sched_ule.c revision 138843
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 138843 2004-12-14 10:53:55Z jeff $");
29
30#include <opt_sched.h>
31
32#define kse td_sched
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kdb.h>
37#include <sys/kernel.h>
38#include <sys/ktr.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/proc.h>
42#include <sys/resource.h>
43#include <sys/resourcevar.h>
44#include <sys/sched.h>
45#include <sys/smp.h>
46#include <sys/sx.h>
47#include <sys/sysctl.h>
48#include <sys/sysproto.h>
49#include <sys/vmmeter.h>
50#ifdef KTRACE
51#include <sys/uio.h>
52#include <sys/ktrace.h>
53#endif
54
55#include <machine/cpu.h>
56#include <machine/smp.h>
57
58#define KTR_ULE	KTR_NFS
59
60/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
61/* XXX This is bogus compatability crap for ps */
62static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
63SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
64
65static void sched_setup(void *dummy);
66SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
67
68static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
69
70SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
71    "Scheduler name");
72
73static int slice_min = 1;
74SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
75
76static int slice_max = 10;
77SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
78
79int realstathz;
80int tickincr = 1;
81
82/*
83 * The schedulable entity that can be given a context to run.
84 * A process may have several of these. Probably one per processor
85 * but posibly a few more. In this universe they are grouped
86 * with a KSEG that contains the priority and niceness
87 * for the group.
88 */
89struct kse {
90	TAILQ_ENTRY(kse) ke_procq;	/* (j/z) Run queue. */
91	int		ke_flags;	/* (j) KEF_* flags. */
92	struct thread	*ke_thread;	/* (*) Active associated thread. */
93	fixpt_t		ke_pctcpu;	/* (j) %cpu during p_swtime. */
94	char		ke_rqindex;	/* (j) Run queue index. */
95	enum {
96		KES_THREAD = 0x0,	/* slaved to thread state */
97		KES_ONRUNQ
98	} ke_state;			/* (j) thread sched specific status. */
99	int		ke_slptime;
100	int		ke_slice;
101	struct runq	*ke_runq;
102	u_char		ke_cpu;		/* CPU that we have affinity for. */
103	/* The following variables are only used for pctcpu calculation */
104	int		ke_ltick;	/* Last tick that we were running on */
105	int		ke_ftick;	/* First tick that we were running on */
106	int		ke_ticks;	/* Tick count */
107
108};
109
110
111#define td_kse td_sched
112#define	td_slptime		td_kse->ke_slptime
113#define ke_proc			ke_thread->td_proc
114#define ke_ksegrp		ke_thread->td_ksegrp
115
116/* flags kept in ke_flags */
117#define	KEF_SCHED0	0x00001	/* For scheduler-specific use. */
118#define	KEF_SCHED1	0x00002	/* For scheduler-specific use. */
119#define	KEF_SCHED2	0x00004	/* For scheduler-specific use. */
120#define	KEF_SCHED3	0x00008	/* For scheduler-specific use. */
121#define	KEF_SCHED4	0x00010
122#define	KEF_SCHED5	0x00020
123#define	KEF_DIDRUN	0x02000	/* Thread actually ran. */
124#define	KEF_EXIT	0x04000	/* Thread is being killed. */
125
126/*
127 * These datastructures are allocated within their parent datastructure but
128 * are scheduler specific.
129 */
130
131#define	ke_assign	ke_procq.tqe_next
132
133#define	KEF_ASSIGNED	KEF_SCHED0	/* Thread is being migrated. */
134#define	KEF_BOUND	KEF_SCHED1	/* Thread can not migrate. */
135#define	KEF_XFERABLE	KEF_SCHED2	/* Thread was added as transferable. */
136#define	KEF_HOLD	KEF_SCHED3	/* Thread is temporarily bound. */
137#define	KEF_REMOVED	KEF_SCHED4	/* Thread was removed while ASSIGNED */
138#define	KEF_PRIOELEV	KEF_SCHED5	/* Thread has had its prio elevated. */
139
140struct kg_sched {
141	struct thread	*skg_last_assigned; /* (j) Last thread assigned to */
142					   /* the system scheduler */
143	int	skg_slptime;		/* Number of ticks we vol. slept */
144	int	skg_runtime;		/* Number of ticks we were running */
145	int	skg_avail_opennings;	/* (j) Num unfilled slots in group.*/
146	int	skg_concurrency;	/* (j) Num threads requested in group.*/
147};
148#define kg_last_assigned	kg_sched->skg_last_assigned
149#define kg_avail_opennings	kg_sched->skg_avail_opennings
150#define kg_concurrency		kg_sched->skg_concurrency
151#define kg_runtime		kg_sched->skg_runtime
152#define kg_slptime		kg_sched->skg_slptime
153
154#define SLOT_RELEASE(kg)						\
155do {									\
156	kg->kg_avail_opennings++; 					\
157	CTR3(KTR_RUNQ, "kg %p(%d) Slot released (->%d)",		\
158	kg,								\
159	kg->kg_concurrency,						\
160	 kg->kg_avail_opennings);					\
161	/*KASSERT((kg->kg_avail_opennings <= kg->kg_concurrency),	\
162	    ("slots out of whack")); */					\
163} while (0)
164
165#define SLOT_USE(kg)							\
166do {									\
167	kg->kg_avail_opennings--; 					\
168	CTR3(KTR_RUNQ, "kg %p(%d) Slot used (->%d)",			\
169	kg,								\
170	kg->kg_concurrency,						\
171	 kg->kg_avail_opennings);					\
172	/*KASSERT((kg->kg_avail_opennings >= 0),			\
173	    ("slots out of whack"));*/ 					\
174} while (0)
175
176static struct kse kse0;
177static struct kg_sched kg_sched0;
178
179/*
180 * The priority is primarily determined by the interactivity score.  Thus, we
181 * give lower(better) priorities to kse groups that use less CPU.  The nice
182 * value is then directly added to this to allow nice to have some effect
183 * on latency.
184 *
185 * PRI_RANGE:	Total priority range for timeshare threads.
186 * PRI_NRESV:	Number of nice values.
187 * PRI_BASE:	The start of the dynamic range.
188 */
189#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
190#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
191#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
192#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
193#define	SCHED_PRI_INTERACT(score)					\
194    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
195
196/*
197 * These determine the interactivity of a process.
198 *
199 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
200 *		before throttling back.
201 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
202 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
203 * INTERACT_THRESH:	Threshhold for placement on the current runq.
204 */
205#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
206#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
207#define	SCHED_INTERACT_MAX	(100)
208#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
209#define	SCHED_INTERACT_THRESH	(30)
210
211/*
212 * These parameters and macros determine the size of the time slice that is
213 * granted to each thread.
214 *
215 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
216 * SLICE_MAX:	Maximum time slice granted.
217 * SLICE_RANGE:	Range of available time slices scaled by hz.
218 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
219 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
220 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
221 */
222#define	SCHED_SLICE_MIN			(slice_min)
223#define	SCHED_SLICE_MAX			(slice_max)
224#define	SCHED_SLICE_INTERACTIVE		(slice_max)
225#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
226#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
227#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
228#define	SCHED_SLICE_NICE(nice)						\
229    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
230
231/*
232 * This macro determines whether or not the thread belongs on the current or
233 * next run queue.
234 */
235#define	SCHED_INTERACTIVE(kg)						\
236    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
237#define	SCHED_CURR(kg, ke)						\
238    ((ke->ke_flags & KEF_PRIOELEV) || SCHED_INTERACTIVE(kg))
239
240/*
241 * Cpu percentage computation macros and defines.
242 *
243 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
244 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
245 */
246
247#define	SCHED_CPU_TIME	10
248#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
249
250/*
251 * kseq - per processor runqs and statistics.
252 */
253struct kseq {
254	struct runq	ksq_idle;		/* Queue of IDLE threads. */
255	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
256	struct runq	*ksq_next;		/* Next timeshare queue. */
257	struct runq	*ksq_curr;		/* Current queue. */
258	int		ksq_load_timeshare;	/* Load for timeshare. */
259	int		ksq_load;		/* Aggregate load. */
260	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
261	short		ksq_nicemin;		/* Least nice. */
262#ifdef SMP
263	int			ksq_transferable;
264	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
265	struct kseq_group	*ksq_group;	/* Our processor group. */
266	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
267#else
268	int		ksq_sysload;		/* For loadavg, !ITHD load. */
269#endif
270};
271
272#ifdef SMP
273/*
274 * kseq groups are groups of processors which can cheaply share threads.  When
275 * one processor in the group goes idle it will check the runqs of the other
276 * processors in its group prior to halting and waiting for an interrupt.
277 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
278 * In a numa environment we'd want an idle bitmap per group and a two tiered
279 * load balancer.
280 */
281struct kseq_group {
282	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
283	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
284	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
285	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
286	int	ksg_load;		/* Total load of this group. */
287	int	ksg_transferable;	/* Transferable load of this group. */
288	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
289};
290#endif
291
292/*
293 * One kse queue per processor.
294 */
295#ifdef SMP
296static cpumask_t kseq_idle;
297static int ksg_maxid;
298static struct kseq	kseq_cpu[MAXCPU];
299static struct kseq_group kseq_groups[MAXCPU];
300static int bal_tick;
301static int gbal_tick;
302
303#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
304#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
305#define	KSEQ_ID(x)	((x) - kseq_cpu)
306#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
307#else	/* !SMP */
308static struct kseq	kseq_cpu;
309
310#define	KSEQ_SELF()	(&kseq_cpu)
311#define	KSEQ_CPU(x)	(&kseq_cpu)
312#endif
313
314static void	slot_fill(struct ksegrp *kg);
315static struct kse *sched_choose(void);		/* XXX Should be thread * */
316static void sched_add_internal(struct thread *td, int preemptive);
317static void sched_slice(struct kse *ke);
318static void sched_priority(struct ksegrp *kg);
319static int sched_interact_score(struct ksegrp *kg);
320static void sched_interact_update(struct ksegrp *kg);
321static void sched_interact_fork(struct ksegrp *kg);
322static void sched_pctcpu_update(struct kse *ke);
323
324/* Operations on per processor queues */
325static struct kse * kseq_choose(struct kseq *kseq);
326static void kseq_setup(struct kseq *kseq);
327static void kseq_load_add(struct kseq *kseq, struct kse *ke);
328static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
329static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
330static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
331static void kseq_nice_add(struct kseq *kseq, int nice);
332static void kseq_nice_rem(struct kseq *kseq, int nice);
333void kseq_print(int cpu);
334#ifdef SMP
335static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
336static struct kse *runq_steal(struct runq *rq);
337static void sched_balance(void);
338static void sched_balance_groups(void);
339static void sched_balance_group(struct kseq_group *ksg);
340static void sched_balance_pair(struct kseq *high, struct kseq *low);
341static void kseq_move(struct kseq *from, int cpu);
342static int kseq_idled(struct kseq *kseq);
343static void kseq_notify(struct kse *ke, int cpu);
344static void kseq_assign(struct kseq *);
345static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
346/*
347 * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
348 * this, we can't pin interrupts to the cpu that they were delivered to,
349 * otherwise all ithreads only run on CPU 0.
350 */
351#ifdef __i386__
352#define	KSE_CAN_MIGRATE(ke, class)					\
353    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
354#else /* !__i386__ */
355#define	KSE_CAN_MIGRATE(ke, class)					\
356    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
357    ((ke)->ke_flags & KEF_BOUND) == 0)
358#endif /* !__i386__ */
359#endif
360
361void
362kseq_print(int cpu)
363{
364	struct kseq *kseq;
365	int i;
366
367	kseq = KSEQ_CPU(cpu);
368
369	printf("kseq:\n");
370	printf("\tload:           %d\n", kseq->ksq_load);
371	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
372#ifdef SMP
373	printf("\tload transferable: %d\n", kseq->ksq_transferable);
374#endif
375	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
376	printf("\tnice counts:\n");
377	for (i = 0; i < SCHED_PRI_NRESV; i++)
378		if (kseq->ksq_nice[i])
379			printf("\t\t%d = %d\n",
380			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
381}
382
383static __inline void
384kseq_runq_add(struct kseq *kseq, struct kse *ke)
385{
386#ifdef SMP
387	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
388		kseq->ksq_transferable++;
389		kseq->ksq_group->ksg_transferable++;
390		ke->ke_flags |= KEF_XFERABLE;
391	}
392#endif
393	runq_add(ke->ke_runq, ke, 0);
394}
395
396static __inline void
397kseq_runq_rem(struct kseq *kseq, struct kse *ke)
398{
399#ifdef SMP
400	if (ke->ke_flags & KEF_XFERABLE) {
401		kseq->ksq_transferable--;
402		kseq->ksq_group->ksg_transferable--;
403		ke->ke_flags &= ~KEF_XFERABLE;
404	}
405#endif
406	runq_remove(ke->ke_runq, ke);
407}
408
409static void
410kseq_load_add(struct kseq *kseq, struct kse *ke)
411{
412	int class;
413	mtx_assert(&sched_lock, MA_OWNED);
414	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
415	if (class == PRI_TIMESHARE)
416		kseq->ksq_load_timeshare++;
417	kseq->ksq_load++;
418	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
419#ifdef SMP
420		kseq->ksq_group->ksg_load++;
421#else
422		kseq->ksq_sysload++;
423#endif
424	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
425		CTR6(KTR_ULE,
426		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
427		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
428		    ke->ke_proc->p_nice, kseq->ksq_nicemin);
429	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
430		kseq_nice_add(kseq, ke->ke_proc->p_nice);
431}
432
433static void
434kseq_load_rem(struct kseq *kseq, struct kse *ke)
435{
436	int class;
437	mtx_assert(&sched_lock, MA_OWNED);
438	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
439	if (class == PRI_TIMESHARE)
440		kseq->ksq_load_timeshare--;
441	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
442#ifdef SMP
443		kseq->ksq_group->ksg_load--;
444#else
445		kseq->ksq_sysload--;
446#endif
447	kseq->ksq_load--;
448	ke->ke_runq = NULL;
449	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
450		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
451}
452
453static void
454kseq_nice_add(struct kseq *kseq, int nice)
455{
456	mtx_assert(&sched_lock, MA_OWNED);
457	/* Normalize to zero. */
458	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
459	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
460		kseq->ksq_nicemin = nice;
461}
462
463static void
464kseq_nice_rem(struct kseq *kseq, int nice)
465{
466	int n;
467
468	mtx_assert(&sched_lock, MA_OWNED);
469	/* Normalize to zero. */
470	n = nice + SCHED_PRI_NHALF;
471	kseq->ksq_nice[n]--;
472	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
473
474	/*
475	 * If this wasn't the smallest nice value or there are more in
476	 * this bucket we can just return.  Otherwise we have to recalculate
477	 * the smallest nice.
478	 */
479	if (nice != kseq->ksq_nicemin ||
480	    kseq->ksq_nice[n] != 0 ||
481	    kseq->ksq_load_timeshare == 0)
482		return;
483
484	for (; n < SCHED_PRI_NRESV; n++)
485		if (kseq->ksq_nice[n]) {
486			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
487			return;
488		}
489}
490
491#ifdef SMP
492/*
493 * sched_balance is a simple CPU load balancing algorithm.  It operates by
494 * finding the least loaded and most loaded cpu and equalizing their load
495 * by migrating some processes.
496 *
497 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
498 * installations will only have 2 cpus.  Secondly, load balancing too much at
499 * once can have an unpleasant effect on the system.  The scheduler rarely has
500 * enough information to make perfect decisions.  So this algorithm chooses
501 * algorithm simplicity and more gradual effects on load in larger systems.
502 *
503 * It could be improved by considering the priorities and slices assigned to
504 * each task prior to balancing them.  There are many pathological cases with
505 * any approach and so the semi random algorithm below may work as well as any.
506 *
507 */
508static void
509sched_balance(void)
510{
511	struct kseq_group *high;
512	struct kseq_group *low;
513	struct kseq_group *ksg;
514	int cnt;
515	int i;
516
517	if (smp_started == 0)
518		goto out;
519	low = high = NULL;
520	i = random() % (ksg_maxid + 1);
521	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
522		ksg = KSEQ_GROUP(i);
523		/*
524		 * Find the CPU with the highest load that has some
525		 * threads to transfer.
526		 */
527		if ((high == NULL || ksg->ksg_load > high->ksg_load)
528		    && ksg->ksg_transferable)
529			high = ksg;
530		if (low == NULL || ksg->ksg_load < low->ksg_load)
531			low = ksg;
532		if (++i > ksg_maxid)
533			i = 0;
534	}
535	if (low != NULL && high != NULL && high != low)
536		sched_balance_pair(LIST_FIRST(&high->ksg_members),
537		    LIST_FIRST(&low->ksg_members));
538out:
539	bal_tick = ticks + (random() % (hz * 2));
540}
541
542static void
543sched_balance_groups(void)
544{
545	int i;
546
547	mtx_assert(&sched_lock, MA_OWNED);
548	if (smp_started)
549		for (i = 0; i <= ksg_maxid; i++)
550			sched_balance_group(KSEQ_GROUP(i));
551	gbal_tick = ticks + (random() % (hz * 2));
552}
553
554static void
555sched_balance_group(struct kseq_group *ksg)
556{
557	struct kseq *kseq;
558	struct kseq *high;
559	struct kseq *low;
560	int load;
561
562	if (ksg->ksg_transferable == 0)
563		return;
564	low = NULL;
565	high = NULL;
566	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
567		load = kseq->ksq_load;
568		if (high == NULL || load > high->ksq_load)
569			high = kseq;
570		if (low == NULL || load < low->ksq_load)
571			low = kseq;
572	}
573	if (high != NULL && low != NULL && high != low)
574		sched_balance_pair(high, low);
575}
576
577static void
578sched_balance_pair(struct kseq *high, struct kseq *low)
579{
580	int transferable;
581	int high_load;
582	int low_load;
583	int move;
584	int diff;
585	int i;
586
587	/*
588	 * If we're transfering within a group we have to use this specific
589	 * kseq's transferable count, otherwise we can steal from other members
590	 * of the group.
591	 */
592	if (high->ksq_group == low->ksq_group) {
593		transferable = high->ksq_transferable;
594		high_load = high->ksq_load;
595		low_load = low->ksq_load;
596	} else {
597		transferable = high->ksq_group->ksg_transferable;
598		high_load = high->ksq_group->ksg_load;
599		low_load = low->ksq_group->ksg_load;
600	}
601	if (transferable == 0)
602		return;
603	/*
604	 * Determine what the imbalance is and then adjust that to how many
605	 * kses we actually have to give up (transferable).
606	 */
607	diff = high_load - low_load;
608	move = diff / 2;
609	if (diff & 0x1)
610		move++;
611	move = min(move, transferable);
612	for (i = 0; i < move; i++)
613		kseq_move(high, KSEQ_ID(low));
614	return;
615}
616
617static void
618kseq_move(struct kseq *from, int cpu)
619{
620	struct kseq *kseq;
621	struct kseq *to;
622	struct kse *ke;
623
624	kseq = from;
625	to = KSEQ_CPU(cpu);
626	ke = kseq_steal(kseq, 1);
627	if (ke == NULL) {
628		struct kseq_group *ksg;
629
630		ksg = kseq->ksq_group;
631		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
632			if (kseq == from || kseq->ksq_transferable == 0)
633				continue;
634			ke = kseq_steal(kseq, 1);
635			break;
636		}
637		if (ke == NULL)
638			panic("kseq_move: No KSEs available with a "
639			    "transferable count of %d\n",
640			    ksg->ksg_transferable);
641	}
642	if (kseq == to)
643		return;
644	ke->ke_state = KES_THREAD;
645	kseq_runq_rem(kseq, ke);
646	kseq_load_rem(kseq, ke);
647	kseq_notify(ke, cpu);
648}
649
650static int
651kseq_idled(struct kseq *kseq)
652{
653	struct kseq_group *ksg;
654	struct kseq *steal;
655	struct kse *ke;
656
657	ksg = kseq->ksq_group;
658	/*
659	 * If we're in a cpu group, try and steal kses from another cpu in
660	 * the group before idling.
661	 */
662	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
663		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
664			if (steal == kseq || steal->ksq_transferable == 0)
665				continue;
666			ke = kseq_steal(steal, 0);
667			if (ke == NULL)
668				continue;
669			ke->ke_state = KES_THREAD;
670			kseq_runq_rem(steal, ke);
671			kseq_load_rem(steal, ke);
672			ke->ke_cpu = PCPU_GET(cpuid);
673			sched_add_internal(ke->ke_thread, 0);
674			return (0);
675		}
676	}
677	/*
678	 * We only set the idled bit when all of the cpus in the group are
679	 * idle.  Otherwise we could get into a situation where a KSE bounces
680	 * back and forth between two idle cores on seperate physical CPUs.
681	 */
682	ksg->ksg_idlemask |= PCPU_GET(cpumask);
683	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
684		return (1);
685	atomic_set_int(&kseq_idle, ksg->ksg_mask);
686	return (1);
687}
688
689static void
690kseq_assign(struct kseq *kseq)
691{
692	struct kse *nke;
693	struct kse *ke;
694
695	do {
696		*(volatile struct kse **)&ke = kseq->ksq_assigned;
697	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
698	for (; ke != NULL; ke = nke) {
699		nke = ke->ke_assign;
700		ke->ke_flags &= ~KEF_ASSIGNED;
701		SLOT_RELEASE(ke->ke_thread->td_ksegrp);
702		sched_add_internal(ke->ke_thread, 0);
703	}
704}
705
706static void
707kseq_notify(struct kse *ke, int cpu)
708{
709	struct kseq *kseq;
710	struct thread *td;
711	struct pcpu *pcpu;
712	int prio;
713
714	ke->ke_cpu = cpu;
715	ke->ke_flags |= KEF_ASSIGNED;
716	SLOT_USE(ke->ke_thread->td_ksegrp);
717	prio = ke->ke_thread->td_priority;
718
719	kseq = KSEQ_CPU(cpu);
720
721	/*
722	 * Place a KSE on another cpu's queue and force a resched.
723	 */
724	do {
725		*(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned;
726	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
727	/*
728	 * Without sched_lock we could lose a race where we set NEEDRESCHED
729	 * on a thread that is switched out before the IPI is delivered.  This
730	 * would lead us to miss the resched.  This will be a problem once
731	 * sched_lock is pushed down.
732	 */
733	pcpu = pcpu_find(cpu);
734	td = pcpu->pc_curthread;
735	if (ke->ke_thread->td_priority < td->td_priority ||
736	    td == pcpu->pc_idlethread) {
737		td->td_flags |= TDF_NEEDRESCHED;
738		ipi_selected(1 << cpu, IPI_AST);
739	}
740}
741
742static struct kse *
743runq_steal(struct runq *rq)
744{
745	struct rqhead *rqh;
746	struct rqbits *rqb;
747	struct kse *ke;
748	int word;
749	int bit;
750
751	mtx_assert(&sched_lock, MA_OWNED);
752	rqb = &rq->rq_status;
753	for (word = 0; word < RQB_LEN; word++) {
754		if (rqb->rqb_bits[word] == 0)
755			continue;
756		for (bit = 0; bit < RQB_BPW; bit++) {
757			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
758				continue;
759			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
760			TAILQ_FOREACH(ke, rqh, ke_procq) {
761				if (KSE_CAN_MIGRATE(ke,
762				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
763					return (ke);
764			}
765		}
766	}
767	return (NULL);
768}
769
770static struct kse *
771kseq_steal(struct kseq *kseq, int stealidle)
772{
773	struct kse *ke;
774
775	/*
776	 * Steal from next first to try to get a non-interactive task that
777	 * may not have run for a while.
778	 */
779	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
780		return (ke);
781	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
782		return (ke);
783	if (stealidle)
784		return (runq_steal(&kseq->ksq_idle));
785	return (NULL);
786}
787
788int
789kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
790{
791	struct kseq_group *ksg;
792	int cpu;
793
794	if (smp_started == 0)
795		return (0);
796	cpu = 0;
797	/*
798	 * If our load exceeds a certain threshold we should attempt to
799	 * reassign this thread.  The first candidate is the cpu that
800	 * originally ran the thread.  If it is idle, assign it there,
801	 * otherwise, pick an idle cpu.
802	 *
803	 * The threshold at which we start to reassign kses has a large impact
804	 * on the overall performance of the system.  Tuned too high and
805	 * some CPUs may idle.  Too low and there will be excess migration
806	 * and context switches.
807	 */
808	ksg = kseq->ksq_group;
809	if (ksg->ksg_load > ksg->ksg_cpus && kseq_idle) {
810		ksg = KSEQ_CPU(ke->ke_cpu)->ksq_group;
811		if (kseq_idle & ksg->ksg_mask) {
812			cpu = ffs(ksg->ksg_idlemask);
813			if (cpu)
814				goto migrate;
815		}
816		/*
817		 * Multiple cpus could find this bit simultaneously
818		 * but the race shouldn't be terrible.
819		 */
820		cpu = ffs(kseq_idle);
821		if (cpu)
822			goto migrate;
823	}
824	/*
825	 * If another cpu in this group has idled, assign a thread over
826	 * to them after checking to see if there are idled groups.
827	 */
828	ksg = kseq->ksq_group;
829	if (ksg->ksg_idlemask) {
830		cpu = ffs(ksg->ksg_idlemask);
831		if (cpu)
832			goto migrate;
833	}
834	/*
835	 * No new CPU was found.
836	 */
837	return (0);
838migrate:
839	/*
840	 * Now that we've found an idle CPU, migrate the thread.
841	 */
842	cpu--;
843	ke->ke_runq = NULL;
844	kseq_notify(ke, cpu);
845
846	return (1);
847}
848
849#endif	/* SMP */
850
851/*
852 * Pick the highest priority task we have and return it.
853 */
854
855static struct kse *
856kseq_choose(struct kseq *kseq)
857{
858	struct runq *swap;
859	struct kse *ke;
860	int nice;
861
862	mtx_assert(&sched_lock, MA_OWNED);
863	swap = NULL;
864
865	for (;;) {
866		ke = runq_choose(kseq->ksq_curr);
867		if (ke == NULL) {
868			/*
869			 * We already swapped once and didn't get anywhere.
870			 */
871			if (swap)
872				break;
873			swap = kseq->ksq_curr;
874			kseq->ksq_curr = kseq->ksq_next;
875			kseq->ksq_next = swap;
876			continue;
877		}
878		/*
879		 * If we encounter a slice of 0 the kse is in a
880		 * TIMESHARE kse group and its nice was too far out
881		 * of the range that receives slices.
882		 */
883		nice = ke->ke_proc->p_nice + (0 - kseq->ksq_nicemin);
884		if (ke->ke_slice == 0 || (nice > SCHED_SLICE_NTHRESH &&
885		    ke->ke_proc->p_nice != 0)) {
886			runq_remove(ke->ke_runq, ke);
887			sched_slice(ke);
888			ke->ke_runq = kseq->ksq_next;
889			runq_add(ke->ke_runq, ke, 0);
890			continue;
891		}
892		return (ke);
893	}
894
895	return (runq_choose(&kseq->ksq_idle));
896}
897
898static void
899kseq_setup(struct kseq *kseq)
900{
901	runq_init(&kseq->ksq_timeshare[0]);
902	runq_init(&kseq->ksq_timeshare[1]);
903	runq_init(&kseq->ksq_idle);
904	kseq->ksq_curr = &kseq->ksq_timeshare[0];
905	kseq->ksq_next = &kseq->ksq_timeshare[1];
906	kseq->ksq_load = 0;
907	kseq->ksq_load_timeshare = 0;
908}
909
910static void
911sched_setup(void *dummy)
912{
913#ifdef SMP
914	int balance_groups;
915	int i;
916#endif
917
918	slice_min = (hz/100);	/* 10ms */
919	slice_max = (hz/7);	/* ~140ms */
920
921#ifdef SMP
922	balance_groups = 0;
923	/*
924	 * Initialize the kseqs.
925	 */
926	for (i = 0; i < MAXCPU; i++) {
927		struct kseq *ksq;
928
929		ksq = &kseq_cpu[i];
930		ksq->ksq_assigned = NULL;
931		kseq_setup(&kseq_cpu[i]);
932	}
933	if (smp_topology == NULL) {
934		struct kseq_group *ksg;
935		struct kseq *ksq;
936
937		for (i = 0; i < MAXCPU; i++) {
938			ksq = &kseq_cpu[i];
939			ksg = &kseq_groups[i];
940			/*
941			 * Setup a kseq group with one member.
942			 */
943			ksq->ksq_transferable = 0;
944			ksq->ksq_group = ksg;
945			ksg->ksg_cpus = 1;
946			ksg->ksg_idlemask = 0;
947			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
948			ksg->ksg_load = 0;
949			ksg->ksg_transferable = 0;
950			LIST_INIT(&ksg->ksg_members);
951			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
952		}
953	} else {
954		struct kseq_group *ksg;
955		struct cpu_group *cg;
956		int j;
957
958		for (i = 0; i < smp_topology->ct_count; i++) {
959			cg = &smp_topology->ct_group[i];
960			ksg = &kseq_groups[i];
961			/*
962			 * Initialize the group.
963			 */
964			ksg->ksg_idlemask = 0;
965			ksg->ksg_load = 0;
966			ksg->ksg_transferable = 0;
967			ksg->ksg_cpus = cg->cg_count;
968			ksg->ksg_cpumask = cg->cg_mask;
969			LIST_INIT(&ksg->ksg_members);
970			/*
971			 * Find all of the group members and add them.
972			 */
973			for (j = 0; j < MAXCPU; j++) {
974				if ((cg->cg_mask & (1 << j)) != 0) {
975					if (ksg->ksg_mask == 0)
976						ksg->ksg_mask = 1 << j;
977					kseq_cpu[j].ksq_transferable = 0;
978					kseq_cpu[j].ksq_group = ksg;
979					LIST_INSERT_HEAD(&ksg->ksg_members,
980					    &kseq_cpu[j], ksq_siblings);
981				}
982			}
983			if (ksg->ksg_cpus > 1)
984				balance_groups = 1;
985		}
986		ksg_maxid = smp_topology->ct_count - 1;
987	}
988	/*
989	 * Stagger the group and global load balancer so they do not
990	 * interfere with each other.
991	 */
992	bal_tick = ticks + hz;
993	if (balance_groups)
994		gbal_tick = ticks + (hz / 2);
995#else
996	kseq_setup(KSEQ_SELF());
997#endif
998	mtx_lock_spin(&sched_lock);
999	kseq_load_add(KSEQ_SELF(), &kse0);
1000	mtx_unlock_spin(&sched_lock);
1001}
1002
1003/*
1004 * Scale the scheduling priority according to the "interactivity" of this
1005 * process.
1006 */
1007static void
1008sched_priority(struct ksegrp *kg)
1009{
1010	int pri;
1011
1012	if (kg->kg_pri_class != PRI_TIMESHARE)
1013		return;
1014
1015	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
1016	pri += SCHED_PRI_BASE;
1017	pri += kg->kg_proc->p_nice;
1018
1019	if (pri > PRI_MAX_TIMESHARE)
1020		pri = PRI_MAX_TIMESHARE;
1021	else if (pri < PRI_MIN_TIMESHARE)
1022		pri = PRI_MIN_TIMESHARE;
1023
1024	kg->kg_user_pri = pri;
1025
1026	return;
1027}
1028
1029/*
1030 * Calculate a time slice based on the properties of the kseg and the runq
1031 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
1032 */
1033static void
1034sched_slice(struct kse *ke)
1035{
1036	struct kseq *kseq;
1037	struct ksegrp *kg;
1038
1039	kg = ke->ke_ksegrp;
1040	kseq = KSEQ_CPU(ke->ke_cpu);
1041
1042	if (ke->ke_flags & KEF_PRIOELEV) {
1043		ke->ke_slice = SCHED_SLICE_MIN;
1044		return;
1045	}
1046
1047	/*
1048	 * Rationale:
1049	 * KSEs in interactive ksegs get a minimal slice so that we
1050	 * quickly notice if it abuses its advantage.
1051	 *
1052	 * KSEs in non-interactive ksegs are assigned a slice that is
1053	 * based on the ksegs nice value relative to the least nice kseg
1054	 * on the run queue for this cpu.
1055	 *
1056	 * If the KSE is less nice than all others it gets the maximum
1057	 * slice and other KSEs will adjust their slice relative to
1058	 * this when they first expire.
1059	 *
1060	 * There is 20 point window that starts relative to the least
1061	 * nice kse on the run queue.  Slice size is determined by
1062	 * the kse distance from the last nice ksegrp.
1063	 *
1064	 * If the kse is outside of the window it will get no slice
1065	 * and will be reevaluated each time it is selected on the
1066	 * run queue.  The exception to this is nice 0 ksegs when
1067	 * a nice -20 is running.  They are always granted a minimum
1068	 * slice.
1069	 */
1070	if (!SCHED_INTERACTIVE(kg)) {
1071		int nice;
1072
1073		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
1074		if (kseq->ksq_load_timeshare == 0 ||
1075		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
1076			ke->ke_slice = SCHED_SLICE_MAX;
1077		else if (nice <= SCHED_SLICE_NTHRESH)
1078			ke->ke_slice = SCHED_SLICE_NICE(nice);
1079		else if (kg->kg_proc->p_nice == 0)
1080			ke->ke_slice = SCHED_SLICE_MIN;
1081		else
1082			ke->ke_slice = 0;
1083	} else
1084		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1085
1086	CTR6(KTR_ULE,
1087	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1088	    ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
1089	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1090
1091	return;
1092}
1093
1094/*
1095 * This routine enforces a maximum limit on the amount of scheduling history
1096 * kept.  It is called after either the slptime or runtime is adjusted.
1097 * This routine will not operate correctly when slp or run times have been
1098 * adjusted to more than double their maximum.
1099 */
1100static void
1101sched_interact_update(struct ksegrp *kg)
1102{
1103	int sum;
1104
1105	sum = kg->kg_runtime + kg->kg_slptime;
1106	if (sum < SCHED_SLP_RUN_MAX)
1107		return;
1108	/*
1109	 * If we have exceeded by more than 1/5th then the algorithm below
1110	 * will not bring us back into range.  Dividing by two here forces
1111	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1112	 */
1113	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1114		kg->kg_runtime /= 2;
1115		kg->kg_slptime /= 2;
1116		return;
1117	}
1118	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1119	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1120}
1121
1122static void
1123sched_interact_fork(struct ksegrp *kg)
1124{
1125	int ratio;
1126	int sum;
1127
1128	sum = kg->kg_runtime + kg->kg_slptime;
1129	if (sum > SCHED_SLP_RUN_FORK) {
1130		ratio = sum / SCHED_SLP_RUN_FORK;
1131		kg->kg_runtime /= ratio;
1132		kg->kg_slptime /= ratio;
1133	}
1134}
1135
1136static int
1137sched_interact_score(struct ksegrp *kg)
1138{
1139	int div;
1140
1141	if (kg->kg_runtime > kg->kg_slptime) {
1142		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1143		return (SCHED_INTERACT_HALF +
1144		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1145	} if (kg->kg_slptime > kg->kg_runtime) {
1146		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1147		return (kg->kg_runtime / div);
1148	}
1149
1150	/*
1151	 * This can happen if slptime and runtime are 0.
1152	 */
1153	return (0);
1154
1155}
1156
1157/*
1158 * Very early in the boot some setup of scheduler-specific
1159 * parts of proc0 and of soem scheduler resources needs to be done.
1160 * Called from:
1161 *  proc0_init()
1162 */
1163void
1164schedinit(void)
1165{
1166	/*
1167	 * Set up the scheduler specific parts of proc0.
1168	 */
1169	proc0.p_sched = NULL; /* XXX */
1170	ksegrp0.kg_sched = &kg_sched0;
1171	thread0.td_sched = &kse0;
1172	kse0.ke_thread = &thread0;
1173	kse0.ke_state = KES_THREAD;
1174	kg_sched0.skg_concurrency = 1;
1175	kg_sched0.skg_avail_opennings = 0; /* we are already running */
1176}
1177
1178/*
1179 * This is only somewhat accurate since given many processes of the same
1180 * priority they will switch when their slices run out, which will be
1181 * at most SCHED_SLICE_MAX.
1182 */
1183int
1184sched_rr_interval(void)
1185{
1186	return (SCHED_SLICE_MAX);
1187}
1188
1189static void
1190sched_pctcpu_update(struct kse *ke)
1191{
1192	/*
1193	 * Adjust counters and watermark for pctcpu calc.
1194	 */
1195	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1196		/*
1197		 * Shift the tick count out so that the divide doesn't
1198		 * round away our results.
1199		 */
1200		ke->ke_ticks <<= 10;
1201		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1202			    SCHED_CPU_TICKS;
1203		ke->ke_ticks >>= 10;
1204	} else
1205		ke->ke_ticks = 0;
1206	ke->ke_ltick = ticks;
1207	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1208}
1209
1210void
1211sched_prio(struct thread *td, u_char prio)
1212{
1213	struct kse *ke;
1214
1215	ke = td->td_kse;
1216	mtx_assert(&sched_lock, MA_OWNED);
1217	if (TD_ON_RUNQ(td)) {
1218		/*
1219		 * If the priority has been elevated due to priority
1220		 * propagation, we may have to move ourselves to a new
1221		 * queue.  We still call adjustrunqueue below in case kse
1222		 * needs to fix things up.
1223		 */
1224		if (prio < td->td_priority && ke->ke_runq != NULL &&
1225		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1226		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1227			runq_remove(ke->ke_runq, ke);
1228			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1229			runq_add(ke->ke_runq, ke, 0);
1230		}
1231		if (prio < td->td_priority)
1232			ke->ke_flags |= KEF_PRIOELEV;
1233		/*
1234		 * Hold this kse on this cpu so that sched_prio() doesn't
1235		 * cause excessive migration.  We only want migration to
1236		 * happen as the result of a wakeup.
1237		 */
1238		ke->ke_flags |= KEF_HOLD;
1239		adjustrunqueue(td, prio);
1240	} else
1241		td->td_priority = prio;
1242}
1243
1244void
1245sched_switch(struct thread *td, struct thread *newtd, int flags)
1246{
1247	struct kse *ke;
1248
1249	mtx_assert(&sched_lock, MA_OWNED);
1250
1251	ke = td->td_kse;
1252
1253	td->td_lastcpu = td->td_oncpu;
1254	td->td_oncpu = NOCPU;
1255	td->td_flags &= ~TDF_NEEDRESCHED;
1256	td->td_pflags &= ~TDP_OWEPREEMPT;
1257
1258	/*
1259	 * If the KSE has been assigned it may be in the process of switching
1260	 * to the new cpu.  This is the case in sched_bind().
1261	 */
1262	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1263		if (td == PCPU_GET(idlethread)) {
1264			TD_SET_CAN_RUN(td);
1265		} else {
1266			/* We are ending our run so make our slot available again */
1267			SLOT_RELEASE(td->td_ksegrp);
1268			if (TD_IS_RUNNING(td)) {
1269				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1270				/*
1271				 * Don't allow the thread to migrate
1272				 * from a preemption.
1273				 */
1274				ke->ke_flags |= KEF_HOLD;
1275				setrunqueue(td, SRQ_OURSELF|SRQ_YIELDING);
1276			} else {
1277				if (ke->ke_runq) {
1278					kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1279				} else if ((td->td_flags & TDF_IDLETD) == 0)
1280					kdb_backtrace();
1281				/*
1282				 * We will not be on the run queue.
1283				 * So we must be sleeping or similar.
1284				 * Don't use the slot if we will need it
1285				 * for newtd.
1286				 */
1287				if ((td->td_proc->p_flag & P_HADTHREADS) &&
1288				    (newtd == NULL ||
1289				    newtd->td_ksegrp != td->td_ksegrp))
1290					slot_fill(td->td_ksegrp);
1291			}
1292		}
1293	}
1294	if (newtd != NULL) {
1295		/*
1296		 * If we bring in a thread,
1297		 * then account for it as if it had been added to the
1298		 * run queue and then chosen.
1299		 */
1300		newtd->td_kse->ke_flags |= KEF_DIDRUN;
1301		SLOT_USE(newtd->td_ksegrp);
1302		TD_SET_RUNNING(newtd);
1303		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1304	} else
1305		newtd = choosethread();
1306	if (td != newtd)
1307		cpu_switch(td, newtd);
1308	sched_lock.mtx_lock = (uintptr_t)td;
1309
1310	td->td_oncpu = PCPU_GET(cpuid);
1311}
1312
1313void
1314sched_nice(struct proc *p, int nice)
1315{
1316	struct ksegrp *kg;
1317	struct kse *ke;
1318	struct thread *td;
1319	struct kseq *kseq;
1320
1321	PROC_LOCK_ASSERT(p, MA_OWNED);
1322	mtx_assert(&sched_lock, MA_OWNED);
1323	/*
1324	 * We need to adjust the nice counts for running KSEs.
1325	 */
1326	FOREACH_KSEGRP_IN_PROC(p, kg) {
1327		if (kg->kg_pri_class == PRI_TIMESHARE) {
1328			FOREACH_THREAD_IN_GROUP(kg, td) {
1329				ke = td->td_kse;
1330				if (ke->ke_runq == NULL)
1331					continue;
1332				kseq = KSEQ_CPU(ke->ke_cpu);
1333				kseq_nice_rem(kseq, p->p_nice);
1334				kseq_nice_add(kseq, nice);
1335			}
1336		}
1337	}
1338	p->p_nice = nice;
1339	FOREACH_KSEGRP_IN_PROC(p, kg) {
1340		sched_priority(kg);
1341		FOREACH_THREAD_IN_GROUP(kg, td)
1342			td->td_flags |= TDF_NEEDRESCHED;
1343	}
1344}
1345
1346void
1347sched_sleep(struct thread *td)
1348{
1349	mtx_assert(&sched_lock, MA_OWNED);
1350
1351	td->td_slptime = ticks;
1352	td->td_base_pri = td->td_priority;
1353
1354	CTR2(KTR_ULE, "sleep thread %p (tick: %d)",
1355	    td, td->td_slptime);
1356}
1357
1358void
1359sched_wakeup(struct thread *td)
1360{
1361	mtx_assert(&sched_lock, MA_OWNED);
1362
1363	/*
1364	 * Let the kseg know how long we slept for.  This is because process
1365	 * interactivity behavior is modeled in the kseg.
1366	 */
1367	if (td->td_slptime) {
1368		struct ksegrp *kg;
1369		int hzticks;
1370
1371		kg = td->td_ksegrp;
1372		hzticks = (ticks - td->td_slptime) << 10;
1373		if (hzticks >= SCHED_SLP_RUN_MAX) {
1374			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1375			kg->kg_runtime = 1;
1376		} else {
1377			kg->kg_slptime += hzticks;
1378			sched_interact_update(kg);
1379		}
1380		sched_priority(kg);
1381		sched_slice(td->td_kse);
1382		CTR2(KTR_ULE, "wakeup thread %p (%d ticks)", td, hzticks);
1383		td->td_slptime = 0;
1384	}
1385	setrunqueue(td, SRQ_BORING);
1386}
1387
1388/*
1389 * Penalize the parent for creating a new child and initialize the child's
1390 * priority.
1391 */
1392void
1393sched_fork(struct thread *td, struct thread *childtd)
1394{
1395
1396	mtx_assert(&sched_lock, MA_OWNED);
1397
1398	sched_fork_ksegrp(td, childtd->td_ksegrp);
1399	sched_fork_thread(td, childtd);
1400}
1401
1402void
1403sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1404{
1405	struct ksegrp *kg = td->td_ksegrp;
1406	mtx_assert(&sched_lock, MA_OWNED);
1407
1408	child->kg_slptime = kg->kg_slptime;
1409	child->kg_runtime = kg->kg_runtime;
1410	child->kg_user_pri = kg->kg_user_pri;
1411	sched_interact_fork(child);
1412	kg->kg_runtime += tickincr << 10;
1413	sched_interact_update(kg);
1414
1415	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1416	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1417	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1418}
1419
1420void
1421sched_fork_thread(struct thread *td, struct thread *child)
1422{
1423	struct kse *ke;
1424	struct kse *ke2;
1425
1426	sched_newthread(child);
1427	ke = td->td_kse;
1428	ke2 = child->td_kse;
1429	ke2->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1430	ke2->ke_cpu = ke->ke_cpu;
1431	ke2->ke_runq = NULL;
1432
1433	/* Grab our parents cpu estimation information. */
1434	ke2->ke_ticks = ke->ke_ticks;
1435	ke2->ke_ltick = ke->ke_ltick;
1436	ke2->ke_ftick = ke->ke_ftick;
1437}
1438
1439void
1440sched_class(struct ksegrp *kg, int class)
1441{
1442	struct kseq *kseq;
1443	struct kse *ke;
1444	struct thread *td;
1445	int nclass;
1446	int oclass;
1447
1448	mtx_assert(&sched_lock, MA_OWNED);
1449	if (kg->kg_pri_class == class)
1450		return;
1451
1452	nclass = PRI_BASE(class);
1453	oclass = PRI_BASE(kg->kg_pri_class);
1454	FOREACH_THREAD_IN_GROUP(kg, td) {
1455		ke = td->td_kse;
1456		if (ke->ke_state != KES_ONRUNQ &&
1457		    ke->ke_state != KES_THREAD)
1458			continue;
1459		kseq = KSEQ_CPU(ke->ke_cpu);
1460
1461#ifdef SMP
1462		/*
1463		 * On SMP if we're on the RUNQ we must adjust the transferable
1464		 * count because could be changing to or from an interrupt
1465		 * class.
1466		 */
1467		if (ke->ke_state == KES_ONRUNQ) {
1468			if (KSE_CAN_MIGRATE(ke, oclass)) {
1469				kseq->ksq_transferable--;
1470				kseq->ksq_group->ksg_transferable--;
1471			}
1472			if (KSE_CAN_MIGRATE(ke, nclass)) {
1473				kseq->ksq_transferable++;
1474				kseq->ksq_group->ksg_transferable++;
1475			}
1476		}
1477#endif
1478		if (oclass == PRI_TIMESHARE) {
1479			kseq->ksq_load_timeshare--;
1480			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1481		}
1482		if (nclass == PRI_TIMESHARE) {
1483			kseq->ksq_load_timeshare++;
1484			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1485		}
1486	}
1487
1488	kg->kg_pri_class = class;
1489}
1490
1491/*
1492 * Return some of the child's priority and interactivity to the parent.
1493 * Avoid using sched_exit_thread to avoid having to decide which
1494 * thread in the parent gets the honour since it isn't used.
1495 */
1496void
1497sched_exit(struct proc *p, struct thread *childtd)
1498{
1499	mtx_assert(&sched_lock, MA_OWNED);
1500	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd);
1501	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1502}
1503
1504void
1505sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1506{
1507	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1508	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1509	sched_interact_update(kg);
1510}
1511
1512void
1513sched_exit_thread(struct thread *td, struct thread *childtd)
1514{
1515	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1516}
1517
1518void
1519sched_clock(struct thread *td)
1520{
1521	struct kseq *kseq;
1522	struct ksegrp *kg;
1523	struct kse *ke;
1524
1525	mtx_assert(&sched_lock, MA_OWNED);
1526	kseq = KSEQ_SELF();
1527#ifdef SMP
1528	if (ticks == bal_tick)
1529		sched_balance();
1530	if (ticks == gbal_tick)
1531		sched_balance_groups();
1532	/*
1533	 * We could have been assigned a non real-time thread without an
1534	 * IPI.
1535	 */
1536	if (kseq->ksq_assigned)
1537		kseq_assign(kseq);	/* Potentially sets NEEDRESCHED */
1538#endif
1539	/*
1540	 * sched_setup() apparently happens prior to stathz being set.  We
1541	 * need to resolve the timers earlier in the boot so we can avoid
1542	 * calculating this here.
1543	 */
1544	if (realstathz == 0) {
1545		realstathz = stathz ? stathz : hz;
1546		tickincr = hz / realstathz;
1547		/*
1548		 * XXX This does not work for values of stathz that are much
1549		 * larger than hz.
1550		 */
1551		if (tickincr == 0)
1552			tickincr = 1;
1553	}
1554
1555	ke = td->td_kse;
1556	kg = ke->ke_ksegrp;
1557
1558	/* Adjust ticks for pctcpu */
1559	ke->ke_ticks++;
1560	ke->ke_ltick = ticks;
1561
1562	/* Go up to one second beyond our max and then trim back down */
1563	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1564		sched_pctcpu_update(ke);
1565
1566	if (td->td_flags & TDF_IDLETD)
1567		return;
1568
1569	CTR4(KTR_ULE, "Tick thread %p (slice: %d, slptime: %d, runtime: %d)",
1570	    td, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1571	/*
1572	 * We only do slicing code for TIMESHARE ksegrps.
1573	 */
1574	if (kg->kg_pri_class != PRI_TIMESHARE)
1575		return;
1576	/*
1577	 * We used a tick charge it to the ksegrp so that we can compute our
1578	 * interactivity.
1579	 */
1580	kg->kg_runtime += tickincr << 10;
1581	sched_interact_update(kg);
1582
1583	/*
1584	 * We used up one time slice.
1585	 */
1586	if (--ke->ke_slice > 0)
1587		return;
1588	/*
1589	 * We're out of time, recompute priorities and requeue.
1590	 */
1591	kseq_load_rem(kseq, ke);
1592	sched_priority(kg);
1593	sched_slice(ke);
1594	if (SCHED_CURR(kg, ke))
1595		ke->ke_runq = kseq->ksq_curr;
1596	else
1597		ke->ke_runq = kseq->ksq_next;
1598	kseq_load_add(kseq, ke);
1599	td->td_flags |= TDF_NEEDRESCHED;
1600}
1601
1602int
1603sched_runnable(void)
1604{
1605	struct kseq *kseq;
1606	int load;
1607
1608	load = 1;
1609
1610	kseq = KSEQ_SELF();
1611#ifdef SMP
1612	if (kseq->ksq_assigned) {
1613		mtx_lock_spin(&sched_lock);
1614		kseq_assign(kseq);
1615		mtx_unlock_spin(&sched_lock);
1616	}
1617#endif
1618	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1619		if (kseq->ksq_load > 0)
1620			goto out;
1621	} else
1622		if (kseq->ksq_load - 1 > 0)
1623			goto out;
1624	load = 0;
1625out:
1626	return (load);
1627}
1628
1629void
1630sched_userret(struct thread *td)
1631{
1632	struct ksegrp *kg;
1633	struct kse *ke;
1634
1635	kg = td->td_ksegrp;
1636	ke = td->td_kse;
1637
1638	if (td->td_priority != kg->kg_user_pri ||
1639	    ke->ke_flags & KEF_PRIOELEV) {
1640		mtx_lock_spin(&sched_lock);
1641		td->td_priority = kg->kg_user_pri;
1642		if (ke->ke_flags & KEF_PRIOELEV) {
1643			ke->ke_flags &= ~KEF_PRIOELEV;
1644			sched_slice(ke);
1645			if (ke->ke_slice == 0)
1646				mi_switch(SW_INVOL, NULL);
1647		}
1648		mtx_unlock_spin(&sched_lock);
1649	}
1650}
1651
1652struct kse *
1653sched_choose(void)
1654{
1655	struct kseq *kseq;
1656	struct kse *ke;
1657
1658	mtx_assert(&sched_lock, MA_OWNED);
1659	kseq = KSEQ_SELF();
1660#ifdef SMP
1661restart:
1662	if (kseq->ksq_assigned)
1663		kseq_assign(kseq);
1664#endif
1665	ke = kseq_choose(kseq);
1666	if (ke) {
1667#ifdef SMP
1668		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1669			if (kseq_idled(kseq) == 0)
1670				goto restart;
1671#endif
1672		kseq_runq_rem(kseq, ke);
1673		ke->ke_state = KES_THREAD;
1674
1675		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1676			CTR4(KTR_ULE, "Run thread %p from %p (slice: %d, pri: %d)",
1677			    ke->ke_thread, ke->ke_runq, ke->ke_slice,
1678			    ke->ke_thread->td_priority);
1679		}
1680		return (ke);
1681	}
1682#ifdef SMP
1683	if (kseq_idled(kseq) == 0)
1684		goto restart;
1685#endif
1686	return (NULL);
1687}
1688
1689void
1690sched_add(struct thread *td, int flags)
1691{
1692
1693	/* let jeff work out how to map the flags better */
1694	/* I'm open to suggestions */
1695	if (flags & SRQ_YIELDING)
1696		/*
1697		 * Preempting during switching can be bad JUJU
1698		 * especially for KSE processes
1699		 */
1700		sched_add_internal(td, 0);
1701	else
1702		sched_add_internal(td, 1);
1703}
1704
1705static void
1706sched_add_internal(struct thread *td, int preemptive)
1707{
1708	struct kseq *kseq;
1709	struct ksegrp *kg;
1710	struct kse *ke;
1711#ifdef SMP
1712	int canmigrate;
1713#endif
1714	int class;
1715
1716	mtx_assert(&sched_lock, MA_OWNED);
1717	ke = td->td_kse;
1718	kg = td->td_ksegrp;
1719	if (ke->ke_flags & KEF_ASSIGNED) {
1720		if (ke->ke_flags & KEF_REMOVED) {
1721			SLOT_USE(ke->ke_ksegrp);
1722			ke->ke_flags &= ~KEF_REMOVED;
1723		}
1724		return;
1725	}
1726	kseq = KSEQ_SELF();
1727	KASSERT(ke->ke_state != KES_ONRUNQ,
1728	    ("sched_add: kse %p (%s) already in run queue", ke,
1729	    ke->ke_proc->p_comm));
1730	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1731	    ("sched_add: process swapped out"));
1732	KASSERT(ke->ke_runq == NULL,
1733	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1734
1735	class = PRI_BASE(kg->kg_pri_class);
1736	switch (class) {
1737	case PRI_ITHD:
1738	case PRI_REALTIME:
1739		ke->ke_runq = kseq->ksq_curr;
1740		ke->ke_slice = SCHED_SLICE_MAX;
1741		ke->ke_cpu = PCPU_GET(cpuid);
1742		break;
1743	case PRI_TIMESHARE:
1744		if (SCHED_CURR(kg, ke))
1745			ke->ke_runq = kseq->ksq_curr;
1746		else
1747			ke->ke_runq = kseq->ksq_next;
1748		break;
1749	case PRI_IDLE:
1750		/*
1751		 * This is for priority prop.
1752		 */
1753		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1754			ke->ke_runq = kseq->ksq_curr;
1755		else
1756			ke->ke_runq = &kseq->ksq_idle;
1757		ke->ke_slice = SCHED_SLICE_MIN;
1758		break;
1759	default:
1760		panic("Unknown pri class.");
1761		break;
1762	}
1763#ifdef SMP
1764	/*
1765	 * Don't migrate running threads here.  Force the long term balancer
1766	 * to do it.
1767	 */
1768	canmigrate = KSE_CAN_MIGRATE(ke, class);
1769	if (ke->ke_flags & KEF_HOLD) {
1770		ke->ke_flags &= ~KEF_HOLD;
1771		canmigrate = 0;
1772	}
1773	/*
1774	 * If this thread is pinned or bound, notify the target cpu.
1775	 */
1776	if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) {
1777		ke->ke_runq = NULL;
1778		kseq_notify(ke, ke->ke_cpu);
1779		return;
1780	}
1781	/*
1782	 * If we had been idle, clear our bit in the group and potentially
1783	 * the global bitmap.  If not, see if we should transfer this thread.
1784	 */
1785	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1786	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1787		/*
1788		 * Check to see if our group is unidling, and if so, remove it
1789		 * from the global idle mask.
1790		 */
1791		if (kseq->ksq_group->ksg_idlemask ==
1792		    kseq->ksq_group->ksg_cpumask)
1793			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1794		/*
1795		 * Now remove ourselves from the group specific idle mask.
1796		 */
1797		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1798	} else if (kseq->ksq_load > 1 && canmigrate)
1799		if (kseq_transfer(kseq, ke, class))
1800			return;
1801	ke->ke_cpu = PCPU_GET(cpuid);
1802#endif
1803	/*
1804	 * XXX With preemption this is not necessary.
1805	 */
1806	if (td->td_priority < curthread->td_priority &&
1807	    ke->ke_runq == kseq->ksq_curr)
1808		curthread->td_flags |= TDF_NEEDRESCHED;
1809	if (preemptive && maybe_preempt(td))
1810		return;
1811	SLOT_USE(td->td_ksegrp);
1812	ke->ke_state = KES_ONRUNQ;
1813
1814	kseq_runq_add(kseq, ke);
1815	kseq_load_add(kseq, ke);
1816}
1817
1818void
1819sched_rem(struct thread *td)
1820{
1821	struct kseq *kseq;
1822	struct kse *ke;
1823
1824	mtx_assert(&sched_lock, MA_OWNED);
1825	ke = td->td_kse;
1826	/*
1827	 * It is safe to just return here because sched_rem() is only ever
1828	 * used in places where we're immediately going to add the
1829	 * kse back on again.  In that case it'll be added with the correct
1830	 * thread and priority when the caller drops the sched_lock.
1831	 */
1832	if (ke->ke_flags & KEF_ASSIGNED) {
1833		SLOT_RELEASE(td->td_ksegrp);
1834		ke->ke_flags |= KEF_REMOVED;
1835		return;
1836	}
1837	KASSERT((ke->ke_state == KES_ONRUNQ),
1838	    ("sched_rem: KSE not on run queue"));
1839
1840	SLOT_RELEASE(td->td_ksegrp);
1841	ke->ke_state = KES_THREAD;
1842	kseq = KSEQ_CPU(ke->ke_cpu);
1843	kseq_runq_rem(kseq, ke);
1844	kseq_load_rem(kseq, ke);
1845}
1846
1847fixpt_t
1848sched_pctcpu(struct thread *td)
1849{
1850	fixpt_t pctcpu;
1851	struct kse *ke;
1852
1853	pctcpu = 0;
1854	ke = td->td_kse;
1855	if (ke == NULL)
1856		return (0);
1857
1858	mtx_lock_spin(&sched_lock);
1859	if (ke->ke_ticks) {
1860		int rtick;
1861
1862		/*
1863		 * Don't update more frequently than twice a second.  Allowing
1864		 * this causes the cpu usage to decay away too quickly due to
1865		 * rounding errors.
1866		 */
1867		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1868		    ke->ke_ltick < (ticks - (hz / 2)))
1869			sched_pctcpu_update(ke);
1870		/* How many rtick per second ? */
1871		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1872		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1873	}
1874
1875	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1876	mtx_unlock_spin(&sched_lock);
1877
1878	return (pctcpu);
1879}
1880
1881void
1882sched_bind(struct thread *td, int cpu)
1883{
1884	struct kse *ke;
1885
1886	mtx_assert(&sched_lock, MA_OWNED);
1887	ke = td->td_kse;
1888	ke->ke_flags |= KEF_BOUND;
1889#ifdef SMP
1890	if (PCPU_GET(cpuid) == cpu)
1891		return;
1892	/* sched_rem without the runq_remove */
1893	ke->ke_state = KES_THREAD;
1894	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1895	kseq_notify(ke, cpu);
1896	/* When we return from mi_switch we'll be on the correct cpu. */
1897	mi_switch(SW_VOL, NULL);
1898#endif
1899}
1900
1901void
1902sched_unbind(struct thread *td)
1903{
1904	mtx_assert(&sched_lock, MA_OWNED);
1905	td->td_kse->ke_flags &= ~KEF_BOUND;
1906}
1907
1908int
1909sched_load(void)
1910{
1911#ifdef SMP
1912	int total;
1913	int i;
1914
1915	total = 0;
1916	for (i = 0; i <= ksg_maxid; i++)
1917		total += KSEQ_GROUP(i)->ksg_load;
1918	return (total);
1919#else
1920	return (KSEQ_SELF()->ksq_sysload);
1921#endif
1922}
1923
1924int
1925sched_sizeof_ksegrp(void)
1926{
1927	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1928}
1929
1930int
1931sched_sizeof_proc(void)
1932{
1933	return (sizeof(struct proc));
1934}
1935
1936int
1937sched_sizeof_thread(void)
1938{
1939	return (sizeof(struct thread) + sizeof(struct td_sched));
1940}
1941#define KERN_SWITCH_INCLUDE 1
1942#include "kern/kern_switch.c"
1943