sched_ule.c revision 133427
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 133427 2004-08-10 07:52:21Z jeff $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kdb.h>
33#include <sys/kernel.h>
34#include <sys/ktr.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/proc.h>
38#include <sys/resource.h>
39#include <sys/resourcevar.h>
40#include <sys/sched.h>
41#include <sys/smp.h>
42#include <sys/sx.h>
43#include <sys/sysctl.h>
44#include <sys/sysproto.h>
45#include <sys/vmmeter.h>
46#ifdef KTRACE
47#include <sys/uio.h>
48#include <sys/ktrace.h>
49#endif
50
51#include <machine/cpu.h>
52#include <machine/smp.h>
53
54#define KTR_ULE         KTR_NFS
55
56/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
57/* XXX This is bogus compatability crap for ps */
58static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
59SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
60
61static void sched_setup(void *dummy);
62SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
63
64static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
65
66SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
67    "Scheduler name");
68
69static int slice_min = 1;
70SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
71
72static int slice_max = 10;
73SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
74
75int realstathz;
76int tickincr = 1;
77
78/*
79 * These datastructures are allocated within their parent datastructure but
80 * are scheduler specific.
81 */
82
83struct ke_sched {
84	int		ske_slice;
85	struct runq	*ske_runq;
86	/* The following variables are only used for pctcpu calculation */
87	int		ske_ltick;	/* Last tick that we were running on */
88	int		ske_ftick;	/* First tick that we were running on */
89	int		ske_ticks;	/* Tick count */
90	/* CPU that we have affinity for. */
91	u_char		ske_cpu;
92};
93#define	ke_slice	ke_sched->ske_slice
94#define	ke_runq		ke_sched->ske_runq
95#define	ke_ltick	ke_sched->ske_ltick
96#define	ke_ftick	ke_sched->ske_ftick
97#define	ke_ticks	ke_sched->ske_ticks
98#define	ke_cpu		ke_sched->ske_cpu
99#define	ke_assign	ke_procq.tqe_next
100
101#define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
102#define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
103#define	KEF_XFERABLE	KEF_SCHED2	/* KSE was added as transferable. */
104
105struct kg_sched {
106	int	skg_slptime;		/* Number of ticks we vol. slept */
107	int	skg_runtime;		/* Number of ticks we were running */
108};
109#define	kg_slptime	kg_sched->skg_slptime
110#define	kg_runtime	kg_sched->skg_runtime
111
112struct td_sched {
113	int	std_slptime;
114};
115#define	td_slptime	td_sched->std_slptime
116
117struct td_sched td_sched;
118struct ke_sched ke_sched;
119struct kg_sched kg_sched;
120
121struct ke_sched *kse0_sched = &ke_sched;
122struct kg_sched *ksegrp0_sched = &kg_sched;
123struct p_sched *proc0_sched = NULL;
124struct td_sched *thread0_sched = &td_sched;
125
126/*
127 * The priority is primarily determined by the interactivity score.  Thus, we
128 * give lower(better) priorities to kse groups that use less CPU.  The nice
129 * value is then directly added to this to allow nice to have some effect
130 * on latency.
131 *
132 * PRI_RANGE:	Total priority range for timeshare threads.
133 * PRI_NRESV:	Number of nice values.
134 * PRI_BASE:	The start of the dynamic range.
135 */
136#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
137#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
138#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
139#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
140#define	SCHED_PRI_INTERACT(score)					\
141    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
142
143/*
144 * These determine the interactivity of a process.
145 *
146 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
147 *		before throttling back.
148 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
149 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
150 * INTERACT_THRESH:	Threshhold for placement on the current runq.
151 */
152#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
153#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
154#define	SCHED_INTERACT_MAX	(100)
155#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
156#define	SCHED_INTERACT_THRESH	(30)
157
158/*
159 * These parameters and macros determine the size of the time slice that is
160 * granted to each thread.
161 *
162 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
163 * SLICE_MAX:	Maximum time slice granted.
164 * SLICE_RANGE:	Range of available time slices scaled by hz.
165 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
166 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
167 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
168 */
169#define	SCHED_SLICE_MIN			(slice_min)
170#define	SCHED_SLICE_MAX			(slice_max)
171#define	SCHED_SLICE_INTERACTIVE		(slice_max)
172#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
173#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
174#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
175#define	SCHED_SLICE_NICE(nice)						\
176    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
177
178/*
179 * This macro determines whether or not the kse belongs on the current or
180 * next run queue.
181 */
182#define	SCHED_INTERACTIVE(kg)						\
183    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
184#define	SCHED_CURR(kg, ke)						\
185    (ke->ke_thread->td_priority < kg->kg_user_pri ||			\
186    SCHED_INTERACTIVE(kg))
187
188/*
189 * Cpu percentage computation macros and defines.
190 *
191 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
192 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
193 */
194
195#define	SCHED_CPU_TIME	10
196#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
197
198/*
199 * kseq - per processor runqs and statistics.
200 */
201struct kseq {
202	struct runq	ksq_idle;		/* Queue of IDLE threads. */
203	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
204	struct runq	*ksq_next;		/* Next timeshare queue. */
205	struct runq	*ksq_curr;		/* Current queue. */
206	int		ksq_load_timeshare;	/* Load for timeshare. */
207	int		ksq_load;		/* Aggregate load. */
208	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
209	short		ksq_nicemin;		/* Least nice. */
210#ifdef SMP
211	int			ksq_transferable;
212	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
213	struct kseq_group	*ksq_group;	/* Our processor group. */
214	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
215#else
216	int		ksq_sysload;		/* For loadavg, !ITHD load. */
217#endif
218};
219
220#ifdef SMP
221/*
222 * kseq groups are groups of processors which can cheaply share threads.  When
223 * one processor in the group goes idle it will check the runqs of the other
224 * processors in its group prior to halting and waiting for an interrupt.
225 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
226 * In a numa environment we'd want an idle bitmap per group and a two tiered
227 * load balancer.
228 */
229struct kseq_group {
230	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
231	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
232	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
233	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
234	int	ksg_load;		/* Total load of this group. */
235	int	ksg_transferable;	/* Transferable load of this group. */
236	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
237};
238#endif
239
240/*
241 * One kse queue per processor.
242 */
243#ifdef SMP
244static cpumask_t kseq_idle;
245static int ksg_maxid;
246static struct kseq	kseq_cpu[MAXCPU];
247static struct kseq_group kseq_groups[MAXCPU];
248static int bal_tick;
249static int gbal_tick;
250
251#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
252#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
253#define	KSEQ_ID(x)	((x) - kseq_cpu)
254#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
255#else	/* !SMP */
256static struct kseq	kseq_cpu;
257
258#define	KSEQ_SELF()	(&kseq_cpu)
259#define	KSEQ_CPU(x)	(&kseq_cpu)
260#endif
261
262static void sched_add_internal(struct thread *td, int preemptive);
263static void sched_slice(struct kse *ke);
264static void sched_priority(struct ksegrp *kg);
265static int sched_interact_score(struct ksegrp *kg);
266static void sched_interact_update(struct ksegrp *kg);
267static void sched_interact_fork(struct ksegrp *kg);
268static void sched_pctcpu_update(struct kse *ke);
269
270/* Operations on per processor queues */
271static struct kse * kseq_choose(struct kseq *kseq);
272static void kseq_setup(struct kseq *kseq);
273static void kseq_load_add(struct kseq *kseq, struct kse *ke);
274static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
275static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
276static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
277static void kseq_nice_add(struct kseq *kseq, int nice);
278static void kseq_nice_rem(struct kseq *kseq, int nice);
279void kseq_print(int cpu);
280#ifdef SMP
281static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
282static struct kse *runq_steal(struct runq *rq);
283static void sched_balance(void);
284static void sched_balance_groups(void);
285static void sched_balance_group(struct kseq_group *ksg);
286static void sched_balance_pair(struct kseq *high, struct kseq *low);
287static void kseq_move(struct kseq *from, int cpu);
288static int kseq_idled(struct kseq *kseq);
289static void kseq_notify(struct kse *ke, int cpu);
290static void kseq_assign(struct kseq *);
291static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
292/*
293 * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
294 * this, we can't pin interrupts to the cpu that they were delivered to,
295 * otherwise all ithreads only run on CPU 0.
296 */
297#ifdef __i386__
298#define	KSE_CAN_MIGRATE(ke, class)					\
299    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
300#else /* !__i386__ */
301#define	KSE_CAN_MIGRATE(ke, class)					\
302    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
303    ((ke)->ke_flags & KEF_BOUND) == 0)
304#endif /* !__i386__ */
305#endif
306
307void
308kseq_print(int cpu)
309{
310	struct kseq *kseq;
311	int i;
312
313	kseq = KSEQ_CPU(cpu);
314
315	printf("kseq:\n");
316	printf("\tload:           %d\n", kseq->ksq_load);
317	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
318#ifdef SMP
319	printf("\tload transferable: %d\n", kseq->ksq_transferable);
320#endif
321	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
322	printf("\tnice counts:\n");
323	for (i = 0; i < SCHED_PRI_NRESV; i++)
324		if (kseq->ksq_nice[i])
325			printf("\t\t%d = %d\n",
326			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
327}
328
329static __inline void
330kseq_runq_add(struct kseq *kseq, struct kse *ke)
331{
332#ifdef SMP
333	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
334		kseq->ksq_transferable++;
335		kseq->ksq_group->ksg_transferable++;
336		ke->ke_flags |= KEF_XFERABLE;
337	}
338#endif
339	runq_add(ke->ke_runq, ke);
340}
341
342static __inline void
343kseq_runq_rem(struct kseq *kseq, struct kse *ke)
344{
345#ifdef SMP
346	if (ke->ke_flags & KEF_XFERABLE) {
347		kseq->ksq_transferable--;
348		kseq->ksq_group->ksg_transferable--;
349		ke->ke_flags &= ~KEF_XFERABLE;
350	}
351#endif
352	runq_remove(ke->ke_runq, ke);
353}
354
355static void
356kseq_load_add(struct kseq *kseq, struct kse *ke)
357{
358	int class;
359	mtx_assert(&sched_lock, MA_OWNED);
360	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
361	if (class == PRI_TIMESHARE)
362		kseq->ksq_load_timeshare++;
363	kseq->ksq_load++;
364	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
365#ifdef SMP
366		kseq->ksq_group->ksg_load++;
367#else
368		kseq->ksq_sysload++;
369#endif
370	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
371		CTR6(KTR_ULE,
372		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
373		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
374		    ke->ke_proc->p_nice, kseq->ksq_nicemin);
375	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
376		kseq_nice_add(kseq, ke->ke_proc->p_nice);
377}
378
379static void
380kseq_load_rem(struct kseq *kseq, struct kse *ke)
381{
382	int class;
383	mtx_assert(&sched_lock, MA_OWNED);
384	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
385	if (class == PRI_TIMESHARE)
386		kseq->ksq_load_timeshare--;
387	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
388#ifdef SMP
389		kseq->ksq_group->ksg_load--;
390#else
391		kseq->ksq_sysload--;
392#endif
393	kseq->ksq_load--;
394	ke->ke_runq = NULL;
395	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
396		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
397}
398
399static void
400kseq_nice_add(struct kseq *kseq, int nice)
401{
402	mtx_assert(&sched_lock, MA_OWNED);
403	/* Normalize to zero. */
404	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
405	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
406		kseq->ksq_nicemin = nice;
407}
408
409static void
410kseq_nice_rem(struct kseq *kseq, int nice)
411{
412	int n;
413
414	mtx_assert(&sched_lock, MA_OWNED);
415	/* Normalize to zero. */
416	n = nice + SCHED_PRI_NHALF;
417	kseq->ksq_nice[n]--;
418	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
419
420	/*
421	 * If this wasn't the smallest nice value or there are more in
422	 * this bucket we can just return.  Otherwise we have to recalculate
423	 * the smallest nice.
424	 */
425	if (nice != kseq->ksq_nicemin ||
426	    kseq->ksq_nice[n] != 0 ||
427	    kseq->ksq_load_timeshare == 0)
428		return;
429
430	for (; n < SCHED_PRI_NRESV; n++)
431		if (kseq->ksq_nice[n]) {
432			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
433			return;
434		}
435}
436
437#ifdef SMP
438/*
439 * sched_balance is a simple CPU load balancing algorithm.  It operates by
440 * finding the least loaded and most loaded cpu and equalizing their load
441 * by migrating some processes.
442 *
443 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
444 * installations will only have 2 cpus.  Secondly, load balancing too much at
445 * once can have an unpleasant effect on the system.  The scheduler rarely has
446 * enough information to make perfect decisions.  So this algorithm chooses
447 * algorithm simplicity and more gradual effects on load in larger systems.
448 *
449 * It could be improved by considering the priorities and slices assigned to
450 * each task prior to balancing them.  There are many pathological cases with
451 * any approach and so the semi random algorithm below may work as well as any.
452 *
453 */
454static void
455sched_balance(void)
456{
457	struct kseq_group *high;
458	struct kseq_group *low;
459	struct kseq_group *ksg;
460	int cnt;
461	int i;
462
463	if (smp_started == 0)
464		goto out;
465	low = high = NULL;
466	i = random() % (ksg_maxid + 1);
467	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
468		ksg = KSEQ_GROUP(i);
469		/*
470		 * Find the CPU with the highest load that has some
471		 * threads to transfer.
472		 */
473		if ((high == NULL || ksg->ksg_load > high->ksg_load)
474		    && ksg->ksg_transferable)
475			high = ksg;
476		if (low == NULL || ksg->ksg_load < low->ksg_load)
477			low = ksg;
478		if (++i > ksg_maxid)
479			i = 0;
480	}
481	if (low != NULL && high != NULL && high != low)
482		sched_balance_pair(LIST_FIRST(&high->ksg_members),
483		    LIST_FIRST(&low->ksg_members));
484out:
485	bal_tick = ticks + (random() % (hz * 2));
486}
487
488static void
489sched_balance_groups(void)
490{
491	int i;
492
493	mtx_assert(&sched_lock, MA_OWNED);
494	if (smp_started)
495		for (i = 0; i <= ksg_maxid; i++)
496			sched_balance_group(KSEQ_GROUP(i));
497	gbal_tick = ticks + (random() % (hz * 2));
498}
499
500static void
501sched_balance_group(struct kseq_group *ksg)
502{
503	struct kseq *kseq;
504	struct kseq *high;
505	struct kseq *low;
506	int load;
507
508	if (ksg->ksg_transferable == 0)
509		return;
510	low = NULL;
511	high = NULL;
512	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
513		load = kseq->ksq_load;
514		if (high == NULL || load > high->ksq_load)
515			high = kseq;
516		if (low == NULL || load < low->ksq_load)
517			low = kseq;
518	}
519	if (high != NULL && low != NULL && high != low)
520		sched_balance_pair(high, low);
521}
522
523static void
524sched_balance_pair(struct kseq *high, struct kseq *low)
525{
526	int transferable;
527	int high_load;
528	int low_load;
529	int move;
530	int diff;
531	int i;
532
533	/*
534	 * If we're transfering within a group we have to use this specific
535	 * kseq's transferable count, otherwise we can steal from other members
536	 * of the group.
537	 */
538	if (high->ksq_group == low->ksq_group) {
539		transferable = high->ksq_transferable;
540		high_load = high->ksq_load;
541		low_load = low->ksq_load;
542	} else {
543		transferable = high->ksq_group->ksg_transferable;
544		high_load = high->ksq_group->ksg_load;
545		low_load = low->ksq_group->ksg_load;
546	}
547	if (transferable == 0)
548		return;
549	/*
550	 * Determine what the imbalance is and then adjust that to how many
551	 * kses we actually have to give up (transferable).
552	 */
553	diff = high_load - low_load;
554	move = diff / 2;
555	if (diff & 0x1)
556		move++;
557	move = min(move, transferable);
558	for (i = 0; i < move; i++)
559		kseq_move(high, KSEQ_ID(low));
560	return;
561}
562
563static void
564kseq_move(struct kseq *from, int cpu)
565{
566	struct kseq *kseq;
567	struct kseq *to;
568	struct kse *ke;
569
570	kseq = from;
571	to = KSEQ_CPU(cpu);
572	ke = kseq_steal(kseq, 1);
573	if (ke == NULL) {
574		struct kseq_group *ksg;
575
576		ksg = kseq->ksq_group;
577		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
578			if (kseq == from || kseq->ksq_transferable == 0)
579				continue;
580			ke = kseq_steal(kseq, 1);
581			break;
582		}
583		if (ke == NULL)
584			panic("kseq_move: No KSEs available with a "
585			    "transferable count of %d\n",
586			    ksg->ksg_transferable);
587	}
588	if (kseq == to)
589		return;
590	ke->ke_state = KES_THREAD;
591	kseq_runq_rem(kseq, ke);
592	kseq_load_rem(kseq, ke);
593	kseq_notify(ke, cpu);
594}
595
596static int
597kseq_idled(struct kseq *kseq)
598{
599	struct kseq_group *ksg;
600	struct kseq *steal;
601	struct kse *ke;
602
603	ksg = kseq->ksq_group;
604	/*
605	 * If we're in a cpu group, try and steal kses from another cpu in
606	 * the group before idling.
607	 */
608	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
609		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
610			if (steal == kseq || steal->ksq_transferable == 0)
611				continue;
612			ke = kseq_steal(steal, 0);
613			if (ke == NULL)
614				continue;
615			ke->ke_state = KES_THREAD;
616			kseq_runq_rem(steal, ke);
617			kseq_load_rem(steal, ke);
618			ke->ke_cpu = PCPU_GET(cpuid);
619			sched_add_internal(ke->ke_thread, 0);
620			return (0);
621		}
622	}
623	/*
624	 * We only set the idled bit when all of the cpus in the group are
625	 * idle.  Otherwise we could get into a situation where a KSE bounces
626	 * back and forth between two idle cores on seperate physical CPUs.
627	 */
628	ksg->ksg_idlemask |= PCPU_GET(cpumask);
629	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
630		return (1);
631	atomic_set_int(&kseq_idle, ksg->ksg_mask);
632	return (1);
633}
634
635static void
636kseq_assign(struct kseq *kseq)
637{
638	struct kse *nke;
639	struct kse *ke;
640
641	do {
642		*(volatile struct kse **)&ke = kseq->ksq_assigned;
643	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
644	for (; ke != NULL; ke = nke) {
645		nke = ke->ke_assign;
646		ke->ke_flags &= ~KEF_ASSIGNED;
647		sched_add_internal(ke->ke_thread, 0);
648	}
649}
650
651static void
652kseq_notify(struct kse *ke, int cpu)
653{
654	struct kseq *kseq;
655	struct thread *td;
656	struct pcpu *pcpu;
657	int prio;
658
659	ke->ke_cpu = cpu;
660	ke->ke_flags |= KEF_ASSIGNED;
661	prio = ke->ke_thread->td_priority;
662
663	kseq = KSEQ_CPU(cpu);
664
665	/*
666	 * Place a KSE on another cpu's queue and force a resched.
667	 */
668	do {
669		*(volatile struct kse **)&ke->ke_assign = kseq->ksq_assigned;
670	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
671	/*
672	 * Without sched_lock we could lose a race where we set NEEDRESCHED
673	 * on a thread that is switched out before the IPI is delivered.  This
674	 * would lead us to miss the resched.  This will be a problem once
675	 * sched_lock is pushed down.
676	 */
677	pcpu = pcpu_find(cpu);
678	td = pcpu->pc_curthread;
679	if (ke->ke_thread->td_priority < td->td_priority ||
680	    td == pcpu->pc_idlethread) {
681		td->td_flags |= TDF_NEEDRESCHED;
682		ipi_selected(1 << cpu, IPI_AST);
683	}
684}
685
686static struct kse *
687runq_steal(struct runq *rq)
688{
689	struct rqhead *rqh;
690	struct rqbits *rqb;
691	struct kse *ke;
692	int word;
693	int bit;
694
695	mtx_assert(&sched_lock, MA_OWNED);
696	rqb = &rq->rq_status;
697	for (word = 0; word < RQB_LEN; word++) {
698		if (rqb->rqb_bits[word] == 0)
699			continue;
700		for (bit = 0; bit < RQB_BPW; bit++) {
701			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
702				continue;
703			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
704			TAILQ_FOREACH(ke, rqh, ke_procq) {
705				if (KSE_CAN_MIGRATE(ke,
706				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
707					return (ke);
708			}
709		}
710	}
711	return (NULL);
712}
713
714static struct kse *
715kseq_steal(struct kseq *kseq, int stealidle)
716{
717	struct kse *ke;
718
719	/*
720	 * Steal from next first to try to get a non-interactive task that
721	 * may not have run for a while.
722	 */
723	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
724		return (ke);
725	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
726		return (ke);
727	if (stealidle)
728		return (runq_steal(&kseq->ksq_idle));
729	return (NULL);
730}
731
732int
733kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
734{
735	struct kseq_group *ksg;
736	int cpu;
737
738	if (smp_started == 0)
739		return (0);
740	cpu = 0;
741	/*
742	 * If our load exceeds a certain threshold we should attempt to
743	 * reassign this thread.  The first candidate is the cpu that
744	 * originally ran the thread.  If it is idle, assign it there,
745	 * otherwise, pick an idle cpu.
746	 *
747	 * The threshold at which we start to reassign kses has a large impact
748	 * on the overall performance of the system.  Tuned too high and
749	 * some CPUs may idle.  Too low and there will be excess migration
750	 * and context switches.
751	 */
752	ksg = kseq->ksq_group;
753	if (ksg->ksg_load > ksg->ksg_cpus && kseq_idle) {
754		ksg = KSEQ_CPU(ke->ke_cpu)->ksq_group;
755		if (kseq_idle & ksg->ksg_mask) {
756			cpu = ffs(ksg->ksg_idlemask);
757			if (cpu)
758				goto migrate;
759		}
760		/*
761		 * Multiple cpus could find this bit simultaneously
762		 * but the race shouldn't be terrible.
763		 */
764		cpu = ffs(kseq_idle);
765		if (cpu)
766			goto migrate;
767	}
768	/*
769	 * If another cpu in this group has idled, assign a thread over
770	 * to them after checking to see if there are idled groups.
771	 */
772	ksg = kseq->ksq_group;
773	if (ksg->ksg_idlemask) {
774		cpu = ffs(ksg->ksg_idlemask);
775		if (cpu)
776			goto migrate;
777	}
778	/*
779	 * No new CPU was found.
780	 */
781	return (0);
782migrate:
783	/*
784	 * Now that we've found an idle CPU, migrate the thread.
785	 */
786	cpu--;
787	ke->ke_runq = NULL;
788	kseq_notify(ke, cpu);
789
790	return (1);
791}
792
793#endif	/* SMP */
794
795/*
796 * Pick the highest priority task we have and return it.
797 */
798
799static struct kse *
800kseq_choose(struct kseq *kseq)
801{
802	struct kse *ke;
803	struct runq *swap;
804
805	mtx_assert(&sched_lock, MA_OWNED);
806	swap = NULL;
807
808	for (;;) {
809		ke = runq_choose(kseq->ksq_curr);
810		if (ke == NULL) {
811			/*
812			 * We already swapped once and didn't get anywhere.
813			 */
814			if (swap)
815				break;
816			swap = kseq->ksq_curr;
817			kseq->ksq_curr = kseq->ksq_next;
818			kseq->ksq_next = swap;
819			continue;
820		}
821		/*
822		 * If we encounter a slice of 0 the kse is in a
823		 * TIMESHARE kse group and its nice was too far out
824		 * of the range that receives slices.
825		 */
826		if (ke->ke_slice == 0) {
827			runq_remove(ke->ke_runq, ke);
828			sched_slice(ke);
829			ke->ke_runq = kseq->ksq_next;
830			runq_add(ke->ke_runq, ke);
831			continue;
832		}
833		return (ke);
834	}
835
836	return (runq_choose(&kseq->ksq_idle));
837}
838
839static void
840kseq_setup(struct kseq *kseq)
841{
842	runq_init(&kseq->ksq_timeshare[0]);
843	runq_init(&kseq->ksq_timeshare[1]);
844	runq_init(&kseq->ksq_idle);
845	kseq->ksq_curr = &kseq->ksq_timeshare[0];
846	kseq->ksq_next = &kseq->ksq_timeshare[1];
847	kseq->ksq_load = 0;
848	kseq->ksq_load_timeshare = 0;
849}
850
851static void
852sched_setup(void *dummy)
853{
854#ifdef SMP
855	int balance_groups;
856	int i;
857#endif
858
859	slice_min = (hz/100);	/* 10ms */
860	slice_max = (hz/7);	/* ~140ms */
861
862#ifdef SMP
863	balance_groups = 0;
864	/*
865	 * Initialize the kseqs.
866	 */
867	for (i = 0; i < MAXCPU; i++) {
868		struct kseq *ksq;
869
870		ksq = &kseq_cpu[i];
871		ksq->ksq_assigned = NULL;
872		kseq_setup(&kseq_cpu[i]);
873	}
874	if (smp_topology == NULL) {
875		struct kseq_group *ksg;
876		struct kseq *ksq;
877
878		for (i = 0; i < MAXCPU; i++) {
879			ksq = &kseq_cpu[i];
880			ksg = &kseq_groups[i];
881			/*
882			 * Setup a kseq group with one member.
883			 */
884			ksq->ksq_transferable = 0;
885			ksq->ksq_group = ksg;
886			ksg->ksg_cpus = 1;
887			ksg->ksg_idlemask = 0;
888			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
889			ksg->ksg_load = 0;
890			ksg->ksg_transferable = 0;
891			LIST_INIT(&ksg->ksg_members);
892			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
893		}
894	} else {
895		struct kseq_group *ksg;
896		struct cpu_group *cg;
897		int j;
898
899		for (i = 0; i < smp_topology->ct_count; i++) {
900			cg = &smp_topology->ct_group[i];
901			ksg = &kseq_groups[i];
902			/*
903			 * Initialize the group.
904			 */
905			ksg->ksg_idlemask = 0;
906			ksg->ksg_load = 0;
907			ksg->ksg_transferable = 0;
908			ksg->ksg_cpus = cg->cg_count;
909			ksg->ksg_cpumask = cg->cg_mask;
910			LIST_INIT(&ksg->ksg_members);
911			/*
912			 * Find all of the group members and add them.
913			 */
914			for (j = 0; j < MAXCPU; j++) {
915				if ((cg->cg_mask & (1 << j)) != 0) {
916					if (ksg->ksg_mask == 0)
917						ksg->ksg_mask = 1 << j;
918					kseq_cpu[j].ksq_transferable = 0;
919					kseq_cpu[j].ksq_group = ksg;
920					LIST_INSERT_HEAD(&ksg->ksg_members,
921					    &kseq_cpu[j], ksq_siblings);
922				}
923			}
924			if (ksg->ksg_cpus > 1)
925				balance_groups = 1;
926		}
927		ksg_maxid = smp_topology->ct_count - 1;
928	}
929	/*
930	 * Stagger the group and global load balancer so they do not
931	 * interfere with each other.
932	 */
933	bal_tick = ticks + hz;
934	if (balance_groups)
935		gbal_tick = ticks + (hz / 2);
936#else
937	kseq_setup(KSEQ_SELF());
938#endif
939	mtx_lock_spin(&sched_lock);
940	kseq_load_add(KSEQ_SELF(), &kse0);
941	mtx_unlock_spin(&sched_lock);
942}
943
944/*
945 * Scale the scheduling priority according to the "interactivity" of this
946 * process.
947 */
948static void
949sched_priority(struct ksegrp *kg)
950{
951	int pri;
952
953	if (kg->kg_pri_class != PRI_TIMESHARE)
954		return;
955
956	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
957	pri += SCHED_PRI_BASE;
958	pri += kg->kg_proc->p_nice;
959
960	if (pri > PRI_MAX_TIMESHARE)
961		pri = PRI_MAX_TIMESHARE;
962	else if (pri < PRI_MIN_TIMESHARE)
963		pri = PRI_MIN_TIMESHARE;
964
965	kg->kg_user_pri = pri;
966
967	return;
968}
969
970/*
971 * Calculate a time slice based on the properties of the kseg and the runq
972 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
973 */
974static void
975sched_slice(struct kse *ke)
976{
977	struct kseq *kseq;
978	struct ksegrp *kg;
979
980	kg = ke->ke_ksegrp;
981	kseq = KSEQ_CPU(ke->ke_cpu);
982
983	/*
984	 * Rationale:
985	 * KSEs in interactive ksegs get a minimal slice so that we
986	 * quickly notice if it abuses its advantage.
987	 *
988	 * KSEs in non-interactive ksegs are assigned a slice that is
989	 * based on the ksegs nice value relative to the least nice kseg
990	 * on the run queue for this cpu.
991	 *
992	 * If the KSE is less nice than all others it gets the maximum
993	 * slice and other KSEs will adjust their slice relative to
994	 * this when they first expire.
995	 *
996	 * There is 20 point window that starts relative to the least
997	 * nice kse on the run queue.  Slice size is determined by
998	 * the kse distance from the last nice ksegrp.
999	 *
1000	 * If the kse is outside of the window it will get no slice
1001	 * and will be reevaluated each time it is selected on the
1002	 * run queue.  The exception to this is nice 0 ksegs when
1003	 * a nice -20 is running.  They are always granted a minimum
1004	 * slice.
1005	 */
1006	if (!SCHED_INTERACTIVE(kg)) {
1007		int nice;
1008
1009		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
1010		if (kseq->ksq_load_timeshare == 0 ||
1011		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
1012			ke->ke_slice = SCHED_SLICE_MAX;
1013		else if (nice <= SCHED_SLICE_NTHRESH)
1014			ke->ke_slice = SCHED_SLICE_NICE(nice);
1015		else if (kg->kg_proc->p_nice == 0)
1016			ke->ke_slice = SCHED_SLICE_MIN;
1017		else
1018			ke->ke_slice = 0;
1019	} else
1020		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1021
1022	CTR6(KTR_ULE,
1023	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1024	    ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
1025	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1026
1027	return;
1028}
1029
1030/*
1031 * This routine enforces a maximum limit on the amount of scheduling history
1032 * kept.  It is called after either the slptime or runtime is adjusted.
1033 * This routine will not operate correctly when slp or run times have been
1034 * adjusted to more than double their maximum.
1035 */
1036static void
1037sched_interact_update(struct ksegrp *kg)
1038{
1039	int sum;
1040
1041	sum = kg->kg_runtime + kg->kg_slptime;
1042	if (sum < SCHED_SLP_RUN_MAX)
1043		return;
1044	/*
1045	 * If we have exceeded by more than 1/5th then the algorithm below
1046	 * will not bring us back into range.  Dividing by two here forces
1047	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1048	 */
1049	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1050		kg->kg_runtime /= 2;
1051		kg->kg_slptime /= 2;
1052		return;
1053	}
1054	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1055	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1056}
1057
1058static void
1059sched_interact_fork(struct ksegrp *kg)
1060{
1061	int ratio;
1062	int sum;
1063
1064	sum = kg->kg_runtime + kg->kg_slptime;
1065	if (sum > SCHED_SLP_RUN_FORK) {
1066		ratio = sum / SCHED_SLP_RUN_FORK;
1067		kg->kg_runtime /= ratio;
1068		kg->kg_slptime /= ratio;
1069	}
1070}
1071
1072static int
1073sched_interact_score(struct ksegrp *kg)
1074{
1075	int div;
1076
1077	if (kg->kg_runtime > kg->kg_slptime) {
1078		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1079		return (SCHED_INTERACT_HALF +
1080		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1081	} if (kg->kg_slptime > kg->kg_runtime) {
1082		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1083		return (kg->kg_runtime / div);
1084	}
1085
1086	/*
1087	 * This can happen if slptime and runtime are 0.
1088	 */
1089	return (0);
1090
1091}
1092
1093/*
1094 * This is only somewhat accurate since given many processes of the same
1095 * priority they will switch when their slices run out, which will be
1096 * at most SCHED_SLICE_MAX.
1097 */
1098int
1099sched_rr_interval(void)
1100{
1101	return (SCHED_SLICE_MAX);
1102}
1103
1104static void
1105sched_pctcpu_update(struct kse *ke)
1106{
1107	/*
1108	 * Adjust counters and watermark for pctcpu calc.
1109	 */
1110	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1111		/*
1112		 * Shift the tick count out so that the divide doesn't
1113		 * round away our results.
1114		 */
1115		ke->ke_ticks <<= 10;
1116		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1117			    SCHED_CPU_TICKS;
1118		ke->ke_ticks >>= 10;
1119	} else
1120		ke->ke_ticks = 0;
1121	ke->ke_ltick = ticks;
1122	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1123}
1124
1125void
1126sched_prio(struct thread *td, u_char prio)
1127{
1128	struct kse *ke;
1129
1130	ke = td->td_kse;
1131	mtx_assert(&sched_lock, MA_OWNED);
1132	if (TD_ON_RUNQ(td)) {
1133		/*
1134		 * If the priority has been elevated due to priority
1135		 * propagation, we may have to move ourselves to a new
1136		 * queue.  We still call adjustrunqueue below in case kse
1137		 * needs to fix things up.
1138		 */
1139		if (prio < td->td_priority && ke &&
1140		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1141		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1142			runq_remove(ke->ke_runq, ke);
1143			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1144			runq_add(ke->ke_runq, ke);
1145		}
1146		adjustrunqueue(td, prio);
1147	} else
1148		td->td_priority = prio;
1149}
1150
1151void
1152sched_switch(struct thread *td, struct thread *newtd)
1153{
1154	struct kse *ke;
1155
1156	mtx_assert(&sched_lock, MA_OWNED);
1157
1158	ke = td->td_kse;
1159
1160	td->td_last_kse = ke;
1161        td->td_lastcpu = td->td_oncpu;
1162	td->td_oncpu = NOCPU;
1163	td->td_flags &= ~TDF_NEEDRESCHED;
1164	td->td_pflags &= ~TDP_OWEPREEMPT;
1165
1166	/*
1167	 * If the KSE has been assigned it may be in the process of switching
1168	 * to the new cpu.  This is the case in sched_bind().
1169	 */
1170	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1171		if (td == PCPU_GET(idlethread)) {
1172			TD_SET_CAN_RUN(td);
1173		} else if (TD_IS_RUNNING(td)) {
1174			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1175			setrunqueue(td);
1176		} else {
1177			if (ke->ke_runq) {
1178				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1179			} else if ((td->td_flags & TDF_IDLETD) == 0)
1180				kdb_backtrace();
1181			/*
1182			 * We will not be on the run queue. So we must be
1183			 * sleeping or similar.
1184			 */
1185			if (td->td_proc->p_flag & P_SA)
1186				kse_reassign(ke);
1187		}
1188	}
1189	if (newtd != NULL) {
1190		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1191		ke->ke_cpu = PCPU_GET(cpuid);
1192		ke->ke_runq = KSEQ_SELF()->ksq_curr;
1193	} else
1194		newtd = choosethread();
1195	if (td != newtd)
1196		cpu_switch(td, newtd);
1197	sched_lock.mtx_lock = (uintptr_t)td;
1198
1199	td->td_oncpu = PCPU_GET(cpuid);
1200}
1201
1202void
1203sched_nice(struct proc *p, int nice)
1204{
1205	struct ksegrp *kg;
1206	struct kse *ke;
1207	struct thread *td;
1208	struct kseq *kseq;
1209
1210	PROC_LOCK_ASSERT(p, MA_OWNED);
1211	mtx_assert(&sched_lock, MA_OWNED);
1212	/*
1213	 * We need to adjust the nice counts for running KSEs.
1214	 */
1215	FOREACH_KSEGRP_IN_PROC(p, kg) {
1216		if (kg->kg_pri_class == PRI_TIMESHARE) {
1217			FOREACH_KSE_IN_GROUP(kg, ke) {
1218				if (ke->ke_runq == NULL)
1219					continue;
1220				kseq = KSEQ_CPU(ke->ke_cpu);
1221				kseq_nice_rem(kseq, p->p_nice);
1222				kseq_nice_add(kseq, nice);
1223			}
1224		}
1225	}
1226	p->p_nice = nice;
1227	FOREACH_KSEGRP_IN_PROC(p, kg) {
1228		sched_priority(kg);
1229		FOREACH_THREAD_IN_GROUP(kg, td)
1230			td->td_flags |= TDF_NEEDRESCHED;
1231	}
1232}
1233
1234void
1235sched_sleep(struct thread *td)
1236{
1237	mtx_assert(&sched_lock, MA_OWNED);
1238
1239	td->td_slptime = ticks;
1240	td->td_base_pri = td->td_priority;
1241
1242	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
1243	    td->td_kse, td->td_slptime);
1244}
1245
1246void
1247sched_wakeup(struct thread *td)
1248{
1249	mtx_assert(&sched_lock, MA_OWNED);
1250
1251	/*
1252	 * Let the kseg know how long we slept for.  This is because process
1253	 * interactivity behavior is modeled in the kseg.
1254	 */
1255	if (td->td_slptime) {
1256		struct ksegrp *kg;
1257		int hzticks;
1258
1259		kg = td->td_ksegrp;
1260		hzticks = (ticks - td->td_slptime) << 10;
1261		if (hzticks >= SCHED_SLP_RUN_MAX) {
1262			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1263			kg->kg_runtime = 1;
1264		} else {
1265			kg->kg_slptime += hzticks;
1266			sched_interact_update(kg);
1267		}
1268		sched_priority(kg);
1269		if (td->td_kse)
1270			sched_slice(td->td_kse);
1271		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
1272		    td->td_kse, hzticks);
1273		td->td_slptime = 0;
1274	}
1275	setrunqueue(td);
1276}
1277
1278/*
1279 * Penalize the parent for creating a new child and initialize the child's
1280 * priority.
1281 */
1282void
1283sched_fork(struct thread *td, struct proc *p1)
1284{
1285
1286	mtx_assert(&sched_lock, MA_OWNED);
1287
1288	p1->p_nice = td->td_proc->p_nice;
1289	sched_fork_ksegrp(td, FIRST_KSEGRP_IN_PROC(p1));
1290	sched_fork_kse(td, FIRST_KSE_IN_PROC(p1));
1291	sched_fork_thread(td, FIRST_THREAD_IN_PROC(p1));
1292}
1293
1294void
1295sched_fork_kse(struct thread *td, struct kse *child)
1296{
1297
1298	struct kse *ke = td->td_kse;
1299
1300	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1301	child->ke_cpu = ke->ke_cpu;
1302	child->ke_runq = NULL;
1303
1304	/* Grab our parents cpu estimation information. */
1305	child->ke_ticks = ke->ke_ticks;
1306	child->ke_ltick = ke->ke_ltick;
1307	child->ke_ftick = ke->ke_ftick;
1308}
1309
1310void
1311sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1312{
1313	struct ksegrp *kg = td->td_ksegrp;
1314	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1315
1316	child->kg_slptime = kg->kg_slptime;
1317	child->kg_runtime = kg->kg_runtime;
1318	child->kg_user_pri = kg->kg_user_pri;
1319	sched_interact_fork(child);
1320	kg->kg_runtime += tickincr << 10;
1321	sched_interact_update(kg);
1322
1323	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1324	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1325	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1326}
1327
1328void
1329sched_fork_thread(struct thread *td, struct thread *child)
1330{
1331}
1332
1333void
1334sched_class(struct ksegrp *kg, int class)
1335{
1336	struct kseq *kseq;
1337	struct kse *ke;
1338	int nclass;
1339	int oclass;
1340
1341	mtx_assert(&sched_lock, MA_OWNED);
1342	if (kg->kg_pri_class == class)
1343		return;
1344
1345	nclass = PRI_BASE(class);
1346	oclass = PRI_BASE(kg->kg_pri_class);
1347	FOREACH_KSE_IN_GROUP(kg, ke) {
1348		if (ke->ke_state != KES_ONRUNQ &&
1349		    ke->ke_state != KES_THREAD)
1350			continue;
1351		kseq = KSEQ_CPU(ke->ke_cpu);
1352
1353#ifdef SMP
1354		/*
1355		 * On SMP if we're on the RUNQ we must adjust the transferable
1356		 * count because could be changing to or from an interrupt
1357		 * class.
1358		 */
1359		if (ke->ke_state == KES_ONRUNQ) {
1360			if (KSE_CAN_MIGRATE(ke, oclass)) {
1361				kseq->ksq_transferable--;
1362				kseq->ksq_group->ksg_transferable--;
1363			}
1364			if (KSE_CAN_MIGRATE(ke, nclass)) {
1365				kseq->ksq_transferable++;
1366				kseq->ksq_group->ksg_transferable++;
1367			}
1368		}
1369#endif
1370		if (oclass == PRI_TIMESHARE) {
1371			kseq->ksq_load_timeshare--;
1372			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1373		}
1374		if (nclass == PRI_TIMESHARE) {
1375			kseq->ksq_load_timeshare++;
1376			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1377		}
1378	}
1379
1380	kg->kg_pri_class = class;
1381}
1382
1383/*
1384 * Return some of the child's priority and interactivity to the parent.
1385 */
1386void
1387sched_exit(struct proc *p, struct thread *td)
1388{
1389	mtx_assert(&sched_lock, MA_OWNED);
1390	sched_exit_kse(FIRST_KSE_IN_PROC(p), td);
1391	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), td);
1392}
1393
1394void
1395sched_exit_kse(struct kse *ke, struct thread *td)
1396{
1397	kseq_load_rem(KSEQ_CPU(td->td_kse->ke_cpu), td->td_kse);
1398}
1399
1400void
1401sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1402{
1403	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1404	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1405	sched_interact_update(kg);
1406}
1407
1408void
1409sched_exit_thread(struct thread *td, struct thread *child)
1410{
1411}
1412
1413void
1414sched_clock(struct thread *td)
1415{
1416	struct kseq *kseq;
1417	struct ksegrp *kg;
1418	struct kse *ke;
1419
1420	mtx_assert(&sched_lock, MA_OWNED);
1421	kseq = KSEQ_SELF();
1422#ifdef SMP
1423	if (ticks == bal_tick)
1424		sched_balance();
1425	if (ticks == gbal_tick)
1426		sched_balance_groups();
1427	/*
1428	 * We could have been assigned a non real-time thread without an
1429	 * IPI.
1430	 */
1431	if (kseq->ksq_assigned)
1432		kseq_assign(kseq);	/* Potentially sets NEEDRESCHED */
1433#endif
1434	/*
1435	 * sched_setup() apparently happens prior to stathz being set.  We
1436	 * need to resolve the timers earlier in the boot so we can avoid
1437	 * calculating this here.
1438	 */
1439	if (realstathz == 0) {
1440		realstathz = stathz ? stathz : hz;
1441		tickincr = hz / realstathz;
1442		/*
1443		 * XXX This does not work for values of stathz that are much
1444		 * larger than hz.
1445		 */
1446		if (tickincr == 0)
1447			tickincr = 1;
1448	}
1449
1450	ke = td->td_kse;
1451	kg = ke->ke_ksegrp;
1452
1453	/* Adjust ticks for pctcpu */
1454	ke->ke_ticks++;
1455	ke->ke_ltick = ticks;
1456
1457	/* Go up to one second beyond our max and then trim back down */
1458	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1459		sched_pctcpu_update(ke);
1460
1461	if (td->td_flags & TDF_IDLETD)
1462		return;
1463
1464	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1465	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1466	/*
1467	 * We only do slicing code for TIMESHARE ksegrps.
1468	 */
1469	if (kg->kg_pri_class != PRI_TIMESHARE)
1470		return;
1471	/*
1472	 * We used a tick charge it to the ksegrp so that we can compute our
1473	 * interactivity.
1474	 */
1475	kg->kg_runtime += tickincr << 10;
1476	sched_interact_update(kg);
1477
1478	/*
1479	 * We used up one time slice.
1480	 */
1481	if (--ke->ke_slice > 0)
1482		return;
1483	/*
1484	 * We're out of time, recompute priorities and requeue.
1485	 */
1486	kseq_load_rem(kseq, ke);
1487	sched_priority(kg);
1488	sched_slice(ke);
1489	if (SCHED_CURR(kg, ke))
1490		ke->ke_runq = kseq->ksq_curr;
1491	else
1492		ke->ke_runq = kseq->ksq_next;
1493	kseq_load_add(kseq, ke);
1494	td->td_flags |= TDF_NEEDRESCHED;
1495}
1496
1497int
1498sched_runnable(void)
1499{
1500	struct kseq *kseq;
1501	int load;
1502
1503	load = 1;
1504
1505	kseq = KSEQ_SELF();
1506#ifdef SMP
1507	if (kseq->ksq_assigned) {
1508		mtx_lock_spin(&sched_lock);
1509		kseq_assign(kseq);
1510		mtx_unlock_spin(&sched_lock);
1511	}
1512#endif
1513	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1514		if (kseq->ksq_load > 0)
1515			goto out;
1516	} else
1517		if (kseq->ksq_load - 1 > 0)
1518			goto out;
1519	load = 0;
1520out:
1521	return (load);
1522}
1523
1524void
1525sched_userret(struct thread *td)
1526{
1527	struct ksegrp *kg;
1528
1529	kg = td->td_ksegrp;
1530
1531	if (td->td_priority != kg->kg_user_pri) {
1532		mtx_lock_spin(&sched_lock);
1533		td->td_priority = kg->kg_user_pri;
1534		mtx_unlock_spin(&sched_lock);
1535	}
1536}
1537
1538struct kse *
1539sched_choose(void)
1540{
1541	struct kseq *kseq;
1542	struct kse *ke;
1543
1544	mtx_assert(&sched_lock, MA_OWNED);
1545	kseq = KSEQ_SELF();
1546#ifdef SMP
1547restart:
1548	if (kseq->ksq_assigned)
1549		kseq_assign(kseq);
1550#endif
1551	ke = kseq_choose(kseq);
1552	if (ke) {
1553#ifdef SMP
1554		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1555			if (kseq_idled(kseq) == 0)
1556				goto restart;
1557#endif
1558		kseq_runq_rem(kseq, ke);
1559		ke->ke_state = KES_THREAD;
1560
1561		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1562			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1563			    ke, ke->ke_runq, ke->ke_slice,
1564			    ke->ke_thread->td_priority);
1565		}
1566		return (ke);
1567	}
1568#ifdef SMP
1569	if (kseq_idled(kseq) == 0)
1570		goto restart;
1571#endif
1572	return (NULL);
1573}
1574
1575void
1576sched_add(struct thread *td)
1577{
1578
1579	sched_add_internal(td, 1);
1580}
1581
1582static void
1583sched_add_internal(struct thread *td, int preemptive)
1584{
1585	struct kseq *kseq;
1586	struct ksegrp *kg;
1587	struct kse *ke;
1588#ifdef SMP
1589	int canmigrate;
1590#endif
1591	int class;
1592
1593	mtx_assert(&sched_lock, MA_OWNED);
1594	ke = td->td_kse;
1595	kg = td->td_ksegrp;
1596	if (ke->ke_flags & KEF_ASSIGNED)
1597		return;
1598	kseq = KSEQ_SELF();
1599	KASSERT((ke->ke_thread != NULL),
1600	    ("sched_add: No thread on KSE"));
1601	KASSERT((ke->ke_thread->td_kse != NULL),
1602	    ("sched_add: No KSE on thread"));
1603	KASSERT(ke->ke_state != KES_ONRUNQ,
1604	    ("sched_add: kse %p (%s) already in run queue", ke,
1605	    ke->ke_proc->p_comm));
1606	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1607	    ("sched_add: process swapped out"));
1608	KASSERT(ke->ke_runq == NULL,
1609	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1610
1611	class = PRI_BASE(kg->kg_pri_class);
1612	switch (class) {
1613	case PRI_ITHD:
1614	case PRI_REALTIME:
1615		ke->ke_runq = kseq->ksq_curr;
1616		ke->ke_slice = SCHED_SLICE_MAX;
1617		ke->ke_cpu = PCPU_GET(cpuid);
1618		break;
1619	case PRI_TIMESHARE:
1620		if (SCHED_CURR(kg, ke))
1621			ke->ke_runq = kseq->ksq_curr;
1622		else
1623			ke->ke_runq = kseq->ksq_next;
1624		break;
1625	case PRI_IDLE:
1626		/*
1627		 * This is for priority prop.
1628		 */
1629		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1630			ke->ke_runq = kseq->ksq_curr;
1631		else
1632			ke->ke_runq = &kseq->ksq_idle;
1633		ke->ke_slice = SCHED_SLICE_MIN;
1634		break;
1635	default:
1636		panic("Unknown pri class.");
1637		break;
1638	}
1639#ifdef SMP
1640	/*
1641	 * Don't migrate running threads here.  Force the long term balancer
1642	 * to do it.
1643	 */
1644	canmigrate = KSE_CAN_MIGRATE(ke, class);
1645	if (TD_IS_RUNNING(td))
1646		canmigrate = 0;
1647
1648	/*
1649	 * If this thread is pinned or bound, notify the target cpu.
1650	 */
1651	if (!canmigrate && ke->ke_cpu != PCPU_GET(cpuid) ) {
1652		ke->ke_runq = NULL;
1653		kseq_notify(ke, ke->ke_cpu);
1654		return;
1655	}
1656	/*
1657	 * If we had been idle, clear our bit in the group and potentially
1658	 * the global bitmap.  If not, see if we should transfer this thread.
1659	 */
1660	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1661	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1662		/*
1663		 * Check to see if our group is unidling, and if so, remove it
1664		 * from the global idle mask.
1665		 */
1666		if (kseq->ksq_group->ksg_idlemask ==
1667		    kseq->ksq_group->ksg_cpumask)
1668			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1669		/*
1670		 * Now remove ourselves from the group specific idle mask.
1671		 */
1672		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1673	} else if (kseq->ksq_load > 1 && canmigrate)
1674		if (kseq_transfer(kseq, ke, class))
1675			return;
1676	ke->ke_cpu = PCPU_GET(cpuid);
1677#endif
1678	/*
1679	 * XXX With preemption this is not necessary.
1680	 */
1681        if (td->td_priority < curthread->td_priority)
1682                curthread->td_flags |= TDF_NEEDRESCHED;
1683	if (preemptive && maybe_preempt(td))
1684		return;
1685	ke->ke_ksegrp->kg_runq_kses++;
1686	ke->ke_state = KES_ONRUNQ;
1687
1688	kseq_runq_add(kseq, ke);
1689	kseq_load_add(kseq, ke);
1690}
1691
1692void
1693sched_rem(struct thread *td)
1694{
1695	struct kseq *kseq;
1696	struct kse *ke;
1697
1698	ke = td->td_kse;
1699	/*
1700	 * It is safe to just return here because sched_rem() is only ever
1701	 * used in places where we're immediately going to add the
1702	 * kse back on again.  In that case it'll be added with the correct
1703	 * thread and priority when the caller drops the sched_lock.
1704	 */
1705	if (ke->ke_flags & KEF_ASSIGNED)
1706		return;
1707	mtx_assert(&sched_lock, MA_OWNED);
1708	KASSERT((ke->ke_state == KES_ONRUNQ),
1709	    ("sched_rem: KSE not on run queue"));
1710
1711	ke->ke_state = KES_THREAD;
1712	ke->ke_ksegrp->kg_runq_kses--;
1713	kseq = KSEQ_CPU(ke->ke_cpu);
1714	kseq_runq_rem(kseq, ke);
1715	kseq_load_rem(kseq, ke);
1716}
1717
1718fixpt_t
1719sched_pctcpu(struct thread *td)
1720{
1721	fixpt_t pctcpu;
1722	struct kse *ke;
1723
1724	pctcpu = 0;
1725	ke = td->td_kse;
1726	if (ke == NULL)
1727		return (0);
1728
1729	mtx_lock_spin(&sched_lock);
1730	if (ke->ke_ticks) {
1731		int rtick;
1732
1733		/*
1734		 * Don't update more frequently than twice a second.  Allowing
1735		 * this causes the cpu usage to decay away too quickly due to
1736		 * rounding errors.
1737		 */
1738		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1739		    ke->ke_ltick < (ticks - (hz / 2)))
1740			sched_pctcpu_update(ke);
1741		/* How many rtick per second ? */
1742		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1743		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1744	}
1745
1746	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1747	mtx_unlock_spin(&sched_lock);
1748
1749	return (pctcpu);
1750}
1751
1752void
1753sched_bind(struct thread *td, int cpu)
1754{
1755	struct kse *ke;
1756
1757	mtx_assert(&sched_lock, MA_OWNED);
1758	ke = td->td_kse;
1759	ke->ke_flags |= KEF_BOUND;
1760#ifdef SMP
1761	if (PCPU_GET(cpuid) == cpu)
1762		return;
1763	/* sched_rem without the runq_remove */
1764	ke->ke_state = KES_THREAD;
1765	ke->ke_ksegrp->kg_runq_kses--;
1766	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1767	kseq_notify(ke, cpu);
1768	/* When we return from mi_switch we'll be on the correct cpu. */
1769	mi_switch(SW_VOL, NULL);
1770#endif
1771}
1772
1773void
1774sched_unbind(struct thread *td)
1775{
1776	mtx_assert(&sched_lock, MA_OWNED);
1777	td->td_kse->ke_flags &= ~KEF_BOUND;
1778}
1779
1780int
1781sched_load(void)
1782{
1783#ifdef SMP
1784	int total;
1785	int i;
1786
1787	total = 0;
1788	for (i = 0; i <= ksg_maxid; i++)
1789		total += KSEQ_GROUP(i)->ksg_load;
1790	return (total);
1791#else
1792	return (KSEQ_SELF()->ksq_sysload);
1793#endif
1794}
1795
1796int
1797sched_sizeof_kse(void)
1798{
1799	return (sizeof(struct kse) + sizeof(struct ke_sched));
1800}
1801
1802int
1803sched_sizeof_ksegrp(void)
1804{
1805	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1806}
1807
1808int
1809sched_sizeof_proc(void)
1810{
1811	return (sizeof(struct proc));
1812}
1813
1814int
1815sched_sizeof_thread(void)
1816{
1817	return (sizeof(struct thread) + sizeof(struct td_sched));
1818}
1819