sched_ule.c revision 137588
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 137588 2004-11-11 19:48:57Z jeff $");
29
30#include <opt_sched.h>
31
32#define kse td_sched
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kdb.h>
37#include <sys/kernel.h>
38#include <sys/ktr.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/proc.h>
42#include <sys/resource.h>
43#include <sys/resourcevar.h>
44#include <sys/sched.h>
45#include <sys/smp.h>
46#include <sys/sx.h>
47#include <sys/sysctl.h>
48#include <sys/sysproto.h>
49#include <sys/vmmeter.h>
50#ifdef KTRACE
51#include <sys/uio.h>
52#include <sys/ktrace.h>
53#endif
54
55#include <machine/cpu.h>
56#include <machine/smp.h>
57
58#define KTR_ULE	KTR_NFS
59
60/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
61/* XXX This is bogus compatability crap for ps */
62static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
63SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
64
65static void sched_setup(void *dummy);
66SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
67
68static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
69
70SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
71    "Scheduler name");
72
73static int slice_min = 1;
74SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
75
76static int slice_max = 10;
77SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
78
79int realstathz;
80int tickincr = 1;
81
82#ifdef PREEMPTION
83static void
84printf_caddr_t(void *data)
85{
86	printf("%s", (char *)data);
87}
88static char preempt_warning[] =
89    "WARNING: Kernel PREEMPTION is unstable under SCHED_ULE.\n";
90SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
91    preempt_warning)
92#endif
93
94/*
95 * The schedulable entity that can be given a context to run.
96 * A process may have several of these. Probably one per processor
97 * but posibly a few more. In this universe they are grouped
98 * with a KSEG that contains the priority and niceness
99 * for the group.
100 */
101struct kse {
102	TAILQ_ENTRY(kse) ke_kglist;	/* (*) Queue of threads in ke_ksegrp. */
103	TAILQ_ENTRY(kse) ke_kgrlist;	/* (*) Queue of threads in this state.*/
104	TAILQ_ENTRY(kse) ke_procq;	/* (j/z) Run queue. */
105	int		ke_flags;	/* (j) KEF_* flags. */
106	struct thread	*ke_thread;	/* (*) Active associated thread. */
107	fixpt_t		ke_pctcpu;	/* (j) %cpu during p_swtime. */
108	u_char		ke_oncpu;	/* (j) Which cpu we are on. */
109	char		ke_rqindex;	/* (j) Run queue index. */
110	enum {
111		KES_THREAD = 0x0,	/* slaved to thread state */
112		KES_ONRUNQ
113	} ke_state;			/* (j) thread sched specific status. */
114	int		ke_slptime;
115	int		ke_slice;
116	struct runq	*ke_runq;
117	u_char		ke_cpu;		/* CPU that we have affinity for. */
118	/* The following variables are only used for pctcpu calculation */
119	int		ke_ltick;	/* Last tick that we were running on */
120	int		ke_ftick;	/* First tick that we were running on */
121	int		ke_ticks;	/* Tick count */
122
123};
124
125
126#define td_kse td_sched
127#define	td_slptime		td_kse->ke_slptime
128#define ke_proc			ke_thread->td_proc
129#define ke_ksegrp		ke_thread->td_ksegrp
130
131/* flags kept in ke_flags */
132#define	KEF_SCHED0	0x00001	/* For scheduler-specific use. */
133#define	KEF_SCHED1	0x00002	/* For scheduler-specific use. */
134#define	KEF_SCHED2	0x00004	/* For scheduler-specific use. */
135#define	KEF_SCHED3	0x00008	/* For scheduler-specific use. */
136#define	KEF_DIDRUN	0x02000	/* Thread actually ran. */
137#define	KEF_EXIT	0x04000	/* Thread is being killed. */
138
139/*
140 * These datastructures are allocated within their parent datastructure but
141 * are scheduler specific.
142 */
143
144#define	ke_assign	ke_procq.tqe_next
145
146#define	KEF_ASSIGNED	KEF_SCHED0	/* Thread is being migrated. */
147#define	KEF_BOUND	KEF_SCHED1	/* Thread can not migrate. */
148#define	KEF_XFERABLE	KEF_SCHED2	/* Thread was added as transferable. */
149#define	KEF_HOLD	KEF_SCHED3	/* Thread is temporarily bound. */
150
151struct kg_sched {
152	struct thread	*skg_last_assigned; /* (j) Last thread assigned to */
153					   /* the system scheduler */
154	int	skg_slptime;		/* Number of ticks we vol. slept */
155	int	skg_runtime;		/* Number of ticks we were running */
156	int	skg_avail_opennings;	/* (j) Num unfilled slots in group.*/
157	int	skg_concurrency;	/* (j) Num threads requested in group.*/
158	int	skg_runq_threads;	/* (j) Num KSEs on runq. */
159};
160#define kg_last_assigned	kg_sched->skg_last_assigned
161#define kg_avail_opennings	kg_sched->skg_avail_opennings
162#define kg_concurrency		kg_sched->skg_concurrency
163#define kg_runq_threads		kg_sched->skg_runq_threads
164#define kg_runtime		kg_sched->skg_runtime
165#define kg_slptime		kg_sched->skg_slptime
166
167#define SLOT_RELEASE(kg)						\
168do {									\
169	kg->kg_avail_opennings++; 					\
170	CTR3(KTR_RUNQ, "kg %p(%d) Slot released (->%d)",		\
171	kg,								\
172	kg->kg_concurrency,						\
173	 kg->kg_avail_opennings);					\
174	/*KASSERT((kg->kg_avail_opennings <= kg->kg_concurrency),	\
175	    ("slots out of whack")); */					\
176} while (0)
177
178#define SLOT_USE(kg)							\
179do {									\
180	kg->kg_avail_opennings--; 					\
181	CTR3(KTR_RUNQ, "kg %p(%d) Slot used (->%d)",			\
182	kg,								\
183	kg->kg_concurrency,						\
184	 kg->kg_avail_opennings);					\
185	/*KASSERT((kg->kg_avail_opennings >= 0),			\
186	    ("slots out of whack"));*/ 					\
187} while (0)
188
189static struct kse kse0;
190static struct kg_sched kg_sched0;
191
192/*
193 * The priority is primarily determined by the interactivity score.  Thus, we
194 * give lower(better) priorities to kse groups that use less CPU.  The nice
195 * value is then directly added to this to allow nice to have some effect
196 * on latency.
197 *
198 * PRI_RANGE:	Total priority range for timeshare threads.
199 * PRI_NRESV:	Number of nice values.
200 * PRI_BASE:	The start of the dynamic range.
201 */
202#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
203#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
204#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
205#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
206#define	SCHED_PRI_INTERACT(score)					\
207    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
208
209/*
210 * These determine the interactivity of a process.
211 *
212 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
213 *		before throttling back.
214 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
215 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
216 * INTERACT_THRESH:	Threshhold for placement on the current runq.
217 */
218#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
219#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
220#define	SCHED_INTERACT_MAX	(100)
221#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
222#define	SCHED_INTERACT_THRESH	(30)
223
224/*
225 * These parameters and macros determine the size of the time slice that is
226 * granted to each thread.
227 *
228 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
229 * SLICE_MAX:	Maximum time slice granted.
230 * SLICE_RANGE:	Range of available time slices scaled by hz.
231 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
232 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
233 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
234 */
235#define	SCHED_SLICE_MIN			(slice_min)
236#define	SCHED_SLICE_MAX			(slice_max)
237#define	SCHED_SLICE_INTERACTIVE		(slice_max)
238#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
239#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
240#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
241#define	SCHED_SLICE_NICE(nice)						\
242    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
243
244/*
245 * This macro determines whether or not the thread belongs on the current or
246 * next run queue.
247 */
248#define	SCHED_INTERACTIVE(kg)						\
249    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
250#define	SCHED_CURR(kg, ke)						\
251    (ke->ke_thread->td_priority < kg->kg_user_pri ||			\
252    SCHED_INTERACTIVE(kg))
253
254/*
255 * Cpu percentage computation macros and defines.
256 *
257 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
258 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
259 */
260
261#define	SCHED_CPU_TIME	10
262#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
263
264/*
265 * kseq - per processor runqs and statistics.
266 */
267struct kseq {
268	struct runq	ksq_idle;		/* Queue of IDLE threads. */
269	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
270	struct runq	*ksq_next;		/* Next timeshare queue. */
271	struct runq	*ksq_curr;		/* Current queue. */
272	int		ksq_load_timeshare;	/* Load for timeshare. */
273	int		ksq_load;		/* Aggregate load. */
274	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
275	short		ksq_nicemin;		/* Least nice. */
276#ifdef SMP
277	int			ksq_transferable;
278	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
279	struct kseq_group	*ksq_group;	/* Our processor group. */
280	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
281#else
282	int		ksq_sysload;		/* For loadavg, !ITHD load. */
283#endif
284};
285
286#ifdef SMP
287/*
288 * kseq groups are groups of processors which can cheaply share threads.  When
289 * one processor in the group goes idle it will check the runqs of the other
290 * processors in its group prior to halting and waiting for an interrupt.
291 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
292 * In a numa environment we'd want an idle bitmap per group and a two tiered
293 * load balancer.
294 */
295struct kseq_group {
296	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
297	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
298	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
299	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
300	int	ksg_load;		/* Total load of this group. */
301	int	ksg_transferable;	/* Transferable load of this group. */
302	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
303};
304#endif
305
306/*
307 * One kse queue per processor.
308 */
309#ifdef SMP
310static cpumask_t kseq_idle;
311static int ksg_maxid;
312static struct kseq	kseq_cpu[MAXCPU];
313static struct kseq_group kseq_groups[MAXCPU];
314static int bal_tick;
315static int gbal_tick;
316
317#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
318#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
319#define	KSEQ_ID(x)	((x) - kseq_cpu)
320#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
321#else	/* !SMP */
322static struct kseq	kseq_cpu;
323
324#define	KSEQ_SELF()	(&kseq_cpu)
325#define	KSEQ_CPU(x)	(&kseq_cpu)
326#endif
327
328static void	slot_fill(struct ksegrp *kg);
329static struct kse *sched_choose(void);		/* XXX Should be thread * */
330static void sched_add_internal(struct thread *td, int preemptive);
331static void sched_slice(struct kse *ke);
332static void sched_priority(struct ksegrp *kg);
333static int sched_interact_score(struct ksegrp *kg);
334static void sched_interact_update(struct ksegrp *kg);
335static void sched_interact_fork(struct ksegrp *kg);
336static void sched_pctcpu_update(struct kse *ke);
337
338/* Operations on per processor queues */
339static struct kse * kseq_choose(struct kseq *kseq);
340static void kseq_setup(struct kseq *kseq);
341static void kseq_load_add(struct kseq *kseq, struct kse *ke);
342static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
343static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
344static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
345static void kseq_nice_add(struct kseq *kseq, int nice);
346static void kseq_nice_rem(struct kseq *kseq, int nice);
347void kseq_print(int cpu);
348#ifdef SMP
349static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
350static struct kse *runq_steal(struct runq *rq);
351static void sched_balance(void);
352static void sched_balance_groups(void);
353static void sched_balance_group(struct kseq_group *ksg);
354static void sched_balance_pair(struct kseq *high, struct kseq *low);
355static void kseq_move(struct kseq *from, int cpu);
356static int kseq_idled(struct kseq *kseq);
357static void kseq_notify(struct kse *ke, int cpu);
358static void kseq_assign(struct kseq *);
359static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
360/*
361 * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
362 * this, we can't pin interrupts to the cpu that they were delivered to,
363 * otherwise all ithreads only run on CPU 0.
364 */
365#ifdef __i386__
366#define	KSE_CAN_MIGRATE(ke, class)					\
367    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
368#else /* !__i386__ */
369#define	KSE_CAN_MIGRATE(ke, class)					\
370    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
371    ((ke)->ke_flags & KEF_BOUND) == 0)
372#endif /* !__i386__ */
373#endif
374
375void
376kseq_print(int cpu)
377{
378	struct kseq *kseq;
379	int i;
380
381	kseq = KSEQ_CPU(cpu);
382
383	printf("kseq:\n");
384	printf("\tload:           %d\n", kseq->ksq_load);
385	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
386#ifdef SMP
387	printf("\tload transferable: %d\n", kseq->ksq_transferable);
388#endif
389	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
390	printf("\tnice counts:\n");
391	for (i = 0; i < SCHED_PRI_NRESV; i++)
392		if (kseq->ksq_nice[i])
393			printf("\t\t%d = %d\n",
394			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
395}
396
397static __inline void
398kseq_runq_add(struct kseq *kseq, struct kse *ke)
399{
400#ifdef SMP
401	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
402		kseq->ksq_transferable++;
403		kseq->ksq_group->ksg_transferable++;
404		ke->ke_flags |= KEF_XFERABLE;
405	}
406#endif
407	runq_add(ke->ke_runq, ke, 0);
408}
409
410static __inline void
411kseq_runq_rem(struct kseq *kseq, struct kse *ke)
412{
413#ifdef SMP
414	if (ke->ke_flags & KEF_XFERABLE) {
415		kseq->ksq_transferable--;
416		kseq->ksq_group->ksg_transferable--;
417		ke->ke_flags &= ~KEF_XFERABLE;
418	}
419#endif
420	runq_remove(ke->ke_runq, ke);
421}
422
423static void
424kseq_load_add(struct kseq *kseq, struct kse *ke)
425{
426	int class;
427	mtx_assert(&sched_lock, MA_OWNED);
428	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
429	if (class == PRI_TIMESHARE)
430		kseq->ksq_load_timeshare++;
431	kseq->ksq_load++;
432	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
433#ifdef SMP
434		kseq->ksq_group->ksg_load++;
435#else
436		kseq->ksq_sysload++;
437#endif
438	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
439		CTR6(KTR_ULE,
440		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
441		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
442		    ke->ke_proc->p_nice, kseq->ksq_nicemin);
443	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
444		kseq_nice_add(kseq, ke->ke_proc->p_nice);
445}
446
447static void
448kseq_load_rem(struct kseq *kseq, struct kse *ke)
449{
450	int class;
451	mtx_assert(&sched_lock, MA_OWNED);
452	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
453	if (class == PRI_TIMESHARE)
454		kseq->ksq_load_timeshare--;
455	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
456#ifdef SMP
457		kseq->ksq_group->ksg_load--;
458#else
459		kseq->ksq_sysload--;
460#endif
461	kseq->ksq_load--;
462	ke->ke_runq = NULL;
463	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
464		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
465}
466
467static void
468kseq_nice_add(struct kseq *kseq, int nice)
469{
470	mtx_assert(&sched_lock, MA_OWNED);
471	/* Normalize to zero. */
472	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
473	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
474		kseq->ksq_nicemin = nice;
475}
476
477static void
478kseq_nice_rem(struct kseq *kseq, int nice)
479{
480	int n;
481
482	mtx_assert(&sched_lock, MA_OWNED);
483	/* Normalize to zero. */
484	n = nice + SCHED_PRI_NHALF;
485	kseq->ksq_nice[n]--;
486	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
487
488	/*
489	 * If this wasn't the smallest nice value or there are more in
490	 * this bucket we can just return.  Otherwise we have to recalculate
491	 * the smallest nice.
492	 */
493	if (nice != kseq->ksq_nicemin ||
494	    kseq->ksq_nice[n] != 0 ||
495	    kseq->ksq_load_timeshare == 0)
496		return;
497
498	for (; n < SCHED_PRI_NRESV; n++)
499		if (kseq->ksq_nice[n]) {
500			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
501			return;
502		}
503}
504
505#ifdef SMP
506/*
507 * sched_balance is a simple CPU load balancing algorithm.  It operates by
508 * finding the least loaded and most loaded cpu and equalizing their load
509 * by migrating some processes.
510 *
511 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
512 * installations will only have 2 cpus.  Secondly, load balancing too much at
513 * once can have an unpleasant effect on the system.  The scheduler rarely has
514 * enough information to make perfect decisions.  So this algorithm chooses
515 * algorithm simplicity and more gradual effects on load in larger systems.
516 *
517 * It could be improved by considering the priorities and slices assigned to
518 * each task prior to balancing them.  There are many pathological cases with
519 * any approach and so the semi random algorithm below may work as well as any.
520 *
521 */
522static void
523sched_balance(void)
524{
525	struct kseq_group *high;
526	struct kseq_group *low;
527	struct kseq_group *ksg;
528	int cnt;
529	int i;
530
531	if (smp_started == 0)
532		goto out;
533	low = high = NULL;
534	i = random() % (ksg_maxid + 1);
535	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
536		ksg = KSEQ_GROUP(i);
537		/*
538		 * Find the CPU with the highest load that has some
539		 * threads to transfer.
540		 */
541		if ((high == NULL || ksg->ksg_load > high->ksg_load)
542		    && ksg->ksg_transferable)
543			high = ksg;
544		if (low == NULL || ksg->ksg_load < low->ksg_load)
545			low = ksg;
546		if (++i > ksg_maxid)
547			i = 0;
548	}
549	if (low != NULL && high != NULL && high != low)
550		sched_balance_pair(LIST_FIRST(&high->ksg_members),
551		    LIST_FIRST(&low->ksg_members));
552out:
553	bal_tick = ticks + (random() % (hz * 2));
554}
555
556static void
557sched_balance_groups(void)
558{
559	int i;
560
561	mtx_assert(&sched_lock, MA_OWNED);
562	if (smp_started)
563		for (i = 0; i <= ksg_maxid; i++)
564			sched_balance_group(KSEQ_GROUP(i));
565	gbal_tick = ticks + (random() % (hz * 2));
566}
567
568static void
569sched_balance_group(struct kseq_group *ksg)
570{
571	struct kseq *kseq;
572	struct kseq *high;
573	struct kseq *low;
574	int load;
575
576	if (ksg->ksg_transferable == 0)
577		return;
578	low = NULL;
579	high = NULL;
580	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
581		load = kseq->ksq_load;
582		if (high == NULL || load > high->ksq_load)
583			high = kseq;
584		if (low == NULL || load < low->ksq_load)
585			low = kseq;
586	}
587	if (high != NULL && low != NULL && high != low)
588		sched_balance_pair(high, low);
589}
590
591static void
592sched_balance_pair(struct kseq *high, struct kseq *low)
593{
594	int transferable;
595	int high_load;
596	int low_load;
597	int move;
598	int diff;
599	int i;
600
601	/*
602	 * If we're transfering within a group we have to use this specific
603	 * kseq's transferable count, otherwise we can steal from other members
604	 * of the group.
605	 */
606	if (high->ksq_group == low->ksq_group) {
607		transferable = high->ksq_transferable;
608		high_load = high->ksq_load;
609		low_load = low->ksq_load;
610	} else {
611		transferable = high->ksq_group->ksg_transferable;
612		high_load = high->ksq_group->ksg_load;
613		low_load = low->ksq_group->ksg_load;
614	}
615	if (transferable == 0)
616		return;
617	/*
618	 * Determine what the imbalance is and then adjust that to how many
619	 * kses we actually have to give up (transferable).
620	 */
621	diff = high_load - low_load;
622	move = diff / 2;
623	if (diff & 0x1)
624		move++;
625	move = min(move, transferable);
626	for (i = 0; i < move; i++)
627		kseq_move(high, KSEQ_ID(low));
628	return;
629}
630
631static void
632kseq_move(struct kseq *from, int cpu)
633{
634	struct kseq *kseq;
635	struct kseq *to;
636	struct kse *ke;
637
638	kseq = from;
639	to = KSEQ_CPU(cpu);
640	ke = kseq_steal(kseq, 1);
641	if (ke == NULL) {
642		struct kseq_group *ksg;
643
644		ksg = kseq->ksq_group;
645		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
646			if (kseq == from || kseq->ksq_transferable == 0)
647				continue;
648			ke = kseq_steal(kseq, 1);
649			break;
650		}
651		if (ke == NULL)
652			panic("kseq_move: No KSEs available with a "
653			    "transferable count of %d\n",
654			    ksg->ksg_transferable);
655	}
656	if (kseq == to)
657		return;
658	ke->ke_state = KES_THREAD;
659	kseq_runq_rem(kseq, ke);
660	kseq_load_rem(kseq, ke);
661	kseq_notify(ke, cpu);
662}
663
664static int
665kseq_idled(struct kseq *kseq)
666{
667	struct kseq_group *ksg;
668	struct kseq *steal;
669	struct kse *ke;
670
671	ksg = kseq->ksq_group;
672	/*
673	 * If we're in a cpu group, try and steal kses from another cpu in
674	 * the group before idling.
675	 */
676	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
677		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
678			if (steal == kseq || steal->ksq_transferable == 0)
679				continue;
680			ke = kseq_steal(steal, 0);
681			if (ke == NULL)
682				continue;
683			ke->ke_state = KES_THREAD;
684			kseq_runq_rem(steal, ke);
685			kseq_load_rem(steal, ke);
686			ke->ke_cpu = PCPU_GET(cpuid);
687			sched_add_internal(ke->ke_thread, 0);
688			return (0);
689		}
690	}
691	/*
692	 * We only set the idled bit when all of the cpus in the group are
693	 * idle.  Otherwise we could get into a situation where a KSE bounces
694	 * back and forth between two idle cores on seperate physical CPUs.
695	 */
696	ksg->ksg_idlemask |= PCPU_GET(cpumask);
697	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
698		return (1);
699	atomic_set_int(&kseq_idle, ksg->ksg_mask);
700	return (1);
701}
702
703static void
704kseq_assign(struct kseq *kseq)
705{
706	struct kse *nke;
707	struct kse *ke;
708
709	do {
710		*(volatile struct kse **)&ke = kseq->ksq_assigned;
711	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
712	for (; ke != NULL; ke = nke) {
713		nke = ke->ke_assign;
714		ke->ke_flags &= ~KEF_ASSIGNED;
715		sched_add_internal(ke->ke_thread, 0);
716	}
717}
718
719static void
720kseq_notify(struct kse *ke, int cpu)
721{
722	struct kseq *kseq;
723	struct thread *td;
724	struct pcpu *pcpu;
725	int prio;
726
727	ke->ke_cpu = cpu;
728	ke->ke_flags |= KEF_ASSIGNED;
729	prio = ke->ke_thread->td_priority;
730
731	kseq = KSEQ_CPU(cpu);
732
733	/*
734	 * Place a KSE on another cpu's queue and force a resched.
735	 */
736	do {
737		*(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned;
738	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
739	/*
740	 * Without sched_lock we could lose a race where we set NEEDRESCHED
741	 * on a thread that is switched out before the IPI is delivered.  This
742	 * would lead us to miss the resched.  This will be a problem once
743	 * sched_lock is pushed down.
744	 */
745	pcpu = pcpu_find(cpu);
746	td = pcpu->pc_curthread;
747	if (ke->ke_thread->td_priority < td->td_priority ||
748	    td == pcpu->pc_idlethread) {
749		td->td_flags |= TDF_NEEDRESCHED;
750		ipi_selected(1 << cpu, IPI_AST);
751	}
752}
753
754static struct kse *
755runq_steal(struct runq *rq)
756{
757	struct rqhead *rqh;
758	struct rqbits *rqb;
759	struct kse *ke;
760	int word;
761	int bit;
762
763	mtx_assert(&sched_lock, MA_OWNED);
764	rqb = &rq->rq_status;
765	for (word = 0; word < RQB_LEN; word++) {
766		if (rqb->rqb_bits[word] == 0)
767			continue;
768		for (bit = 0; bit < RQB_BPW; bit++) {
769			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
770				continue;
771			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
772			TAILQ_FOREACH(ke, rqh, ke_procq) {
773				if (KSE_CAN_MIGRATE(ke,
774				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
775					return (ke);
776			}
777		}
778	}
779	return (NULL);
780}
781
782static struct kse *
783kseq_steal(struct kseq *kseq, int stealidle)
784{
785	struct kse *ke;
786
787	/*
788	 * Steal from next first to try to get a non-interactive task that
789	 * may not have run for a while.
790	 */
791	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
792		return (ke);
793	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
794		return (ke);
795	if (stealidle)
796		return (runq_steal(&kseq->ksq_idle));
797	return (NULL);
798}
799
800int
801kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
802{
803	struct kseq_group *ksg;
804	int cpu;
805
806	if (smp_started == 0)
807		return (0);
808	cpu = 0;
809	/*
810	 * If our load exceeds a certain threshold we should attempt to
811	 * reassign this thread.  The first candidate is the cpu that
812	 * originally ran the thread.  If it is idle, assign it there,
813	 * otherwise, pick an idle cpu.
814	 *
815	 * The threshold at which we start to reassign kses has a large impact
816	 * on the overall performance of the system.  Tuned too high and
817	 * some CPUs may idle.  Too low and there will be excess migration
818	 * and context switches.
819	 */
820	ksg = kseq->ksq_group;
821	if (ksg->ksg_load > ksg->ksg_cpus && kseq_idle) {
822		ksg = KSEQ_CPU(ke->ke_cpu)->ksq_group;
823		if (kseq_idle & ksg->ksg_mask) {
824			cpu = ffs(ksg->ksg_idlemask);
825			if (cpu)
826				goto migrate;
827		}
828		/*
829		 * Multiple cpus could find this bit simultaneously
830		 * but the race shouldn't be terrible.
831		 */
832		cpu = ffs(kseq_idle);
833		if (cpu)
834			goto migrate;
835	}
836	/*
837	 * If another cpu in this group has idled, assign a thread over
838	 * to them after checking to see if there are idled groups.
839	 */
840	ksg = kseq->ksq_group;
841	if (ksg->ksg_idlemask) {
842		cpu = ffs(ksg->ksg_idlemask);
843		if (cpu)
844			goto migrate;
845	}
846	/*
847	 * No new CPU was found.
848	 */
849	return (0);
850migrate:
851	/*
852	 * Now that we've found an idle CPU, migrate the thread.
853	 */
854	cpu--;
855	ke->ke_runq = NULL;
856	kseq_notify(ke, cpu);
857
858	return (1);
859}
860
861#endif	/* SMP */
862
863/*
864 * Pick the highest priority task we have and return it.
865 */
866
867static struct kse *
868kseq_choose(struct kseq *kseq)
869{
870	struct runq *swap;
871	struct kse *ke;
872	int nice;
873
874	mtx_assert(&sched_lock, MA_OWNED);
875	swap = NULL;
876
877	for (;;) {
878		ke = runq_choose(kseq->ksq_curr);
879		if (ke == NULL) {
880			/*
881			 * We already swapped once and didn't get anywhere.
882			 */
883			if (swap)
884				break;
885			swap = kseq->ksq_curr;
886			kseq->ksq_curr = kseq->ksq_next;
887			kseq->ksq_next = swap;
888			continue;
889		}
890		/*
891		 * If we encounter a slice of 0 the kse is in a
892		 * TIMESHARE kse group and its nice was too far out
893		 * of the range that receives slices.
894		 */
895		nice = ke->ke_proc->p_nice + (0 - kseq->ksq_nicemin);
896#ifdef notyet
897		if (ke->ke_slice == 0 || nice > SCHED_SLICE_NTHRESH) {
898#else
899		if (ke->ke_slice == 0) {
900#endif
901			runq_remove(ke->ke_runq, ke);
902			sched_slice(ke);
903			ke->ke_runq = kseq->ksq_next;
904			runq_add(ke->ke_runq, ke, 0);
905			continue;
906		}
907		return (ke);
908	}
909
910	return (runq_choose(&kseq->ksq_idle));
911}
912
913static void
914kseq_setup(struct kseq *kseq)
915{
916	runq_init(&kseq->ksq_timeshare[0]);
917	runq_init(&kseq->ksq_timeshare[1]);
918	runq_init(&kseq->ksq_idle);
919	kseq->ksq_curr = &kseq->ksq_timeshare[0];
920	kseq->ksq_next = &kseq->ksq_timeshare[1];
921	kseq->ksq_load = 0;
922	kseq->ksq_load_timeshare = 0;
923}
924
925static void
926sched_setup(void *dummy)
927{
928#ifdef SMP
929	int balance_groups;
930	int i;
931#endif
932
933	slice_min = (hz/100);	/* 10ms */
934	slice_max = (hz/7);	/* ~140ms */
935
936#ifdef SMP
937	balance_groups = 0;
938	/*
939	 * Initialize the kseqs.
940	 */
941	for (i = 0; i < MAXCPU; i++) {
942		struct kseq *ksq;
943
944		ksq = &kseq_cpu[i];
945		ksq->ksq_assigned = NULL;
946		kseq_setup(&kseq_cpu[i]);
947	}
948	if (smp_topology == NULL) {
949		struct kseq_group *ksg;
950		struct kseq *ksq;
951
952		for (i = 0; i < MAXCPU; i++) {
953			ksq = &kseq_cpu[i];
954			ksg = &kseq_groups[i];
955			/*
956			 * Setup a kseq group with one member.
957			 */
958			ksq->ksq_transferable = 0;
959			ksq->ksq_group = ksg;
960			ksg->ksg_cpus = 1;
961			ksg->ksg_idlemask = 0;
962			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
963			ksg->ksg_load = 0;
964			ksg->ksg_transferable = 0;
965			LIST_INIT(&ksg->ksg_members);
966			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
967		}
968	} else {
969		struct kseq_group *ksg;
970		struct cpu_group *cg;
971		int j;
972
973		for (i = 0; i < smp_topology->ct_count; i++) {
974			cg = &smp_topology->ct_group[i];
975			ksg = &kseq_groups[i];
976			/*
977			 * Initialize the group.
978			 */
979			ksg->ksg_idlemask = 0;
980			ksg->ksg_load = 0;
981			ksg->ksg_transferable = 0;
982			ksg->ksg_cpus = cg->cg_count;
983			ksg->ksg_cpumask = cg->cg_mask;
984			LIST_INIT(&ksg->ksg_members);
985			/*
986			 * Find all of the group members and add them.
987			 */
988			for (j = 0; j < MAXCPU; j++) {
989				if ((cg->cg_mask & (1 << j)) != 0) {
990					if (ksg->ksg_mask == 0)
991						ksg->ksg_mask = 1 << j;
992					kseq_cpu[j].ksq_transferable = 0;
993					kseq_cpu[j].ksq_group = ksg;
994					LIST_INSERT_HEAD(&ksg->ksg_members,
995					    &kseq_cpu[j], ksq_siblings);
996				}
997			}
998			if (ksg->ksg_cpus > 1)
999				balance_groups = 1;
1000		}
1001		ksg_maxid = smp_topology->ct_count - 1;
1002	}
1003	/*
1004	 * Stagger the group and global load balancer so they do not
1005	 * interfere with each other.
1006	 */
1007	bal_tick = ticks + hz;
1008	if (balance_groups)
1009		gbal_tick = ticks + (hz / 2);
1010#else
1011	kseq_setup(KSEQ_SELF());
1012#endif
1013	mtx_lock_spin(&sched_lock);
1014	kseq_load_add(KSEQ_SELF(), &kse0);
1015	mtx_unlock_spin(&sched_lock);
1016}
1017
1018/*
1019 * Scale the scheduling priority according to the "interactivity" of this
1020 * process.
1021 */
1022static void
1023sched_priority(struct ksegrp *kg)
1024{
1025	int pri;
1026
1027	if (kg->kg_pri_class != PRI_TIMESHARE)
1028		return;
1029
1030	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
1031	pri += SCHED_PRI_BASE;
1032	pri += kg->kg_proc->p_nice;
1033
1034	if (pri > PRI_MAX_TIMESHARE)
1035		pri = PRI_MAX_TIMESHARE;
1036	else if (pri < PRI_MIN_TIMESHARE)
1037		pri = PRI_MIN_TIMESHARE;
1038
1039	kg->kg_user_pri = pri;
1040
1041	return;
1042}
1043
1044/*
1045 * Calculate a time slice based on the properties of the kseg and the runq
1046 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
1047 */
1048static void
1049sched_slice(struct kse *ke)
1050{
1051	struct kseq *kseq;
1052	struct ksegrp *kg;
1053
1054	kg = ke->ke_ksegrp;
1055	kseq = KSEQ_CPU(ke->ke_cpu);
1056
1057	/*
1058	 * Rationale:
1059	 * KSEs in interactive ksegs get a minimal slice so that we
1060	 * quickly notice if it abuses its advantage.
1061	 *
1062	 * KSEs in non-interactive ksegs are assigned a slice that is
1063	 * based on the ksegs nice value relative to the least nice kseg
1064	 * on the run queue for this cpu.
1065	 *
1066	 * If the KSE is less nice than all others it gets the maximum
1067	 * slice and other KSEs will adjust their slice relative to
1068	 * this when they first expire.
1069	 *
1070	 * There is 20 point window that starts relative to the least
1071	 * nice kse on the run queue.  Slice size is determined by
1072	 * the kse distance from the last nice ksegrp.
1073	 *
1074	 * If the kse is outside of the window it will get no slice
1075	 * and will be reevaluated each time it is selected on the
1076	 * run queue.  The exception to this is nice 0 ksegs when
1077	 * a nice -20 is running.  They are always granted a minimum
1078	 * slice.
1079	 */
1080	if (!SCHED_INTERACTIVE(kg)) {
1081		int nice;
1082
1083		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
1084		if (kseq->ksq_load_timeshare == 0 ||
1085		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
1086			ke->ke_slice = SCHED_SLICE_MAX;
1087		else if (nice <= SCHED_SLICE_NTHRESH)
1088			ke->ke_slice = SCHED_SLICE_NICE(nice);
1089		else if (kg->kg_proc->p_nice == 0)
1090			ke->ke_slice = SCHED_SLICE_MIN;
1091		else
1092			ke->ke_slice = 0;
1093	} else
1094		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1095
1096	CTR6(KTR_ULE,
1097	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1098	    ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
1099	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1100
1101	return;
1102}
1103
1104/*
1105 * This routine enforces a maximum limit on the amount of scheduling history
1106 * kept.  It is called after either the slptime or runtime is adjusted.
1107 * This routine will not operate correctly when slp or run times have been
1108 * adjusted to more than double their maximum.
1109 */
1110static void
1111sched_interact_update(struct ksegrp *kg)
1112{
1113	int sum;
1114
1115	sum = kg->kg_runtime + kg->kg_slptime;
1116	if (sum < SCHED_SLP_RUN_MAX)
1117		return;
1118	/*
1119	 * If we have exceeded by more than 1/5th then the algorithm below
1120	 * will not bring us back into range.  Dividing by two here forces
1121	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1122	 */
1123	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1124		kg->kg_runtime /= 2;
1125		kg->kg_slptime /= 2;
1126		return;
1127	}
1128	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1129	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1130}
1131
1132static void
1133sched_interact_fork(struct ksegrp *kg)
1134{
1135	int ratio;
1136	int sum;
1137
1138	sum = kg->kg_runtime + kg->kg_slptime;
1139	if (sum > SCHED_SLP_RUN_FORK) {
1140		ratio = sum / SCHED_SLP_RUN_FORK;
1141		kg->kg_runtime /= ratio;
1142		kg->kg_slptime /= ratio;
1143	}
1144}
1145
1146static int
1147sched_interact_score(struct ksegrp *kg)
1148{
1149	int div;
1150
1151	if (kg->kg_runtime > kg->kg_slptime) {
1152		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1153		return (SCHED_INTERACT_HALF +
1154		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1155	} if (kg->kg_slptime > kg->kg_runtime) {
1156		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1157		return (kg->kg_runtime / div);
1158	}
1159
1160	/*
1161	 * This can happen if slptime and runtime are 0.
1162	 */
1163	return (0);
1164
1165}
1166
1167/*
1168 * Very early in the boot some setup of scheduler-specific
1169 * parts of proc0 and of soem scheduler resources needs to be done.
1170 * Called from:
1171 *  proc0_init()
1172 */
1173void
1174schedinit(void)
1175{
1176	/*
1177	 * Set up the scheduler specific parts of proc0.
1178	 */
1179	proc0.p_sched = NULL; /* XXX */
1180	ksegrp0.kg_sched = &kg_sched0;
1181	thread0.td_sched = &kse0;
1182	kse0.ke_thread = &thread0;
1183	kse0.ke_oncpu = NOCPU; /* wrong.. can we use PCPU(cpuid) yet? */
1184	kse0.ke_state = KES_THREAD;
1185	kg_sched0.skg_concurrency = 1;
1186	kg_sched0.skg_avail_opennings = 0; /* we are already running */
1187}
1188
1189/*
1190 * This is only somewhat accurate since given many processes of the same
1191 * priority they will switch when their slices run out, which will be
1192 * at most SCHED_SLICE_MAX.
1193 */
1194int
1195sched_rr_interval(void)
1196{
1197	return (SCHED_SLICE_MAX);
1198}
1199
1200static void
1201sched_pctcpu_update(struct kse *ke)
1202{
1203	/*
1204	 * Adjust counters and watermark for pctcpu calc.
1205	 */
1206	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1207		/*
1208		 * Shift the tick count out so that the divide doesn't
1209		 * round away our results.
1210		 */
1211		ke->ke_ticks <<= 10;
1212		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1213			    SCHED_CPU_TICKS;
1214		ke->ke_ticks >>= 10;
1215	} else
1216		ke->ke_ticks = 0;
1217	ke->ke_ltick = ticks;
1218	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1219}
1220
1221void
1222sched_prio(struct thread *td, u_char prio)
1223{
1224	struct kse *ke;
1225
1226	ke = td->td_kse;
1227	mtx_assert(&sched_lock, MA_OWNED);
1228	if (TD_ON_RUNQ(td)) {
1229		/*
1230		 * If the priority has been elevated due to priority
1231		 * propagation, we may have to move ourselves to a new
1232		 * queue.  We still call adjustrunqueue below in case kse
1233		 * needs to fix things up.
1234		 */
1235		if (prio < td->td_priority && ke && ke->ke_runq != NULL &&
1236		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1237		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1238			runq_remove(ke->ke_runq, ke);
1239			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1240			runq_add(ke->ke_runq, ke, 0);
1241		}
1242		/*
1243		 * Hold this kse on this cpu so that sched_prio() doesn't
1244		 * cause excessive migration.  We only want migration to
1245		 * happen as the result of a wakeup.
1246		 */
1247		ke->ke_flags |= KEF_HOLD;
1248		adjustrunqueue(td, prio);
1249	} else
1250		td->td_priority = prio;
1251}
1252
1253void
1254sched_switch(struct thread *td, struct thread *newtd, int flags)
1255{
1256	struct kse *ke;
1257
1258	mtx_assert(&sched_lock, MA_OWNED);
1259
1260	ke = td->td_kse;
1261
1262	td->td_lastcpu = td->td_oncpu;
1263	td->td_oncpu = NOCPU;
1264	td->td_flags &= ~TDF_NEEDRESCHED;
1265	td->td_pflags &= ~TDP_OWEPREEMPT;
1266
1267	/*
1268	 * If the KSE has been assigned it may be in the process of switching
1269	 * to the new cpu.  This is the case in sched_bind().
1270	 */
1271	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1272		if (td == PCPU_GET(idlethread)) {
1273			TD_SET_CAN_RUN(td);
1274		} else {
1275			/* We are ending our run so make our slot available again */
1276			SLOT_RELEASE(td->td_ksegrp);
1277			if (TD_IS_RUNNING(td)) {
1278				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1279				/*
1280				 * Don't allow the thread to migrate
1281				 * from a preemption.
1282				 */
1283				ke->ke_flags |= KEF_HOLD;
1284				setrunqueue(td, SRQ_OURSELF|SRQ_YIELDING);
1285			} else {
1286				if (ke->ke_runq) {
1287					kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1288				} else if ((td->td_flags & TDF_IDLETD) == 0)
1289					kdb_backtrace();
1290				/*
1291				 * We will not be on the run queue.
1292				 * So we must be sleeping or similar.
1293				 * Don't use the slot if we will need it
1294				 * for newtd.
1295				 */
1296				if ((td->td_proc->p_flag & P_HADTHREADS) &&
1297				    (newtd == NULL ||
1298				    newtd->td_ksegrp != td->td_ksegrp))
1299					slot_fill(td->td_ksegrp);
1300			}
1301		}
1302	}
1303	if (newtd != NULL) {
1304		/*
1305		 * If we bring in a thread,
1306		 * then account for it as if it had been added to the
1307		 * run queue and then chosen.
1308		 */
1309		newtd->td_kse->ke_flags |= KEF_DIDRUN;
1310		SLOT_USE(newtd->td_ksegrp);
1311		TD_SET_RUNNING(newtd);
1312		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1313	} else
1314		newtd = choosethread();
1315	if (td != newtd)
1316		cpu_switch(td, newtd);
1317	sched_lock.mtx_lock = (uintptr_t)td;
1318
1319	td->td_oncpu = PCPU_GET(cpuid);
1320}
1321
1322void
1323sched_nice(struct proc *p, int nice)
1324{
1325	struct ksegrp *kg;
1326	struct kse *ke;
1327	struct thread *td;
1328	struct kseq *kseq;
1329
1330	PROC_LOCK_ASSERT(p, MA_OWNED);
1331	mtx_assert(&sched_lock, MA_OWNED);
1332	/*
1333	 * We need to adjust the nice counts for running KSEs.
1334	 */
1335	FOREACH_KSEGRP_IN_PROC(p, kg) {
1336		if (kg->kg_pri_class == PRI_TIMESHARE) {
1337			FOREACH_THREAD_IN_GROUP(kg, td) {
1338				ke = td->td_kse;
1339				if (ke->ke_runq == NULL)
1340					continue;
1341				kseq = KSEQ_CPU(ke->ke_cpu);
1342				kseq_nice_rem(kseq, p->p_nice);
1343				kseq_nice_add(kseq, nice);
1344			}
1345		}
1346	}
1347	p->p_nice = nice;
1348	FOREACH_KSEGRP_IN_PROC(p, kg) {
1349		sched_priority(kg);
1350		FOREACH_THREAD_IN_GROUP(kg, td)
1351			td->td_flags |= TDF_NEEDRESCHED;
1352	}
1353}
1354
1355void
1356sched_sleep(struct thread *td)
1357{
1358	mtx_assert(&sched_lock, MA_OWNED);
1359
1360	td->td_slptime = ticks;
1361	td->td_base_pri = td->td_priority;
1362
1363	CTR2(KTR_ULE, "sleep thread %p (tick: %d)",
1364	    td, td->td_slptime);
1365}
1366
1367void
1368sched_wakeup(struct thread *td)
1369{
1370	mtx_assert(&sched_lock, MA_OWNED);
1371
1372	/*
1373	 * Let the kseg know how long we slept for.  This is because process
1374	 * interactivity behavior is modeled in the kseg.
1375	 */
1376	if (td->td_slptime) {
1377		struct ksegrp *kg;
1378		int hzticks;
1379
1380		kg = td->td_ksegrp;
1381		hzticks = (ticks - td->td_slptime) << 10;
1382		if (hzticks >= SCHED_SLP_RUN_MAX) {
1383			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1384			kg->kg_runtime = 1;
1385		} else {
1386			kg->kg_slptime += hzticks;
1387			sched_interact_update(kg);
1388		}
1389		sched_priority(kg);
1390		sched_slice(td->td_kse);
1391		CTR2(KTR_ULE, "wakeup thread %p (%d ticks)", td, hzticks);
1392		td->td_slptime = 0;
1393	}
1394	setrunqueue(td, SRQ_BORING);
1395}
1396
1397/*
1398 * Penalize the parent for creating a new child and initialize the child's
1399 * priority.
1400 */
1401void
1402sched_fork(struct thread *td, struct thread *childtd)
1403{
1404
1405	mtx_assert(&sched_lock, MA_OWNED);
1406
1407	sched_fork_ksegrp(td, childtd->td_ksegrp);
1408	sched_fork_thread(td, childtd);
1409}
1410
1411void
1412sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1413{
1414	struct ksegrp *kg = td->td_ksegrp;
1415	mtx_assert(&sched_lock, MA_OWNED);
1416
1417	child->kg_slptime = kg->kg_slptime;
1418	child->kg_runtime = kg->kg_runtime;
1419	child->kg_user_pri = kg->kg_user_pri;
1420	sched_interact_fork(child);
1421	kg->kg_runtime += tickincr << 10;
1422	sched_interact_update(kg);
1423
1424	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1425	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1426	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1427}
1428
1429void
1430sched_fork_thread(struct thread *td, struct thread *child)
1431{
1432	struct kse *ke;
1433	struct kse *ke2;
1434
1435	sched_newthread(child);
1436	ke = td->td_kse;
1437	ke2 = child->td_kse;
1438	ke2->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1439	ke2->ke_cpu = ke->ke_cpu;
1440	ke2->ke_runq = NULL;
1441
1442	/* Grab our parents cpu estimation information. */
1443	ke2->ke_ticks = ke->ke_ticks;
1444	ke2->ke_ltick = ke->ke_ltick;
1445	ke2->ke_ftick = ke->ke_ftick;
1446}
1447
1448void
1449sched_class(struct ksegrp *kg, int class)
1450{
1451	struct kseq *kseq;
1452	struct kse *ke;
1453	struct thread *td;
1454	int nclass;
1455	int oclass;
1456
1457	mtx_assert(&sched_lock, MA_OWNED);
1458	if (kg->kg_pri_class == class)
1459		return;
1460
1461	nclass = PRI_BASE(class);
1462	oclass = PRI_BASE(kg->kg_pri_class);
1463	FOREACH_THREAD_IN_GROUP(kg, td) {
1464		ke = td->td_kse;
1465		if (ke->ke_state != KES_ONRUNQ &&
1466		    ke->ke_state != KES_THREAD)
1467			continue;
1468		kseq = KSEQ_CPU(ke->ke_cpu);
1469
1470#ifdef SMP
1471		/*
1472		 * On SMP if we're on the RUNQ we must adjust the transferable
1473		 * count because could be changing to or from an interrupt
1474		 * class.
1475		 */
1476		if (ke->ke_state == KES_ONRUNQ) {
1477			if (KSE_CAN_MIGRATE(ke, oclass)) {
1478				kseq->ksq_transferable--;
1479				kseq->ksq_group->ksg_transferable--;
1480			}
1481			if (KSE_CAN_MIGRATE(ke, nclass)) {
1482				kseq->ksq_transferable++;
1483				kseq->ksq_group->ksg_transferable++;
1484			}
1485		}
1486#endif
1487		if (oclass == PRI_TIMESHARE) {
1488			kseq->ksq_load_timeshare--;
1489			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1490		}
1491		if (nclass == PRI_TIMESHARE) {
1492			kseq->ksq_load_timeshare++;
1493			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1494		}
1495	}
1496
1497	kg->kg_pri_class = class;
1498}
1499
1500/*
1501 * Return some of the child's priority and interactivity to the parent.
1502 * Avoid using sched_exit_thread to avoid having to decide which
1503 * thread in the parent gets the honour since it isn't used.
1504 */
1505void
1506sched_exit(struct proc *p, struct thread *childtd)
1507{
1508	mtx_assert(&sched_lock, MA_OWNED);
1509	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), childtd);
1510	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1511}
1512
1513void
1514sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1515{
1516	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1517	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1518	sched_interact_update(kg);
1519}
1520
1521void
1522sched_exit_thread(struct thread *td, struct thread *childtd)
1523{
1524	kseq_load_rem(KSEQ_CPU(childtd->td_kse->ke_cpu), childtd->td_kse);
1525}
1526
1527void
1528sched_clock(struct thread *td)
1529{
1530	struct kseq *kseq;
1531	struct ksegrp *kg;
1532	struct kse *ke;
1533
1534	mtx_assert(&sched_lock, MA_OWNED);
1535	kseq = KSEQ_SELF();
1536#ifdef SMP
1537	if (ticks == bal_tick)
1538		sched_balance();
1539	if (ticks == gbal_tick)
1540		sched_balance_groups();
1541	/*
1542	 * We could have been assigned a non real-time thread without an
1543	 * IPI.
1544	 */
1545	if (kseq->ksq_assigned)
1546		kseq_assign(kseq);	/* Potentially sets NEEDRESCHED */
1547#endif
1548	/*
1549	 * sched_setup() apparently happens prior to stathz being set.  We
1550	 * need to resolve the timers earlier in the boot so we can avoid
1551	 * calculating this here.
1552	 */
1553	if (realstathz == 0) {
1554		realstathz = stathz ? stathz : hz;
1555		tickincr = hz / realstathz;
1556		/*
1557		 * XXX This does not work for values of stathz that are much
1558		 * larger than hz.
1559		 */
1560		if (tickincr == 0)
1561			tickincr = 1;
1562	}
1563
1564	ke = td->td_kse;
1565	kg = ke->ke_ksegrp;
1566
1567	/* Adjust ticks for pctcpu */
1568	ke->ke_ticks++;
1569	ke->ke_ltick = ticks;
1570
1571	/* Go up to one second beyond our max and then trim back down */
1572	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1573		sched_pctcpu_update(ke);
1574
1575	if (td->td_flags & TDF_IDLETD)
1576		return;
1577
1578	CTR4(KTR_ULE, "Tick thread %p (slice: %d, slptime: %d, runtime: %d)",
1579	    td, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1580	/*
1581	 * We only do slicing code for TIMESHARE ksegrps.
1582	 */
1583	if (kg->kg_pri_class != PRI_TIMESHARE)
1584		return;
1585	/*
1586	 * We used a tick charge it to the ksegrp so that we can compute our
1587	 * interactivity.
1588	 */
1589	kg->kg_runtime += tickincr << 10;
1590	sched_interact_update(kg);
1591
1592	/*
1593	 * We used up one time slice.
1594	 */
1595	if (--ke->ke_slice > 0)
1596		return;
1597	/*
1598	 * We're out of time, recompute priorities and requeue.
1599	 */
1600	kseq_load_rem(kseq, ke);
1601	sched_priority(kg);
1602	sched_slice(ke);
1603	if (SCHED_CURR(kg, ke))
1604		ke->ke_runq = kseq->ksq_curr;
1605	else
1606		ke->ke_runq = kseq->ksq_next;
1607	kseq_load_add(kseq, ke);
1608	td->td_flags |= TDF_NEEDRESCHED;
1609}
1610
1611int
1612sched_runnable(void)
1613{
1614	struct kseq *kseq;
1615	int load;
1616
1617	load = 1;
1618
1619	kseq = KSEQ_SELF();
1620#ifdef SMP
1621	if (kseq->ksq_assigned) {
1622		mtx_lock_spin(&sched_lock);
1623		kseq_assign(kseq);
1624		mtx_unlock_spin(&sched_lock);
1625	}
1626#endif
1627	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1628		if (kseq->ksq_load > 0)
1629			goto out;
1630	} else
1631		if (kseq->ksq_load - 1 > 0)
1632			goto out;
1633	load = 0;
1634out:
1635	return (load);
1636}
1637
1638void
1639sched_userret(struct thread *td)
1640{
1641	struct ksegrp *kg;
1642
1643	kg = td->td_ksegrp;
1644
1645	if (td->td_priority != kg->kg_user_pri) {
1646		mtx_lock_spin(&sched_lock);
1647		td->td_priority = kg->kg_user_pri;
1648		mtx_unlock_spin(&sched_lock);
1649	}
1650}
1651
1652struct kse *
1653sched_choose(void)
1654{
1655	struct kseq *kseq;
1656	struct kse *ke;
1657
1658	mtx_assert(&sched_lock, MA_OWNED);
1659	kseq = KSEQ_SELF();
1660#ifdef SMP
1661restart:
1662	if (kseq->ksq_assigned)
1663		kseq_assign(kseq);
1664#endif
1665	ke = kseq_choose(kseq);
1666	if (ke) {
1667#ifdef SMP
1668		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1669			if (kseq_idled(kseq) == 0)
1670				goto restart;
1671#endif
1672		kseq_runq_rem(kseq, ke);
1673		ke->ke_state = KES_THREAD;
1674
1675		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1676			CTR4(KTR_ULE, "Run thread %p from %p (slice: %d, pri: %d)",
1677			    ke->ke_thread, ke->ke_runq, ke->ke_slice,
1678			    ke->ke_thread->td_priority);
1679		}
1680		return (ke);
1681	}
1682#ifdef SMP
1683	if (kseq_idled(kseq) == 0)
1684		goto restart;
1685#endif
1686	return (NULL);
1687}
1688
1689void
1690sched_add(struct thread *td, int flags)
1691{
1692
1693	/* let jeff work out how to map the flags better */
1694	/* I'm open to suggestions */
1695	if (flags & SRQ_YIELDING)
1696		/*
1697		 * Preempting during switching can be bad JUJU
1698		 * especially for KSE processes
1699		 */
1700		sched_add_internal(td, 0);
1701	else
1702		sched_add_internal(td, 1);
1703}
1704
1705static void
1706sched_add_internal(struct thread *td, int preemptive)
1707{
1708	struct kseq *kseq;
1709	struct ksegrp *kg;
1710	struct kse *ke;
1711#ifdef SMP
1712	int canmigrate;
1713#endif
1714	int class;
1715
1716	mtx_assert(&sched_lock, MA_OWNED);
1717	ke = td->td_kse;
1718	kg = td->td_ksegrp;
1719	if (ke->ke_flags & KEF_ASSIGNED)
1720		return;
1721	kseq = KSEQ_SELF();
1722	KASSERT(ke->ke_state != KES_ONRUNQ,
1723	    ("sched_add: kse %p (%s) already in run queue", ke,
1724	    ke->ke_proc->p_comm));
1725	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1726	    ("sched_add: process swapped out"));
1727	KASSERT(ke->ke_runq == NULL,
1728	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1729
1730	class = PRI_BASE(kg->kg_pri_class);
1731	switch (class) {
1732	case PRI_ITHD:
1733	case PRI_REALTIME:
1734		ke->ke_runq = kseq->ksq_curr;
1735		ke->ke_slice = SCHED_SLICE_MAX;
1736		ke->ke_cpu = PCPU_GET(cpuid);
1737		break;
1738	case PRI_TIMESHARE:
1739		if (SCHED_CURR(kg, ke))
1740			ke->ke_runq = kseq->ksq_curr;
1741		else
1742			ke->ke_runq = kseq->ksq_next;
1743		break;
1744	case PRI_IDLE:
1745		/*
1746		 * This is for priority prop.
1747		 */
1748		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1749			ke->ke_runq = kseq->ksq_curr;
1750		else
1751			ke->ke_runq = &kseq->ksq_idle;
1752		ke->ke_slice = SCHED_SLICE_MIN;
1753		break;
1754	default:
1755		panic("Unknown pri class.");
1756		break;
1757	}
1758#ifdef SMP
1759	/*
1760	 * Don't migrate running threads here.  Force the long term balancer
1761	 * to do it.
1762	 */
1763	canmigrate = KSE_CAN_MIGRATE(ke, class);
1764	if (ke->ke_flags & KEF_HOLD) {
1765		ke->ke_flags &= ~KEF_HOLD;
1766		canmigrate = 0;
1767	}
1768	/*
1769	 * If this thread is pinned or bound, notify the target cpu.
1770	 */
1771	if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) {
1772		ke->ke_runq = NULL;
1773		kseq_notify(ke, ke->ke_cpu);
1774		return;
1775	}
1776	/*
1777	 * If we had been idle, clear our bit in the group and potentially
1778	 * the global bitmap.  If not, see if we should transfer this thread.
1779	 */
1780	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1781	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1782		/*
1783		 * Check to see if our group is unidling, and if so, remove it
1784		 * from the global idle mask.
1785		 */
1786		if (kseq->ksq_group->ksg_idlemask ==
1787		    kseq->ksq_group->ksg_cpumask)
1788			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1789		/*
1790		 * Now remove ourselves from the group specific idle mask.
1791		 */
1792		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1793	} else if (kseq->ksq_load > 1 && canmigrate)
1794		if (kseq_transfer(kseq, ke, class))
1795			return;
1796	ke->ke_cpu = PCPU_GET(cpuid);
1797#endif
1798	/*
1799	 * XXX With preemption this is not necessary.
1800	 */
1801	if (td->td_priority < curthread->td_priority &&
1802	    ke->ke_runq == kseq->ksq_curr)
1803		curthread->td_flags |= TDF_NEEDRESCHED;
1804	if (preemptive && maybe_preempt(td))
1805		return;
1806	SLOT_USE(td->td_ksegrp);
1807	ke->ke_ksegrp->kg_runq_threads++;
1808	ke->ke_state = KES_ONRUNQ;
1809
1810	kseq_runq_add(kseq, ke);
1811	kseq_load_add(kseq, ke);
1812}
1813
1814void
1815sched_rem(struct thread *td)
1816{
1817	struct kseq *kseq;
1818	struct kse *ke;
1819
1820	ke = td->td_kse;
1821	/*
1822	 * It is safe to just return here because sched_rem() is only ever
1823	 * used in places where we're immediately going to add the
1824	 * kse back on again.  In that case it'll be added with the correct
1825	 * thread and priority when the caller drops the sched_lock.
1826	 */
1827	if (ke->ke_flags & KEF_ASSIGNED)
1828		return;
1829	mtx_assert(&sched_lock, MA_OWNED);
1830	KASSERT((ke->ke_state == KES_ONRUNQ),
1831	    ("sched_rem: KSE not on run queue"));
1832
1833	ke->ke_state = KES_THREAD;
1834	SLOT_RELEASE(td->td_ksegrp);
1835	ke->ke_ksegrp->kg_runq_threads--;
1836	kseq = KSEQ_CPU(ke->ke_cpu);
1837	kseq_runq_rem(kseq, ke);
1838	kseq_load_rem(kseq, ke);
1839}
1840
1841fixpt_t
1842sched_pctcpu(struct thread *td)
1843{
1844	fixpt_t pctcpu;
1845	struct kse *ke;
1846
1847	pctcpu = 0;
1848	ke = td->td_kse;
1849	if (ke == NULL)
1850		return (0);
1851
1852	mtx_lock_spin(&sched_lock);
1853	if (ke->ke_ticks) {
1854		int rtick;
1855
1856		/*
1857		 * Don't update more frequently than twice a second.  Allowing
1858		 * this causes the cpu usage to decay away too quickly due to
1859		 * rounding errors.
1860		 */
1861		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1862		    ke->ke_ltick < (ticks - (hz / 2)))
1863			sched_pctcpu_update(ke);
1864		/* How many rtick per second ? */
1865		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1866		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1867	}
1868
1869	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1870	mtx_unlock_spin(&sched_lock);
1871
1872	return (pctcpu);
1873}
1874
1875void
1876sched_bind(struct thread *td, int cpu)
1877{
1878	struct kse *ke;
1879
1880	mtx_assert(&sched_lock, MA_OWNED);
1881	ke = td->td_kse;
1882	ke->ke_flags |= KEF_BOUND;
1883#ifdef SMP
1884	if (PCPU_GET(cpuid) == cpu)
1885		return;
1886	/* sched_rem without the runq_remove */
1887	ke->ke_state = KES_THREAD;
1888	ke->ke_ksegrp->kg_runq_threads--;
1889	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1890	kseq_notify(ke, cpu);
1891	/* When we return from mi_switch we'll be on the correct cpu. */
1892	mi_switch(SW_VOL, NULL);
1893#endif
1894}
1895
1896void
1897sched_unbind(struct thread *td)
1898{
1899	mtx_assert(&sched_lock, MA_OWNED);
1900	td->td_kse->ke_flags &= ~KEF_BOUND;
1901}
1902
1903int
1904sched_load(void)
1905{
1906#ifdef SMP
1907	int total;
1908	int i;
1909
1910	total = 0;
1911	for (i = 0; i <= ksg_maxid; i++)
1912		total += KSEQ_GROUP(i)->ksg_load;
1913	return (total);
1914#else
1915	return (KSEQ_SELF()->ksq_sysload);
1916#endif
1917}
1918
1919int
1920sched_sizeof_ksegrp(void)
1921{
1922	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1923}
1924
1925int
1926sched_sizeof_proc(void)
1927{
1928	return (sizeof(struct proc));
1929}
1930
1931int
1932sched_sizeof_thread(void)
1933{
1934	return (sizeof(struct thread) + sizeof(struct td_sched));
1935}
1936#define KERN_SWITCH_INCLUDE 1
1937#include "kern/kern_switch.c"
1938