sched_ule.c revision 146955
1/*-
2 * Copyright (c) 2002-2005, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 146955 2005-06-04 09:24:15Z jeff $");
29
30#include <opt_sched.h>
31
32#define kse td_sched
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kdb.h>
37#include <sys/kernel.h>
38#include <sys/ktr.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/proc.h>
42#include <sys/resource.h>
43#include <sys/resourcevar.h>
44#include <sys/sched.h>
45#include <sys/smp.h>
46#include <sys/sx.h>
47#include <sys/sysctl.h>
48#include <sys/sysproto.h>
49#include <sys/turnstile.h>
50#include <sys/vmmeter.h>
51#ifdef KTRACE
52#include <sys/uio.h>
53#include <sys/ktrace.h>
54#endif
55
56#ifdef HWPMC_HOOKS
57#include <sys/pmckern.h>
58#endif
59
60#include <machine/cpu.h>
61#include <machine/smp.h>
62
63/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
64/* XXX This is bogus compatability crap for ps */
65static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
66SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
67
68static void sched_setup(void *dummy);
69SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
70
71static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
72
73SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
74    "Scheduler name");
75
76static int slice_min = 1;
77SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
78
79static int slice_max = 10;
80SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
81
82int realstathz;
83int tickincr = 1;
84
85/*
86 * The following datastructures are allocated within their parent structure
87 * but are scheduler specific.
88 */
89/*
90 * The schedulable entity that can be given a context to run.  A process may
91 * have several of these.
92 */
93struct kse {
94	TAILQ_ENTRY(kse) ke_procq;	/* (j/z) Run queue. */
95	int		ke_flags;	/* (j) KEF_* flags. */
96	struct thread	*ke_thread;	/* (*) Active associated thread. */
97	fixpt_t		ke_pctcpu;	/* (j) %cpu during p_swtime. */
98	char		ke_rqindex;	/* (j) Run queue index. */
99	enum {
100		KES_THREAD = 0x0,	/* slaved to thread state */
101		KES_ONRUNQ
102	} ke_state;			/* (j) thread sched specific status. */
103	int		ke_slptime;
104	int		ke_slice;
105	struct runq	*ke_runq;
106	u_char		ke_cpu;		/* CPU that we have affinity for. */
107	/* The following variables are only used for pctcpu calculation */
108	int		ke_ltick;	/* Last tick that we were running on */
109	int		ke_ftick;	/* First tick that we were running on */
110	int		ke_ticks;	/* Tick count */
111
112};
113#define	td_kse			td_sched
114#define	td_slptime		td_kse->ke_slptime
115#define ke_proc			ke_thread->td_proc
116#define ke_ksegrp		ke_thread->td_ksegrp
117#define	ke_assign		ke_procq.tqe_next
118/* flags kept in ke_flags */
119#define	KEF_ASSIGNED	0x0001		/* Thread is being migrated. */
120#define	KEF_BOUND	0x0002		/* Thread can not migrate. */
121#define	KEF_XFERABLE	0x0004		/* Thread was added as transferable. */
122#define	KEF_HOLD	0x0008		/* Thread is temporarily bound. */
123#define	KEF_REMOVED	0x0010		/* Thread was removed while ASSIGNED */
124#define	KEF_INTERNAL	0x0020		/* Thread added due to migration. */
125#define	KEF_DIDRUN	0x02000		/* Thread actually ran. */
126#define	KEF_EXIT	0x04000		/* Thread is being killed. */
127
128struct kg_sched {
129	struct thread	*skg_last_assigned; /* (j) Last thread assigned to */
130					   /* the system scheduler */
131	int	skg_slptime;		/* Number of ticks we vol. slept */
132	int	skg_runtime;		/* Number of ticks we were running */
133	int	skg_avail_opennings;	/* (j) Num unfilled slots in group.*/
134	int	skg_concurrency;	/* (j) Num threads requested in group.*/
135};
136#define kg_last_assigned	kg_sched->skg_last_assigned
137#define kg_avail_opennings	kg_sched->skg_avail_opennings
138#define kg_concurrency		kg_sched->skg_concurrency
139#define kg_runtime		kg_sched->skg_runtime
140#define kg_slptime		kg_sched->skg_slptime
141
142#define SLOT_RELEASE(kg)	(kg)->kg_avail_opennings++
143#define	SLOT_USE(kg)		(kg)->kg_avail_opennings--
144
145static struct kse kse0;
146static struct kg_sched kg_sched0;
147
148/*
149 * The priority is primarily determined by the interactivity score.  Thus, we
150 * give lower(better) priorities to kse groups that use less CPU.  The nice
151 * value is then directly added to this to allow nice to have some effect
152 * on latency.
153 *
154 * PRI_RANGE:	Total priority range for timeshare threads.
155 * PRI_NRESV:	Number of nice values.
156 * PRI_BASE:	The start of the dynamic range.
157 */
158#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
159#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
160#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
161#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
162#define	SCHED_PRI_INTERACT(score)					\
163    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
164
165/*
166 * These determine the interactivity of a process.
167 *
168 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
169 *		before throttling back.
170 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
171 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
172 * INTERACT_THRESH:	Threshhold for placement on the current runq.
173 */
174#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
175#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
176#define	SCHED_INTERACT_MAX	(100)
177#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
178#define	SCHED_INTERACT_THRESH	(30)
179
180/*
181 * These parameters and macros determine the size of the time slice that is
182 * granted to each thread.
183 *
184 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
185 * SLICE_MAX:	Maximum time slice granted.
186 * SLICE_RANGE:	Range of available time slices scaled by hz.
187 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
188 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
189 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
190 */
191#define	SCHED_SLICE_MIN			(slice_min)
192#define	SCHED_SLICE_MAX			(slice_max)
193#define	SCHED_SLICE_INTERACTIVE		(slice_max)
194#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
195#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
196#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
197#define	SCHED_SLICE_NICE(nice)						\
198    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
199
200/*
201 * This macro determines whether or not the thread belongs on the current or
202 * next run queue.
203 */
204#define	SCHED_INTERACTIVE(kg)						\
205    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
206#define	SCHED_CURR(kg, ke)						\
207    ((ke->ke_thread->td_flags & TDF_BORROWING) || SCHED_INTERACTIVE(kg))
208
209/*
210 * Cpu percentage computation macros and defines.
211 *
212 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
213 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
214 */
215
216#define	SCHED_CPU_TIME	10
217#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
218
219/*
220 * kseq - per processor runqs and statistics.
221 */
222struct kseq {
223	struct runq	ksq_idle;		/* Queue of IDLE threads. */
224	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
225	struct runq	*ksq_next;		/* Next timeshare queue. */
226	struct runq	*ksq_curr;		/* Current queue. */
227	int		ksq_load_timeshare;	/* Load for timeshare. */
228	int		ksq_load;		/* Aggregate load. */
229	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
230	short		ksq_nicemin;		/* Least nice. */
231#ifdef SMP
232	int			ksq_transferable;
233	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
234	struct kseq_group	*ksq_group;	/* Our processor group. */
235	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
236#else
237	int		ksq_sysload;		/* For loadavg, !ITHD load. */
238#endif
239};
240
241#ifdef SMP
242/*
243 * kseq groups are groups of processors which can cheaply share threads.  When
244 * one processor in the group goes idle it will check the runqs of the other
245 * processors in its group prior to halting and waiting for an interrupt.
246 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
247 * In a numa environment we'd want an idle bitmap per group and a two tiered
248 * load balancer.
249 */
250struct kseq_group {
251	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
252	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
253	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
254	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
255	int	ksg_load;		/* Total load of this group. */
256	int	ksg_transferable;	/* Transferable load of this group. */
257	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
258};
259#endif
260
261/*
262 * One kse queue per processor.
263 */
264#ifdef SMP
265static cpumask_t kseq_idle;
266static int ksg_maxid;
267static struct kseq	kseq_cpu[MAXCPU];
268static struct kseq_group kseq_groups[MAXCPU];
269static int bal_tick;
270static int gbal_tick;
271static int balance_groups;
272
273#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
274#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
275#define	KSEQ_ID(x)	((x) - kseq_cpu)
276#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
277#else	/* !SMP */
278static struct kseq	kseq_cpu;
279
280#define	KSEQ_SELF()	(&kseq_cpu)
281#define	KSEQ_CPU(x)	(&kseq_cpu)
282#endif
283
284static void slot_fill(struct ksegrp *);
285static struct kse *sched_choose(void);		/* XXX Should be thread * */
286static void sched_slice(struct kse *);
287static void sched_priority(struct ksegrp *);
288static void sched_thread_priority(struct thread *, u_char);
289static int sched_interact_score(struct ksegrp *);
290static void sched_interact_update(struct ksegrp *);
291static void sched_interact_fork(struct ksegrp *);
292static void sched_pctcpu_update(struct kse *);
293
294/* Operations on per processor queues */
295static struct kse * kseq_choose(struct kseq *);
296static void kseq_setup(struct kseq *);
297static void kseq_load_add(struct kseq *, struct kse *);
298static void kseq_load_rem(struct kseq *, struct kse *);
299static __inline void kseq_runq_add(struct kseq *, struct kse *, int);
300static __inline void kseq_runq_rem(struct kseq *, struct kse *);
301static void kseq_nice_add(struct kseq *, int);
302static void kseq_nice_rem(struct kseq *, int);
303void kseq_print(int cpu);
304#ifdef SMP
305static int kseq_transfer(struct kseq *, struct kse *, int);
306static struct kse *runq_steal(struct runq *);
307static void sched_balance(void);
308static void sched_balance_groups(void);
309static void sched_balance_group(struct kseq_group *);
310static void sched_balance_pair(struct kseq *, struct kseq *);
311static void kseq_move(struct kseq *, int);
312static int kseq_idled(struct kseq *);
313static void kseq_notify(struct kse *, int);
314static void kseq_assign(struct kseq *);
315static struct kse *kseq_steal(struct kseq *, int);
316#define	KSE_CAN_MIGRATE(ke)						\
317    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
318#endif
319
320void
321kseq_print(int cpu)
322{
323	struct kseq *kseq;
324	int i;
325
326	kseq = KSEQ_CPU(cpu);
327
328	printf("kseq:\n");
329	printf("\tload:           %d\n", kseq->ksq_load);
330	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
331#ifdef SMP
332	printf("\tload transferable: %d\n", kseq->ksq_transferable);
333#endif
334	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
335	printf("\tnice counts:\n");
336	for (i = 0; i < SCHED_PRI_NRESV; i++)
337		if (kseq->ksq_nice[i])
338			printf("\t\t%d = %d\n",
339			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
340}
341
342static __inline void
343kseq_runq_add(struct kseq *kseq, struct kse *ke, int flags)
344{
345#ifdef SMP
346	if (KSE_CAN_MIGRATE(ke)) {
347		kseq->ksq_transferable++;
348		kseq->ksq_group->ksg_transferable++;
349		ke->ke_flags |= KEF_XFERABLE;
350	}
351#endif
352	runq_add(ke->ke_runq, ke, flags);
353}
354
355static __inline void
356kseq_runq_rem(struct kseq *kseq, struct kse *ke)
357{
358#ifdef SMP
359	if (ke->ke_flags & KEF_XFERABLE) {
360		kseq->ksq_transferable--;
361		kseq->ksq_group->ksg_transferable--;
362		ke->ke_flags &= ~KEF_XFERABLE;
363	}
364#endif
365	runq_remove(ke->ke_runq, ke);
366}
367
368static void
369kseq_load_add(struct kseq *kseq, struct kse *ke)
370{
371	int class;
372	mtx_assert(&sched_lock, MA_OWNED);
373	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
374	if (class == PRI_TIMESHARE)
375		kseq->ksq_load_timeshare++;
376	kseq->ksq_load++;
377	CTR1(KTR_SCHED, "load: %d", kseq->ksq_load);
378	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
379#ifdef SMP
380		kseq->ksq_group->ksg_load++;
381#else
382		kseq->ksq_sysload++;
383#endif
384	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
385		kseq_nice_add(kseq, ke->ke_proc->p_nice);
386}
387
388static void
389kseq_load_rem(struct kseq *kseq, struct kse *ke)
390{
391	int class;
392	mtx_assert(&sched_lock, MA_OWNED);
393	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
394	if (class == PRI_TIMESHARE)
395		kseq->ksq_load_timeshare--;
396	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
397#ifdef SMP
398		kseq->ksq_group->ksg_load--;
399#else
400		kseq->ksq_sysload--;
401#endif
402	kseq->ksq_load--;
403	CTR1(KTR_SCHED, "load: %d", kseq->ksq_load);
404	ke->ke_runq = NULL;
405	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
406		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
407}
408
409static void
410kseq_nice_add(struct kseq *kseq, int nice)
411{
412	mtx_assert(&sched_lock, MA_OWNED);
413	/* Normalize to zero. */
414	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
415	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
416		kseq->ksq_nicemin = nice;
417}
418
419static void
420kseq_nice_rem(struct kseq *kseq, int nice)
421{
422	int n;
423
424	mtx_assert(&sched_lock, MA_OWNED);
425	/* Normalize to zero. */
426	n = nice + SCHED_PRI_NHALF;
427	kseq->ksq_nice[n]--;
428	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
429
430	/*
431	 * If this wasn't the smallest nice value or there are more in
432	 * this bucket we can just return.  Otherwise we have to recalculate
433	 * the smallest nice.
434	 */
435	if (nice != kseq->ksq_nicemin ||
436	    kseq->ksq_nice[n] != 0 ||
437	    kseq->ksq_load_timeshare == 0)
438		return;
439
440	for (; n < SCHED_PRI_NRESV; n++)
441		if (kseq->ksq_nice[n]) {
442			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
443			return;
444		}
445}
446
447#ifdef SMP
448/*
449 * sched_balance is a simple CPU load balancing algorithm.  It operates by
450 * finding the least loaded and most loaded cpu and equalizing their load
451 * by migrating some processes.
452 *
453 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
454 * installations will only have 2 cpus.  Secondly, load balancing too much at
455 * once can have an unpleasant effect on the system.  The scheduler rarely has
456 * enough information to make perfect decisions.  So this algorithm chooses
457 * algorithm simplicity and more gradual effects on load in larger systems.
458 *
459 * It could be improved by considering the priorities and slices assigned to
460 * each task prior to balancing them.  There are many pathological cases with
461 * any approach and so the semi random algorithm below may work as well as any.
462 *
463 */
464static void
465sched_balance(void)
466{
467	struct kseq_group *high;
468	struct kseq_group *low;
469	struct kseq_group *ksg;
470	int cnt;
471	int i;
472
473	bal_tick = ticks + (random() % (hz * 2));
474	if (smp_started == 0)
475		return;
476	low = high = NULL;
477	i = random() % (ksg_maxid + 1);
478	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
479		ksg = KSEQ_GROUP(i);
480		/*
481		 * Find the CPU with the highest load that has some
482		 * threads to transfer.
483		 */
484		if ((high == NULL || ksg->ksg_load > high->ksg_load)
485		    && ksg->ksg_transferable)
486			high = ksg;
487		if (low == NULL || ksg->ksg_load < low->ksg_load)
488			low = ksg;
489		if (++i > ksg_maxid)
490			i = 0;
491	}
492	if (low != NULL && high != NULL && high != low)
493		sched_balance_pair(LIST_FIRST(&high->ksg_members),
494		    LIST_FIRST(&low->ksg_members));
495}
496
497static void
498sched_balance_groups(void)
499{
500	int i;
501
502	gbal_tick = ticks + (random() % (hz * 2));
503	mtx_assert(&sched_lock, MA_OWNED);
504	if (smp_started)
505		for (i = 0; i <= ksg_maxid; i++)
506			sched_balance_group(KSEQ_GROUP(i));
507}
508
509static void
510sched_balance_group(struct kseq_group *ksg)
511{
512	struct kseq *kseq;
513	struct kseq *high;
514	struct kseq *low;
515	int load;
516
517	if (ksg->ksg_transferable == 0)
518		return;
519	low = NULL;
520	high = NULL;
521	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
522		load = kseq->ksq_load;
523		if (high == NULL || load > high->ksq_load)
524			high = kseq;
525		if (low == NULL || load < low->ksq_load)
526			low = kseq;
527	}
528	if (high != NULL && low != NULL && high != low)
529		sched_balance_pair(high, low);
530}
531
532static void
533sched_balance_pair(struct kseq *high, struct kseq *low)
534{
535	int transferable;
536	int high_load;
537	int low_load;
538	int move;
539	int diff;
540	int i;
541
542	/*
543	 * If we're transfering within a group we have to use this specific
544	 * kseq's transferable count, otherwise we can steal from other members
545	 * of the group.
546	 */
547	if (high->ksq_group == low->ksq_group) {
548		transferable = high->ksq_transferable;
549		high_load = high->ksq_load;
550		low_load = low->ksq_load;
551	} else {
552		transferable = high->ksq_group->ksg_transferable;
553		high_load = high->ksq_group->ksg_load;
554		low_load = low->ksq_group->ksg_load;
555	}
556	if (transferable == 0)
557		return;
558	/*
559	 * Determine what the imbalance is and then adjust that to how many
560	 * kses we actually have to give up (transferable).
561	 */
562	diff = high_load - low_load;
563	move = diff / 2;
564	if (diff & 0x1)
565		move++;
566	move = min(move, transferable);
567	for (i = 0; i < move; i++)
568		kseq_move(high, KSEQ_ID(low));
569	return;
570}
571
572static void
573kseq_move(struct kseq *from, int cpu)
574{
575	struct kseq *kseq;
576	struct kseq *to;
577	struct kse *ke;
578
579	kseq = from;
580	to = KSEQ_CPU(cpu);
581	ke = kseq_steal(kseq, 1);
582	if (ke == NULL) {
583		struct kseq_group *ksg;
584
585		ksg = kseq->ksq_group;
586		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
587			if (kseq == from || kseq->ksq_transferable == 0)
588				continue;
589			ke = kseq_steal(kseq, 1);
590			break;
591		}
592		if (ke == NULL)
593			panic("kseq_move: No KSEs available with a "
594			    "transferable count of %d\n",
595			    ksg->ksg_transferable);
596	}
597	if (kseq == to)
598		return;
599	ke->ke_state = KES_THREAD;
600	kseq_runq_rem(kseq, ke);
601	kseq_load_rem(kseq, ke);
602	kseq_notify(ke, cpu);
603}
604
605static int
606kseq_idled(struct kseq *kseq)
607{
608	struct kseq_group *ksg;
609	struct kseq *steal;
610	struct kse *ke;
611
612	ksg = kseq->ksq_group;
613	/*
614	 * If we're in a cpu group, try and steal kses from another cpu in
615	 * the group before idling.
616	 */
617	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
618		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
619			if (steal == kseq || steal->ksq_transferable == 0)
620				continue;
621			ke = kseq_steal(steal, 0);
622			if (ke == NULL)
623				continue;
624			ke->ke_state = KES_THREAD;
625			kseq_runq_rem(steal, ke);
626			kseq_load_rem(steal, ke);
627			ke->ke_cpu = PCPU_GET(cpuid);
628			ke->ke_flags |= KEF_INTERNAL | KEF_HOLD;
629			sched_add(ke->ke_thread, SRQ_YIELDING);
630			return (0);
631		}
632	}
633	/*
634	 * We only set the idled bit when all of the cpus in the group are
635	 * idle.  Otherwise we could get into a situation where a KSE bounces
636	 * back and forth between two idle cores on seperate physical CPUs.
637	 */
638	ksg->ksg_idlemask |= PCPU_GET(cpumask);
639	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
640		return (1);
641	atomic_set_int(&kseq_idle, ksg->ksg_mask);
642	return (1);
643}
644
645static void
646kseq_assign(struct kseq *kseq)
647{
648	struct kse *nke;
649	struct kse *ke;
650
651	do {
652		*(volatile struct kse **)&ke = kseq->ksq_assigned;
653	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
654	for (; ke != NULL; ke = nke) {
655		nke = ke->ke_assign;
656		kseq->ksq_group->ksg_load--;
657		kseq->ksq_load--;
658		ke->ke_flags &= ~KEF_ASSIGNED;
659		ke->ke_flags |= KEF_INTERNAL | KEF_HOLD;
660		sched_add(ke->ke_thread, SRQ_YIELDING);
661	}
662}
663
664static void
665kseq_notify(struct kse *ke, int cpu)
666{
667	struct kseq *kseq;
668	struct thread *td;
669	struct pcpu *pcpu;
670	int class;
671	int prio;
672
673	kseq = KSEQ_CPU(cpu);
674	/* XXX */
675	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
676	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
677	    (kseq_idle & kseq->ksq_group->ksg_mask))
678		atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
679	kseq->ksq_group->ksg_load++;
680	kseq->ksq_load++;
681	ke->ke_cpu = cpu;
682	ke->ke_flags |= KEF_ASSIGNED;
683	prio = ke->ke_thread->td_priority;
684
685	/*
686	 * Place a KSE on another cpu's queue and force a resched.
687	 */
688	do {
689		*(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned;
690	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
691	/*
692	 * Without sched_lock we could lose a race where we set NEEDRESCHED
693	 * on a thread that is switched out before the IPI is delivered.  This
694	 * would lead us to miss the resched.  This will be a problem once
695	 * sched_lock is pushed down.
696	 */
697	pcpu = pcpu_find(cpu);
698	td = pcpu->pc_curthread;
699	if (ke->ke_thread->td_priority < td->td_priority ||
700	    td == pcpu->pc_idlethread) {
701		td->td_flags |= TDF_NEEDRESCHED;
702		ipi_selected(1 << cpu, IPI_AST);
703	}
704}
705
706static struct kse *
707runq_steal(struct runq *rq)
708{
709	struct rqhead *rqh;
710	struct rqbits *rqb;
711	struct kse *ke;
712	int word;
713	int bit;
714
715	mtx_assert(&sched_lock, MA_OWNED);
716	rqb = &rq->rq_status;
717	for (word = 0; word < RQB_LEN; word++) {
718		if (rqb->rqb_bits[word] == 0)
719			continue;
720		for (bit = 0; bit < RQB_BPW; bit++) {
721			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
722				continue;
723			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
724			TAILQ_FOREACH(ke, rqh, ke_procq) {
725				if (KSE_CAN_MIGRATE(ke))
726					return (ke);
727			}
728		}
729	}
730	return (NULL);
731}
732
733static struct kse *
734kseq_steal(struct kseq *kseq, int stealidle)
735{
736	struct kse *ke;
737
738	/*
739	 * Steal from next first to try to get a non-interactive task that
740	 * may not have run for a while.
741	 */
742	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
743		return (ke);
744	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
745		return (ke);
746	if (stealidle)
747		return (runq_steal(&kseq->ksq_idle));
748	return (NULL);
749}
750
751int
752kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
753{
754	struct kseq_group *nksg;
755	struct kseq_group *ksg;
756	struct kseq *old;
757	int cpu;
758	int idx;
759
760	if (smp_started == 0)
761		return (0);
762	cpu = 0;
763	/*
764	 * If our load exceeds a certain threshold we should attempt to
765	 * reassign this thread.  The first candidate is the cpu that
766	 * originally ran the thread.  If it is idle, assign it there,
767	 * otherwise, pick an idle cpu.
768	 *
769	 * The threshold at which we start to reassign kses has a large impact
770	 * on the overall performance of the system.  Tuned too high and
771	 * some CPUs may idle.  Too low and there will be excess migration
772	 * and context switches.
773	 */
774	old = KSEQ_CPU(ke->ke_cpu);
775	nksg = old->ksq_group;
776	ksg = kseq->ksq_group;
777	if (kseq_idle) {
778		if (kseq_idle & nksg->ksg_mask) {
779			cpu = ffs(nksg->ksg_idlemask);
780			if (cpu) {
781				CTR2(KTR_SCHED,
782				    "kseq_transfer: %p found old cpu %X "
783				    "in idlemask.", ke, cpu);
784				goto migrate;
785			}
786		}
787		/*
788		 * Multiple cpus could find this bit simultaneously
789		 * but the race shouldn't be terrible.
790		 */
791		cpu = ffs(kseq_idle);
792		if (cpu) {
793			CTR2(KTR_SCHED, "kseq_transfer: %p found %X "
794			    "in idlemask.", ke, cpu);
795			goto migrate;
796		}
797	}
798	idx = 0;
799#if 0
800	if (old->ksq_load < kseq->ksq_load) {
801		cpu = ke->ke_cpu + 1;
802		CTR2(KTR_SCHED, "kseq_transfer: %p old cpu %X "
803		    "load less than ours.", ke, cpu);
804		goto migrate;
805	}
806	/*
807	 * No new CPU was found, look for one with less load.
808	 */
809	for (idx = 0; idx <= ksg_maxid; idx++) {
810		nksg = KSEQ_GROUP(idx);
811		if (nksg->ksg_load /*+ (nksg->ksg_cpus  * 2)*/ < ksg->ksg_load) {
812			cpu = ffs(nksg->ksg_cpumask);
813			CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X load less "
814			    "than ours.", ke, cpu);
815			goto migrate;
816		}
817	}
818#endif
819	/*
820	 * If another cpu in this group has idled, assign a thread over
821	 * to them after checking to see if there are idled groups.
822	 */
823	if (ksg->ksg_idlemask) {
824		cpu = ffs(ksg->ksg_idlemask);
825		if (cpu) {
826			CTR2(KTR_SCHED, "kseq_transfer: %p cpu %X idle in "
827			    "group.", ke, cpu);
828			goto migrate;
829		}
830	}
831	return (0);
832migrate:
833	/*
834	 * Now that we've found an idle CPU, migrate the thread.
835	 */
836	cpu--;
837	ke->ke_runq = NULL;
838	kseq_notify(ke, cpu);
839
840	return (1);
841}
842
843#endif	/* SMP */
844
845/*
846 * Pick the highest priority task we have and return it.
847 */
848
849static struct kse *
850kseq_choose(struct kseq *kseq)
851{
852	struct runq *swap;
853	struct kse *ke;
854	int nice;
855
856	mtx_assert(&sched_lock, MA_OWNED);
857	swap = NULL;
858
859	for (;;) {
860		ke = runq_choose(kseq->ksq_curr);
861		if (ke == NULL) {
862			/*
863			 * We already swapped once and didn't get anywhere.
864			 */
865			if (swap)
866				break;
867			swap = kseq->ksq_curr;
868			kseq->ksq_curr = kseq->ksq_next;
869			kseq->ksq_next = swap;
870			continue;
871		}
872		/*
873		 * If we encounter a slice of 0 the kse is in a
874		 * TIMESHARE kse group and its nice was too far out
875		 * of the range that receives slices.
876		 */
877		nice = ke->ke_proc->p_nice + (0 - kseq->ksq_nicemin);
878		if (ke->ke_slice == 0 || (nice > SCHED_SLICE_NTHRESH &&
879		    ke->ke_proc->p_nice != 0)) {
880			runq_remove(ke->ke_runq, ke);
881			sched_slice(ke);
882			ke->ke_runq = kseq->ksq_next;
883			runq_add(ke->ke_runq, ke, 0);
884			continue;
885		}
886		return (ke);
887	}
888
889	return (runq_choose(&kseq->ksq_idle));
890}
891
892static void
893kseq_setup(struct kseq *kseq)
894{
895	runq_init(&kseq->ksq_timeshare[0]);
896	runq_init(&kseq->ksq_timeshare[1]);
897	runq_init(&kseq->ksq_idle);
898	kseq->ksq_curr = &kseq->ksq_timeshare[0];
899	kseq->ksq_next = &kseq->ksq_timeshare[1];
900	kseq->ksq_load = 0;
901	kseq->ksq_load_timeshare = 0;
902}
903
904static void
905sched_setup(void *dummy)
906{
907#ifdef SMP
908	int i;
909#endif
910
911	slice_min = (hz/100);	/* 10ms */
912	slice_max = (hz/7);	/* ~140ms */
913
914#ifdef SMP
915	balance_groups = 0;
916	/*
917	 * Initialize the kseqs.
918	 */
919	for (i = 0; i < MAXCPU; i++) {
920		struct kseq *ksq;
921
922		ksq = &kseq_cpu[i];
923		ksq->ksq_assigned = NULL;
924		kseq_setup(&kseq_cpu[i]);
925	}
926	if (smp_topology == NULL) {
927		struct kseq_group *ksg;
928		struct kseq *ksq;
929		int cpus;
930
931		for (cpus = 0, i = 0; i < MAXCPU; i++) {
932			if (CPU_ABSENT(i))
933				continue;
934			ksq = &kseq_cpu[cpus];
935			ksg = &kseq_groups[cpus];
936			/*
937			 * Setup a kseq group with one member.
938			 */
939			ksq->ksq_transferable = 0;
940			ksq->ksq_group = ksg;
941			ksg->ksg_cpus = 1;
942			ksg->ksg_idlemask = 0;
943			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
944			ksg->ksg_load = 0;
945			ksg->ksg_transferable = 0;
946			LIST_INIT(&ksg->ksg_members);
947			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
948			cpus++;
949		}
950		ksg_maxid = cpus - 1;
951	} else {
952		struct kseq_group *ksg;
953		struct cpu_group *cg;
954		int j;
955
956		for (i = 0; i < smp_topology->ct_count; i++) {
957			cg = &smp_topology->ct_group[i];
958			ksg = &kseq_groups[i];
959			/*
960			 * Initialize the group.
961			 */
962			ksg->ksg_idlemask = 0;
963			ksg->ksg_load = 0;
964			ksg->ksg_transferable = 0;
965			ksg->ksg_cpus = cg->cg_count;
966			ksg->ksg_cpumask = cg->cg_mask;
967			LIST_INIT(&ksg->ksg_members);
968			/*
969			 * Find all of the group members and add them.
970			 */
971			for (j = 0; j < MAXCPU; j++) {
972				if ((cg->cg_mask & (1 << j)) != 0) {
973					if (ksg->ksg_mask == 0)
974						ksg->ksg_mask = 1 << j;
975					kseq_cpu[j].ksq_transferable = 0;
976					kseq_cpu[j].ksq_group = ksg;
977					LIST_INSERT_HEAD(&ksg->ksg_members,
978					    &kseq_cpu[j], ksq_siblings);
979				}
980			}
981			if (ksg->ksg_cpus > 1)
982				balance_groups = 1;
983		}
984		ksg_maxid = smp_topology->ct_count - 1;
985	}
986	/*
987	 * Stagger the group and global load balancer so they do not
988	 * interfere with each other.
989	 */
990	bal_tick = ticks + hz;
991	if (balance_groups)
992		gbal_tick = ticks + (hz / 2);
993#else
994	kseq_setup(KSEQ_SELF());
995#endif
996	mtx_lock_spin(&sched_lock);
997	kseq_load_add(KSEQ_SELF(), &kse0);
998	mtx_unlock_spin(&sched_lock);
999}
1000
1001/*
1002 * Scale the scheduling priority according to the "interactivity" of this
1003 * process.
1004 */
1005static void
1006sched_priority(struct ksegrp *kg)
1007{
1008	int pri;
1009
1010	if (kg->kg_pri_class != PRI_TIMESHARE)
1011		return;
1012
1013	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
1014	pri += SCHED_PRI_BASE;
1015	pri += kg->kg_proc->p_nice;
1016
1017	if (pri > PRI_MAX_TIMESHARE)
1018		pri = PRI_MAX_TIMESHARE;
1019	else if (pri < PRI_MIN_TIMESHARE)
1020		pri = PRI_MIN_TIMESHARE;
1021
1022	kg->kg_user_pri = pri;
1023
1024	return;
1025}
1026
1027/*
1028 * Calculate a time slice based on the properties of the kseg and the runq
1029 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
1030 */
1031static void
1032sched_slice(struct kse *ke)
1033{
1034	struct kseq *kseq;
1035	struct ksegrp *kg;
1036
1037	kg = ke->ke_ksegrp;
1038	kseq = KSEQ_CPU(ke->ke_cpu);
1039
1040	if (ke->ke_thread->td_flags & TDF_BORROWING) {
1041		ke->ke_slice = SCHED_SLICE_MIN;
1042		return;
1043	}
1044
1045	/*
1046	 * Rationale:
1047	 * KSEs in interactive ksegs get a minimal slice so that we
1048	 * quickly notice if it abuses its advantage.
1049	 *
1050	 * KSEs in non-interactive ksegs are assigned a slice that is
1051	 * based on the ksegs nice value relative to the least nice kseg
1052	 * on the run queue for this cpu.
1053	 *
1054	 * If the KSE is less nice than all others it gets the maximum
1055	 * slice and other KSEs will adjust their slice relative to
1056	 * this when they first expire.
1057	 *
1058	 * There is 20 point window that starts relative to the least
1059	 * nice kse on the run queue.  Slice size is determined by
1060	 * the kse distance from the last nice ksegrp.
1061	 *
1062	 * If the kse is outside of the window it will get no slice
1063	 * and will be reevaluated each time it is selected on the
1064	 * run queue.  The exception to this is nice 0 ksegs when
1065	 * a nice -20 is running.  They are always granted a minimum
1066	 * slice.
1067	 */
1068	if (!SCHED_INTERACTIVE(kg)) {
1069		int nice;
1070
1071		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
1072		if (kseq->ksq_load_timeshare == 0 ||
1073		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
1074			ke->ke_slice = SCHED_SLICE_MAX;
1075		else if (nice <= SCHED_SLICE_NTHRESH)
1076			ke->ke_slice = SCHED_SLICE_NICE(nice);
1077		else if (kg->kg_proc->p_nice == 0)
1078			ke->ke_slice = SCHED_SLICE_MIN;
1079		else
1080			ke->ke_slice = 0;
1081	} else
1082		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1083
1084	return;
1085}
1086
1087/*
1088 * This routine enforces a maximum limit on the amount of scheduling history
1089 * kept.  It is called after either the slptime or runtime is adjusted.
1090 * This routine will not operate correctly when slp or run times have been
1091 * adjusted to more than double their maximum.
1092 */
1093static void
1094sched_interact_update(struct ksegrp *kg)
1095{
1096	int sum;
1097
1098	sum = kg->kg_runtime + kg->kg_slptime;
1099	if (sum < SCHED_SLP_RUN_MAX)
1100		return;
1101	/*
1102	 * If we have exceeded by more than 1/5th then the algorithm below
1103	 * will not bring us back into range.  Dividing by two here forces
1104	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1105	 */
1106	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1107		kg->kg_runtime /= 2;
1108		kg->kg_slptime /= 2;
1109		return;
1110	}
1111	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1112	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1113}
1114
1115static void
1116sched_interact_fork(struct ksegrp *kg)
1117{
1118	int ratio;
1119	int sum;
1120
1121	sum = kg->kg_runtime + kg->kg_slptime;
1122	if (sum > SCHED_SLP_RUN_FORK) {
1123		ratio = sum / SCHED_SLP_RUN_FORK;
1124		kg->kg_runtime /= ratio;
1125		kg->kg_slptime /= ratio;
1126	}
1127}
1128
1129static int
1130sched_interact_score(struct ksegrp *kg)
1131{
1132	int div;
1133
1134	if (kg->kg_runtime > kg->kg_slptime) {
1135		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1136		return (SCHED_INTERACT_HALF +
1137		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1138	} if (kg->kg_slptime > kg->kg_runtime) {
1139		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1140		return (kg->kg_runtime / div);
1141	}
1142
1143	/*
1144	 * This can happen if slptime and runtime are 0.
1145	 */
1146	return (0);
1147
1148}
1149
1150/*
1151 * Very early in the boot some setup of scheduler-specific
1152 * parts of proc0 and of soem scheduler resources needs to be done.
1153 * Called from:
1154 *  proc0_init()
1155 */
1156void
1157schedinit(void)
1158{
1159	/*
1160	 * Set up the scheduler specific parts of proc0.
1161	 */
1162	proc0.p_sched = NULL; /* XXX */
1163	ksegrp0.kg_sched = &kg_sched0;
1164	thread0.td_sched = &kse0;
1165	kse0.ke_thread = &thread0;
1166	kse0.ke_state = KES_THREAD;
1167	kg_sched0.skg_concurrency = 1;
1168	kg_sched0.skg_avail_opennings = 0; /* we are already running */
1169}
1170
1171/*
1172 * This is only somewhat accurate since given many processes of the same
1173 * priority they will switch when their slices run out, which will be
1174 * at most SCHED_SLICE_MAX.
1175 */
1176int
1177sched_rr_interval(void)
1178{
1179	return (SCHED_SLICE_MAX);
1180}
1181
1182static void
1183sched_pctcpu_update(struct kse *ke)
1184{
1185	/*
1186	 * Adjust counters and watermark for pctcpu calc.
1187	 */
1188	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1189		/*
1190		 * Shift the tick count out so that the divide doesn't
1191		 * round away our results.
1192		 */
1193		ke->ke_ticks <<= 10;
1194		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1195			    SCHED_CPU_TICKS;
1196		ke->ke_ticks >>= 10;
1197	} else
1198		ke->ke_ticks = 0;
1199	ke->ke_ltick = ticks;
1200	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1201}
1202
1203void
1204sched_thread_priority(struct thread *td, u_char prio)
1205{
1206	struct kse *ke;
1207
1208	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
1209	    td, td->td_proc->p_comm, td->td_priority, prio, curthread,
1210	    curthread->td_proc->p_comm);
1211	ke = td->td_kse;
1212	mtx_assert(&sched_lock, MA_OWNED);
1213	if (td->td_priority == prio)
1214		return;
1215	if (TD_ON_RUNQ(td)) {
1216		/*
1217		 * If the priority has been elevated due to priority
1218		 * propagation, we may have to move ourselves to a new
1219		 * queue.  We still call adjustrunqueue below in case kse
1220		 * needs to fix things up.
1221		 */
1222		if (prio < td->td_priority && ke->ke_runq != NULL &&
1223		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1224		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1225			runq_remove(ke->ke_runq, ke);
1226			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1227			runq_add(ke->ke_runq, ke, 0);
1228		}
1229		/*
1230		 * Hold this kse on this cpu so that sched_prio() doesn't
1231		 * cause excessive migration.  We only want migration to
1232		 * happen as the result of a wakeup.
1233		 */
1234		ke->ke_flags |= KEF_HOLD;
1235		adjustrunqueue(td, prio);
1236		ke->ke_flags &= ~KEF_HOLD;
1237	} else
1238		td->td_priority = prio;
1239}
1240
1241/*
1242 * Update a thread's priority when it is lent another thread's
1243 * priority.
1244 */
1245void
1246sched_lend_prio(struct thread *td, u_char prio)
1247{
1248
1249	td->td_flags |= TDF_BORROWING;
1250	sched_thread_priority(td, prio);
1251}
1252
1253/*
1254 * Restore a thread's priority when priority propagation is
1255 * over.  The prio argument is the minimum priority the thread
1256 * needs to have to satisfy other possible priority lending
1257 * requests.  If the thread's regular priority is less
1258 * important than prio, the thread will keep a priority boost
1259 * of prio.
1260 */
1261void
1262sched_unlend_prio(struct thread *td, u_char prio)
1263{
1264	u_char base_pri;
1265
1266	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1267	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1268		base_pri = td->td_ksegrp->kg_user_pri;
1269	else
1270		base_pri = td->td_base_pri;
1271	if (prio >= base_pri) {
1272		td->td_flags &= ~TDF_BORROWING;
1273		sched_thread_priority(td, base_pri);
1274	} else
1275		sched_lend_prio(td, prio);
1276}
1277
1278void
1279sched_prio(struct thread *td, u_char prio)
1280{
1281	u_char oldprio;
1282
1283	/* First, update the base priority. */
1284	td->td_base_pri = prio;
1285
1286	/*
1287	 * If the thread is borrowing another thread's priority, don't
1288	 * ever lower the priority.
1289	 */
1290	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1291		return;
1292
1293	/* Change the real priority. */
1294	oldprio = td->td_priority;
1295	sched_thread_priority(td, prio);
1296
1297	/*
1298	 * If the thread is on a turnstile, then let the turnstile update
1299	 * its state.
1300	 */
1301	if (TD_ON_LOCK(td) && oldprio != prio)
1302		turnstile_adjust(td, oldprio);
1303}
1304
1305void
1306sched_switch(struct thread *td, struct thread *newtd, int flags)
1307{
1308	struct kseq *ksq;
1309	struct kse *ke;
1310
1311	mtx_assert(&sched_lock, MA_OWNED);
1312
1313	ke = td->td_kse;
1314	ksq = KSEQ_SELF();
1315
1316	td->td_lastcpu = td->td_oncpu;
1317	td->td_oncpu = NOCPU;
1318	td->td_flags &= ~TDF_NEEDRESCHED;
1319	td->td_owepreempt = 0;
1320
1321	/*
1322	 * If the KSE has been assigned it may be in the process of switching
1323	 * to the new cpu.  This is the case in sched_bind().
1324	 */
1325	if (td == PCPU_GET(idlethread)) {
1326		TD_SET_CAN_RUN(td);
1327	} else if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1328		/* We are ending our run so make our slot available again */
1329		SLOT_RELEASE(td->td_ksegrp);
1330		kseq_load_rem(ksq, ke);
1331		if (TD_IS_RUNNING(td)) {
1332			/*
1333			 * Don't allow the thread to migrate
1334			 * from a preemption.
1335			 */
1336			ke->ke_flags |= KEF_HOLD;
1337			setrunqueue(td, (flags & SW_PREEMPT) ?
1338			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1339			    SRQ_OURSELF|SRQ_YIELDING);
1340			ke->ke_flags &= ~KEF_HOLD;
1341		} else if ((td->td_proc->p_flag & P_HADTHREADS) &&
1342		    (newtd == NULL || newtd->td_ksegrp != td->td_ksegrp))
1343			/*
1344			 * We will not be on the run queue.
1345			 * So we must be sleeping or similar.
1346			 * Don't use the slot if we will need it
1347			 * for newtd.
1348			 */
1349			slot_fill(td->td_ksegrp);
1350	}
1351	if (newtd != NULL) {
1352		/*
1353		 * If we bring in a thread,
1354		 * then account for it as if it had been added to the
1355		 * run queue and then chosen.
1356		 */
1357		newtd->td_kse->ke_flags |= KEF_DIDRUN;
1358		newtd->td_kse->ke_runq = ksq->ksq_curr;
1359		TD_SET_RUNNING(newtd);
1360		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1361	} else
1362		newtd = choosethread();
1363	if (td != newtd) {
1364#ifdef	HWPMC_HOOKS
1365		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1366			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1367#endif
1368		cpu_switch(td, newtd);
1369#ifdef	HWPMC_HOOKS
1370		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1371			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1372#endif
1373	}
1374
1375	sched_lock.mtx_lock = (uintptr_t)td;
1376
1377	td->td_oncpu = PCPU_GET(cpuid);
1378}
1379
1380void
1381sched_nice(struct proc *p, int nice)
1382{
1383	struct ksegrp *kg;
1384	struct kse *ke;
1385	struct thread *td;
1386	struct kseq *kseq;
1387
1388	PROC_LOCK_ASSERT(p, MA_OWNED);
1389	mtx_assert(&sched_lock, MA_OWNED);
1390	/*
1391	 * We need to adjust the nice counts for running KSEs.
1392	 */
1393	FOREACH_KSEGRP_IN_PROC(p, kg) {
1394		if (kg->kg_pri_class == PRI_TIMESHARE) {
1395			FOREACH_THREAD_IN_GROUP(kg, td) {
1396				ke = td->td_kse;
1397				if (ke->ke_runq == NULL)
1398					continue;
1399				kseq = KSEQ_CPU(ke->ke_cpu);
1400				kseq_nice_rem(kseq, p->p_nice);
1401				kseq_nice_add(kseq, nice);
1402			}
1403		}
1404	}
1405	p->p_nice = nice;
1406	FOREACH_KSEGRP_IN_PROC(p, kg) {
1407		sched_priority(kg);
1408		FOREACH_THREAD_IN_GROUP(kg, td)
1409			td->td_flags |= TDF_NEEDRESCHED;
1410	}
1411}
1412
1413void
1414sched_sleep(struct thread *td)
1415{
1416	mtx_assert(&sched_lock, MA_OWNED);
1417
1418	td->td_slptime = ticks;
1419}
1420
1421void
1422sched_wakeup(struct thread *td)
1423{
1424	mtx_assert(&sched_lock, MA_OWNED);
1425
1426	/*
1427	 * Let the kseg know how long we slept for.  This is because process
1428	 * interactivity behavior is modeled in the kseg.
1429	 */
1430	if (td->td_slptime) {
1431		struct ksegrp *kg;
1432		int hzticks;
1433
1434		kg = td->td_ksegrp;
1435		hzticks = (ticks - td->td_slptime) << 10;
1436		if (hzticks >= SCHED_SLP_RUN_MAX) {
1437			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1438			kg->kg_runtime = 1;
1439		} else {
1440			kg->kg_slptime += hzticks;
1441			sched_interact_update(kg);
1442		}
1443		sched_priority(kg);
1444		sched_slice(td->td_kse);
1445		td->td_slptime = 0;
1446	}
1447	setrunqueue(td, SRQ_BORING);
1448}
1449
1450/*
1451 * Penalize the parent for creating a new child and initialize the child's
1452 * priority.
1453 */
1454void
1455sched_fork(struct thread *td, struct thread *childtd)
1456{
1457
1458	mtx_assert(&sched_lock, MA_OWNED);
1459
1460	sched_fork_ksegrp(td, childtd->td_ksegrp);
1461	sched_fork_thread(td, childtd);
1462}
1463
1464void
1465sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1466{
1467	struct ksegrp *kg = td->td_ksegrp;
1468	mtx_assert(&sched_lock, MA_OWNED);
1469
1470	child->kg_slptime = kg->kg_slptime;
1471	child->kg_runtime = kg->kg_runtime;
1472	child->kg_user_pri = kg->kg_user_pri;
1473	sched_interact_fork(child);
1474	kg->kg_runtime += tickincr << 10;
1475	sched_interact_update(kg);
1476}
1477
1478void
1479sched_fork_thread(struct thread *td, struct thread *child)
1480{
1481	struct kse *ke;
1482	struct kse *ke2;
1483
1484	sched_newthread(child);
1485	ke = td->td_kse;
1486	ke2 = child->td_kse;
1487	ke2->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1488	ke2->ke_cpu = ke->ke_cpu;
1489	ke2->ke_runq = NULL;
1490
1491	/* Grab our parents cpu estimation information. */
1492	ke2->ke_ticks = ke->ke_ticks;
1493	ke2->ke_ltick = ke->ke_ltick;
1494	ke2->ke_ftick = ke->ke_ftick;
1495}
1496
1497void
1498sched_class(struct ksegrp *kg, int class)
1499{
1500	struct kseq *kseq;
1501	struct kse *ke;
1502	struct thread *td;
1503	int nclass;
1504	int oclass;
1505
1506	mtx_assert(&sched_lock, MA_OWNED);
1507	if (kg->kg_pri_class == class)
1508		return;
1509
1510	nclass = PRI_BASE(class);
1511	oclass = PRI_BASE(kg->kg_pri_class);
1512	FOREACH_THREAD_IN_GROUP(kg, td) {
1513		ke = td->td_kse;
1514		if ((ke->ke_state != KES_ONRUNQ &&
1515		    ke->ke_state != KES_THREAD) || ke->ke_runq == NULL)
1516			continue;
1517		kseq = KSEQ_CPU(ke->ke_cpu);
1518
1519#ifdef SMP
1520		/*
1521		 * On SMP if we're on the RUNQ we must adjust the transferable
1522		 * count because could be changing to or from an interrupt
1523		 * class.
1524		 */
1525		if (ke->ke_state == KES_ONRUNQ) {
1526			if (KSE_CAN_MIGRATE(ke)) {
1527				kseq->ksq_transferable--;
1528				kseq->ksq_group->ksg_transferable--;
1529			}
1530			if (KSE_CAN_MIGRATE(ke)) {
1531				kseq->ksq_transferable++;
1532				kseq->ksq_group->ksg_transferable++;
1533			}
1534		}
1535#endif
1536		if (oclass == PRI_TIMESHARE) {
1537			kseq->ksq_load_timeshare--;
1538			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1539		}
1540		if (nclass == PRI_TIMESHARE) {
1541			kseq->ksq_load_timeshare++;
1542			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1543		}
1544	}
1545
1546	kg->kg_pri_class = class;
1547}
1548
1549/*
1550 * Return some of the child's priority and interactivity to the parent.
1551 */
1552void
1553sched_exit(struct proc *p, struct thread *childtd)
1554{
1555	mtx_assert(&sched_lock, MA_OWNED);
1556	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd);
1557	sched_exit_thread(NULL, childtd);
1558}
1559
1560void
1561sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1562{
1563	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1564	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1565	sched_interact_update(kg);
1566}
1567
1568void
1569sched_exit_thread(struct thread *td, struct thread *childtd)
1570{
1571	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
1572	    childtd, childtd->td_proc->p_comm, childtd->td_priority);
1573	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1574}
1575
1576void
1577sched_clock(struct thread *td)
1578{
1579	struct kseq *kseq;
1580	struct ksegrp *kg;
1581	struct kse *ke;
1582
1583	mtx_assert(&sched_lock, MA_OWNED);
1584	kseq = KSEQ_SELF();
1585#ifdef SMP
1586	if (ticks >= bal_tick)
1587		sched_balance();
1588	if (ticks >= gbal_tick && balance_groups)
1589		sched_balance_groups();
1590	/*
1591	 * We could have been assigned a non real-time thread without an
1592	 * IPI.
1593	 */
1594	if (kseq->ksq_assigned)
1595		kseq_assign(kseq);	/* Potentially sets NEEDRESCHED */
1596#endif
1597	/*
1598	 * sched_setup() apparently happens prior to stathz being set.  We
1599	 * need to resolve the timers earlier in the boot so we can avoid
1600	 * calculating this here.
1601	 */
1602	if (realstathz == 0) {
1603		realstathz = stathz ? stathz : hz;
1604		tickincr = hz / realstathz;
1605		/*
1606		 * XXX This does not work for values of stathz that are much
1607		 * larger than hz.
1608		 */
1609		if (tickincr == 0)
1610			tickincr = 1;
1611	}
1612
1613	ke = td->td_kse;
1614	kg = ke->ke_ksegrp;
1615
1616	/* Adjust ticks for pctcpu */
1617	ke->ke_ticks++;
1618	ke->ke_ltick = ticks;
1619
1620	/* Go up to one second beyond our max and then trim back down */
1621	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1622		sched_pctcpu_update(ke);
1623
1624	if (td->td_flags & TDF_IDLETD)
1625		return;
1626	/*
1627	 * We only do slicing code for TIMESHARE ksegrps.
1628	 */
1629	if (kg->kg_pri_class != PRI_TIMESHARE)
1630		return;
1631	/*
1632	 * We used a tick charge it to the ksegrp so that we can compute our
1633	 * interactivity.
1634	 */
1635	kg->kg_runtime += tickincr << 10;
1636	sched_interact_update(kg);
1637
1638	/*
1639	 * We used up one time slice.
1640	 */
1641	if (--ke->ke_slice > 0)
1642		return;
1643	/*
1644	 * We're out of time, recompute priorities and requeue.
1645	 */
1646	kseq_load_rem(kseq, ke);
1647	sched_priority(kg);
1648	sched_slice(ke);
1649	if (SCHED_CURR(kg, ke))
1650		ke->ke_runq = kseq->ksq_curr;
1651	else
1652		ke->ke_runq = kseq->ksq_next;
1653	kseq_load_add(kseq, ke);
1654	td->td_flags |= TDF_NEEDRESCHED;
1655}
1656
1657int
1658sched_runnable(void)
1659{
1660	struct kseq *kseq;
1661	int load;
1662
1663	load = 1;
1664
1665	kseq = KSEQ_SELF();
1666#ifdef SMP
1667	if (kseq->ksq_assigned) {
1668		mtx_lock_spin(&sched_lock);
1669		kseq_assign(kseq);
1670		mtx_unlock_spin(&sched_lock);
1671	}
1672#endif
1673	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1674		if (kseq->ksq_load > 0)
1675			goto out;
1676	} else
1677		if (kseq->ksq_load - 1 > 0)
1678			goto out;
1679	load = 0;
1680out:
1681	return (load);
1682}
1683
1684void
1685sched_userret(struct thread *td)
1686{
1687	struct ksegrp *kg;
1688
1689	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1690	    ("thread with borrowed priority returning to userland"));
1691	kg = td->td_ksegrp;
1692	if (td->td_priority != kg->kg_user_pri) {
1693		mtx_lock_spin(&sched_lock);
1694		td->td_priority = kg->kg_user_pri;
1695		td->td_base_pri = kg->kg_user_pri;
1696		mtx_unlock_spin(&sched_lock);
1697	}
1698}
1699
1700struct kse *
1701sched_choose(void)
1702{
1703	struct kseq *kseq;
1704	struct kse *ke;
1705
1706	mtx_assert(&sched_lock, MA_OWNED);
1707	kseq = KSEQ_SELF();
1708#ifdef SMP
1709restart:
1710	if (kseq->ksq_assigned)
1711		kseq_assign(kseq);
1712#endif
1713	ke = kseq_choose(kseq);
1714	if (ke) {
1715#ifdef SMP
1716		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1717			if (kseq_idled(kseq) == 0)
1718				goto restart;
1719#endif
1720		kseq_runq_rem(kseq, ke);
1721		ke->ke_state = KES_THREAD;
1722		return (ke);
1723	}
1724#ifdef SMP
1725	if (kseq_idled(kseq) == 0)
1726		goto restart;
1727#endif
1728	return (NULL);
1729}
1730
1731void
1732sched_add(struct thread *td, int flags)
1733{
1734	struct kseq *kseq;
1735	struct ksegrp *kg;
1736	struct kse *ke;
1737	int preemptive;
1738	int canmigrate;
1739	int class;
1740
1741	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1742	    td, td->td_proc->p_comm, td->td_priority, curthread,
1743	    curthread->td_proc->p_comm);
1744	mtx_assert(&sched_lock, MA_OWNED);
1745	ke = td->td_kse;
1746	kg = td->td_ksegrp;
1747	canmigrate = 1;
1748	preemptive = !(flags & SRQ_YIELDING);
1749	class = PRI_BASE(kg->kg_pri_class);
1750	kseq = KSEQ_SELF();
1751	if ((ke->ke_flags & KEF_INTERNAL) == 0)
1752		SLOT_USE(td->td_ksegrp);
1753	ke->ke_flags &= ~KEF_INTERNAL;
1754#ifdef SMP
1755	if (ke->ke_flags & KEF_ASSIGNED) {
1756		if (ke->ke_flags & KEF_REMOVED)
1757			ke->ke_flags &= ~KEF_REMOVED;
1758		return;
1759	}
1760	canmigrate = KSE_CAN_MIGRATE(ke);
1761#endif
1762	KASSERT(ke->ke_state != KES_ONRUNQ,
1763	    ("sched_add: kse %p (%s) already in run queue", ke,
1764	    ke->ke_proc->p_comm));
1765	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1766	    ("sched_add: process swapped out"));
1767	KASSERT(ke->ke_runq == NULL,
1768	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1769	switch (class) {
1770	case PRI_ITHD:
1771	case PRI_REALTIME:
1772		ke->ke_runq = kseq->ksq_curr;
1773		ke->ke_slice = SCHED_SLICE_MAX;
1774		if (canmigrate)
1775			ke->ke_cpu = PCPU_GET(cpuid);
1776		break;
1777	case PRI_TIMESHARE:
1778		if (SCHED_CURR(kg, ke))
1779			ke->ke_runq = kseq->ksq_curr;
1780		else
1781			ke->ke_runq = kseq->ksq_next;
1782		break;
1783	case PRI_IDLE:
1784		/*
1785		 * This is for priority prop.
1786		 */
1787		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1788			ke->ke_runq = kseq->ksq_curr;
1789		else
1790			ke->ke_runq = &kseq->ksq_idle;
1791		ke->ke_slice = SCHED_SLICE_MIN;
1792		break;
1793	default:
1794		panic("Unknown pri class.");
1795		break;
1796	}
1797#ifdef SMP
1798	/*
1799	 * Don't migrate running threads here.  Force the long term balancer
1800	 * to do it.
1801	 */
1802	if (ke->ke_flags & KEF_HOLD) {
1803		ke->ke_flags &= ~KEF_HOLD;
1804		canmigrate = 0;
1805	}
1806	/*
1807	 * If this thread is pinned or bound, notify the target cpu.
1808	 */
1809	if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) {
1810		ke->ke_runq = NULL;
1811		kseq_notify(ke, ke->ke_cpu);
1812		return;
1813	}
1814	/*
1815	 * If we had been idle, clear our bit in the group and potentially
1816	 * the global bitmap.  If not, see if we should transfer this thread.
1817	 */
1818	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1819	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1820		/*
1821		 * Check to see if our group is unidling, and if so, remove it
1822		 * from the global idle mask.
1823		 */
1824		if (kseq->ksq_group->ksg_idlemask ==
1825		    kseq->ksq_group->ksg_cpumask)
1826			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1827		/*
1828		 * Now remove ourselves from the group specific idle mask.
1829		 */
1830		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1831	} else if (canmigrate && kseq->ksq_load > 1 && class != PRI_ITHD)
1832		if (kseq_transfer(kseq, ke, class))
1833			return;
1834	ke->ke_cpu = PCPU_GET(cpuid);
1835#endif
1836	if (td->td_priority < curthread->td_priority &&
1837	    ke->ke_runq == kseq->ksq_curr)
1838		curthread->td_flags |= TDF_NEEDRESCHED;
1839	if (preemptive && maybe_preempt(td))
1840		return;
1841	ke->ke_state = KES_ONRUNQ;
1842
1843	kseq_runq_add(kseq, ke, flags);
1844	kseq_load_add(kseq, ke);
1845}
1846
1847void
1848sched_rem(struct thread *td)
1849{
1850	struct kseq *kseq;
1851	struct kse *ke;
1852
1853	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
1854	    td, td->td_proc->p_comm, td->td_priority, curthread,
1855	    curthread->td_proc->p_comm);
1856	mtx_assert(&sched_lock, MA_OWNED);
1857	ke = td->td_kse;
1858	SLOT_RELEASE(td->td_ksegrp);
1859	if (ke->ke_flags & KEF_ASSIGNED) {
1860		ke->ke_flags |= KEF_REMOVED;
1861		return;
1862	}
1863	KASSERT((ke->ke_state == KES_ONRUNQ),
1864	    ("sched_rem: KSE not on run queue"));
1865
1866	ke->ke_state = KES_THREAD;
1867	kseq = KSEQ_CPU(ke->ke_cpu);
1868	kseq_runq_rem(kseq, ke);
1869	kseq_load_rem(kseq, ke);
1870}
1871
1872fixpt_t
1873sched_pctcpu(struct thread *td)
1874{
1875	fixpt_t pctcpu;
1876	struct kse *ke;
1877
1878	pctcpu = 0;
1879	ke = td->td_kse;
1880	if (ke == NULL)
1881		return (0);
1882
1883	mtx_lock_spin(&sched_lock);
1884	if (ke->ke_ticks) {
1885		int rtick;
1886
1887		/*
1888		 * Don't update more frequently than twice a second.  Allowing
1889		 * this causes the cpu usage to decay away too quickly due to
1890		 * rounding errors.
1891		 */
1892		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1893		    ke->ke_ltick < (ticks - (hz / 2)))
1894			sched_pctcpu_update(ke);
1895		/* How many rtick per second ? */
1896		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1897		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1898	}
1899
1900	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1901	mtx_unlock_spin(&sched_lock);
1902
1903	return (pctcpu);
1904}
1905
1906void
1907sched_bind(struct thread *td, int cpu)
1908{
1909	struct kse *ke;
1910
1911	mtx_assert(&sched_lock, MA_OWNED);
1912	ke = td->td_kse;
1913	ke->ke_flags |= KEF_BOUND;
1914#ifdef SMP
1915	if (PCPU_GET(cpuid) == cpu)
1916		return;
1917	/* sched_rem without the runq_remove */
1918	ke->ke_state = KES_THREAD;
1919	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1920	kseq_notify(ke, cpu);
1921	/* When we return from mi_switch we'll be on the correct cpu. */
1922	mi_switch(SW_VOL, NULL);
1923#endif
1924}
1925
1926void
1927sched_unbind(struct thread *td)
1928{
1929	mtx_assert(&sched_lock, MA_OWNED);
1930	td->td_kse->ke_flags &= ~KEF_BOUND;
1931}
1932
1933int
1934sched_is_bound(struct thread *td)
1935{
1936	mtx_assert(&sched_lock, MA_OWNED);
1937	return (td->td_kse->ke_flags & KEF_BOUND);
1938}
1939
1940int
1941sched_load(void)
1942{
1943#ifdef SMP
1944	int total;
1945	int i;
1946
1947	total = 0;
1948	for (i = 0; i <= ksg_maxid; i++)
1949		total += KSEQ_GROUP(i)->ksg_load;
1950	return (total);
1951#else
1952	return (KSEQ_SELF()->ksq_sysload);
1953#endif
1954}
1955
1956int
1957sched_sizeof_ksegrp(void)
1958{
1959	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1960}
1961
1962int
1963sched_sizeof_proc(void)
1964{
1965	return (sizeof(struct proc));
1966}
1967
1968int
1969sched_sizeof_thread(void)
1970{
1971	return (sizeof(struct thread) + sizeof(struct td_sched));
1972}
1973#define KERN_SWITCH_INCLUDE 1
1974#include "kern/kern_switch.c"
1975