HWPMC_HOOKS
58#include <sys/pmckern.h>
59#endif
60
61#include <machine/cpu.h>
62#include <machine/smp.h>
63
64/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
65/* XXX This is bogus compatability crap for ps */
66static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
67SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
68
69static void sched_setup(void *dummy);
70SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
71
72static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
73
74SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
75    "Scheduler name");
76
77static int slice_min = 1;
78SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
79
80static int slice_max = 10;
81SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
82
83int realstathz;
84int tickincr = 1;
85
86/*
87 * The following datastructures are allocated within their parent structure
88 * but are scheduler specific.
89 */
90/*
91 * The schedulable entity that can be given a context to run.  A process may
92 * have several of these.
93 */
94struct kse {
95	TAILQ_ENTRY(kse) ke_procq;	/* (j/z) Run queue. */
96	int		ke_flags;	/* (j) KEF_* flags. */
97	struct thread	*ke_thread;	/* (*) Active associated thread. */
98	fixpt_t		ke_pctcpu;	/* (j) %cpu during p_swtime. */
99	char		ke_rqindex;	/* (j) Run queue index. */
100	enum {
101		KES_THREAD = 0x0,	/* slaved to thread state */
102		KES_ONRUNQ
103	} ke_state;			/* (j) thread sched specific status. */
104	int		ke_slptime;
105	int		ke_slice;
106	struct runq	*ke_runq;
107	u_char		ke_cpu;		/* CPU that we have affinity for. */
108	/* The following variables are only used for pctcpu calculation */
109	int		ke_ltick;	/* Last tick that we were running on */
110	int		ke_ftick;	/* First tick that we were running on */
111	int		ke_ticks;	/* Tick count */
112
113};
114#define	td_kse			td_sched
115#define	td_slptime		td_kse->ke_slptime
116#define ke_proc			ke_thread->td_proc
117#define ke_ksegrp		ke_thread->td_ksegrp
118#define	ke_assign		ke_procq.tqe_next
119/* flags kept in ke_flags */
120#define	KEF_ASSIGNED	0x0001		/* Thread is being migrated. */
121#define	KEF_BOUND	0x0002		/* Thread can not migrate. */
122#define	KEF_XFERABLE	0x0004		/* Thread was added as transferable. */
123#define	KEF_HOLD	0x0008		/* Thread is temporarily bound. */
124#define	KEF_REMOVED	0x0010		/* Thread was removed while ASSIGNED */
125#define	KEF_INTERNAL	0x0020		/* Thread added due to migration. */
126#define	KEF_DIDRUN	0x02000		/* Thread actually ran. */
127#define	KEF_EXIT	0x04000		/* Thread is being killed. */
128
129struct kg_sched {
130	struct thread	*skg_last_assigned; /* (j) Last thread assigned to */
131					   /* the system scheduler */
132	int	skg_slptime;		/* Number of ticks we vol. slept */
133	int	skg_runtime;		/* Number of ticks we were running */
134	int	skg_avail_opennings;	/* (j) Num unfilled slots in group.*/
135	int	skg_concurrency;	/* (j) Num threads requested in group.*/
136};
137#define kg_last_assigned	kg_sched->skg_last_assigned
138#define kg_avail_opennings	kg_sched->skg_avail_opennings
139#define kg_concurrency		kg_sched->skg_concurrency
140#define kg_runtime		kg_sched->skg_runtime
141#define kg_slptime		kg_sched->skg_slptime
142
143#define SLOT_RELEASE(kg)	(kg)->kg_avail_opennings++
144#define	SLOT_USE(kg)		(kg)->kg_avail_opennings--
145
146static struct kse kse0;
147static struct kg_sched kg_sched0;
148
149/*
150 * The priority is primarily determined by the interactivity score.  Thus, we
151 * give lower(better) priorities to kse groups that use less CPU.  The nice
152 * value is then directly added to this to allow nice to have some effect
153 * on latency.
154 *
155 * PRI_RANGE:	Total priority range for timeshare threads.
156 * PRI_NRESV:	Number of nice values.
157 * PRI_BASE:	The start of the dynamic range.
158 */
159#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
160#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
161#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
162#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
163#define	SCHED_PRI_INTERACT(score)					\
164    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
165
166/*
167 * These determine the interactivity of a process.
168 *
169 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
170 *		before throttling back.
171 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
172 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
173 * INTERACT_THRESH:	Threshhold for placement on the current runq.
174 */
175#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
176#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
177#define	SCHED_INTERACT_MAX	(100)
178#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
179#define	SCHED_INTERACT_THRESH	(30)
180
181/*
182 * These parameters and macros determine the size of the time slice that is
183 * granted to each thread.
184 *
185 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
186 * SLICE_MAX:	Maximum time slice granted.
187 * SLICE_RANGE:	Range of available time slices scaled by hz.
188 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
189 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
190 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
191 */
192#define	SCHED_SLICE_MIN			(slice_min)
193#define	SCHED_SLICE_MAX			(slice_max)
194#define	SCHED_SLICE_INTERACTIVE		(slice_max)
195#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
196#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
197#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
198#define	SCHED_SLICE_NICE(nice)						\
199    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
200
201/*
202 * This macro determines whether or not the thread belongs on the current or
203 * next run queue.
204 */
205#define	SCHED_INTERACTIVE(kg)						\
206    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
207#define	SCHED_CURR(kg, ke)						\
208    ((ke->ke_thread->td_flags & TDF_BORROWING) || SCHED_INTERACTIVE(kg))
209
210/*
211 * Cpu percentage computation macros and defines.
212 *
213 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
214 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
215 */
216
217#define	SCHED_CPU_TIME	10
218#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
219
220/*
221 * kseq - per processor runqs and statistics.
222 */
223struct kseq {
224	struct runq	ksq_idle;		/* Queue of IDLE threads. */
225	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
226	struct runq	*ksq_next;		/* Next timeshare queue. */
227	struct runq	*ksq_curr;		/* Current queue. */
228	int		ksq_load_timeshare;	/* Load for timeshare. */
229	int		ksq_load;		/* Aggregate load. */
230	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
231	short		ksq_nicemin;		/* Least nice. */
232#ifdef SMP
233	int			ksq_transferable;
234	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
235	struct kseq_group	*ksq_group;	/* Our processor group. */
236	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
237#else
238	int		ksq_sysload;		/* For loadavg, !ITHD load. */
239#endif
240};
241
242#ifdef SMP
243/*
244 * kseq groups are groups of processors which can cheaply share threads.  When
245 * one processor in the group goes idle it will check the runqs of the other
246 * processors in its group prior to halting and waiting for an interrupt.
247 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
248 * In a numa environment we'd want an idle bitmap per group and a two tiered
249 * load balancer.
250 */
251struct kseq_group {
252	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
253	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
254	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
255	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
256	int	ksg_load;		/* Total load of this group. */
257	int	ksg_transferable;	/* Transferable load of this group. */
258	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
259};
260#endif
261
262/*
263 * One kse queue per processor.
264 */
265#ifdef SMP
266static cpumask_t kseq_idle;
267static int ksg_maxid;
268static struct kseq	kseq_cpu[MAXCPU];
269static struct kseq_group kseq_groups[MAXCPU];
270static int bal_tick;
271static int gbal_tick;
272static int balance_groups;
273
274#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
275#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
276#define	KSEQ_ID(x)	((x) - kseq_cpu)
277#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
278#else	/* !SMP */
279static struct kseq	kseq_cpu;
280
281#define	KSEQ_SELF()	(&kseq_cpu)
282#define	KSEQ_CPU(x)	(&kseq_cpu)
283#endif
284
285static void slot_fill(struct ksegrp *);
286static struct kse *sched_choose(void);		/* XXX Should be thread * */
287static void sched_slice(struct kse *);
288static void sched_priority(struct ksegrp *);
289static void sched_thread_priority(struct thread *, u_char);
290static int sched_interact_score(struct ksegrp *);
291static void sched_interact_update(struct ksegrp *);
292static void sched_interact_fork(struct ksegrp *);
293static void sched_pctcpu_update(struct kse *);
294
295/* Operations on per processor queues */
296static struct kse * kseq_choose(struct kseq *);
297static void kseq_setup(struct kseq *);
298static void kseq_load_add(struct kseq *, struct kse *);
299static void kseq_load_rem(struct kseq *, struct kse *);
300static __inline void kseq_runq_add(struct kseq *, struct kse *, int);
301static __inline void kseq_runq_rem(struct kseq *, struct kse *);
302static void kseq_nice_add(struct kseq *, int);
303static void kseq_nice_rem(struct kseq *, int);
304void kseq_print(int cpu);
305#ifdef SMP
306static int kseq_transfer(struct kseq *, struct kse *, int);
307static struct kse *runq_steal(struct runq *);
308static void sched_balance(void);
309static void sched_balance_groups(void);
310static void sched_balance_group(struct kseq_group *);
311static void sched_balance_pair(struct kseq *, struct kseq *);
312static void kseq_move(struct kseq *, int);
313static int kseq_idled(struct kseq *);
314static void kseq_notify(struct kse *, int);
315static void kseq_assign(struct kseq *);
316static struct kse *kseq_steal(struct kseq *, int);
317#define	KSE_CAN_MIGRATE(ke)						\
318    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
319#endif
320
321void
322kseq_print(int cpu)
323{
324	struct kseq *kseq;
325	int i;
326
327	kseq = KSEQ_CPU(cpu);
328
329	printf("kseq:\n");
330	printf("\tload:           %d\n", kseq->ksq_load);
331	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
332#ifdef SMP
333	printf("\tload transferable: %d\n", kseq->ksq_transferable);
334#endif
335	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
336	printf("\tnice counts:\n");
337	for (i = 0; i < SCHED_PRI_NRESV; i++)
338		if (kseq->ksq_nice[i])
339			printf("\t\t%d = %d\n",
340			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
341}
342
343static __inline void
344kseq_runq_add(struct kseq *kseq, struct kse *ke, int flags)
345{
346#ifdef SMP
347	if (KSE_CAN_MIGRATE(ke)) {
348		kseq->ksq_transferable++;
349		kseq->ksq_group->ksg_transferable++;
350		ke->ke_flags |= KEF_XFERABLE;
351	}
352#endif
353	runq_add(ke->ke_runq, ke, flags);
354}
355
356static __inline void
357kseq_runq_rem(struct kseq *kseq, struct kse *ke)
358{
359#ifdef SMP
360	if (ke->ke_flags & KEF_XFERABLE) {
361		kseq->ksq_transferable--;
362		kseq->ksq_group->ksg_transferable--;
363		ke->ke_flags &= ~KEF_XFERABLE;
364	}
365#endif
366	runq_remove(ke->ke_runq, ke);
367}
368
369static void
370kseq_load_add(struct kseq *kseq, struct kse *ke)
371{
372	int class;
373	mtx_assert(&sched_lock, MA_OWNED);
374	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
375	if (class == PRI_TIMESHARE)
376		kseq->ksq_load_timeshare++;
377	kseq->ksq_load++;
378	CTR1(KTR_SCHED, "load: %d", kseq->ksq_load);
379	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
380#ifdef SMP
381		kseq->ksq_group->ksg_load++;
382#else
383		kseq->ksq_sysload++;
384#endif
385	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
386		kseq_nice_add(kseq, ke->ke_proc->p_nice);
387}
388
389static void
390kseq_load_rem(struct kseq *kseq, struct kse *ke)
391{
392	int class;
393	mtx_assert(&sched_lock, MA_OWNED);
394	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
395	if (class == PRI_TIMESHARE)
396		kseq->ksq_load_timeshare--;
397	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
398#ifdef SMP
399		kseq->ksq_group->ksg_load--;
400#else
401		kseq->ksq_sysload--;
402#endif
403	kseq->ksq_load--;
404	CTR1(KTR_SCHED, "load: %d", kseq->ksq_load);
405	ke->ke_runq = NULL;
406	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
407		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
408}
409
410static void
411kseq_nice_add(struct kseq *kseq, int nice)
412{
413	mtx_assert(&sched_lock, MA_OWNED);
414	/* Normalize to zero. */
415	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
416	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
417		kseq->ksq_nicemin = nice;
418}
419
420static void
421kseq_nice_rem(struct kseq *kseq, int nice)
422{
423	int n;
424
425	mtx_assert(&sched_lock, MA_OWNED);
426	/* Normalize to zero. */
427	n = nice + SCHED_PRI_NHALF;
428	kseq->ksq_nice[n]--;
429	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
430
431	/*
432	 * If this wasn't the smallest nice value or there are more in
433	 * this bucket we can just return.  Otherwise we have to recalculate
434	 * the smallest nice.
435	 */
436	if (nice != kseq->ksq_nicemin ||
437	    kseq->ksq_nice[n] != 0 ||
438	    kseq->ksq_load_timeshare == 0)
439		return;
440
441	for (; n < SCHED_PRI_NRESV; n++)
442		if (kseq->ksq_nice[n]) {
443			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
444			return;
445		}
446}
447
448#ifdef SMP
449/*
450 * sched_balance is a simple CPU load balancing algorithm.  It operates by
451 * finding the least loaded and most loaded cpu and equalizing their load
452 * by migrating some processes.
453 *
454 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
455 * installations will only have 2 cpus.  Secondly, load balancing too much at
456 * once can have an unpleasant effect on the system.  The scheduler rarely has
457 * enough information to make perfect decisions.  So this algorithm chooses
458 * algorithm simplicity and more gradual effects on load in larger systems.
459 *
460 * It could be improved by considering the priorities and slices assigned to
461 * each task prior to balancing them.  There are many pathological cases with
462 * any approach and so the semi random algorithm below may work as well as any.
463 *
464 */
465static void
466sched_balance(void)
467{
468	struct kseq_group *high;
469	struct kseq_group *low;
470	struct kseq_group *ksg;
471	int cnt;
472	int i;
473
474	bal_tick = ticks + (random() % (hz * 2));
475	if (smp_started == 0)
476		return;
477	low = high = NULL;
478	i = random() % (ksg_maxid + 1);
479	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
480		ksg = KSEQ_GROUP(i);
481		/*
482		 * Find the CPU with the highest load that has some
483		 * threads to transfer.
484		 */
485		if ((high == NULL || ksg->ksg_load > high->ksg_load)
486		    && ksg->ksg_transferable)
487			high = ksg;
488		if (low == NULL || ksg->ksg_load < low->ksg_load)
489			low = ksg;
490		if (++i > ksg_maxid)
491			i = 0;
492	}
493	if (low != NULL && high != NULL && high != low)
494		sched_balance_pair(LIST_FIRST(&high->ksg_members),
495		    LIST_FIRST(&low->ksg_members));
496}
497
498static void
499sched_balance_groups(void)
500{
501	int i;
502
503	gbal_tick = ticks + (random() % (hz * 2));
504	mtx_assert(&sched_lock, MA_OWNED);
505	if (smp_started)
506		for (i = 0; i <= ksg_maxid; i++)
507			sched_balance_group(KSEQ_GROUP(i));
508}
509
510static void
511sched_balance_group(struct kseq_group *ksg)
512{
513	struct kseq *kseq;
514	struct kseq *high;
515	struct kseq *low;
516	int load;
517
518	if (ksg->ksg_transferable == 0)
519		return;
520	low = NULL;
521	high = NULL;
522	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
523		load = kseq->ksq_load;
524		if (high == NULL || load > high->ksq_load)
525			high = kseq;
526		if (low == NULL || load < low->ksq_load)
527			low = kseq;
528	}
529	if (high != NULL && low != NULL && high != low)
530		sched_balance_pair(high, low);
531}
532
533static void
534sched_balance_pair(struct kseq *high, struct kseq *low)
535{
536	int transferable;
537	int high_load;
538	int low_load;
539	int move;
540	int diff;
541	int i;
542
543	/*
544	 * If we're transfering within a group we have to use this specific
545	 * kseq's transferable count, otherwise we can steal from other members
546	 * of the group.
547	 */
548	if (high->ksq_group == low->ksq_group) {
549		transferable = high->ksq_transferable;
550		high_load = high->ksq_load;
551		low_load = low->ksq_load;
552	} else {
553		transferable = high->ksq_group->ksg_transferable;
554		high_load = high->ksq_group->ksg_load;
555		low_load = low->ksq_group->ksg_load;
556	}
557	if (transferable == 0)
558		return;
559	/*
560	 * Determine what the imbalance is and then adjust that to how many
561	 * kses we actually have to give up (transferable).
562	 */
563	diff = high_load - low_load;
564	move = diff / 2;
565	if (diff & 0x1)
566		move++;
567	move = min(move, transferable);
568	for (i = 0; i < move; i++)
569		kseq_move(high, KSEQ_ID(low));
570	return;
571}
572
573static void
574kseq_move(struct kseq *from, int cpu)
575{
576	struct kseq *kseq;
577	struct kseq *to;
578	struct kse *ke;
579
580	kseq = from;
581	to = KSEQ_CPU(cpu);
582	ke = kseq_steal(kseq, 1);
583	if (ke == NULL) {
584		struct kseq_group *ksg;
585
586		ksg = kseq->ksq_group;
587		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
588			if (kseq == from || kseq->ksq_transferable == 0)
589				continue;
590			ke = kseq_steal(kseq, 1);
591			break;
592		}
593		if (ke == NULL)
594			panic("kseq_move: No KSEs available with a "
595			    "transferable count of %d\n",
596			    ksg->ksg_transferable);
597	}
598	if (kseq == to)
599		return;
600	ke->ke_state = KES_THREAD;
601	kseq_runq_rem(kseq, ke);
602	kseq_load_rem(kseq, ke);
603	kseq_notify(ke, cpu);
604}
605
606static int
607kseq_idled(struct kseq *kseq)
608{
609	struct kseq_group *ksg;
610	struct kseq *steal;
611	struct kse *ke;
612
613	ksg = kseq->ksq_group;
614	/*
615	 * If we're in a cpu group, try and steal kses from another cpu in
616	 * the group before idling.
617	 */
618	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
619		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
620			if (steal == kseq || steal->ksq_transferable == 0)
621				continue;
622			ke = kseq_steal(steal, 0);
623			if (ke == NULL)
624				continue;
625			ke->ke_state = KES_THREAD;
626			kseq_runq_rem(steal, ke);
627			kseq_load_rem(steal, ke);
628			ke->ke_cpu = PCPU_GET(cpuid);
629			ke->ke_flags |= KEF_INTERNAL | KEF_HOLD;
630			sched_add(ke->ke_thread, SRQ_YIELDING);
631			return (0);
632		}
633	}
634	/*
635	 * We only set the idled bit when all of the cpus in the group are
636	 * idle.  Otherwise we could get into a situation where a KSE bounces
637	 * back and forth between two idle cores on seperate physical CPUs.
638	 */
639	ksg->ksg_idlemask |= PCPU_GET(cpumask);
640	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
641		return (1);
642	atomic_set_int(&kseq_idle, ksg->ksg_mask);
643	return (1);
644}
645
646static void
647kseq_assign(struct kseq *kseq)
648{
649	struct kse *nke;
650	struct kse *ke;
651
652	do {
653		*(volatile struct kse **)&ke = kseq->ksq_assigned;
654	} while(!atomic_cmpset_ptr((volatile uintptr_t *)&kseq->ksq_assigned,
655		(uintptr_t)ke, (uintptr_t)NULL));
656	for (; ke != NULL; ke = nke) {
657		nke = ke->ke_assign;
658		kseq->ksq_group->ksg_load--;
659		kseq->ksq_load--;
660		ke->ke_flags &= ~KEF_ASSIGNED;
661		ke->ke_flags |= KEF_INTERNAL | KEF_HOLD;
662		sched_add(ke->ke_thread, SRQ_YIELDING);
663	}
664}
665
666static void
667kseq_notify(struct kse *ke, int cpu)
668{
669	struct kseq *kseq;
670	struct thread *td;
671	struct pcpu *pcpu;
672	int class;
673	int prio;
674
675	kseq = KSEQ_CPU(cpu);
676	/* XXX */
677	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
678	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
679	    (kseq_idle & kseq->ksq_group->ksg_mask))
680		atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
681	kseq->ksq_group->ksg_load++;
682	kseq->ksq_load++;
683	ke->ke_cpu = cpu;
684	ke->ke_flags |= KEF_ASSIGNED;
685	prio = ke->ke_thread->td_priority;
686
687	/*
688	 * Place a KSE on another cpu's queue and force a resched.
689	 */
690	do {
691		*(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned;
692	} while(!atomic_cmpset_ptr((volatile uintptr_t *)&kseq->ksq_assigned,
693		(uintptr_t)ke->ke_assign, (uintptr_t)ke));
694	/*
695	 * Without sched_lock we could lose a race where we set NEEDRESCHED
696	 * on a thread that is switched out before the IPI is delivered.  This
697	 * would lead us to miss the resched.  This will be a problem once
698	 * sched_lock is pushed down.
699	 */
700	pcpu = pcpu_find(cpu);
701	td = pcpu->pc_curthread;
702	if (ke->ke_thread->td_priority < td->td_priority ||
703	    td == pcpu->pc_idlethread) {
704		td->td_flags |= TDF_NEEDRESCHED;
705		ipi_selected(1 << cpu, IPI_AST);
706	}
707}
708
709static struct kse *
710runq_steal(struct runq *rq)
711{
712	struct rqhead *rqh;
713	struct rqbits *rqb;
714	struct kse *ke;
715	int word;
716	int bit;
717
718	mtx_assert(&sched_lock, MA_OWNED);
719	rqb = &rq->rq_status;
720	for (word = 0; word < RQB_LEN; word++) {
721		if (rqb->rqb_bits[word] == 0)
722			continue;
723		for (bit = 0; bit < RQB_BPW; bit++) {
724			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
725				continue;
726			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
727			TAILQ_FOREACH(ke, rqh, ke_procq) {
728				if (KSE_CAN_MIGRATE(ke))
729					return (ke);
730			}
731		}
732	}
733	return (NULL);
734}
735
736static struct kse *
737kseq_steal(struct kseq *kseq, int stealidle)
738{
739	struct kse *ke;
740
741	/*
742	 * Steal from next first to try to get a non-interactive task that
743	 * may not have run for a while.
744	 */
745	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
746		return (ke);
747	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
748		return (ke);
749	if (stealidle)
750		return (runq_steal(&kseq->ksq_idle));
751	return (NULL);
752}
753
754int
755kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
756{
757	struct kseq_group *nksg;
758	struct kseq_group *ksg;
759	struct kseq *old;
760	int cpu;
761	int idx;
762
763	if (smp_started == 0)
764		return (0);
765	cpu = 0;
766	/*
767	 * If our load exceeds a certain threshold we should attempt to
768	 * reassign this thread.  The first candidate is the cpu that
769	 * originally ran the thread.  If it is idle, assign it there,
770	 * otherwise, pick an idle cpu.
771	 *
772	 * The threshold at which we start to reassign kses has a large impact
773	 * on the overall performance of the system.  Tuned too high and
774	 * some CPUs may idle.  Too low and there will be excess migration
775	 * and context switches.
776	 */
777	old = KSEQ_CPU(ke->ke_cpu);
778	nksg = old->ksq_group;
779	ksg = kseq->ksq_group;
780	if (kseq_idle) {
781		if (kseq_idle & nksg->ksg_mask) {
782			cpu = ffs(nksg->ksg_idlemask);
783			if (cpu) {
784				CTR2(KTR_SCHED,
785				    "kseq_transfer: %p found old cpu %X "
786				    "in idlemask.", ke, cpu);
787				goto migrate;
788			}
789		}
790		/*
791		 * Multiple cpus could find this bit simultaneously
792		 * but the race shouldn't be terrible.
793		 */
794		cpu = ffs(kseq_idle);
795		if (cpu) {
796			CTR2(KTR_SCHED, "kseq_transfer: %p found %X "
797			    "in idlemask.", ke, cpu);
798			goto migrate;
799		}
800	}
801	idx = 0;
802#if 0
803	if (old->ksq_load < kseq->ksq_load) {
804		cpu = ke->ke_cpu + 1;
805		CTR2(KTR_SCHED, "kseq_transfer: %p old cpu %X "
806		    "load less than ours.", ke, cpu);
807		goto migrate;
808	}
809	/*
810	 * No new CPU was found, look for one with less load.
811	 */
812	for (idx = 0; idx <= ksg_maxid; idx++) {
813		nksg = KSEQ_GROUP(idx);
814		if (nksg->ksg_load /*+ (nksg->ksg_cpus  * 2)*/ < ksg->ksg_load) {
815			cpu = ffs(nksg->ksg_cpumask);
816			CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X load less "
817			    "than ours.", ke, cpu);
818			goto migrate;
819		}
820	}
821#endif
822	/*
823	 * If another cpu in this group has idled, assign a thread over
824	 * to them after checking to see if there are idled groups.
825	 */
826	if (ksg->ksg_idlemask) {
827		cpu = ffs(ksg->ksg_idlemask);
828		if (cpu) {
829			CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X idle in "
830			    "group.", ke, cpu);
831			goto migrate;
832		}
833	}
834	return (0);
835migrate:
836	/*
837	 * Now that we've found an idle CPU, migrate the thread.
838	 */
839	cpu--;
840	ke->ke_runq = NULL;
841	kseq_notify(ke, cpu);
842
843	return (1);
844}
845
846#endif	/* SMP */
847
848/*
849 * Pick the highest priority task we have and return it.
850 */
851
852static struct kse *
853kseq_choose(struct kseq *kseq)
854{
855	struct runq *swap;
856	struct kse *ke;
857	int nice;
858
859	mtx_assert(&sched_lock, MA_OWNED);
860	swap = NULL;
861
862	for (;;) {
863		ke = runq_choose(kseq->ksq_curr);
864		if (ke == NULL) {
865			/*
866			 * We already swapped once and didn't get anywhere.
867			 */
868			if (swap)
869				break;
870			swap = kseq->ksq_curr;
871			kseq->ksq_curr = kseq->ksq_next;
872			kseq->ksq_next = swap;
873			continue;
874		}
875		/*
876		 * If we encounter a slice of 0 the kse is in a
877		 * TIMESHARE kse group and its nice was too far out
878		 * of the range that receives slices.
879		 */
880		nice = ke->ke_proc->p_nice + (0 - kseq->ksq_nicemin);
881		if (ke->ke_slice == 0 || (nice > SCHED_SLICE_NTHRESH &&
882		    ke->ke_proc->p_nice != 0)) {
883			runq_remove(ke->ke_runq, ke);
884			sched_slice(ke);
885			ke->ke_runq = kseq->ksq_next;
886			runq_add(ke->ke_runq, ke, 0);
887			continue;
888		}
889		return (ke);
890	}
891
892	return (runq_choose(&kseq->ksq_idle));
893}
894
895static void
896kseq_setup(struct kseq *kseq)
897{
898	runq_init(&kseq->ksq_timeshare[0]);
899	runq_init(&kseq->ksq_timeshare[1]);
900	runq_init(&kseq->ksq_idle);
901	kseq->ksq_curr = &kseq->ksq_timeshare[0];
902	kseq->ksq_next = &kseq->ksq_timeshare[1];
903	kseq->ksq_load = 0;
904	kseq->ksq_load_timeshare = 0;
905}
906
907static void
908sched_setup(void *dummy)
909{
910#ifdef SMP
911	int i;
912#endif
913
914	slice_min = (hz/100);	/* 10ms */
915	slice_max = (hz/7);	/* ~140ms */
916
917#ifdef SMP
918	balance_groups = 0;
919	/*
920	 * Initialize the kseqs.
921	 */
922	for (i = 0; i < MAXCPU; i++) {
923		struct kseq *ksq;
924
925		ksq = &kseq_cpu[i];
926		ksq->ksq_assigned = NULL;
927		kseq_setup(&kseq_cpu[i]);
928	}
929	if (smp_topology == NULL) {
930		struct kseq_group *ksg;
931		struct kseq *ksq;
932		int cpus;
933
934		for (cpus = 0, i = 0; i < MAXCPU; i++) {
935			if (CPU_ABSENT(i))
936				continue;
937			ksq = &kseq_cpu[cpus];
938			ksg = &kseq_groups[cpus];
939			/*
940			 * Setup a kseq group with one member.
941			 */
942			ksq->ksq_transferable = 0;
943			ksq->ksq_group = ksg;
944			ksg->ksg_cpus = 1;
945			ksg->ksg_idlemask = 0;
946			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
947			ksg->ksg_load = 0;
948			ksg->ksg_transferable = 0;
949			LIST_INIT(&ksg->ksg_members);
950			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
951			cpus++;
952		}
953		ksg_maxid = cpus - 1;
954	} else {
955		struct kseq_group *ksg;
956		struct cpu_group *cg;
957		int j;
958
959		for (i = 0; i < smp_topology->ct_count; i++) {
960			cg = &smp_topology->ct_group[i];
961			ksg = &kseq_groups[i];
962			/*
963			 * Initialize the group.
964			 */
965			ksg->ksg_idlemask = 0;
966			ksg->ksg_load = 0;
967			ksg->ksg_transferable = 0;
968			ksg->ksg_cpus = cg->cg_count;
969			ksg->ksg_cpumask = cg->cg_mask;
970			LIST_INIT(&ksg->ksg_members);
971			/*
972			 * Find all of the group members and add them.
973			 */
974			for (j = 0; j < MAXCPU; j++) {
975				if ((cg->cg_mask & (1 << j)) != 0) {
976					if (ksg->ksg_mask == 0)
977						ksg->ksg_mask = 1 << j;
978					kseq_cpu[j].ksq_transferable = 0;
979					kseq_cpu[j].ksq_group = ksg;
980					LIST_INSERT_HEAD(&ksg->ksg_members,
981					    &kseq_cpu[j], ksq_siblings);
982				}
983			}
984			if (ksg->ksg_cpus > 1)
985				balance_groups = 1;
986		}
987		ksg_maxid = smp_topology->ct_count - 1;
988	}
989	/*
990	 * Stagger the group and global load balancer so they do not
991	 * interfere with each other.
992	 */
993	bal_tick = ticks + hz;
994	if (balance_groups)
995		gbal_tick = ticks + (hz / 2);
996#else
997	kseq_setup(KSEQ_SELF());
998#endif
999	mtx_lock_spin(&sched_lock);
1000	kseq_load_add(KSEQ_SELF(), &kse0);
1001	mtx_unlock_spin(&sched_lock);
1002}
1003
1004/*
1005 * Scale the scheduling priority according to the "interactivity" of this
1006 * process.
1007 */
1008static void
1009sched_priority(struct ksegrp *kg)
1010{
1011	int pri;
1012
1013	if (kg->kg_pri_class != PRI_TIMESHARE)
1014		return;
1015
1016	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
1017	pri += SCHED_PRI_BASE;
1018	pri += kg->kg_proc->p_nice;
1019
1020	if (pri > PRI_MAX_TIMESHARE)
1021		pri = PRI_MAX_TIMESHARE;
1022	else if (pri < PRI_MIN_TIMESHARE)
1023		pri = PRI_MIN_TIMESHARE;
1024
1025	kg->kg_user_pri = pri;
1026
1027	return;
1028}
1029
1030/*
1031 * Calculate a time slice based on the properties of the kseg and the runq
1032 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
1033 */
1034static void
1035sched_slice(struct kse *ke)
1036{
1037	struct kseq *kseq;
1038	struct ksegrp *kg;
1039
1040	kg = ke->ke_ksegrp;
1041	kseq = KSEQ_CPU(ke->ke_cpu);
1042
1043	if (ke->ke_thread->td_flags & TDF_BORROWING) {
1044		ke->ke_slice = SCHED_SLICE_MIN;
1045		return;
1046	}
1047
1048	/*
1049	 * Rationale:
1050	 * KSEs in interactive ksegs get a minimal slice so that we
1051	 * quickly notice if it abuses its advantage.
1052	 *
1053	 * KSEs in non-interactive ksegs are assigned a slice that is
1054	 * based on the ksegs nice value relative to the least nice kseg
1055	 * on the run queue for this cpu.
1056	 *
1057	 * If the KSE is less nice than all others it gets the maximum
1058	 * slice and other KSEs will adjust their slice relative to
1059	 * this when they first expire.
1060	 *
1061	 * There is 20 point window that starts relative to the least
1062	 * nice kse on the run queue.  Slice size is determined by
1063	 * the kse distance from the last nice ksegrp.
1064	 *
1065	 * If the kse is outside of the window it will get no slice
1066	 * and will be reevaluated each time it is selected on the
1067	 * run queue.  The exception to this is nice 0 ksegs when
1068	 * a nice -20 is running.  They are always granted a minimum
1069	 * slice.
1070	 */
1071	if (!SCHED_INTERACTIVE(kg)) {
1072		int nice;
1073
1074		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
1075		if (kseq->ksq_load_timeshare == 0 ||
1076		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
1077			ke->ke_slice = SCHED_SLICE_MAX;
1078		else if (nice <= SCHED_SLICE_NTHRESH)
1079			ke->ke_slice = SCHED_SLICE_NICE(nice);
1080		else if (kg->kg_proc->p_nice == 0)
1081			ke->ke_slice = SCHED_SLICE_MIN;
1082		else
1083			ke->ke_slice = 0;
1084	} else
1085		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1086
1087	return;
1088}
1089
1090/*
1091 * This routine enforces a maximum limit on the amount of scheduling history
1092 * kept.  It is called after either the slptime or runtime is adjusted.
1093 * This routine will not operate correctly when slp or run times have been
1094 * adjusted to more than double their maximum.
1095 */
1096static void
1097sched_interact_update(struct ksegrp *kg)
1098{
1099	int sum;
1100
1101	sum = kg->kg_runtime + kg->kg_slptime;
1102	if (sum < SCHED_SLP_RUN_MAX)
1103		return;
1104	/*
1105	 * If we have exceeded by more than 1/5th then the algorithm below
1106	 * will not bring us back into range.  Dividing by two here forces
1107	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1108	 */
1109	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1110		kg->kg_runtime /= 2;
1111		kg->kg_slptime /= 2;
1112		return;
1113	}
1114	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1115	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1116}
1117
1118static void
1119sched_interact_fork(struct ksegrp *kg)
1120{
1121	int ratio;
1122	int sum;
1123
1124	sum = kg->kg_runtime + kg->kg_slptime;
1125	if (sum > SCHED_SLP_RUN_FORK) {
1126		ratio = sum / SCHED_SLP_RUN_FORK;
1127		kg->kg_runtime /= ratio;
1128		kg->kg_slptime /= ratio;
1129	}
1130}
1131
1132static int
1133sched_interact_score(struct ksegrp *kg)
1134{
1135	int div;
1136
1137	if (kg->kg_runtime > kg->kg_slptime) {
1138		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1139		return (SCHED_INTERACT_HALF +
1140		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1141	} if (kg->kg_slptime > kg->kg_runtime) {
1142		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1143		return (kg->kg_runtime / div);
1144	}
1145
1146	/*
1147	 * This can happen if slptime and runtime are 0.
1148	 */
1149	return (0);
1150
1151}
1152
1153/*
1154 * Very early in the boot some setup of scheduler-specific
1155 * parts of proc0 and of soem scheduler resources needs to be done.
1156 * Called from:
1157 *  proc0_init()
1158 */
1159void
1160schedinit(void)
1161{
1162	/*
1163	 * Set up the scheduler specific parts of proc0.
1164	 */
1165	proc0.p_sched = NULL; /* XXX */
1166	ksegrp0.kg_sched = &kg_sched0;
1167	thread0.td_sched = &kse0;
1168	kse0.ke_thread = &thread0;
1169	kse0.ke_state = KES_THREAD;
1170	kg_sched0.skg_concurrency = 1;
1171	kg_sched0.skg_avail_opennings = 0; /* we are already running */
1172}
1173
1174/*
1175 * This is only somewhat accurate since given many processes of the same
1176 * priority they will switch when their slices run out, which will be
1177 * at most SCHED_SLICE_MAX.
1178 */
1179int
1180sched_rr_interval(void)
1181{
1182	return (SCHED_SLICE_MAX);
1183}
1184
1185static void
1186sched_pctcpu_update(struct kse *ke)
1187{
1188	/*
1189	 * Adjust counters and watermark for pctcpu calc.
1190	 */
1191	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1192		/*
1193		 * Shift the tick count out so that the divide doesn't
1194		 * round away our results.
1195		 */
1196		ke->ke_ticks <<= 10;
1197		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1198			    SCHED_CPU_TICKS;
1199		ke->ke_ticks >>= 10;
1200	} else
1201		ke->ke_ticks = 0;
1202	ke->ke_ltick = ticks;
1203	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1204}
1205
1206void
1207sched_thread_priority(struct thread *td, u_char prio)
1208{
1209	struct kse *ke;
1210
1211	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1212	    td, td->td_proc->p_comm, td->td_priority, prio, curthread,
1213	    curthread->td_proc->p_comm);
1214	ke = td->td_kse;
1215	mtx_assert(&sched_lock, MA_OWNED);
1216	if (td->td_priority == prio)
1217		return;
1218	if (TD_ON_RUNQ(td)) {
1219		/*
1220		 * If the priority has been elevated due to priority
1221		 * propagation, we may have to move ourselves to a new
1222		 * queue.  We still call adjustrunqueue below in case kse
1223		 * needs to fix things up.
1224		 */
1225		if (prio < td->td_priority && ke->ke_runq != NULL &&
1226		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1227		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1228			runq_remove(ke->ke_runq, ke);
1229			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1230			runq_add(ke->ke_runq, ke, 0);
1231		}
1232		/*
1233		 * Hold this kse on this cpu so that sched_prio() doesn't
1234		 * cause excessive migration.  We only want migration to
1235		 * happen as the result of a wakeup.
1236		 */
1237		ke->ke_flags |= KEF_HOLD;
1238		adjustrunqueue(td, prio);
1239		ke->ke_flags &= ~KEF_HOLD;
1240	} else
1241		td->td_priority = prio;
1242}
1243
1244/*
1245 * Update a thread's priority when it is lent another thread's
1246 * priority.
1247 */
1248void
1249sched_lend_prio(struct thread *td, u_char prio)
1250{
1251
1252	td->td_flags |= TDF_BORROWING;
1253	sched_thread_priority(td, prio);
1254}
1255
1256/*
1257 * Restore a thread's priority when priority propagation is
1258 * over.  The prio argument is the minimum priority the thread
1259 * needs to have to satisfy other possible priority lending
1260 * requests.  If the thread's regular priority is less
1261 * important than prio, the thread will keep a priority boost
1262 * of prio.
1263 */
1264void
1265sched_unlend_prio(struct thread *td, u_char prio)
1266{
1267	u_char base_pri;
1268
1269	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1270	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1271		base_pri = td->td_ksegrp->kg_user_pri;
1272	else
1273		base_pri = td->td_base_pri;
1274	if (prio >= base_pri) {
1275		td->td_flags &= ~TDF_BORROWING;
1276		sched_thread_priority(td, base_pri);
1277	} else
1278		sched_lend_prio(td, prio);
1279}
1280
1281void
1282sched_prio(struct thread *td, u_char prio)
1283{
1284	u_char oldprio;
1285
1286	/* First, update the base priority. */
1287	td->td_base_pri = prio;
1288
1289	/*
1290	 * If the thread is borrowing another thread's priority, don't
1291	 * ever lower the priority.
1292	 */
1293	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1294		return;
1295
1296	/* Change the real priority. */
1297	oldprio = td->td_priority;
1298	sched_thread_priority(td, prio);
1299
1300	/*
1301	 * If the thread is on a turnstile, then let the turnstile update
1302	 * its state.
1303	 */
1304	if (TD_ON_LOCK(td) && oldprio != prio)
1305		turnstile_adjust(td, oldprio);
1306}
1307
1308void
1309sched_switch(struct thread *td, struct thread *newtd, int flags)
1310{
1311	struct kseq *ksq;
1312	struct kse *ke;
1313
1314	mtx_assert(&sched_lock, MA_OWNED);
1315
1316	ke = td->td_kse;
1317	ksq = KSEQ_SELF();
1318
1319	td->td_lastcpu = td->td_oncpu;
1320	td->td_oncpu = NOCPU;
1321	td->td_flags &= ~TDF_NEEDRESCHED;
1322	td->td_owepreempt = 0;
1323
1324	/*
1325	 * If the KSE has been assigned it may be in the process of switching
1326	 * to the new cpu.  This is the case in sched_bind().
1327	 */
1328	if (td == PCPU_GET(idlethread)) {
1329		TD_SET_CAN_RUN(td);
1330	} else if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1331		/* We are ending our run so make our slot available again */
1332		SLOT_RELEASE(td->td_ksegrp);
1333		kseq_load_rem(ksq, ke);
1334		if (TD_IS_RUNNING(td)) {
1335			/*
1336			 * Don't allow the thread to migrate
1337			 * from a preemption.
1338			 */
1339			ke->ke_flags |= KEF_HOLD;
1340			setrunqueue(td, (flags & SW_PREEMPT) ?
1341			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1342			    SRQ_OURSELF|SRQ_YIELDING);
1343			ke->ke_flags &= ~KEF_HOLD;
1344		} else if ((td->td_proc->p_flag & P_HADTHREADS) &&
1345		    (newtd == NULL || newtd->td_ksegrp != td->td_ksegrp))
1346			/*
1347			 * We will not be on the run queue.
1348			 * So we must be sleeping or similar.
1349			 * Don't use the slot if we will need it
1350			 * for newtd.
1351			 */
1352			slot_fill(td->td_ksegrp);
1353	}
1354	if (newtd != NULL) {
1355		/*
1356		 * If we bring in a thread account for it as if it had been
1357		 * added to the run queue and then chosen.
1358		 */
1359		newtd->td_kse->ke_flags |= KEF_DIDRUN;
1360		newtd->td_kse->ke_runq = ksq->ksq_curr;
1361		TD_SET_RUNNING(newtd);
1362		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1363		/*
1364		 * XXX When we preempt, we've already consumed a slot because
1365		 * we got here through sched_add().  However, newtd can come
1366		 * from thread_switchout() which can't SLOT_USE() because
1367		 * the SLOT code is scheduler dependent.  We must use the
1368		 * slot here otherwise.
1369		 */
1370		if ((flags & SW_PREEMPT) == 0)
1371			SLOT_USE(newtd->td_ksegrp);
1372	} else
1373		newtd = choosethread();
1374	if (td != newtd) {
1375#ifdef	HWPMC_HOOKS
1376		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1377			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1378#endif
1379		cpu_switch(td, newtd);
1380#ifdef	HWPMC_HOOKS
1381		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1382			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1383#endif
1384	}
1385
1386	sched_lock.mtx_lock = (uintptr_t)td;
1387
1388	td->td_oncpu = PCPU_GET(cpuid);
1389}
1390
1391void
1392sched_nice(struct proc *p, int nice)
1393{
1394	struct ksegrp *kg;
1395	struct kse *ke;
1396	struct thread *td;
1397	struct kseq *kseq;
1398
1399	PROC_LOCK_ASSERT(p, MA_OWNED);
1400	mtx_assert(&sched_lock, MA_OWNED);
1401	/*
1402	 * We need to adjust the nice counts for running KSEs.
1403	 */
1404	FOREACH_KSEGRP_IN_PROC(p, kg) {
1405		if (kg->kg_pri_class == PRI_TIMESHARE) {
1406			FOREACH_THREAD_IN_GROUP(kg, td) {
1407				ke = td->td_kse;
1408				if (ke->ke_runq == NULL)
1409					continue;
1410				kseq = KSEQ_CPU(ke->ke_cpu);
1411				kseq_nice_rem(kseq, p->p_nice);
1412				kseq_nice_add(kseq, nice);
1413			}
1414		}
1415	}
1416	p->p_nice = nice;
1417	FOREACH_KSEGRP_IN_PROC(p, kg) {
1418		sched_priority(kg);
1419		FOREACH_THREAD_IN_GROUP(kg, td)
1420			td->td_flags |= TDF_NEEDRESCHED;
1421	}
1422}
1423
1424void
1425sched_sleep(struct thread *td)
1426{
1427	mtx_assert(&sched_lock, MA_OWNED);
1428
1429	td->td_slptime = ticks;
1430}
1431
1432void
1433sched_wakeup(struct thread *td)
1434{
1435	mtx_assert(&sched_lock, MA_OWNED);
1436
1437	/*
1438	 * Let the kseg know how long we slept for.  This is because process
1439	 * interactivity behavior is modeled in the kseg.
1440	 */
1441	if (td->td_slptime) {
1442		struct ksegrp *kg;
1443		int hzticks;
1444
1445		kg = td->td_ksegrp;
1446		hzticks = (ticks - td->td_slptime) << 10;
1447		if (hzticks >= SCHED_SLP_RUN_MAX) {
1448			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1449			kg->kg_runtime = 1;
1450		} else {
1451			kg->kg_slptime += hzticks;
1452			sched_interact_update(kg);
1453		}
1454		sched_priority(kg);
1455		sched_slice(td->td_kse);
1456		td->td_slptime = 0;
1457	}
1458	setrunqueue(td, SRQ_BORING);
1459}
1460
1461/*
1462 * Penalize the parent for creating a new child and initialize the child's
1463 * priority.
1464 */
1465void
1466sched_fork(struct thread *td, struct thread *childtd)
1467{
1468
1469	mtx_assert(&sched_lock, MA_OWNED);
1470
1471	sched_fork_ksegrp(td, childtd->td_ksegrp);
1472	sched_fork_thread(td, childtd);
1473}
1474
1475void
1476sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1477{
1478	struct ksegrp *kg = td->td_ksegrp;
1479	mtx_assert(&sched_lock, MA_OWNED);
1480
1481	child->kg_slptime = kg->kg_slptime;
1482	child->kg_runtime = kg->kg_runtime;
1483	child->kg_user_pri = kg->kg_user_pri;
1484	sched_interact_fork(child);
1485	kg->kg_runtime += tickincr << 10;
1486	sched_interact_update(kg);
1487}
1488
1489void
1490sched_fork_thread(struct thread *td, struct thread *child)
1491{
1492	struct kse *ke;
1493	struct kse *ke2;
1494
1495	sched_newthread(child);
1496	ke = td->td_kse;
1497	ke2 = child->td_kse;
1498	ke2->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1499	ke2->ke_cpu = ke->ke_cpu;
1500	ke2->ke_runq = NULL;
1501
1502	/* Grab our parents cpu estimation information. */
1503	ke2->ke_ticks = ke->ke_ticks;
1504	ke2->ke_ltick = ke->ke_ltick;
1505	ke2->ke_ftick = ke->ke_ftick;
1506}
1507
1508void
1509sched_class(struct ksegrp *kg, int class)
1510{
1511	struct kseq *kseq;
1512	struct kse *ke;
1513	struct thread *td;
1514	int nclass;
1515	int oclass;
1516
1517	mtx_assert(&sched_lock, MA_OWNED);
1518	if (kg->kg_pri_class == class)
1519		return;
1520
1521	nclass = PRI_BASE(class);
1522	oclass = PRI_BASE(kg->kg_pri_class);
1523	FOREACH_THREAD_IN_GROUP(kg, td) {
1524		ke = td->td_kse;
1525		if ((ke->ke_state != KES_ONRUNQ &&
1526		    ke->ke_state != KES_THREAD) || ke->ke_runq == NULL)
1527			continue;
1528		kseq = KSEQ_CPU(ke->ke_cpu);
1529
1530#ifdef SMP
1531		/*
1532		 * On SMP if we're on the RUNQ we must adjust the transferable
1533		 * count because could be changing to or from an interrupt
1534		 * class.
1535		 */
1536		if (ke->ke_state == KES_ONRUNQ) {
1537			if (KSE_CAN_MIGRATE(ke)) {
1538				kseq->ksq_transferable--;
1539				kseq->ksq_group->ksg_transferable--;
1540			}
1541			if (KSE_CAN_MIGRATE(ke)) {
1542				kseq->ksq_transferable++;
1543				kseq->ksq_group->ksg_transferable++;
1544			}
1545		}
1546#endif
1547		if (oclass == PRI_TIMESHARE) {
1548			kseq->ksq_load_timeshare--;
1549			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1550		}
1551		if (nclass == PRI_TIMESHARE) {
1552			kseq->ksq_load_timeshare++;
1553			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1554		}
1555	}
1556
1557	kg->kg_pri_class = class;
1558}
1559
1560/*
1561 * Return some of the child's priority and interactivity to the parent.
1562 */
1563void
1564sched_exit(struct proc *p, struct thread *childtd)
1565{
1566	mtx_assert(&sched_lock, MA_OWNED);
1567	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd);
1568	sched_exit_thread(NULL, childtd);
1569}
1570
1571void
1572sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1573{
1574	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1575	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1576	sched_interact_update(kg);
1577}
1578
1579void
1580sched_exit_thread(struct thread *td, struct thread *childtd)
1581{
1582	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
1583	    childtd, childtd->td_proc->p_comm, childtd->td_priority);
1584	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1585}
1586
1587void
1588sched_clock(struct thread *td)
1589{
1590	struct kseq *kseq;
1591	struct ksegrp *kg;
1592	struct kse *ke;
1593
1594	mtx_assert(&sched_lock, MA_OWNED);
1595	kseq = KSEQ_SELF();
1596#ifdef SMP
1597	if (ticks >= bal_tick)
1598		sched_balance();
1599	if (ticks >= gbal_tick && balance_groups)
1600		sched_balance_groups();
1601	/*
1602	 * We could have been assigned a non real-time thread without an
1603	 * IPI.
1604	 */
1605	if (kseq->ksq_assigned)
1606		kseq_assign(kseq);	/* Potentially sets NEEDRESCHED */
1607#endif
1608	/*
1609	 * sched_setup() apparently happens prior to stathz being set.  We
1610	 * need to resolve the timers earlier in the boot so we can avoid
1611	 * calculating this here.
1612	 */
1613	if (realstathz == 0) {
1614		realstathz = stathz ? stathz : hz;
1615		tickincr = hz / realstathz;
1616		/*
1617		 * XXX This does not work for values of stathz that are much
1618		 * larger than hz.
1619		 */
1620		if (tickincr == 0)
1621			tickincr = 1;
1622	}
1623
1624	ke = td->td_kse;
1625	kg = ke->ke_ksegrp;
1626
1627	/* Adjust ticks for pctcpu */
1628	ke->ke_ticks++;
1629	ke->ke_ltick = ticks;
1630
1631	/* Go up to one second beyond our max and then trim back down */
1632	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1633		sched_pctcpu_update(ke);
1634
1635	if (td->td_flags & TDF_IDLETD)
1636		return;
1637	/*
1638	 * We only do slicing code for TIMESHARE ksegrps.
1639	 */
1640	if (kg->kg_pri_class != PRI_TIMESHARE)
1641		return;
1642	/*
1643	 * We used a tick charge it to the ksegrp so that we can compute our
1644	 * interactivity.
1645	 */
1646	kg->kg_runtime += tickincr << 10;
1647	sched_interact_update(kg);
1648
1649	/*
1650	 * We used up one time slice.
1651	 */
1652	if (--ke->ke_slice > 0)
1653		return;
1654	/*
1655	 * We're out of time, recompute priorities and requeue.
1656	 */
1657	kseq_load_rem(kseq, ke);
1658	sched_priority(kg);
1659	sched_slice(ke);
1660	if (SCHED_CURR(kg, ke))
1661		ke->ke_runq = kseq->ksq_curr;
1662	else
1663		ke->ke_runq = kseq->ksq_next;
1664	kseq_load_add(kseq, ke);
1665	td->td_flags |= TDF_NEEDRESCHED;
1666}
1667
1668int
1669sched_runnable(void)
1670{
1671	struct kseq *kseq;
1672	int load;
1673
1674	load = 1;
1675
1676	kseq = KSEQ_SELF();
1677#ifdef SMP
1678	if (kseq->ksq_assigned) {
1679		mtx_lock_spin(&sched_lock);
1680		kseq_assign(kseq);
1681		mtx_unlock_spin(&sched_lock);
1682	}
1683#endif
1684	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1685		if (kseq->ksq_load > 0)
1686			goto out;
1687	} else
1688		if (kseq->ksq_load - 1 > 0)
1689			goto out;
1690	load = 0;
1691out:
1692	return (load);
1693}
1694
1695void
1696sched_userret(struct thread *td)
1697{
1698	struct ksegrp *kg;
1699
1700	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1701	    ("thread with borrowed priority returning to userland"));
1702	kg = td->td_ksegrp;
1703	if (td->td_priority != kg->kg_user_pri) {
1704		mtx_lock_spin(&sched_lock);
1705		td->td_priority = kg->kg_user_pri;
1706		td->td_base_pri = kg->kg_user_pri;
1707		mtx_unlock_spin(&sched_lock);
1708	}
1709}
1710
1711struct kse *
1712sched_choose(void)
1713{
1714	struct kseq *kseq;
1715	struct kse *ke;
1716
1717	mtx_assert(&sched_lock, MA_OWNED);
1718	kseq = KSEQ_SELF();
1719#ifdef SMP
1720restart:
1721	if (kseq->ksq_assigned)
1722		kseq_assign(kseq);
1723#endif
1724	ke = kseq_choose(kseq);
1725	if (ke) {
1726#ifdef SMP
1727		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1728			if (kseq_idled(kseq) == 0)
1729				goto restart;
1730#endif
1731		kseq_runq_rem(kseq, ke);
1732		ke->ke_state = KES_THREAD;
1733		return (ke);
1734	}
1735#ifdef SMP
1736	if (kseq_idled(kseq) == 0)
1737		goto restart;
1738#endif
1739	return (NULL);
1740}
1741
1742void
1743sched_add(struct thread *td, int flags)
1744{
1745	struct kseq *kseq;
1746	struct ksegrp *kg;
1747	struct kse *ke;
1748	int preemptive;
1749	int canmigrate;
1750	int class;
1751
1752	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1753	    td, td->td_proc->p_comm, td->td_priority, curthread,
1754	    curthread->td_proc->p_comm);
1755	mtx_assert(&sched_lock, MA_OWNED);
1756	ke = td->td_kse;
1757	kg = td->td_ksegrp;
1758	canmigrate = 1;
1759	preemptive = !(flags & SRQ_YIELDING);
1760	class = PRI_BASE(kg->kg_pri_class);
1761	kseq = KSEQ_SELF();
1762	if ((ke->ke_flags & KEF_INTERNAL) == 0)
1763		SLOT_USE(td->td_ksegrp);
1764	ke->ke_flags &= ~KEF_INTERNAL;
1765#ifdef SMP
1766	if (ke->ke_flags & KEF_ASSIGNED) {
1767		if (ke->ke_flags & KEF_REMOVED)
1768			ke->ke_flags &= ~KEF_REMOVED;
1769		return;
1770	}
1771	canmigrate = KSE_CAN_MIGRATE(ke);
1772#endif
1773	KASSERT(ke->ke_state != KES_ONRUNQ,
1774	    ("sched_add: kse %p (%s) already in run queue", ke,
1775	    ke->ke_proc->p_comm));
1776	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1777	    ("sched_add: process swapped out"));
1778	KASSERT(ke->ke_runq == NULL,
1779	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1780	switch (class) {
1781	case PRI_ITHD:
1782	case PRI_REALTIME:
1783		ke->ke_runq = kseq->ksq_curr;
1784		ke->ke_slice = SCHED_SLICE_MAX;
1785		if (canmigrate)
1786			ke->ke_cpu = PCPU_GET(cpuid);
1787		break;
1788	case PRI_TIMESHARE:
1789		if (SCHED_CURR(kg, ke))
1790			ke->ke_runq = kseq->ksq_curr;
1791		else
1792			ke->ke_runq = kseq->ksq_next;
1793		break;
1794	case PRI_IDLE:
1795		/*
1796		 * This is for priority prop.
1797		 */
1798		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1799			ke->ke_runq = kseq->ksq_curr;
1800		else
1801			ke->ke_runq = &kseq->ksq_idle;
1802		ke->ke_slice = SCHED_SLICE_MIN;
1803		break;
1804	default:
1805		panic("Unknown pri class.");
1806		break;
1807	}
1808#ifdef SMP
1809	/*
1810	 * Don't migrate running threads here.  Force the long term balancer
1811	 * to do it.
1812	 */
1813	if (ke->ke_flags & KEF_HOLD) {
1814		ke->ke_flags &= ~KEF_HOLD;
1815		canmigrate = 0;
1816	}
1817	/*
1818	 * If this thread is pinned or bound, notify the target cpu.
1819	 */
1820	if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) {
1821		ke->ke_runq = NULL;
1822		kseq_notify(ke, ke->ke_cpu);
1823		return;
1824	}
1825	/*
1826	 * If we had been idle, clear our bit in the group and potentially
1827	 * the global bitmap.  If not, see if we should transfer this thread.
1828	 */
1829	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1830	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1831		/*
1832		 * Check to see if our group is unidling, and if so, remove it
1833		 * from the global idle mask.
1834		 */
1835		if (kseq->ksq_group->ksg_idlemask ==
1836		    kseq->ksq_group->ksg_cpumask)
1837			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1838		/*
1839		 * Now remove ourselves from the group specific idle mask.
1840		 */
1841		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1842	} else if (canmigrate && kseq->ksq_load > 1 && class != PRI_ITHD)
1843		if (kseq_transfer(kseq, ke, class))
1844			return;
1845	ke->ke_cpu = PCPU_GET(cpuid);
1846#endif
1847	if (td->td_priority < curthread->td_priority &&
1848	    ke->ke_runq == kseq->ksq_curr)
1849		curthread->td_flags |= TDF_NEEDRESCHED;
1850	if (preemptive && maybe_preempt(td))
1851		return;
1852	ke->ke_state = KES_ONRUNQ;
1853
1854	kseq_runq_add(kseq, ke, flags);
1855	kseq_load_add(kseq, ke);
1856}
1857
1858void
1859sched_rem(struct thread *td)
1860{
1861	struct kseq *kseq;
1862	struct kse *ke;
1863
1864	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
1865	    td, td->td_proc->p_comm, td->td_priority, curthread,
1866	    curthread->td_proc->p_comm);
1867	mtx_assert(&sched_lock, MA_OWNED);
1868	ke = td->td_kse;
1869	SLOT_RELEASE(td->td_ksegrp);
1870	if (ke->ke_flags & KEF_ASSIGNED) {
1871		ke->ke_flags |= KEF_REMOVED;
1872		return;
1873	}
1874	KASSERT((ke->ke_state == KES_ONRUNQ),
1875	    ("sched_rem: KSE not on run queue"));
1876
1877	ke->ke_state = KES_THREAD;
1878	kseq = KSEQ_CPU(ke->ke_cpu);
1879	kseq_runq_rem(kseq, ke);
1880	kseq_load_rem(kseq, ke);
1881}
1882
1883fixpt_t
1884sched_pctcpu(struct thread *td)
1885{
1886	fixpt_t pctcpu;
1887	struct kse *ke;
1888
1889	pctcpu = 0;
1890	ke = td->td_kse;
1891	if (ke == NULL)
1892		return (0);
1893
1894	mtx_lock_spin(&sched_lock);
1895	if (ke->ke_ticks) {
1896		int rtick;
1897
1898		/*
1899		 * Don't update more frequently than twice a second.  Allowing
1900		 * this causes the cpu usage to decay away too quickly due to
1901		 * rounding errors.
1902		 */
1903		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1904		    ke->ke_ltick < (ticks - (hz / 2)))
1905			sched_pctcpu_update(ke);
1906		/* How many rtick per second ? */
1907		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1908		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1909	}
1910
1911	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1912	mtx_unlock_spin(&sched_lock);
1913
1914	return (pctcpu);
1915}
1916
1917void
1918sched_bind(struct thread *td, int cpu)
1919{
1920	struct kse *ke;
1921
1922	mtx_assert(&sched_lock, MA_OWNED);
1923	ke = td->td_kse;
1924	ke->ke_flags |= KEF_BOUND;
1925#ifdef SMP
1926	if (PCPU_GET(cpuid) == cpu)
1927		return;
1928	/* sched_rem without the runq_remove */
1929	ke->ke_state = KES_THREAD;
1930	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1931	kseq_notify(ke, cpu);
1932	/* When we return from mi_switch we'll be on the correct cpu. */
1933	mi_switch(SW_VOL, NULL);
1934#endif
1935}
1936
1937void
1938sched_unbind(struct thread *td)
1939{
1940	mtx_assert(&sched_lock, MA_OWNED);
1941	td->td_kse->ke_flags &= ~KEF_BOUND;
1942}
1943
1944int
1945sched_is_bound(struct thread *td)
1946{
1947	mtx_assert(&sched_lock, MA_OWNED);
1948	return (td->td_kse->ke_flags & KEF_BOUND);
1949}
1950
1951int
1952sched_load(void)
1953{
1954#ifdef SMP
1955	int total;
1956	int i;
1957
1958	total = 0;
1959	for (i = 0; i <= ksg_maxid; i++)
1960		total += KSEQ_GROUP(i)->ksg_load;
1961	return (total);
1962#else
1963	return (KSEQ_SELF()->ksq_sysload);
1964#endif
1965}
1966
1967int
1968sched_sizeof_ksegrp(void)
1969{
1970	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1971}
1972
1973int
1974sched_sizeof_proc(void)
1975{
1976	return (sizeof(struct proc));
1977}
1978
1979int
1980sched_sizeof_thread(void)
1981{
1982	return (sizeof(struct thread) + sizeof(struct td_sched));
1983}
1984#define KERN_SWITCH_INCLUDE 1
1985#include "kern/kern_switch.c"
1986