sched_ule.c revision 132589
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 132589 2004-07-23 23:09:00Z scottl $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kdb.h>
33#include <sys/kernel.h>
34#include <sys/ktr.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/proc.h>
38#include <sys/resource.h>
39#include <sys/resourcevar.h>
40#include <sys/sched.h>
41#include <sys/smp.h>
42#include <sys/sx.h>
43#include <sys/sysctl.h>
44#include <sys/sysproto.h>
45#include <sys/vmmeter.h>
46#ifdef KTRACE
47#include <sys/uio.h>
48#include <sys/ktrace.h>
49#endif
50
51#include <machine/cpu.h>
52#include <machine/smp.h>
53
54#define KTR_ULE         KTR_NFS
55
56/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
57/* XXX This is bogus compatability crap for ps */
58static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
59SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
60
61static void sched_setup(void *dummy);
62SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
63
64static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
65
66SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0,
67    "Scheduler name");
68
69static int slice_min = 1;
70SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
71
72static int slice_max = 10;
73SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
74
75int realstathz;
76int tickincr = 1;
77
78/*
79 * These datastructures are allocated within their parent datastructure but
80 * are scheduler specific.
81 */
82
83struct ke_sched {
84	int		ske_slice;
85	struct runq	*ske_runq;
86	/* The following variables are only used for pctcpu calculation */
87	int		ske_ltick;	/* Last tick that we were running on */
88	int		ske_ftick;	/* First tick that we were running on */
89	int		ske_ticks;	/* Tick count */
90	/* CPU that we have affinity for. */
91	u_char		ske_cpu;
92};
93#define	ke_slice	ke_sched->ske_slice
94#define	ke_runq		ke_sched->ske_runq
95#define	ke_ltick	ke_sched->ske_ltick
96#define	ke_ftick	ke_sched->ske_ftick
97#define	ke_ticks	ke_sched->ske_ticks
98#define	ke_cpu		ke_sched->ske_cpu
99#define	ke_assign	ke_procq.tqe_next
100
101#define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
102#define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
103
104struct kg_sched {
105	int	skg_slptime;		/* Number of ticks we vol. slept */
106	int	skg_runtime;		/* Number of ticks we were running */
107};
108#define	kg_slptime	kg_sched->skg_slptime
109#define	kg_runtime	kg_sched->skg_runtime
110
111struct td_sched {
112	int	std_slptime;
113};
114#define	td_slptime	td_sched->std_slptime
115
116struct td_sched td_sched;
117struct ke_sched ke_sched;
118struct kg_sched kg_sched;
119
120struct ke_sched *kse0_sched = &ke_sched;
121struct kg_sched *ksegrp0_sched = &kg_sched;
122struct p_sched *proc0_sched = NULL;
123struct td_sched *thread0_sched = &td_sched;
124
125/*
126 * The priority is primarily determined by the interactivity score.  Thus, we
127 * give lower(better) priorities to kse groups that use less CPU.  The nice
128 * value is then directly added to this to allow nice to have some effect
129 * on latency.
130 *
131 * PRI_RANGE:	Total priority range for timeshare threads.
132 * PRI_NRESV:	Number of nice values.
133 * PRI_BASE:	The start of the dynamic range.
134 */
135#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
136#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
137#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
138#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
139#define	SCHED_PRI_INTERACT(score)					\
140    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
141
142/*
143 * These determine the interactivity of a process.
144 *
145 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
146 *		before throttling back.
147 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
148 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
149 * INTERACT_THRESH:	Threshhold for placement on the current runq.
150 */
151#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
152#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
153#define	SCHED_INTERACT_MAX	(100)
154#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
155#define	SCHED_INTERACT_THRESH	(30)
156
157/*
158 * These parameters and macros determine the size of the time slice that is
159 * granted to each thread.
160 *
161 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
162 * SLICE_MAX:	Maximum time slice granted.
163 * SLICE_RANGE:	Range of available time slices scaled by hz.
164 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
165 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
166 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
167 */
168#define	SCHED_SLICE_MIN			(slice_min)
169#define	SCHED_SLICE_MAX			(slice_max)
170#define	SCHED_SLICE_INTERACTIVE		(slice_max)
171#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
172#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
173#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
174#define	SCHED_SLICE_NICE(nice)						\
175    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
176
177/*
178 * This macro determines whether or not the kse belongs on the current or
179 * next run queue.
180 */
181#define	SCHED_INTERACTIVE(kg)						\
182    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
183#define	SCHED_CURR(kg, ke)						\
184    (ke->ke_thread->td_priority < kg->kg_user_pri ||			\
185    SCHED_INTERACTIVE(kg))
186
187/*
188 * Cpu percentage computation macros and defines.
189 *
190 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
191 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
192 */
193
194#define	SCHED_CPU_TIME	10
195#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
196
197/*
198 * kseq - per processor runqs and statistics.
199 */
200struct kseq {
201	struct runq	ksq_idle;		/* Queue of IDLE threads. */
202	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
203	struct runq	*ksq_next;		/* Next timeshare queue. */
204	struct runq	*ksq_curr;		/* Current queue. */
205	int		ksq_load_timeshare;	/* Load for timeshare. */
206	int		ksq_load;		/* Aggregate load. */
207	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
208	short		ksq_nicemin;		/* Least nice. */
209#ifdef SMP
210	int			ksq_transferable;
211	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
212	struct kseq_group	*ksq_group;	/* Our processor group. */
213	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
214#else
215	int		ksq_sysload;		/* For loadavg, !ITHD load. */
216#endif
217};
218
219#ifdef SMP
220/*
221 * kseq groups are groups of processors which can cheaply share threads.  When
222 * one processor in the group goes idle it will check the runqs of the other
223 * processors in its group prior to halting and waiting for an interrupt.
224 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
225 * In a numa environment we'd want an idle bitmap per group and a two tiered
226 * load balancer.
227 */
228struct kseq_group {
229	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
230	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
231	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
232	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
233	int	ksg_load;		/* Total load of this group. */
234	int	ksg_transferable;	/* Transferable load of this group. */
235	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
236};
237#endif
238
239/*
240 * One kse queue per processor.
241 */
242#ifdef SMP
243static cpumask_t kseq_idle;
244static int ksg_maxid;
245static struct kseq	kseq_cpu[MAXCPU];
246static struct kseq_group kseq_groups[MAXCPU];
247static int bal_tick;
248static int gbal_tick;
249
250#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
251#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
252#define	KSEQ_ID(x)	((x) - kseq_cpu)
253#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
254#else	/* !SMP */
255static struct kseq	kseq_cpu;
256
257#define	KSEQ_SELF()	(&kseq_cpu)
258#define	KSEQ_CPU(x)	(&kseq_cpu)
259#endif
260
261static void sched_add_internal(struct thread *td, int preemptive);
262static void sched_slice(struct kse *ke);
263static void sched_priority(struct ksegrp *kg);
264static int sched_interact_score(struct ksegrp *kg);
265static void sched_interact_update(struct ksegrp *kg);
266static void sched_interact_fork(struct ksegrp *kg);
267static void sched_pctcpu_update(struct kse *ke);
268
269/* Operations on per processor queues */
270static struct kse * kseq_choose(struct kseq *kseq);
271static void kseq_setup(struct kseq *kseq);
272static void kseq_load_add(struct kseq *kseq, struct kse *ke);
273static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
274static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
275static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
276static void kseq_nice_add(struct kseq *kseq, int nice);
277static void kseq_nice_rem(struct kseq *kseq, int nice);
278void kseq_print(int cpu);
279#ifdef SMP
280static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
281static struct kse *runq_steal(struct runq *rq);
282static void sched_balance(void);
283static void sched_balance_groups(void);
284static void sched_balance_group(struct kseq_group *ksg);
285static void sched_balance_pair(struct kseq *high, struct kseq *low);
286static void kseq_move(struct kseq *from, int cpu);
287static int kseq_idled(struct kseq *kseq);
288static void kseq_notify(struct kse *ke, int cpu);
289static void kseq_assign(struct kseq *);
290static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
291/*
292 * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
293 * this, we can't pin interrupts to the cpu that they were delivered to,
294 * otherwise all ithreads only run on CPU 0.
295 */
296#ifdef __i386__
297#define	KSE_CAN_MIGRATE(ke, class)					\
298    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
299#else /* !__i386__ */
300#define	KSE_CAN_MIGRATE(ke, class)					\
301    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
302    ((ke)->ke_flags & KEF_BOUND) == 0)
303#endif /* !__i386__ */
304#endif
305
306void
307kseq_print(int cpu)
308{
309	struct kseq *kseq;
310	int i;
311
312	kseq = KSEQ_CPU(cpu);
313
314	printf("kseq:\n");
315	printf("\tload:           %d\n", kseq->ksq_load);
316	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
317#ifdef SMP
318	printf("\tload transferable: %d\n", kseq->ksq_transferable);
319#endif
320	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
321	printf("\tnice counts:\n");
322	for (i = 0; i < SCHED_PRI_NRESV; i++)
323		if (kseq->ksq_nice[i])
324			printf("\t\t%d = %d\n",
325			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
326}
327
328static __inline void
329kseq_runq_add(struct kseq *kseq, struct kse *ke)
330{
331#ifdef SMP
332	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
333		kseq->ksq_transferable++;
334		kseq->ksq_group->ksg_transferable++;
335	}
336#endif
337	runq_add(ke->ke_runq, ke);
338}
339
340static __inline void
341kseq_runq_rem(struct kseq *kseq, struct kse *ke)
342{
343#ifdef SMP
344	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
345		kseq->ksq_transferable--;
346		kseq->ksq_group->ksg_transferable--;
347	}
348#endif
349	runq_remove(ke->ke_runq, ke);
350}
351
352static void
353kseq_load_add(struct kseq *kseq, struct kse *ke)
354{
355	int class;
356	mtx_assert(&sched_lock, MA_OWNED);
357	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
358	if (class == PRI_TIMESHARE)
359		kseq->ksq_load_timeshare++;
360	kseq->ksq_load++;
361	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
362#ifdef SMP
363		kseq->ksq_group->ksg_load++;
364#else
365		kseq->ksq_sysload++;
366#endif
367	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
368		CTR6(KTR_ULE,
369		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
370		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
371		    ke->ke_proc->p_nice, kseq->ksq_nicemin);
372	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
373		kseq_nice_add(kseq, ke->ke_proc->p_nice);
374}
375
376static void
377kseq_load_rem(struct kseq *kseq, struct kse *ke)
378{
379	int class;
380	mtx_assert(&sched_lock, MA_OWNED);
381	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
382	if (class == PRI_TIMESHARE)
383		kseq->ksq_load_timeshare--;
384	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
385#ifdef SMP
386		kseq->ksq_group->ksg_load--;
387#else
388		kseq->ksq_sysload--;
389#endif
390	kseq->ksq_load--;
391	ke->ke_runq = NULL;
392	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
393		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
394}
395
396static void
397kseq_nice_add(struct kseq *kseq, int nice)
398{
399	mtx_assert(&sched_lock, MA_OWNED);
400	/* Normalize to zero. */
401	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
402	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
403		kseq->ksq_nicemin = nice;
404}
405
406static void
407kseq_nice_rem(struct kseq *kseq, int nice)
408{
409	int n;
410
411	mtx_assert(&sched_lock, MA_OWNED);
412	/* Normalize to zero. */
413	n = nice + SCHED_PRI_NHALF;
414	kseq->ksq_nice[n]--;
415	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
416
417	/*
418	 * If this wasn't the smallest nice value or there are more in
419	 * this bucket we can just return.  Otherwise we have to recalculate
420	 * the smallest nice.
421	 */
422	if (nice != kseq->ksq_nicemin ||
423	    kseq->ksq_nice[n] != 0 ||
424	    kseq->ksq_load_timeshare == 0)
425		return;
426
427	for (; n < SCHED_PRI_NRESV; n++)
428		if (kseq->ksq_nice[n]) {
429			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
430			return;
431		}
432}
433
434#ifdef SMP
435/*
436 * sched_balance is a simple CPU load balancing algorithm.  It operates by
437 * finding the least loaded and most loaded cpu and equalizing their load
438 * by migrating some processes.
439 *
440 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
441 * installations will only have 2 cpus.  Secondly, load balancing too much at
442 * once can have an unpleasant effect on the system.  The scheduler rarely has
443 * enough information to make perfect decisions.  So this algorithm chooses
444 * algorithm simplicity and more gradual effects on load in larger systems.
445 *
446 * It could be improved by considering the priorities and slices assigned to
447 * each task prior to balancing them.  There are many pathological cases with
448 * any approach and so the semi random algorithm below may work as well as any.
449 *
450 */
451static void
452sched_balance(void)
453{
454	struct kseq_group *high;
455	struct kseq_group *low;
456	struct kseq_group *ksg;
457	int cnt;
458	int i;
459
460	if (smp_started == 0)
461		goto out;
462	low = high = NULL;
463	i = random() % (ksg_maxid + 1);
464	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
465		ksg = KSEQ_GROUP(i);
466		/*
467		 * Find the CPU with the highest load that has some
468		 * threads to transfer.
469		 */
470		if ((high == NULL || ksg->ksg_load > high->ksg_load)
471		    && ksg->ksg_transferable)
472			high = ksg;
473		if (low == NULL || ksg->ksg_load < low->ksg_load)
474			low = ksg;
475		if (++i > ksg_maxid)
476			i = 0;
477	}
478	if (low != NULL && high != NULL && high != low)
479		sched_balance_pair(LIST_FIRST(&high->ksg_members),
480		    LIST_FIRST(&low->ksg_members));
481out:
482	bal_tick = ticks + (random() % (hz * 2));
483}
484
485static void
486sched_balance_groups(void)
487{
488	int i;
489
490	mtx_assert(&sched_lock, MA_OWNED);
491	if (smp_started)
492		for (i = 0; i <= ksg_maxid; i++)
493			sched_balance_group(KSEQ_GROUP(i));
494	gbal_tick = ticks + (random() % (hz * 2));
495}
496
497static void
498sched_balance_group(struct kseq_group *ksg)
499{
500	struct kseq *kseq;
501	struct kseq *high;
502	struct kseq *low;
503	int load;
504
505	if (ksg->ksg_transferable == 0)
506		return;
507	low = NULL;
508	high = NULL;
509	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
510		load = kseq->ksq_load;
511		if (high == NULL || load > high->ksq_load)
512			high = kseq;
513		if (low == NULL || load < low->ksq_load)
514			low = kseq;
515	}
516	if (high != NULL && low != NULL && high != low)
517		sched_balance_pair(high, low);
518}
519
520static void
521sched_balance_pair(struct kseq *high, struct kseq *low)
522{
523	int transferable;
524	int high_load;
525	int low_load;
526	int move;
527	int diff;
528	int i;
529
530	/*
531	 * If we're transfering within a group we have to use this specific
532	 * kseq's transferable count, otherwise we can steal from other members
533	 * of the group.
534	 */
535	if (high->ksq_group == low->ksq_group) {
536		transferable = high->ksq_transferable;
537		high_load = high->ksq_load;
538		low_load = low->ksq_load;
539	} else {
540		transferable = high->ksq_group->ksg_transferable;
541		high_load = high->ksq_group->ksg_load;
542		low_load = low->ksq_group->ksg_load;
543	}
544	if (transferable == 0)
545		return;
546	/*
547	 * Determine what the imbalance is and then adjust that to how many
548	 * kses we actually have to give up (transferable).
549	 */
550	diff = high_load - low_load;
551	move = diff / 2;
552	if (diff & 0x1)
553		move++;
554	move = min(move, transferable);
555	for (i = 0; i < move; i++)
556		kseq_move(high, KSEQ_ID(low));
557	return;
558}
559
560static void
561kseq_move(struct kseq *from, int cpu)
562{
563	struct kseq *kseq;
564	struct kseq *to;
565	struct kse *ke;
566
567	kseq = from;
568	to = KSEQ_CPU(cpu);
569	ke = kseq_steal(kseq, 1);
570	if (ke == NULL) {
571		struct kseq_group *ksg;
572
573		ksg = kseq->ksq_group;
574		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
575			if (kseq == from || kseq->ksq_transferable == 0)
576				continue;
577			ke = kseq_steal(kseq, 1);
578			break;
579		}
580		if (ke == NULL)
581			panic("kseq_move: No KSEs available with a "
582			    "transferable count of %d\n",
583			    ksg->ksg_transferable);
584	}
585	if (kseq == to)
586		return;
587	ke->ke_state = KES_THREAD;
588	kseq_runq_rem(kseq, ke);
589	kseq_load_rem(kseq, ke);
590	kseq_notify(ke, cpu);
591}
592
593static int
594kseq_idled(struct kseq *kseq)
595{
596	struct kseq_group *ksg;
597	struct kseq *steal;
598	struct kse *ke;
599
600	ksg = kseq->ksq_group;
601	/*
602	 * If we're in a cpu group, try and steal kses from another cpu in
603	 * the group before idling.
604	 */
605	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
606		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
607			if (steal == kseq || steal->ksq_transferable == 0)
608				continue;
609			ke = kseq_steal(steal, 0);
610			if (ke == NULL)
611				continue;
612			ke->ke_state = KES_THREAD;
613			kseq_runq_rem(steal, ke);
614			kseq_load_rem(steal, ke);
615			ke->ke_cpu = PCPU_GET(cpuid);
616			sched_add_internal(ke->ke_thread, 0);
617			return (0);
618		}
619	}
620	/*
621	 * We only set the idled bit when all of the cpus in the group are
622	 * idle.  Otherwise we could get into a situation where a KSE bounces
623	 * back and forth between two idle cores on seperate physical CPUs.
624	 */
625	ksg->ksg_idlemask |= PCPU_GET(cpumask);
626	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
627		return (1);
628	atomic_set_int(&kseq_idle, ksg->ksg_mask);
629	return (1);
630}
631
632static void
633kseq_assign(struct kseq *kseq)
634{
635	struct kse *nke;
636	struct kse *ke;
637
638	do {
639		(volatile struct kse *)ke = kseq->ksq_assigned;
640	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
641	for (; ke != NULL; ke = nke) {
642		nke = ke->ke_assign;
643		ke->ke_flags &= ~KEF_ASSIGNED;
644		sched_add_internal(ke->ke_thread, 0);
645	}
646}
647
648static void
649kseq_notify(struct kse *ke, int cpu)
650{
651	struct kseq *kseq;
652	struct thread *td;
653	struct pcpu *pcpu;
654
655	ke->ke_cpu = cpu;
656	ke->ke_flags |= KEF_ASSIGNED;
657
658	kseq = KSEQ_CPU(cpu);
659
660	/*
661	 * Place a KSE on another cpu's queue and force a resched.
662	 */
663	do {
664		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
665	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
666	pcpu = pcpu_find(cpu);
667	td = pcpu->pc_curthread;
668	if (ke->ke_thread->td_priority < td->td_priority ||
669	    td == pcpu->pc_idlethread) {
670		td->td_flags |= TDF_NEEDRESCHED;
671		ipi_selected(1 << cpu, IPI_AST);
672	}
673}
674
675static struct kse *
676runq_steal(struct runq *rq)
677{
678	struct rqhead *rqh;
679	struct rqbits *rqb;
680	struct kse *ke;
681	int word;
682	int bit;
683
684	mtx_assert(&sched_lock, MA_OWNED);
685	rqb = &rq->rq_status;
686	for (word = 0; word < RQB_LEN; word++) {
687		if (rqb->rqb_bits[word] == 0)
688			continue;
689		for (bit = 0; bit < RQB_BPW; bit++) {
690			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
691				continue;
692			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
693			TAILQ_FOREACH(ke, rqh, ke_procq) {
694				if (KSE_CAN_MIGRATE(ke,
695				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
696					return (ke);
697			}
698		}
699	}
700	return (NULL);
701}
702
703static struct kse *
704kseq_steal(struct kseq *kseq, int stealidle)
705{
706	struct kse *ke;
707
708	/*
709	 * Steal from next first to try to get a non-interactive task that
710	 * may not have run for a while.
711	 */
712	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
713		return (ke);
714	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
715		return (ke);
716	if (stealidle)
717		return (runq_steal(&kseq->ksq_idle));
718	return (NULL);
719}
720
721int
722kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
723{
724	struct kseq_group *ksg;
725	int cpu;
726
727	if (smp_started == 0)
728		return (0);
729	cpu = 0;
730	ksg = kseq->ksq_group;
731
732	/*
733	 * If there are any idle groups, give them our extra load.  The
734	 * threshold at which we start to reassign kses has a large impact
735	 * on the overall performance of the system.  Tuned too high and
736	 * some CPUs may idle.  Too low and there will be excess migration
737	 * and context switches.
738	 */
739	if (ksg->ksg_load > (ksg->ksg_cpus * 2) && kseq_idle) {
740		/*
741		 * Multiple cpus could find this bit simultaneously
742		 * but the race shouldn't be terrible.
743		 */
744		cpu = ffs(kseq_idle);
745		if (cpu)
746			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
747	}
748	/*
749	 * If another cpu in this group has idled, assign a thread over
750	 * to them after checking to see if there are idled groups.
751	 */
752	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
753		cpu = ffs(ksg->ksg_idlemask);
754		if (cpu)
755			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
756	}
757	/*
758	 * Now that we've found an idle CPU, migrate the thread.
759	 */
760	if (cpu) {
761		cpu--;
762		ke->ke_runq = NULL;
763		kseq_notify(ke, cpu);
764		return (1);
765	}
766	return (0);
767}
768
769#endif	/* SMP */
770
771/*
772 * Pick the highest priority task we have and return it.
773 */
774
775static struct kse *
776kseq_choose(struct kseq *kseq)
777{
778	struct kse *ke;
779	struct runq *swap;
780
781	mtx_assert(&sched_lock, MA_OWNED);
782	swap = NULL;
783
784	for (;;) {
785		ke = runq_choose(kseq->ksq_curr);
786		if (ke == NULL) {
787			/*
788			 * We already swapped once and didn't get anywhere.
789			 */
790			if (swap)
791				break;
792			swap = kseq->ksq_curr;
793			kseq->ksq_curr = kseq->ksq_next;
794			kseq->ksq_next = swap;
795			continue;
796		}
797		/*
798		 * If we encounter a slice of 0 the kse is in a
799		 * TIMESHARE kse group and its nice was too far out
800		 * of the range that receives slices.
801		 */
802		if (ke->ke_slice == 0) {
803			runq_remove(ke->ke_runq, ke);
804			sched_slice(ke);
805			ke->ke_runq = kseq->ksq_next;
806			runq_add(ke->ke_runq, ke);
807			continue;
808		}
809		return (ke);
810	}
811
812	return (runq_choose(&kseq->ksq_idle));
813}
814
815static void
816kseq_setup(struct kseq *kseq)
817{
818	runq_init(&kseq->ksq_timeshare[0]);
819	runq_init(&kseq->ksq_timeshare[1]);
820	runq_init(&kseq->ksq_idle);
821	kseq->ksq_curr = &kseq->ksq_timeshare[0];
822	kseq->ksq_next = &kseq->ksq_timeshare[1];
823	kseq->ksq_load = 0;
824	kseq->ksq_load_timeshare = 0;
825}
826
827static void
828sched_setup(void *dummy)
829{
830#ifdef SMP
831	int balance_groups;
832	int i;
833#endif
834
835	slice_min = (hz/100);	/* 10ms */
836	slice_max = (hz/7);	/* ~140ms */
837
838#ifdef SMP
839	balance_groups = 0;
840	/*
841	 * Initialize the kseqs.
842	 */
843	for (i = 0; i < MAXCPU; i++) {
844		struct kseq *ksq;
845
846		ksq = &kseq_cpu[i];
847		ksq->ksq_assigned = NULL;
848		kseq_setup(&kseq_cpu[i]);
849	}
850	if (smp_topology == NULL) {
851		struct kseq_group *ksg;
852		struct kseq *ksq;
853
854		for (i = 0; i < MAXCPU; i++) {
855			ksq = &kseq_cpu[i];
856			ksg = &kseq_groups[i];
857			/*
858			 * Setup a kseq group with one member.
859			 */
860			ksq->ksq_transferable = 0;
861			ksq->ksq_group = ksg;
862			ksg->ksg_cpus = 1;
863			ksg->ksg_idlemask = 0;
864			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
865			ksg->ksg_load = 0;
866			ksg->ksg_transferable = 0;
867			LIST_INIT(&ksg->ksg_members);
868			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
869		}
870	} else {
871		struct kseq_group *ksg;
872		struct cpu_group *cg;
873		int j;
874
875		for (i = 0; i < smp_topology->ct_count; i++) {
876			cg = &smp_topology->ct_group[i];
877			ksg = &kseq_groups[i];
878			/*
879			 * Initialize the group.
880			 */
881			ksg->ksg_idlemask = 0;
882			ksg->ksg_load = 0;
883			ksg->ksg_transferable = 0;
884			ksg->ksg_cpus = cg->cg_count;
885			ksg->ksg_cpumask = cg->cg_mask;
886			LIST_INIT(&ksg->ksg_members);
887			/*
888			 * Find all of the group members and add them.
889			 */
890			for (j = 0; j < MAXCPU; j++) {
891				if ((cg->cg_mask & (1 << j)) != 0) {
892					if (ksg->ksg_mask == 0)
893						ksg->ksg_mask = 1 << j;
894					kseq_cpu[j].ksq_transferable = 0;
895					kseq_cpu[j].ksq_group = ksg;
896					LIST_INSERT_HEAD(&ksg->ksg_members,
897					    &kseq_cpu[j], ksq_siblings);
898				}
899			}
900			if (ksg->ksg_cpus > 1)
901				balance_groups = 1;
902		}
903		ksg_maxid = smp_topology->ct_count - 1;
904	}
905	/*
906	 * Stagger the group and global load balancer so they do not
907	 * interfere with each other.
908	 */
909	bal_tick = ticks + hz;
910	if (balance_groups)
911		gbal_tick = ticks + (hz / 2);
912#else
913	kseq_setup(KSEQ_SELF());
914#endif
915	mtx_lock_spin(&sched_lock);
916	kseq_load_add(KSEQ_SELF(), &kse0);
917	mtx_unlock_spin(&sched_lock);
918}
919
920/*
921 * Scale the scheduling priority according to the "interactivity" of this
922 * process.
923 */
924static void
925sched_priority(struct ksegrp *kg)
926{
927	int pri;
928
929	if (kg->kg_pri_class != PRI_TIMESHARE)
930		return;
931
932	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
933	pri += SCHED_PRI_BASE;
934	pri += kg->kg_proc->p_nice;
935
936	if (pri > PRI_MAX_TIMESHARE)
937		pri = PRI_MAX_TIMESHARE;
938	else if (pri < PRI_MIN_TIMESHARE)
939		pri = PRI_MIN_TIMESHARE;
940
941	kg->kg_user_pri = pri;
942
943	return;
944}
945
946/*
947 * Calculate a time slice based on the properties of the kseg and the runq
948 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
949 */
950static void
951sched_slice(struct kse *ke)
952{
953	struct kseq *kseq;
954	struct ksegrp *kg;
955
956	kg = ke->ke_ksegrp;
957	kseq = KSEQ_CPU(ke->ke_cpu);
958
959	/*
960	 * Rationale:
961	 * KSEs in interactive ksegs get the minimum slice so that we
962	 * quickly notice if it abuses its advantage.
963	 *
964	 * KSEs in non-interactive ksegs are assigned a slice that is
965	 * based on the ksegs nice value relative to the least nice kseg
966	 * on the run queue for this cpu.
967	 *
968	 * If the KSE is less nice than all others it gets the maximum
969	 * slice and other KSEs will adjust their slice relative to
970	 * this when they first expire.
971	 *
972	 * There is 20 point window that starts relative to the least
973	 * nice kse on the run queue.  Slice size is determined by
974	 * the kse distance from the last nice ksegrp.
975	 *
976	 * If the kse is outside of the window it will get no slice
977	 * and will be reevaluated each time it is selected on the
978	 * run queue.  The exception to this is nice 0 ksegs when
979	 * a nice -20 is running.  They are always granted a minimum
980	 * slice.
981	 */
982	if (!SCHED_INTERACTIVE(kg)) {
983		int nice;
984
985		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
986		if (kseq->ksq_load_timeshare == 0 ||
987		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
988			ke->ke_slice = SCHED_SLICE_MAX;
989		else if (nice <= SCHED_SLICE_NTHRESH)
990			ke->ke_slice = SCHED_SLICE_NICE(nice);
991		else if (kg->kg_proc->p_nice == 0)
992			ke->ke_slice = SCHED_SLICE_MIN;
993		else
994			ke->ke_slice = 0;
995	} else
996		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
997
998	CTR6(KTR_ULE,
999	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1000	    ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
1001	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1002
1003	return;
1004}
1005
1006/*
1007 * This routine enforces a maximum limit on the amount of scheduling history
1008 * kept.  It is called after either the slptime or runtime is adjusted.
1009 * This routine will not operate correctly when slp or run times have been
1010 * adjusted to more than double their maximum.
1011 */
1012static void
1013sched_interact_update(struct ksegrp *kg)
1014{
1015	int sum;
1016
1017	sum = kg->kg_runtime + kg->kg_slptime;
1018	if (sum < SCHED_SLP_RUN_MAX)
1019		return;
1020	/*
1021	 * If we have exceeded by more than 1/5th then the algorithm below
1022	 * will not bring us back into range.  Dividing by two here forces
1023	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1024	 */
1025	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1026		kg->kg_runtime /= 2;
1027		kg->kg_slptime /= 2;
1028		return;
1029	}
1030	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1031	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1032}
1033
1034static void
1035sched_interact_fork(struct ksegrp *kg)
1036{
1037	int ratio;
1038	int sum;
1039
1040	sum = kg->kg_runtime + kg->kg_slptime;
1041	if (sum > SCHED_SLP_RUN_FORK) {
1042		ratio = sum / SCHED_SLP_RUN_FORK;
1043		kg->kg_runtime /= ratio;
1044		kg->kg_slptime /= ratio;
1045	}
1046}
1047
1048static int
1049sched_interact_score(struct ksegrp *kg)
1050{
1051	int div;
1052
1053	if (kg->kg_runtime > kg->kg_slptime) {
1054		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1055		return (SCHED_INTERACT_HALF +
1056		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1057	} if (kg->kg_slptime > kg->kg_runtime) {
1058		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1059		return (kg->kg_runtime / div);
1060	}
1061
1062	/*
1063	 * This can happen if slptime and runtime are 0.
1064	 */
1065	return (0);
1066
1067}
1068
1069/*
1070 * This is only somewhat accurate since given many processes of the same
1071 * priority they will switch when their slices run out, which will be
1072 * at most SCHED_SLICE_MAX.
1073 */
1074int
1075sched_rr_interval(void)
1076{
1077	return (SCHED_SLICE_MAX);
1078}
1079
1080static void
1081sched_pctcpu_update(struct kse *ke)
1082{
1083	/*
1084	 * Adjust counters and watermark for pctcpu calc.
1085	 */
1086	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1087		/*
1088		 * Shift the tick count out so that the divide doesn't
1089		 * round away our results.
1090		 */
1091		ke->ke_ticks <<= 10;
1092		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1093			    SCHED_CPU_TICKS;
1094		ke->ke_ticks >>= 10;
1095	} else
1096		ke->ke_ticks = 0;
1097	ke->ke_ltick = ticks;
1098	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1099}
1100
1101void
1102sched_prio(struct thread *td, u_char prio)
1103{
1104	struct kse *ke;
1105
1106	ke = td->td_kse;
1107	mtx_assert(&sched_lock, MA_OWNED);
1108	if (TD_ON_RUNQ(td)) {
1109		/*
1110		 * If the priority has been elevated due to priority
1111		 * propagation, we may have to move ourselves to a new
1112		 * queue.  We still call adjustrunqueue below in case kse
1113		 * needs to fix things up.
1114		 */
1115		if (prio < td->td_priority && ke &&
1116		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1117		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1118			runq_remove(ke->ke_runq, ke);
1119			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1120			runq_add(ke->ke_runq, ke);
1121		}
1122		adjustrunqueue(td, prio);
1123	} else
1124		td->td_priority = prio;
1125}
1126
1127void
1128sched_switch(struct thread *td, struct thread *newtd)
1129{
1130	struct kse *ke;
1131
1132	mtx_assert(&sched_lock, MA_OWNED);
1133
1134	ke = td->td_kse;
1135
1136	td->td_last_kse = ke;
1137        td->td_lastcpu = td->td_oncpu;
1138	td->td_oncpu = NOCPU;
1139	td->td_flags &= ~TDF_NEEDRESCHED;
1140	td->td_pflags &= ~TDP_OWEPREEMPT;
1141
1142	/*
1143	 * If the KSE has been assigned it may be in the process of switching
1144	 * to the new cpu.  This is the case in sched_bind().
1145	 */
1146	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1147		if (td == PCPU_GET(idlethread))
1148			TD_SET_CAN_RUN(td);
1149		else if (TD_IS_RUNNING(td)) {
1150			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1151			setrunqueue(td);
1152		} else {
1153			if (ke->ke_runq) {
1154				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1155			} else if ((td->td_flags & TDF_IDLETD) == 0)
1156				kdb_backtrace();
1157			/*
1158			 * We will not be on the run queue. So we must be
1159			 * sleeping or similar.
1160			 */
1161			if (td->td_proc->p_flag & P_SA)
1162				kse_reassign(ke);
1163		}
1164	}
1165	if (newtd == NULL)
1166		newtd = choosethread();
1167	else
1168		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1169	if (td != newtd)
1170		cpu_switch(td, newtd);
1171	sched_lock.mtx_lock = (uintptr_t)td;
1172
1173	td->td_oncpu = PCPU_GET(cpuid);
1174}
1175
1176void
1177sched_nice(struct proc *p, int nice)
1178{
1179	struct ksegrp *kg;
1180	struct kse *ke;
1181	struct thread *td;
1182	struct kseq *kseq;
1183
1184	PROC_LOCK_ASSERT(p, MA_OWNED);
1185	mtx_assert(&sched_lock, MA_OWNED);
1186	/*
1187	 * We need to adjust the nice counts for running KSEs.
1188	 */
1189	FOREACH_KSEGRP_IN_PROC(p, kg) {
1190		if (kg->kg_pri_class == PRI_TIMESHARE) {
1191			FOREACH_KSE_IN_GROUP(kg, ke) {
1192				if (ke->ke_runq == NULL)
1193					continue;
1194				kseq = KSEQ_CPU(ke->ke_cpu);
1195				kseq_nice_rem(kseq, p->p_nice);
1196				kseq_nice_add(kseq, nice);
1197			}
1198		}
1199	}
1200	p->p_nice = nice;
1201	FOREACH_KSEGRP_IN_PROC(p, kg) {
1202		sched_priority(kg);
1203		FOREACH_THREAD_IN_GROUP(kg, td)
1204			td->td_flags |= TDF_NEEDRESCHED;
1205	}
1206}
1207
1208void
1209sched_sleep(struct thread *td)
1210{
1211	mtx_assert(&sched_lock, MA_OWNED);
1212
1213	td->td_slptime = ticks;
1214	td->td_base_pri = td->td_priority;
1215
1216	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
1217	    td->td_kse, td->td_slptime);
1218}
1219
1220void
1221sched_wakeup(struct thread *td)
1222{
1223	mtx_assert(&sched_lock, MA_OWNED);
1224
1225	/*
1226	 * Let the kseg know how long we slept for.  This is because process
1227	 * interactivity behavior is modeled in the kseg.
1228	 */
1229	if (td->td_slptime) {
1230		struct ksegrp *kg;
1231		int hzticks;
1232
1233		kg = td->td_ksegrp;
1234		hzticks = (ticks - td->td_slptime) << 10;
1235		if (hzticks >= SCHED_SLP_RUN_MAX) {
1236			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1237			kg->kg_runtime = 1;
1238		} else {
1239			kg->kg_slptime += hzticks;
1240			sched_interact_update(kg);
1241		}
1242		sched_priority(kg);
1243		if (td->td_kse)
1244			sched_slice(td->td_kse);
1245		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
1246		    td->td_kse, hzticks);
1247		td->td_slptime = 0;
1248	}
1249	setrunqueue(td);
1250}
1251
1252/*
1253 * Penalize the parent for creating a new child and initialize the child's
1254 * priority.
1255 */
1256void
1257sched_fork(struct thread *td, struct proc *p1)
1258{
1259
1260	mtx_assert(&sched_lock, MA_OWNED);
1261
1262	p1->p_nice = td->td_proc->p_nice;
1263	sched_fork_ksegrp(td, FIRST_KSEGRP_IN_PROC(p1));
1264	sched_fork_kse(td, FIRST_KSE_IN_PROC(p1));
1265	sched_fork_thread(td, FIRST_THREAD_IN_PROC(p1));
1266}
1267
1268void
1269sched_fork_kse(struct thread *td, struct kse *child)
1270{
1271
1272	struct kse *ke = td->td_kse;
1273
1274	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1275	child->ke_cpu = ke->ke_cpu;
1276	child->ke_runq = NULL;
1277
1278	/* Grab our parents cpu estimation information. */
1279	child->ke_ticks = ke->ke_ticks;
1280	child->ke_ltick = ke->ke_ltick;
1281	child->ke_ftick = ke->ke_ftick;
1282}
1283
1284void
1285sched_fork_ksegrp(struct thread *td, struct ksegrp *child)
1286{
1287	struct ksegrp *kg = td->td_ksegrp;
1288	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1289
1290	child->kg_slptime = kg->kg_slptime;
1291	child->kg_runtime = kg->kg_runtime;
1292	child->kg_user_pri = kg->kg_user_pri;
1293	sched_interact_fork(child);
1294	kg->kg_runtime += tickincr << 10;
1295	sched_interact_update(kg);
1296
1297	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1298	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1299	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1300}
1301
1302void
1303sched_fork_thread(struct thread *td, struct thread *child)
1304{
1305}
1306
1307void
1308sched_class(struct ksegrp *kg, int class)
1309{
1310	struct kseq *kseq;
1311	struct kse *ke;
1312	int nclass;
1313	int oclass;
1314
1315	mtx_assert(&sched_lock, MA_OWNED);
1316	if (kg->kg_pri_class == class)
1317		return;
1318
1319	nclass = PRI_BASE(class);
1320	oclass = PRI_BASE(kg->kg_pri_class);
1321	FOREACH_KSE_IN_GROUP(kg, ke) {
1322		if (ke->ke_state != KES_ONRUNQ &&
1323		    ke->ke_state != KES_THREAD)
1324			continue;
1325		kseq = KSEQ_CPU(ke->ke_cpu);
1326
1327#ifdef SMP
1328		/*
1329		 * On SMP if we're on the RUNQ we must adjust the transferable
1330		 * count because could be changing to or from an interrupt
1331		 * class.
1332		 */
1333		if (ke->ke_state == KES_ONRUNQ) {
1334			if (KSE_CAN_MIGRATE(ke, oclass)) {
1335				kseq->ksq_transferable--;
1336				kseq->ksq_group->ksg_transferable--;
1337			}
1338			if (KSE_CAN_MIGRATE(ke, nclass)) {
1339				kseq->ksq_transferable++;
1340				kseq->ksq_group->ksg_transferable++;
1341			}
1342		}
1343#endif
1344		if (oclass == PRI_TIMESHARE) {
1345			kseq->ksq_load_timeshare--;
1346			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1347		}
1348		if (nclass == PRI_TIMESHARE) {
1349			kseq->ksq_load_timeshare++;
1350			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1351		}
1352	}
1353
1354	kg->kg_pri_class = class;
1355}
1356
1357/*
1358 * Return some of the child's priority and interactivity to the parent.
1359 */
1360void
1361sched_exit(struct proc *p, struct thread *td)
1362{
1363	mtx_assert(&sched_lock, MA_OWNED);
1364	sched_exit_kse(FIRST_KSE_IN_PROC(p), td);
1365	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), td);
1366}
1367
1368void
1369sched_exit_kse(struct kse *ke, struct thread *td)
1370{
1371	kseq_load_rem(KSEQ_CPU(td->td_kse->ke_cpu), td->td_kse);
1372}
1373
1374void
1375sched_exit_ksegrp(struct ksegrp *kg, struct thread *td)
1376{
1377	/* kg->kg_slptime += td->td_ksegrp->kg_slptime; */
1378	kg->kg_runtime += td->td_ksegrp->kg_runtime;
1379	sched_interact_update(kg);
1380}
1381
1382void
1383sched_exit_thread(struct thread *td, struct thread *child)
1384{
1385}
1386
1387void
1388sched_clock(struct thread *td)
1389{
1390	struct kseq *kseq;
1391	struct ksegrp *kg;
1392	struct kse *ke;
1393
1394	mtx_assert(&sched_lock, MA_OWNED);
1395#ifdef SMP
1396	if (ticks == bal_tick)
1397		sched_balance();
1398	if (ticks == gbal_tick)
1399		sched_balance_groups();
1400#endif
1401	/*
1402	 * sched_setup() apparently happens prior to stathz being set.  We
1403	 * need to resolve the timers earlier in the boot so we can avoid
1404	 * calculating this here.
1405	 */
1406	if (realstathz == 0) {
1407		realstathz = stathz ? stathz : hz;
1408		tickincr = hz / realstathz;
1409		/*
1410		 * XXX This does not work for values of stathz that are much
1411		 * larger than hz.
1412		 */
1413		if (tickincr == 0)
1414			tickincr = 1;
1415	}
1416
1417	ke = td->td_kse;
1418	kg = ke->ke_ksegrp;
1419
1420	/* Adjust ticks for pctcpu */
1421	ke->ke_ticks++;
1422	ke->ke_ltick = ticks;
1423
1424	/* Go up to one second beyond our max and then trim back down */
1425	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1426		sched_pctcpu_update(ke);
1427
1428	if (td->td_flags & TDF_IDLETD)
1429		return;
1430
1431	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1432	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1433	/*
1434	 * We only do slicing code for TIMESHARE ksegrps.
1435	 */
1436	if (kg->kg_pri_class != PRI_TIMESHARE)
1437		return;
1438	/*
1439	 * We used a tick charge it to the ksegrp so that we can compute our
1440	 * interactivity.
1441	 */
1442	kg->kg_runtime += tickincr << 10;
1443	sched_interact_update(kg);
1444
1445	/*
1446	 * We used up one time slice.
1447	 */
1448	if (--ke->ke_slice > 0)
1449		return;
1450	/*
1451	 * We're out of time, recompute priorities and requeue.
1452	 */
1453	kseq = KSEQ_SELF();
1454	kseq_load_rem(kseq, ke);
1455	sched_priority(kg);
1456	sched_slice(ke);
1457	if (SCHED_CURR(kg, ke))
1458		ke->ke_runq = kseq->ksq_curr;
1459	else
1460		ke->ke_runq = kseq->ksq_next;
1461	kseq_load_add(kseq, ke);
1462	td->td_flags |= TDF_NEEDRESCHED;
1463}
1464
1465int
1466sched_runnable(void)
1467{
1468	struct kseq *kseq;
1469	int load;
1470
1471	load = 1;
1472
1473	kseq = KSEQ_SELF();
1474#ifdef SMP
1475	if (kseq->ksq_assigned) {
1476		mtx_lock_spin(&sched_lock);
1477		kseq_assign(kseq);
1478		mtx_unlock_spin(&sched_lock);
1479	}
1480#endif
1481	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1482		if (kseq->ksq_load > 0)
1483			goto out;
1484	} else
1485		if (kseq->ksq_load - 1 > 0)
1486			goto out;
1487	load = 0;
1488out:
1489	return (load);
1490}
1491
1492void
1493sched_userret(struct thread *td)
1494{
1495	struct ksegrp *kg;
1496
1497	kg = td->td_ksegrp;
1498
1499	if (td->td_priority != kg->kg_user_pri) {
1500		mtx_lock_spin(&sched_lock);
1501		td->td_priority = kg->kg_user_pri;
1502		mtx_unlock_spin(&sched_lock);
1503	}
1504}
1505
1506struct kse *
1507sched_choose(void)
1508{
1509	struct kseq *kseq;
1510	struct kse *ke;
1511
1512	mtx_assert(&sched_lock, MA_OWNED);
1513	kseq = KSEQ_SELF();
1514#ifdef SMP
1515restart:
1516	if (kseq->ksq_assigned)
1517		kseq_assign(kseq);
1518#endif
1519	ke = kseq_choose(kseq);
1520	if (ke) {
1521#ifdef SMP
1522		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1523			if (kseq_idled(kseq) == 0)
1524				goto restart;
1525#endif
1526		kseq_runq_rem(kseq, ke);
1527		ke->ke_state = KES_THREAD;
1528
1529		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1530			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1531			    ke, ke->ke_runq, ke->ke_slice,
1532			    ke->ke_thread->td_priority);
1533		}
1534		return (ke);
1535	}
1536#ifdef SMP
1537	if (kseq_idled(kseq) == 0)
1538		goto restart;
1539#endif
1540	return (NULL);
1541}
1542
1543void
1544sched_add(struct thread *td)
1545{
1546
1547	sched_add_internal(td, 1);
1548}
1549
1550static void
1551sched_add_internal(struct thread *td, int preemptive)
1552{
1553	struct kseq *kseq;
1554	struct ksegrp *kg;
1555	struct kse *ke;
1556	int class;
1557
1558	mtx_assert(&sched_lock, MA_OWNED);
1559	ke = td->td_kse;
1560	kg = td->td_ksegrp;
1561	if (ke->ke_flags & KEF_ASSIGNED)
1562		return;
1563	kseq = KSEQ_SELF();
1564	KASSERT((ke->ke_thread != NULL),
1565	    ("sched_add: No thread on KSE"));
1566	KASSERT((ke->ke_thread->td_kse != NULL),
1567	    ("sched_add: No KSE on thread"));
1568	KASSERT(ke->ke_state != KES_ONRUNQ,
1569	    ("sched_add: kse %p (%s) already in run queue", ke,
1570	    ke->ke_proc->p_comm));
1571	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1572	    ("sched_add: process swapped out"));
1573	KASSERT(ke->ke_runq == NULL,
1574	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1575
1576	class = PRI_BASE(kg->kg_pri_class);
1577	switch (class) {
1578	case PRI_ITHD:
1579	case PRI_REALTIME:
1580		ke->ke_runq = kseq->ksq_curr;
1581		ke->ke_slice = SCHED_SLICE_MAX;
1582		ke->ke_cpu = PCPU_GET(cpuid);
1583		break;
1584	case PRI_TIMESHARE:
1585		if (SCHED_CURR(kg, ke))
1586			ke->ke_runq = kseq->ksq_curr;
1587		else
1588			ke->ke_runq = kseq->ksq_next;
1589		break;
1590	case PRI_IDLE:
1591		/*
1592		 * This is for priority prop.
1593		 */
1594		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1595			ke->ke_runq = kseq->ksq_curr;
1596		else
1597			ke->ke_runq = &kseq->ksq_idle;
1598		ke->ke_slice = SCHED_SLICE_MIN;
1599		break;
1600	default:
1601		panic("Unknown pri class.");
1602		break;
1603	}
1604#ifdef SMP
1605	if (ke->ke_cpu != PCPU_GET(cpuid)) {
1606		ke->ke_runq = NULL;
1607		kseq_notify(ke, ke->ke_cpu);
1608		return;
1609	}
1610	/*
1611	 * If we had been idle, clear our bit in the group and potentially
1612	 * the global bitmap.  If not, see if we should transfer this thread.
1613	 */
1614	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1615	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1616		/*
1617		 * Check to see if our group is unidling, and if so, remove it
1618		 * from the global idle mask.
1619		 */
1620		if (kseq->ksq_group->ksg_idlemask ==
1621		    kseq->ksq_group->ksg_cpumask)
1622			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1623		/*
1624		 * Now remove ourselves from the group specific idle mask.
1625		 */
1626		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1627	} else if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1628		if (kseq_transfer(kseq, ke, class))
1629			return;
1630#endif
1631        if (td->td_priority < curthread->td_priority)
1632                curthread->td_flags |= TDF_NEEDRESCHED;
1633
1634#ifdef SMP
1635	/*
1636	 * Only try to preempt if the thread is unpinned or pinned to the
1637	 * current CPU.
1638	 */
1639	if (KSE_CAN_MIGRATE(ke, class) || ke->ke_cpu == PCPU_GET(cpuid))
1640#endif
1641	if (preemptive && maybe_preempt(td))
1642		return;
1643	ke->ke_ksegrp->kg_runq_kses++;
1644	ke->ke_state = KES_ONRUNQ;
1645
1646	kseq_runq_add(kseq, ke);
1647	kseq_load_add(kseq, ke);
1648}
1649
1650void
1651sched_rem(struct thread *td)
1652{
1653	struct kseq *kseq;
1654	struct kse *ke;
1655
1656	ke = td->td_kse;
1657	/*
1658	 * It is safe to just return here because sched_rem() is only ever
1659	 * used in places where we're immediately going to add the
1660	 * kse back on again.  In that case it'll be added with the correct
1661	 * thread and priority when the caller drops the sched_lock.
1662	 */
1663	if (ke->ke_flags & KEF_ASSIGNED)
1664		return;
1665	mtx_assert(&sched_lock, MA_OWNED);
1666	KASSERT((ke->ke_state == KES_ONRUNQ),
1667	    ("sched_rem: KSE not on run queue"));
1668
1669	ke->ke_state = KES_THREAD;
1670	ke->ke_ksegrp->kg_runq_kses--;
1671	kseq = KSEQ_CPU(ke->ke_cpu);
1672	kseq_runq_rem(kseq, ke);
1673	kseq_load_rem(kseq, ke);
1674}
1675
1676fixpt_t
1677sched_pctcpu(struct thread *td)
1678{
1679	fixpt_t pctcpu;
1680	struct kse *ke;
1681
1682	pctcpu = 0;
1683	ke = td->td_kse;
1684	if (ke == NULL)
1685		return (0);
1686
1687	mtx_lock_spin(&sched_lock);
1688	if (ke->ke_ticks) {
1689		int rtick;
1690
1691		/*
1692		 * Don't update more frequently than twice a second.  Allowing
1693		 * this causes the cpu usage to decay away too quickly due to
1694		 * rounding errors.
1695		 */
1696		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1697		    ke->ke_ltick < (ticks - (hz / 2)))
1698			sched_pctcpu_update(ke);
1699		/* How many rtick per second ? */
1700		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1701		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1702	}
1703
1704	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1705	mtx_unlock_spin(&sched_lock);
1706
1707	return (pctcpu);
1708}
1709
1710void
1711sched_bind(struct thread *td, int cpu)
1712{
1713	struct kse *ke;
1714
1715	mtx_assert(&sched_lock, MA_OWNED);
1716	ke = td->td_kse;
1717	ke->ke_flags |= KEF_BOUND;
1718#ifdef SMP
1719	if (PCPU_GET(cpuid) == cpu)
1720		return;
1721	/* sched_rem without the runq_remove */
1722	ke->ke_state = KES_THREAD;
1723	ke->ke_ksegrp->kg_runq_kses--;
1724	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1725	kseq_notify(ke, cpu);
1726	/* When we return from mi_switch we'll be on the correct cpu. */
1727	mi_switch(SW_VOL, NULL);
1728#endif
1729}
1730
1731void
1732sched_unbind(struct thread *td)
1733{
1734	mtx_assert(&sched_lock, MA_OWNED);
1735	td->td_kse->ke_flags &= ~KEF_BOUND;
1736}
1737
1738int
1739sched_load(void)
1740{
1741#ifdef SMP
1742	int total;
1743	int i;
1744
1745	total = 0;
1746	for (i = 0; i <= ksg_maxid; i++)
1747		total += KSEQ_GROUP(i)->ksg_load;
1748	return (total);
1749#else
1750	return (KSEQ_SELF()->ksq_sysload);
1751#endif
1752}
1753
1754int
1755sched_sizeof_kse(void)
1756{
1757	return (sizeof(struct kse) + sizeof(struct ke_sched));
1758}
1759
1760int
1761sched_sizeof_ksegrp(void)
1762{
1763	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1764}
1765
1766int
1767sched_sizeof_proc(void)
1768{
1769	return (sizeof(struct proc));
1770}
1771
1772int
1773sched_sizeof_thread(void)
1774{
1775	return (sizeof(struct thread) + sizeof(struct td_sched));
1776}
1777