sched_ule.c revision 132266
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 132266 2004-07-16 21:04:55Z jhb $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kdb.h>
33#include <sys/kernel.h>
34#include <sys/ktr.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/proc.h>
38#include <sys/resource.h>
39#include <sys/resourcevar.h>
40#include <sys/sched.h>
41#include <sys/smp.h>
42#include <sys/sx.h>
43#include <sys/sysctl.h>
44#include <sys/sysproto.h>
45#include <sys/vmmeter.h>
46#ifdef KTRACE
47#include <sys/uio.h>
48#include <sys/ktrace.h>
49#endif
50
51#include <machine/cpu.h>
52#include <machine/smp.h>
53
54#define KTR_ULE         KTR_NFS
55
56/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
57/* XXX This is bogus compatability crap for ps */
58static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
59SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
60
61static void sched_setup(void *dummy);
62SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
63
64static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
65
66#define ULE_NAME	"ule"
67#define ULE_NAME_LEN	3
68SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, ULE_NAME, ULE_NAME_LEN,
69	      "System is using the ULE scheduler");
70
71static int slice_min = 1;
72SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
73
74static int slice_max = 10;
75SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
76
77int realstathz;
78int tickincr = 1;
79
80/*
81 * These datastructures are allocated within their parent datastructure but
82 * are scheduler specific.
83 */
84
85struct ke_sched {
86	int		ske_slice;
87	struct runq	*ske_runq;
88	/* The following variables are only used for pctcpu calculation */
89	int		ske_ltick;	/* Last tick that we were running on */
90	int		ske_ftick;	/* First tick that we were running on */
91	int		ske_ticks;	/* Tick count */
92	/* CPU that we have affinity for. */
93	u_char		ske_cpu;
94};
95#define	ke_slice	ke_sched->ske_slice
96#define	ke_runq		ke_sched->ske_runq
97#define	ke_ltick	ke_sched->ske_ltick
98#define	ke_ftick	ke_sched->ske_ftick
99#define	ke_ticks	ke_sched->ske_ticks
100#define	ke_cpu		ke_sched->ske_cpu
101#define	ke_assign	ke_procq.tqe_next
102
103#define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
104#define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
105
106struct kg_sched {
107	int	skg_slptime;		/* Number of ticks we vol. slept */
108	int	skg_runtime;		/* Number of ticks we were running */
109};
110#define	kg_slptime	kg_sched->skg_slptime
111#define	kg_runtime	kg_sched->skg_runtime
112
113struct td_sched {
114	int	std_slptime;
115};
116#define	td_slptime	td_sched->std_slptime
117
118struct td_sched td_sched;
119struct ke_sched ke_sched;
120struct kg_sched kg_sched;
121
122struct ke_sched *kse0_sched = &ke_sched;
123struct kg_sched *ksegrp0_sched = &kg_sched;
124struct p_sched *proc0_sched = NULL;
125struct td_sched *thread0_sched = &td_sched;
126
127/*
128 * The priority is primarily determined by the interactivity score.  Thus, we
129 * give lower(better) priorities to kse groups that use less CPU.  The nice
130 * value is then directly added to this to allow nice to have some effect
131 * on latency.
132 *
133 * PRI_RANGE:	Total priority range for timeshare threads.
134 * PRI_NRESV:	Number of nice values.
135 * PRI_BASE:	The start of the dynamic range.
136 */
137#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
138#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
139#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
140#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
141#define	SCHED_PRI_INTERACT(score)					\
142    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
143
144/*
145 * These determine the interactivity of a process.
146 *
147 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
148 *		before throttling back.
149 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
150 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
151 * INTERACT_THRESH:	Threshhold for placement on the current runq.
152 */
153#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
154#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
155#define	SCHED_INTERACT_MAX	(100)
156#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
157#define	SCHED_INTERACT_THRESH	(30)
158
159/*
160 * These parameters and macros determine the size of the time slice that is
161 * granted to each thread.
162 *
163 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
164 * SLICE_MAX:	Maximum time slice granted.
165 * SLICE_RANGE:	Range of available time slices scaled by hz.
166 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
167 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
168 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
169 */
170#define	SCHED_SLICE_MIN			(slice_min)
171#define	SCHED_SLICE_MAX			(slice_max)
172#define	SCHED_SLICE_INTERACTIVE		(slice_max)
173#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
174#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
175#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
176#define	SCHED_SLICE_NICE(nice)						\
177    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
178
179/*
180 * This macro determines whether or not the kse belongs on the current or
181 * next run queue.
182 */
183#define	SCHED_INTERACTIVE(kg)						\
184    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
185#define	SCHED_CURR(kg, ke)						\
186    (ke->ke_thread->td_priority < kg->kg_user_pri ||			\
187    SCHED_INTERACTIVE(kg))
188
189/*
190 * Cpu percentage computation macros and defines.
191 *
192 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
193 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
194 */
195
196#define	SCHED_CPU_TIME	10
197#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
198
199/*
200 * kseq - per processor runqs and statistics.
201 */
202struct kseq {
203	struct runq	ksq_idle;		/* Queue of IDLE threads. */
204	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
205	struct runq	*ksq_next;		/* Next timeshare queue. */
206	struct runq	*ksq_curr;		/* Current queue. */
207	int		ksq_load_timeshare;	/* Load for timeshare. */
208	int		ksq_load;		/* Aggregate load. */
209	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
210	short		ksq_nicemin;		/* Least nice. */
211#ifdef SMP
212	int			ksq_transferable;
213	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
214	struct kseq_group	*ksq_group;	/* Our processor group. */
215	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
216#else
217	int		ksq_sysload;		/* For loadavg, !ITHD load. */
218#endif
219};
220
221#ifdef SMP
222/*
223 * kseq groups are groups of processors which can cheaply share threads.  When
224 * one processor in the group goes idle it will check the runqs of the other
225 * processors in its group prior to halting and waiting for an interrupt.
226 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
227 * In a numa environment we'd want an idle bitmap per group and a two tiered
228 * load balancer.
229 */
230struct kseq_group {
231	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
232	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
233	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
234	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
235	int	ksg_load;		/* Total load of this group. */
236	int	ksg_transferable;	/* Transferable load of this group. */
237	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
238};
239#endif
240
241/*
242 * One kse queue per processor.
243 */
244#ifdef SMP
245static cpumask_t kseq_idle;
246static int ksg_maxid;
247static struct kseq	kseq_cpu[MAXCPU];
248static struct kseq_group kseq_groups[MAXCPU];
249static int bal_tick;
250static int gbal_tick;
251
252#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
253#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
254#define	KSEQ_ID(x)	((x) - kseq_cpu)
255#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
256#else	/* !SMP */
257static struct kseq	kseq_cpu;
258
259#define	KSEQ_SELF()	(&kseq_cpu)
260#define	KSEQ_CPU(x)	(&kseq_cpu)
261#endif
262
263static void sched_add_internal(struct thread *td, int preemptive);
264static void sched_slice(struct kse *ke);
265static void sched_priority(struct ksegrp *kg);
266static int sched_interact_score(struct ksegrp *kg);
267static void sched_interact_update(struct ksegrp *kg);
268static void sched_interact_fork(struct ksegrp *kg);
269static void sched_pctcpu_update(struct kse *ke);
270
271/* Operations on per processor queues */
272static struct kse * kseq_choose(struct kseq *kseq);
273static void kseq_setup(struct kseq *kseq);
274static void kseq_load_add(struct kseq *kseq, struct kse *ke);
275static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
276static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
277static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
278static void kseq_nice_add(struct kseq *kseq, int nice);
279static void kseq_nice_rem(struct kseq *kseq, int nice);
280void kseq_print(int cpu);
281#ifdef SMP
282static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
283static struct kse *runq_steal(struct runq *rq);
284static void sched_balance(void);
285static void sched_balance_groups(void);
286static void sched_balance_group(struct kseq_group *ksg);
287static void sched_balance_pair(struct kseq *high, struct kseq *low);
288static void kseq_move(struct kseq *from, int cpu);
289static int kseq_idled(struct kseq *kseq);
290static void kseq_notify(struct kse *ke, int cpu);
291static void kseq_assign(struct kseq *);
292static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
293/*
294 * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
295 * this, we can't pin interrupts to the cpu that they were delivered to,
296 * otherwise all ithreads only run on CPU 0.
297 */
298#ifdef __i386__
299#define	KSE_CAN_MIGRATE(ke, class)					\
300    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
301#else /* !__i386__ */
302#define	KSE_CAN_MIGRATE(ke, class)					\
303    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
304    ((ke)->ke_flags & KEF_BOUND) == 0)
305#endif /* !__i386__ */
306#endif
307
308void
309kseq_print(int cpu)
310{
311	struct kseq *kseq;
312	int i;
313
314	kseq = KSEQ_CPU(cpu);
315
316	printf("kseq:\n");
317	printf("\tload:           %d\n", kseq->ksq_load);
318	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
319#ifdef SMP
320	printf("\tload transferable: %d\n", kseq->ksq_transferable);
321#endif
322	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
323	printf("\tnice counts:\n");
324	for (i = 0; i < SCHED_PRI_NRESV; i++)
325		if (kseq->ksq_nice[i])
326			printf("\t\t%d = %d\n",
327			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
328}
329
330static __inline void
331kseq_runq_add(struct kseq *kseq, struct kse *ke)
332{
333#ifdef SMP
334	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
335		kseq->ksq_transferable++;
336		kseq->ksq_group->ksg_transferable++;
337	}
338#endif
339	runq_add(ke->ke_runq, ke);
340}
341
342static __inline void
343kseq_runq_rem(struct kseq *kseq, struct kse *ke)
344{
345#ifdef SMP
346	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
347		kseq->ksq_transferable--;
348		kseq->ksq_group->ksg_transferable--;
349	}
350#endif
351	runq_remove(ke->ke_runq, ke);
352}
353
354static void
355kseq_load_add(struct kseq *kseq, struct kse *ke)
356{
357	int class;
358	mtx_assert(&sched_lock, MA_OWNED);
359	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
360	if (class == PRI_TIMESHARE)
361		kseq->ksq_load_timeshare++;
362	kseq->ksq_load++;
363	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
364#ifdef SMP
365		kseq->ksq_group->ksg_load++;
366#else
367		kseq->ksq_sysload++;
368#endif
369	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
370		CTR6(KTR_ULE,
371		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
372		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
373		    ke->ke_proc->p_nice, kseq->ksq_nicemin);
374	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
375		kseq_nice_add(kseq, ke->ke_proc->p_nice);
376}
377
378static void
379kseq_load_rem(struct kseq *kseq, struct kse *ke)
380{
381	int class;
382	mtx_assert(&sched_lock, MA_OWNED);
383	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
384	if (class == PRI_TIMESHARE)
385		kseq->ksq_load_timeshare--;
386	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
387#ifdef SMP
388		kseq->ksq_group->ksg_load--;
389#else
390		kseq->ksq_sysload--;
391#endif
392	kseq->ksq_load--;
393	ke->ke_runq = NULL;
394	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
395		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
396}
397
398static void
399kseq_nice_add(struct kseq *kseq, int nice)
400{
401	mtx_assert(&sched_lock, MA_OWNED);
402	/* Normalize to zero. */
403	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
404	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
405		kseq->ksq_nicemin = nice;
406}
407
408static void
409kseq_nice_rem(struct kseq *kseq, int nice)
410{
411	int n;
412
413	mtx_assert(&sched_lock, MA_OWNED);
414	/* Normalize to zero. */
415	n = nice + SCHED_PRI_NHALF;
416	kseq->ksq_nice[n]--;
417	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
418
419	/*
420	 * If this wasn't the smallest nice value or there are more in
421	 * this bucket we can just return.  Otherwise we have to recalculate
422	 * the smallest nice.
423	 */
424	if (nice != kseq->ksq_nicemin ||
425	    kseq->ksq_nice[n] != 0 ||
426	    kseq->ksq_load_timeshare == 0)
427		return;
428
429	for (; n < SCHED_PRI_NRESV; n++)
430		if (kseq->ksq_nice[n]) {
431			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
432			return;
433		}
434}
435
436#ifdef SMP
437/*
438 * sched_balance is a simple CPU load balancing algorithm.  It operates by
439 * finding the least loaded and most loaded cpu and equalizing their load
440 * by migrating some processes.
441 *
442 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
443 * installations will only have 2 cpus.  Secondly, load balancing too much at
444 * once can have an unpleasant effect on the system.  The scheduler rarely has
445 * enough information to make perfect decisions.  So this algorithm chooses
446 * algorithm simplicity and more gradual effects on load in larger systems.
447 *
448 * It could be improved by considering the priorities and slices assigned to
449 * each task prior to balancing them.  There are many pathological cases with
450 * any approach and so the semi random algorithm below may work as well as any.
451 *
452 */
453static void
454sched_balance(void)
455{
456	struct kseq_group *high;
457	struct kseq_group *low;
458	struct kseq_group *ksg;
459	int cnt;
460	int i;
461
462	if (smp_started == 0)
463		goto out;
464	low = high = NULL;
465	i = random() % (ksg_maxid + 1);
466	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
467		ksg = KSEQ_GROUP(i);
468		/*
469		 * Find the CPU with the highest load that has some
470		 * threads to transfer.
471		 */
472		if ((high == NULL || ksg->ksg_load > high->ksg_load)
473		    && ksg->ksg_transferable)
474			high = ksg;
475		if (low == NULL || ksg->ksg_load < low->ksg_load)
476			low = ksg;
477		if (++i > ksg_maxid)
478			i = 0;
479	}
480	if (low != NULL && high != NULL && high != low)
481		sched_balance_pair(LIST_FIRST(&high->ksg_members),
482		    LIST_FIRST(&low->ksg_members));
483out:
484	bal_tick = ticks + (random() % (hz * 2));
485}
486
487static void
488sched_balance_groups(void)
489{
490	int i;
491
492	mtx_assert(&sched_lock, MA_OWNED);
493	if (smp_started)
494		for (i = 0; i <= ksg_maxid; i++)
495			sched_balance_group(KSEQ_GROUP(i));
496	gbal_tick = ticks + (random() % (hz * 2));
497}
498
499static void
500sched_balance_group(struct kseq_group *ksg)
501{
502	struct kseq *kseq;
503	struct kseq *high;
504	struct kseq *low;
505	int load;
506
507	if (ksg->ksg_transferable == 0)
508		return;
509	low = NULL;
510	high = NULL;
511	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
512		load = kseq->ksq_load;
513		if (high == NULL || load > high->ksq_load)
514			high = kseq;
515		if (low == NULL || load < low->ksq_load)
516			low = kseq;
517	}
518	if (high != NULL && low != NULL && high != low)
519		sched_balance_pair(high, low);
520}
521
522static void
523sched_balance_pair(struct kseq *high, struct kseq *low)
524{
525	int transferable;
526	int high_load;
527	int low_load;
528	int move;
529	int diff;
530	int i;
531
532	/*
533	 * If we're transfering within a group we have to use this specific
534	 * kseq's transferable count, otherwise we can steal from other members
535	 * of the group.
536	 */
537	if (high->ksq_group == low->ksq_group) {
538		transferable = high->ksq_transferable;
539		high_load = high->ksq_load;
540		low_load = low->ksq_load;
541	} else {
542		transferable = high->ksq_group->ksg_transferable;
543		high_load = high->ksq_group->ksg_load;
544		low_load = low->ksq_group->ksg_load;
545	}
546	if (transferable == 0)
547		return;
548	/*
549	 * Determine what the imbalance is and then adjust that to how many
550	 * kses we actually have to give up (transferable).
551	 */
552	diff = high_load - low_load;
553	move = diff / 2;
554	if (diff & 0x1)
555		move++;
556	move = min(move, transferable);
557	for (i = 0; i < move; i++)
558		kseq_move(high, KSEQ_ID(low));
559	return;
560}
561
562static void
563kseq_move(struct kseq *from, int cpu)
564{
565	struct kseq *kseq;
566	struct kseq *to;
567	struct kse *ke;
568
569	kseq = from;
570	to = KSEQ_CPU(cpu);
571	ke = kseq_steal(kseq, 1);
572	if (ke == NULL) {
573		struct kseq_group *ksg;
574
575		ksg = kseq->ksq_group;
576		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
577			if (kseq == from || kseq->ksq_transferable == 0)
578				continue;
579			ke = kseq_steal(kseq, 1);
580			break;
581		}
582		if (ke == NULL)
583			panic("kseq_move: No KSEs available with a "
584			    "transferable count of %d\n",
585			    ksg->ksg_transferable);
586	}
587	if (kseq == to)
588		return;
589	ke->ke_state = KES_THREAD;
590	kseq_runq_rem(kseq, ke);
591	kseq_load_rem(kseq, ke);
592	kseq_notify(ke, cpu);
593}
594
595static int
596kseq_idled(struct kseq *kseq)
597{
598	struct kseq_group *ksg;
599	struct kseq *steal;
600	struct kse *ke;
601
602	ksg = kseq->ksq_group;
603	/*
604	 * If we're in a cpu group, try and steal kses from another cpu in
605	 * the group before idling.
606	 */
607	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
608		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
609			if (steal == kseq || steal->ksq_transferable == 0)
610				continue;
611			ke = kseq_steal(steal, 0);
612			if (ke == NULL)
613				continue;
614			ke->ke_state = KES_THREAD;
615			kseq_runq_rem(steal, ke);
616			kseq_load_rem(steal, ke);
617			ke->ke_cpu = PCPU_GET(cpuid);
618			sched_add_internal(ke->ke_thread, 0);
619			return (0);
620		}
621	}
622	/*
623	 * We only set the idled bit when all of the cpus in the group are
624	 * idle.  Otherwise we could get into a situation where a KSE bounces
625	 * back and forth between two idle cores on seperate physical CPUs.
626	 */
627	ksg->ksg_idlemask |= PCPU_GET(cpumask);
628	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
629		return (1);
630	atomic_set_int(&kseq_idle, ksg->ksg_mask);
631	return (1);
632}
633
634static void
635kseq_assign(struct kseq *kseq)
636{
637	struct kse *nke;
638	struct kse *ke;
639
640	do {
641		(volatile struct kse *)ke = kseq->ksq_assigned;
642	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
643	for (; ke != NULL; ke = nke) {
644		nke = ke->ke_assign;
645		ke->ke_flags &= ~KEF_ASSIGNED;
646		sched_add_internal(ke->ke_thread, 0);
647	}
648}
649
650static void
651kseq_notify(struct kse *ke, int cpu)
652{
653	struct kseq *kseq;
654	struct thread *td;
655	struct pcpu *pcpu;
656
657	ke->ke_cpu = cpu;
658	ke->ke_flags |= KEF_ASSIGNED;
659
660	kseq = KSEQ_CPU(cpu);
661
662	/*
663	 * Place a KSE on another cpu's queue and force a resched.
664	 */
665	do {
666		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
667	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
668	pcpu = pcpu_find(cpu);
669	td = pcpu->pc_curthread;
670	if (ke->ke_thread->td_priority < td->td_priority ||
671	    td == pcpu->pc_idlethread) {
672		td->td_flags |= TDF_NEEDRESCHED;
673		ipi_selected(1 << cpu, IPI_AST);
674	}
675}
676
677static struct kse *
678runq_steal(struct runq *rq)
679{
680	struct rqhead *rqh;
681	struct rqbits *rqb;
682	struct kse *ke;
683	int word;
684	int bit;
685
686	mtx_assert(&sched_lock, MA_OWNED);
687	rqb = &rq->rq_status;
688	for (word = 0; word < RQB_LEN; word++) {
689		if (rqb->rqb_bits[word] == 0)
690			continue;
691		for (bit = 0; bit < RQB_BPW; bit++) {
692			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
693				continue;
694			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
695			TAILQ_FOREACH(ke, rqh, ke_procq) {
696				if (KSE_CAN_MIGRATE(ke,
697				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
698					return (ke);
699			}
700		}
701	}
702	return (NULL);
703}
704
705static struct kse *
706kseq_steal(struct kseq *kseq, int stealidle)
707{
708	struct kse *ke;
709
710	/*
711	 * Steal from next first to try to get a non-interactive task that
712	 * may not have run for a while.
713	 */
714	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
715		return (ke);
716	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
717		return (ke);
718	if (stealidle)
719		return (runq_steal(&kseq->ksq_idle));
720	return (NULL);
721}
722
723int
724kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
725{
726	struct kseq_group *ksg;
727	int cpu;
728
729	if (smp_started == 0)
730		return (0);
731	cpu = 0;
732	ksg = kseq->ksq_group;
733
734	/*
735	 * If there are any idle groups, give them our extra load.  The
736	 * threshold at which we start to reassign kses has a large impact
737	 * on the overall performance of the system.  Tuned too high and
738	 * some CPUs may idle.  Too low and there will be excess migration
739	 * and context switches.
740	 */
741	if (ksg->ksg_load > (ksg->ksg_cpus * 2) && kseq_idle) {
742		/*
743		 * Multiple cpus could find this bit simultaneously
744		 * but the race shouldn't be terrible.
745		 */
746		cpu = ffs(kseq_idle);
747		if (cpu)
748			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
749	}
750	/*
751	 * If another cpu in this group has idled, assign a thread over
752	 * to them after checking to see if there are idled groups.
753	 */
754	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
755		cpu = ffs(ksg->ksg_idlemask);
756		if (cpu)
757			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
758	}
759	/*
760	 * Now that we've found an idle CPU, migrate the thread.
761	 */
762	if (cpu) {
763		cpu--;
764		ke->ke_runq = NULL;
765		kseq_notify(ke, cpu);
766		return (1);
767	}
768	return (0);
769}
770
771#endif	/* SMP */
772
773/*
774 * Pick the highest priority task we have and return it.
775 */
776
777static struct kse *
778kseq_choose(struct kseq *kseq)
779{
780	struct kse *ke;
781	struct runq *swap;
782
783	mtx_assert(&sched_lock, MA_OWNED);
784	swap = NULL;
785
786	for (;;) {
787		ke = runq_choose(kseq->ksq_curr);
788		if (ke == NULL) {
789			/*
790			 * We already swapped once and didn't get anywhere.
791			 */
792			if (swap)
793				break;
794			swap = kseq->ksq_curr;
795			kseq->ksq_curr = kseq->ksq_next;
796			kseq->ksq_next = swap;
797			continue;
798		}
799		/*
800		 * If we encounter a slice of 0 the kse is in a
801		 * TIMESHARE kse group and its nice was too far out
802		 * of the range that receives slices.
803		 */
804		if (ke->ke_slice == 0) {
805			runq_remove(ke->ke_runq, ke);
806			sched_slice(ke);
807			ke->ke_runq = kseq->ksq_next;
808			runq_add(ke->ke_runq, ke);
809			continue;
810		}
811		return (ke);
812	}
813
814	return (runq_choose(&kseq->ksq_idle));
815}
816
817static void
818kseq_setup(struct kseq *kseq)
819{
820	runq_init(&kseq->ksq_timeshare[0]);
821	runq_init(&kseq->ksq_timeshare[1]);
822	runq_init(&kseq->ksq_idle);
823	kseq->ksq_curr = &kseq->ksq_timeshare[0];
824	kseq->ksq_next = &kseq->ksq_timeshare[1];
825	kseq->ksq_load = 0;
826	kseq->ksq_load_timeshare = 0;
827}
828
829static void
830sched_setup(void *dummy)
831{
832#ifdef SMP
833	int balance_groups;
834	int i;
835#endif
836
837	slice_min = (hz/100);	/* 10ms */
838	slice_max = (hz/7);	/* ~140ms */
839
840#ifdef SMP
841	balance_groups = 0;
842	/*
843	 * Initialize the kseqs.
844	 */
845	for (i = 0; i < MAXCPU; i++) {
846		struct kseq *ksq;
847
848		ksq = &kseq_cpu[i];
849		ksq->ksq_assigned = NULL;
850		kseq_setup(&kseq_cpu[i]);
851	}
852	if (smp_topology == NULL) {
853		struct kseq_group *ksg;
854		struct kseq *ksq;
855
856		for (i = 0; i < MAXCPU; i++) {
857			ksq = &kseq_cpu[i];
858			ksg = &kseq_groups[i];
859			/*
860			 * Setup a kseq group with one member.
861			 */
862			ksq->ksq_transferable = 0;
863			ksq->ksq_group = ksg;
864			ksg->ksg_cpus = 1;
865			ksg->ksg_idlemask = 0;
866			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
867			ksg->ksg_load = 0;
868			ksg->ksg_transferable = 0;
869			LIST_INIT(&ksg->ksg_members);
870			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
871		}
872	} else {
873		struct kseq_group *ksg;
874		struct cpu_group *cg;
875		int j;
876
877		for (i = 0; i < smp_topology->ct_count; i++) {
878			cg = &smp_topology->ct_group[i];
879			ksg = &kseq_groups[i];
880			/*
881			 * Initialize the group.
882			 */
883			ksg->ksg_idlemask = 0;
884			ksg->ksg_load = 0;
885			ksg->ksg_transferable = 0;
886			ksg->ksg_cpus = cg->cg_count;
887			ksg->ksg_cpumask = cg->cg_mask;
888			LIST_INIT(&ksg->ksg_members);
889			/*
890			 * Find all of the group members and add them.
891			 */
892			for (j = 0; j < MAXCPU; j++) {
893				if ((cg->cg_mask & (1 << j)) != 0) {
894					if (ksg->ksg_mask == 0)
895						ksg->ksg_mask = 1 << j;
896					kseq_cpu[j].ksq_transferable = 0;
897					kseq_cpu[j].ksq_group = ksg;
898					LIST_INSERT_HEAD(&ksg->ksg_members,
899					    &kseq_cpu[j], ksq_siblings);
900				}
901			}
902			if (ksg->ksg_cpus > 1)
903				balance_groups = 1;
904		}
905		ksg_maxid = smp_topology->ct_count - 1;
906	}
907	/*
908	 * Stagger the group and global load balancer so they do not
909	 * interfere with each other.
910	 */
911	bal_tick = ticks + hz;
912	if (balance_groups)
913		gbal_tick = ticks + (hz / 2);
914#else
915	kseq_setup(KSEQ_SELF());
916#endif
917	mtx_lock_spin(&sched_lock);
918	kseq_load_add(KSEQ_SELF(), &kse0);
919	mtx_unlock_spin(&sched_lock);
920}
921
922/*
923 * Scale the scheduling priority according to the "interactivity" of this
924 * process.
925 */
926static void
927sched_priority(struct ksegrp *kg)
928{
929	int pri;
930
931	if (kg->kg_pri_class != PRI_TIMESHARE)
932		return;
933
934	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
935	pri += SCHED_PRI_BASE;
936	pri += kg->kg_proc->p_nice;
937
938	if (pri > PRI_MAX_TIMESHARE)
939		pri = PRI_MAX_TIMESHARE;
940	else if (pri < PRI_MIN_TIMESHARE)
941		pri = PRI_MIN_TIMESHARE;
942
943	kg->kg_user_pri = pri;
944
945	return;
946}
947
948/*
949 * Calculate a time slice based on the properties of the kseg and the runq
950 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
951 */
952static void
953sched_slice(struct kse *ke)
954{
955	struct kseq *kseq;
956	struct ksegrp *kg;
957
958	kg = ke->ke_ksegrp;
959	kseq = KSEQ_CPU(ke->ke_cpu);
960
961	/*
962	 * Rationale:
963	 * KSEs in interactive ksegs get the minimum slice so that we
964	 * quickly notice if it abuses its advantage.
965	 *
966	 * KSEs in non-interactive ksegs are assigned a slice that is
967	 * based on the ksegs nice value relative to the least nice kseg
968	 * on the run queue for this cpu.
969	 *
970	 * If the KSE is less nice than all others it gets the maximum
971	 * slice and other KSEs will adjust their slice relative to
972	 * this when they first expire.
973	 *
974	 * There is 20 point window that starts relative to the least
975	 * nice kse on the run queue.  Slice size is determined by
976	 * the kse distance from the last nice ksegrp.
977	 *
978	 * If the kse is outside of the window it will get no slice
979	 * and will be reevaluated each time it is selected on the
980	 * run queue.  The exception to this is nice 0 ksegs when
981	 * a nice -20 is running.  They are always granted a minimum
982	 * slice.
983	 */
984	if (!SCHED_INTERACTIVE(kg)) {
985		int nice;
986
987		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
988		if (kseq->ksq_load_timeshare == 0 ||
989		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
990			ke->ke_slice = SCHED_SLICE_MAX;
991		else if (nice <= SCHED_SLICE_NTHRESH)
992			ke->ke_slice = SCHED_SLICE_NICE(nice);
993		else if (kg->kg_proc->p_nice == 0)
994			ke->ke_slice = SCHED_SLICE_MIN;
995		else
996			ke->ke_slice = 0;
997	} else
998		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
999
1000	CTR6(KTR_ULE,
1001	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1002	    ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
1003	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1004
1005	return;
1006}
1007
1008/*
1009 * This routine enforces a maximum limit on the amount of scheduling history
1010 * kept.  It is called after either the slptime or runtime is adjusted.
1011 * This routine will not operate correctly when slp or run times have been
1012 * adjusted to more than double their maximum.
1013 */
1014static void
1015sched_interact_update(struct ksegrp *kg)
1016{
1017	int sum;
1018
1019	sum = kg->kg_runtime + kg->kg_slptime;
1020	if (sum < SCHED_SLP_RUN_MAX)
1021		return;
1022	/*
1023	 * If we have exceeded by more than 1/5th then the algorithm below
1024	 * will not bring us back into range.  Dividing by two here forces
1025	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1026	 */
1027	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1028		kg->kg_runtime /= 2;
1029		kg->kg_slptime /= 2;
1030		return;
1031	}
1032	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1033	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1034}
1035
1036static void
1037sched_interact_fork(struct ksegrp *kg)
1038{
1039	int ratio;
1040	int sum;
1041
1042	sum = kg->kg_runtime + kg->kg_slptime;
1043	if (sum > SCHED_SLP_RUN_FORK) {
1044		ratio = sum / SCHED_SLP_RUN_FORK;
1045		kg->kg_runtime /= ratio;
1046		kg->kg_slptime /= ratio;
1047	}
1048}
1049
1050static int
1051sched_interact_score(struct ksegrp *kg)
1052{
1053	int div;
1054
1055	if (kg->kg_runtime > kg->kg_slptime) {
1056		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1057		return (SCHED_INTERACT_HALF +
1058		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1059	} if (kg->kg_slptime > kg->kg_runtime) {
1060		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1061		return (kg->kg_runtime / div);
1062	}
1063
1064	/*
1065	 * This can happen if slptime and runtime are 0.
1066	 */
1067	return (0);
1068
1069}
1070
1071/*
1072 * This is only somewhat accurate since given many processes of the same
1073 * priority they will switch when their slices run out, which will be
1074 * at most SCHED_SLICE_MAX.
1075 */
1076int
1077sched_rr_interval(void)
1078{
1079	return (SCHED_SLICE_MAX);
1080}
1081
1082static void
1083sched_pctcpu_update(struct kse *ke)
1084{
1085	/*
1086	 * Adjust counters and watermark for pctcpu calc.
1087	 */
1088	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1089		/*
1090		 * Shift the tick count out so that the divide doesn't
1091		 * round away our results.
1092		 */
1093		ke->ke_ticks <<= 10;
1094		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1095			    SCHED_CPU_TICKS;
1096		ke->ke_ticks >>= 10;
1097	} else
1098		ke->ke_ticks = 0;
1099	ke->ke_ltick = ticks;
1100	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1101}
1102
1103void
1104sched_prio(struct thread *td, u_char prio)
1105{
1106	struct kse *ke;
1107
1108	ke = td->td_kse;
1109	mtx_assert(&sched_lock, MA_OWNED);
1110	if (TD_ON_RUNQ(td)) {
1111		/*
1112		 * If the priority has been elevated due to priority
1113		 * propagation, we may have to move ourselves to a new
1114		 * queue.  We still call adjustrunqueue below in case kse
1115		 * needs to fix things up.
1116		 */
1117		if (prio < td->td_priority && ke &&
1118		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1119		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1120			runq_remove(ke->ke_runq, ke);
1121			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1122			runq_add(ke->ke_runq, ke);
1123		}
1124		adjustrunqueue(td, prio);
1125	} else
1126		td->td_priority = prio;
1127}
1128
1129void
1130sched_switch(struct thread *td, struct thread *newtd)
1131{
1132	struct kse *ke;
1133
1134	mtx_assert(&sched_lock, MA_OWNED);
1135
1136	ke = td->td_kse;
1137
1138	td->td_last_kse = ke;
1139        td->td_lastcpu = td->td_oncpu;
1140	td->td_oncpu = NOCPU;
1141	td->td_flags &= ~TDF_NEEDRESCHED;
1142	td->td_pflags &= ~TDP_OWEPREEMPT;
1143
1144	/*
1145	 * If the KSE has been assigned it may be in the process of switching
1146	 * to the new cpu.  This is the case in sched_bind().
1147	 */
1148	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1149		if (td == PCPU_GET(idlethread))
1150			TD_SET_CAN_RUN(td);
1151		else if (TD_IS_RUNNING(td)) {
1152			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1153			setrunqueue(td);
1154		} else {
1155			if (ke->ke_runq) {
1156				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1157			} else if ((td->td_flags & TDF_IDLETD) == 0)
1158				kdb_backtrace();
1159			/*
1160			 * We will not be on the run queue. So we must be
1161			 * sleeping or similar.
1162			 */
1163			if (td->td_proc->p_flag & P_SA)
1164				kse_reassign(ke);
1165		}
1166	}
1167	if (newtd == NULL)
1168		newtd = choosethread();
1169	else
1170		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1171	if (td != newtd)
1172		cpu_switch(td, newtd);
1173	sched_lock.mtx_lock = (uintptr_t)td;
1174
1175	td->td_oncpu = PCPU_GET(cpuid);
1176}
1177
1178void
1179sched_nice(struct proc *p, int nice)
1180{
1181	struct ksegrp *kg;
1182	struct kse *ke;
1183	struct thread *td;
1184	struct kseq *kseq;
1185
1186	PROC_LOCK_ASSERT(p, MA_OWNED);
1187	mtx_assert(&sched_lock, MA_OWNED);
1188	/*
1189	 * We need to adjust the nice counts for running KSEs.
1190	 */
1191	FOREACH_KSEGRP_IN_PROC(p, kg) {
1192		if (kg->kg_pri_class == PRI_TIMESHARE) {
1193			FOREACH_KSE_IN_GROUP(kg, ke) {
1194				if (ke->ke_runq == NULL)
1195					continue;
1196				kseq = KSEQ_CPU(ke->ke_cpu);
1197				kseq_nice_rem(kseq, p->p_nice);
1198				kseq_nice_add(kseq, nice);
1199			}
1200		}
1201	}
1202	p->p_nice = nice;
1203	FOREACH_KSEGRP_IN_PROC(p, kg) {
1204		sched_priority(kg);
1205		FOREACH_THREAD_IN_GROUP(kg, td)
1206			td->td_flags |= TDF_NEEDRESCHED;
1207	}
1208}
1209
1210void
1211sched_sleep(struct thread *td)
1212{
1213	mtx_assert(&sched_lock, MA_OWNED);
1214
1215	td->td_slptime = ticks;
1216	td->td_base_pri = td->td_priority;
1217
1218	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
1219	    td->td_kse, td->td_slptime);
1220}
1221
1222void
1223sched_wakeup(struct thread *td)
1224{
1225	mtx_assert(&sched_lock, MA_OWNED);
1226
1227	/*
1228	 * Let the kseg know how long we slept for.  This is because process
1229	 * interactivity behavior is modeled in the kseg.
1230	 */
1231	if (td->td_slptime) {
1232		struct ksegrp *kg;
1233		int hzticks;
1234
1235		kg = td->td_ksegrp;
1236		hzticks = (ticks - td->td_slptime) << 10;
1237		if (hzticks >= SCHED_SLP_RUN_MAX) {
1238			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1239			kg->kg_runtime = 1;
1240		} else {
1241			kg->kg_slptime += hzticks;
1242			sched_interact_update(kg);
1243		}
1244		sched_priority(kg);
1245		if (td->td_kse)
1246			sched_slice(td->td_kse);
1247		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
1248		    td->td_kse, hzticks);
1249		td->td_slptime = 0;
1250	}
1251	setrunqueue(td);
1252}
1253
1254/*
1255 * Penalize the parent for creating a new child and initialize the child's
1256 * priority.
1257 */
1258void
1259sched_fork(struct proc *p, struct proc *p1)
1260{
1261
1262	mtx_assert(&sched_lock, MA_OWNED);
1263
1264	p1->p_nice = p->p_nice;
1265	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
1266	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
1267	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
1268}
1269
1270void
1271sched_fork_kse(struct kse *ke, struct kse *child)
1272{
1273
1274	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1275	child->ke_cpu = ke->ke_cpu;
1276	child->ke_runq = NULL;
1277
1278	/* Grab our parents cpu estimation information. */
1279	child->ke_ticks = ke->ke_ticks;
1280	child->ke_ltick = ke->ke_ltick;
1281	child->ke_ftick = ke->ke_ftick;
1282}
1283
1284void
1285sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1286{
1287	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1288
1289	child->kg_slptime = kg->kg_slptime;
1290	child->kg_runtime = kg->kg_runtime;
1291	child->kg_user_pri = kg->kg_user_pri;
1292	sched_interact_fork(child);
1293	kg->kg_runtime += tickincr << 10;
1294	sched_interact_update(kg);
1295
1296	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1297	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1298	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1299}
1300
1301void
1302sched_fork_thread(struct thread *td, struct thread *child)
1303{
1304}
1305
1306void
1307sched_class(struct ksegrp *kg, int class)
1308{
1309	struct kseq *kseq;
1310	struct kse *ke;
1311	int nclass;
1312	int oclass;
1313
1314	mtx_assert(&sched_lock, MA_OWNED);
1315	if (kg->kg_pri_class == class)
1316		return;
1317
1318	nclass = PRI_BASE(class);
1319	oclass = PRI_BASE(kg->kg_pri_class);
1320	FOREACH_KSE_IN_GROUP(kg, ke) {
1321		if (ke->ke_state != KES_ONRUNQ &&
1322		    ke->ke_state != KES_THREAD)
1323			continue;
1324		kseq = KSEQ_CPU(ke->ke_cpu);
1325
1326#ifdef SMP
1327		/*
1328		 * On SMP if we're on the RUNQ we must adjust the transferable
1329		 * count because could be changing to or from an interrupt
1330		 * class.
1331		 */
1332		if (ke->ke_state == KES_ONRUNQ) {
1333			if (KSE_CAN_MIGRATE(ke, oclass)) {
1334				kseq->ksq_transferable--;
1335				kseq->ksq_group->ksg_transferable--;
1336			}
1337			if (KSE_CAN_MIGRATE(ke, nclass)) {
1338				kseq->ksq_transferable++;
1339				kseq->ksq_group->ksg_transferable++;
1340			}
1341		}
1342#endif
1343		if (oclass == PRI_TIMESHARE) {
1344			kseq->ksq_load_timeshare--;
1345			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1346		}
1347		if (nclass == PRI_TIMESHARE) {
1348			kseq->ksq_load_timeshare++;
1349			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1350		}
1351	}
1352
1353	kg->kg_pri_class = class;
1354}
1355
1356/*
1357 * Return some of the child's priority and interactivity to the parent.
1358 */
1359void
1360sched_exit(struct proc *p, struct proc *child)
1361{
1362	mtx_assert(&sched_lock, MA_OWNED);
1363	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1364	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1365}
1366
1367void
1368sched_exit_kse(struct kse *ke, struct kse *child)
1369{
1370	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1371}
1372
1373void
1374sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1375{
1376	/* kg->kg_slptime += child->kg_slptime; */
1377	kg->kg_runtime += child->kg_runtime;
1378	sched_interact_update(kg);
1379}
1380
1381void
1382sched_exit_thread(struct thread *td, struct thread *child)
1383{
1384}
1385
1386void
1387sched_clock(struct thread *td)
1388{
1389	struct kseq *kseq;
1390	struct ksegrp *kg;
1391	struct kse *ke;
1392
1393	mtx_assert(&sched_lock, MA_OWNED);
1394#ifdef SMP
1395	if (ticks == bal_tick)
1396		sched_balance();
1397	if (ticks == gbal_tick)
1398		sched_balance_groups();
1399#endif
1400	/*
1401	 * sched_setup() apparently happens prior to stathz being set.  We
1402	 * need to resolve the timers earlier in the boot so we can avoid
1403	 * calculating this here.
1404	 */
1405	if (realstathz == 0) {
1406		realstathz = stathz ? stathz : hz;
1407		tickincr = hz / realstathz;
1408		/*
1409		 * XXX This does not work for values of stathz that are much
1410		 * larger than hz.
1411		 */
1412		if (tickincr == 0)
1413			tickincr = 1;
1414	}
1415
1416	ke = td->td_kse;
1417	kg = ke->ke_ksegrp;
1418
1419	/* Adjust ticks for pctcpu */
1420	ke->ke_ticks++;
1421	ke->ke_ltick = ticks;
1422
1423	/* Go up to one second beyond our max and then trim back down */
1424	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1425		sched_pctcpu_update(ke);
1426
1427	if (td->td_flags & TDF_IDLETD)
1428		return;
1429
1430	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1431	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1432	/*
1433	 * We only do slicing code for TIMESHARE ksegrps.
1434	 */
1435	if (kg->kg_pri_class != PRI_TIMESHARE)
1436		return;
1437	/*
1438	 * We used a tick charge it to the ksegrp so that we can compute our
1439	 * interactivity.
1440	 */
1441	kg->kg_runtime += tickincr << 10;
1442	sched_interact_update(kg);
1443
1444	/*
1445	 * We used up one time slice.
1446	 */
1447	if (--ke->ke_slice > 0)
1448		return;
1449	/*
1450	 * We're out of time, recompute priorities and requeue.
1451	 */
1452	kseq = KSEQ_SELF();
1453	kseq_load_rem(kseq, ke);
1454	sched_priority(kg);
1455	sched_slice(ke);
1456	if (SCHED_CURR(kg, ke))
1457		ke->ke_runq = kseq->ksq_curr;
1458	else
1459		ke->ke_runq = kseq->ksq_next;
1460	kseq_load_add(kseq, ke);
1461	td->td_flags |= TDF_NEEDRESCHED;
1462}
1463
1464int
1465sched_runnable(void)
1466{
1467	struct kseq *kseq;
1468	int load;
1469
1470	load = 1;
1471
1472	kseq = KSEQ_SELF();
1473#ifdef SMP
1474	if (kseq->ksq_assigned) {
1475		mtx_lock_spin(&sched_lock);
1476		kseq_assign(kseq);
1477		mtx_unlock_spin(&sched_lock);
1478	}
1479#endif
1480	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1481		if (kseq->ksq_load > 0)
1482			goto out;
1483	} else
1484		if (kseq->ksq_load - 1 > 0)
1485			goto out;
1486	load = 0;
1487out:
1488	return (load);
1489}
1490
1491void
1492sched_userret(struct thread *td)
1493{
1494	struct ksegrp *kg;
1495
1496	kg = td->td_ksegrp;
1497
1498	if (td->td_priority != kg->kg_user_pri) {
1499		mtx_lock_spin(&sched_lock);
1500		td->td_priority = kg->kg_user_pri;
1501		mtx_unlock_spin(&sched_lock);
1502	}
1503}
1504
1505struct kse *
1506sched_choose(void)
1507{
1508	struct kseq *kseq;
1509	struct kse *ke;
1510
1511	mtx_assert(&sched_lock, MA_OWNED);
1512	kseq = KSEQ_SELF();
1513#ifdef SMP
1514restart:
1515	if (kseq->ksq_assigned)
1516		kseq_assign(kseq);
1517#endif
1518	ke = kseq_choose(kseq);
1519	if (ke) {
1520#ifdef SMP
1521		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1522			if (kseq_idled(kseq) == 0)
1523				goto restart;
1524#endif
1525		kseq_runq_rem(kseq, ke);
1526		ke->ke_state = KES_THREAD;
1527
1528		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1529			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1530			    ke, ke->ke_runq, ke->ke_slice,
1531			    ke->ke_thread->td_priority);
1532		}
1533		return (ke);
1534	}
1535#ifdef SMP
1536	if (kseq_idled(kseq) == 0)
1537		goto restart;
1538#endif
1539	return (NULL);
1540}
1541
1542void
1543sched_add(struct thread *td)
1544{
1545
1546	sched_add_internal(td, 1);
1547}
1548
1549static void
1550sched_add_internal(struct thread *td, int preemptive)
1551{
1552	struct kseq *kseq;
1553	struct ksegrp *kg;
1554	struct kse *ke;
1555	int class;
1556
1557	mtx_assert(&sched_lock, MA_OWNED);
1558	ke = td->td_kse;
1559	kg = td->td_ksegrp;
1560	if (ke->ke_flags & KEF_ASSIGNED)
1561		return;
1562	kseq = KSEQ_SELF();
1563	KASSERT((ke->ke_thread != NULL),
1564	    ("sched_add: No thread on KSE"));
1565	KASSERT((ke->ke_thread->td_kse != NULL),
1566	    ("sched_add: No KSE on thread"));
1567	KASSERT(ke->ke_state != KES_ONRUNQ,
1568	    ("sched_add: kse %p (%s) already in run queue", ke,
1569	    ke->ke_proc->p_comm));
1570	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1571	    ("sched_add: process swapped out"));
1572	KASSERT(ke->ke_runq == NULL,
1573	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1574
1575	class = PRI_BASE(kg->kg_pri_class);
1576	switch (class) {
1577	case PRI_ITHD:
1578	case PRI_REALTIME:
1579		ke->ke_runq = kseq->ksq_curr;
1580		ke->ke_slice = SCHED_SLICE_MAX;
1581		ke->ke_cpu = PCPU_GET(cpuid);
1582		break;
1583	case PRI_TIMESHARE:
1584		if (SCHED_CURR(kg, ke))
1585			ke->ke_runq = kseq->ksq_curr;
1586		else
1587			ke->ke_runq = kseq->ksq_next;
1588		break;
1589	case PRI_IDLE:
1590		/*
1591		 * This is for priority prop.
1592		 */
1593		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1594			ke->ke_runq = kseq->ksq_curr;
1595		else
1596			ke->ke_runq = &kseq->ksq_idle;
1597		ke->ke_slice = SCHED_SLICE_MIN;
1598		break;
1599	default:
1600		panic("Unknown pri class.");
1601		break;
1602	}
1603#ifdef SMP
1604	if (ke->ke_cpu != PCPU_GET(cpuid)) {
1605		ke->ke_runq = NULL;
1606		kseq_notify(ke, ke->ke_cpu);
1607		return;
1608	}
1609	/*
1610	 * If we had been idle, clear our bit in the group and potentially
1611	 * the global bitmap.  If not, see if we should transfer this thread.
1612	 */
1613	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1614	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1615		/*
1616		 * Check to see if our group is unidling, and if so, remove it
1617		 * from the global idle mask.
1618		 */
1619		if (kseq->ksq_group->ksg_idlemask ==
1620		    kseq->ksq_group->ksg_cpumask)
1621			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1622		/*
1623		 * Now remove ourselves from the group specific idle mask.
1624		 */
1625		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1626	} else if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1627		if (kseq_transfer(kseq, ke, class))
1628			return;
1629#endif
1630        if (td->td_priority < curthread->td_priority)
1631                curthread->td_flags |= TDF_NEEDRESCHED;
1632
1633#ifdef SMP
1634	/*
1635	 * Only try to preempt if the thread is unpinned or pinned to the
1636	 * current CPU.
1637	 */
1638	if (KSE_CAN_MIGRATE(ke, class) || ke->ke_cpu == PCPU_GET(cpuid))
1639#endif
1640	if (preemptive && maybe_preempt(td))
1641		return;
1642	ke->ke_ksegrp->kg_runq_kses++;
1643	ke->ke_state = KES_ONRUNQ;
1644
1645	kseq_runq_add(kseq, ke);
1646	kseq_load_add(kseq, ke);
1647}
1648
1649void
1650sched_rem(struct thread *td)
1651{
1652	struct kseq *kseq;
1653	struct kse *ke;
1654
1655	ke = td->td_kse;
1656	/*
1657	 * It is safe to just return here because sched_rem() is only ever
1658	 * used in places where we're immediately going to add the
1659	 * kse back on again.  In that case it'll be added with the correct
1660	 * thread and priority when the caller drops the sched_lock.
1661	 */
1662	if (ke->ke_flags & KEF_ASSIGNED)
1663		return;
1664	mtx_assert(&sched_lock, MA_OWNED);
1665	KASSERT((ke->ke_state == KES_ONRUNQ),
1666	    ("sched_rem: KSE not on run queue"));
1667
1668	ke->ke_state = KES_THREAD;
1669	ke->ke_ksegrp->kg_runq_kses--;
1670	kseq = KSEQ_CPU(ke->ke_cpu);
1671	kseq_runq_rem(kseq, ke);
1672	kseq_load_rem(kseq, ke);
1673}
1674
1675fixpt_t
1676sched_pctcpu(struct thread *td)
1677{
1678	fixpt_t pctcpu;
1679	struct kse *ke;
1680
1681	pctcpu = 0;
1682	ke = td->td_kse;
1683	if (ke == NULL)
1684		return (0);
1685
1686	mtx_lock_spin(&sched_lock);
1687	if (ke->ke_ticks) {
1688		int rtick;
1689
1690		/*
1691		 * Don't update more frequently than twice a second.  Allowing
1692		 * this causes the cpu usage to decay away too quickly due to
1693		 * rounding errors.
1694		 */
1695		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1696		    ke->ke_ltick < (ticks - (hz / 2)))
1697			sched_pctcpu_update(ke);
1698		/* How many rtick per second ? */
1699		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1700		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1701	}
1702
1703	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1704	mtx_unlock_spin(&sched_lock);
1705
1706	return (pctcpu);
1707}
1708
1709void
1710sched_bind(struct thread *td, int cpu)
1711{
1712	struct kse *ke;
1713
1714	mtx_assert(&sched_lock, MA_OWNED);
1715	ke = td->td_kse;
1716	ke->ke_flags |= KEF_BOUND;
1717#ifdef SMP
1718	if (PCPU_GET(cpuid) == cpu)
1719		return;
1720	/* sched_rem without the runq_remove */
1721	ke->ke_state = KES_THREAD;
1722	ke->ke_ksegrp->kg_runq_kses--;
1723	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1724	kseq_notify(ke, cpu);
1725	/* When we return from mi_switch we'll be on the correct cpu. */
1726	mi_switch(SW_VOL, NULL);
1727#endif
1728}
1729
1730void
1731sched_unbind(struct thread *td)
1732{
1733	mtx_assert(&sched_lock, MA_OWNED);
1734	td->td_kse->ke_flags &= ~KEF_BOUND;
1735}
1736
1737int
1738sched_load(void)
1739{
1740#ifdef SMP
1741	int total;
1742	int i;
1743
1744	total = 0;
1745	for (i = 0; i <= ksg_maxid; i++)
1746		total += KSEQ_GROUP(i)->ksg_load;
1747	return (total);
1748#else
1749	return (KSEQ_SELF()->ksq_sysload);
1750#endif
1751}
1752
1753int
1754sched_sizeof_kse(void)
1755{
1756	return (sizeof(struct kse) + sizeof(struct ke_sched));
1757}
1758
1759int
1760sched_sizeof_ksegrp(void)
1761{
1762	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1763}
1764
1765int
1766sched_sizeof_proc(void)
1767{
1768	return (sizeof(struct proc));
1769}
1770
1771int
1772sched_sizeof_thread(void)
1773{
1774	return (sizeof(struct thread) + sizeof(struct td_sched));
1775}
1776