sched_ule.c revision 130551
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 130551 2004-06-16 00:26:31Z julian $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/ktr.h>
34#include <sys/lock.h>
35#include <sys/mutex.h>
36#include <sys/proc.h>
37#include <sys/resource.h>
38#include <sys/resourcevar.h>
39#include <sys/sched.h>
40#include <sys/smp.h>
41#include <sys/sx.h>
42#include <sys/sysctl.h>
43#include <sys/sysproto.h>
44#include <sys/vmmeter.h>
45#ifdef DDB
46#include <ddb/ddb.h>
47#endif
48#ifdef KTRACE
49#include <sys/uio.h>
50#include <sys/ktrace.h>
51#endif
52
53#include <machine/cpu.h>
54#include <machine/smp.h>
55
56#define KTR_ULE         KTR_NFS
57
58/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
59/* XXX This is bogus compatability crap for ps */
60static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
61SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
62
63static void sched_setup(void *dummy);
64SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
65
66static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67
68static int slice_min = 1;
69SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
70
71static int slice_max = 10;
72SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
73
74int realstathz;
75int tickincr = 1;
76
77/*
78 * These datastructures are allocated within their parent datastructure but
79 * are scheduler specific.
80 */
81
82struct ke_sched {
83	int		ske_slice;
84	struct runq	*ske_runq;
85	/* The following variables are only used for pctcpu calculation */
86	int		ske_ltick;	/* Last tick that we were running on */
87	int		ske_ftick;	/* First tick that we were running on */
88	int		ske_ticks;	/* Tick count */
89	/* CPU that we have affinity for. */
90	u_char		ske_cpu;
91};
92#define	ke_slice	ke_sched->ske_slice
93#define	ke_runq		ke_sched->ske_runq
94#define	ke_ltick	ke_sched->ske_ltick
95#define	ke_ftick	ke_sched->ske_ftick
96#define	ke_ticks	ke_sched->ske_ticks
97#define	ke_cpu		ke_sched->ske_cpu
98#define	ke_assign	ke_procq.tqe_next
99
100#define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
101#define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
102
103struct kg_sched {
104	int	skg_slptime;		/* Number of ticks we vol. slept */
105	int	skg_runtime;		/* Number of ticks we were running */
106};
107#define	kg_slptime	kg_sched->skg_slptime
108#define	kg_runtime	kg_sched->skg_runtime
109
110struct td_sched {
111	int	std_slptime;
112};
113#define	td_slptime	td_sched->std_slptime
114
115struct td_sched td_sched;
116struct ke_sched ke_sched;
117struct kg_sched kg_sched;
118
119struct ke_sched *kse0_sched = &ke_sched;
120struct kg_sched *ksegrp0_sched = &kg_sched;
121struct p_sched *proc0_sched = NULL;
122struct td_sched *thread0_sched = &td_sched;
123
124/*
125 * The priority is primarily determined by the interactivity score.  Thus, we
126 * give lower(better) priorities to kse groups that use less CPU.  The nice
127 * value is then directly added to this to allow nice to have some effect
128 * on latency.
129 *
130 * PRI_RANGE:	Total priority range for timeshare threads.
131 * PRI_NRESV:	Number of nice values.
132 * PRI_BASE:	The start of the dynamic range.
133 */
134#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
135#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
136#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
137#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
138#define	SCHED_PRI_INTERACT(score)					\
139    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
140
141/*
142 * These determine the interactivity of a process.
143 *
144 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
145 *		before throttling back.
146 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
147 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
148 * INTERACT_THRESH:	Threshhold for placement on the current runq.
149 */
150#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
151#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
152#define	SCHED_INTERACT_MAX	(100)
153#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
154#define	SCHED_INTERACT_THRESH	(30)
155
156/*
157 * These parameters and macros determine the size of the time slice that is
158 * granted to each thread.
159 *
160 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
161 * SLICE_MAX:	Maximum time slice granted.
162 * SLICE_RANGE:	Range of available time slices scaled by hz.
163 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
164 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
165 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
166 */
167#define	SCHED_SLICE_MIN			(slice_min)
168#define	SCHED_SLICE_MAX			(slice_max)
169#define	SCHED_SLICE_INTERACTIVE		(slice_max)
170#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
171#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
172#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
173#define	SCHED_SLICE_NICE(nice)						\
174    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
175
176/*
177 * This macro determines whether or not the kse belongs on the current or
178 * next run queue.
179 */
180#define	SCHED_INTERACTIVE(kg)						\
181    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
182#define	SCHED_CURR(kg, ke)						\
183    (ke->ke_thread->td_priority < kg->kg_user_pri ||			\
184    SCHED_INTERACTIVE(kg))
185
186/*
187 * Cpu percentage computation macros and defines.
188 *
189 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
190 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
191 */
192
193#define	SCHED_CPU_TIME	10
194#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
195
196/*
197 * kseq - per processor runqs and statistics.
198 */
199struct kseq {
200	struct runq	ksq_idle;		/* Queue of IDLE threads. */
201	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
202	struct runq	*ksq_next;		/* Next timeshare queue. */
203	struct runq	*ksq_curr;		/* Current queue. */
204	int		ksq_load_timeshare;	/* Load for timeshare. */
205	int		ksq_load;		/* Aggregate load. */
206	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
207	short		ksq_nicemin;		/* Least nice. */
208#ifdef SMP
209	int			ksq_transferable;
210	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
211	struct kseq_group	*ksq_group;	/* Our processor group. */
212	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
213#else
214	int		ksq_sysload;		/* For loadavg, !ITHD load. */
215#endif
216};
217
218#ifdef SMP
219/*
220 * kseq groups are groups of processors which can cheaply share threads.  When
221 * one processor in the group goes idle it will check the runqs of the other
222 * processors in its group prior to halting and waiting for an interrupt.
223 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
224 * In a numa environment we'd want an idle bitmap per group and a two tiered
225 * load balancer.
226 */
227struct kseq_group {
228	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
229	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
230	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
231	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
232	int	ksg_load;		/* Total load of this group. */
233	int	ksg_transferable;	/* Transferable load of this group. */
234	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
235};
236#endif
237
238/*
239 * One kse queue per processor.
240 */
241#ifdef SMP
242static cpumask_t kseq_idle;
243static int ksg_maxid;
244static struct kseq	kseq_cpu[MAXCPU];
245static struct kseq_group kseq_groups[MAXCPU];
246static int bal_tick;
247static int gbal_tick;
248
249#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
250#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
251#define	KSEQ_ID(x)	((x) - kseq_cpu)
252#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
253#else	/* !SMP */
254static struct kseq	kseq_cpu;
255
256#define	KSEQ_SELF()	(&kseq_cpu)
257#define	KSEQ_CPU(x)	(&kseq_cpu)
258#endif
259
260static void sched_slice(struct kse *ke);
261static void sched_priority(struct ksegrp *kg);
262static int sched_interact_score(struct ksegrp *kg);
263static void sched_interact_update(struct ksegrp *kg);
264static void sched_interact_fork(struct ksegrp *kg);
265static void sched_pctcpu_update(struct kse *ke);
266
267/* Operations on per processor queues */
268static struct kse * kseq_choose(struct kseq *kseq);
269static void kseq_setup(struct kseq *kseq);
270static void kseq_load_add(struct kseq *kseq, struct kse *ke);
271static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
272static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
273static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
274static void kseq_nice_add(struct kseq *kseq, int nice);
275static void kseq_nice_rem(struct kseq *kseq, int nice);
276void kseq_print(int cpu);
277#ifdef SMP
278static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
279static struct kse *runq_steal(struct runq *rq);
280static void sched_balance(void);
281static void sched_balance_groups(void);
282static void sched_balance_group(struct kseq_group *ksg);
283static void sched_balance_pair(struct kseq *high, struct kseq *low);
284static void kseq_move(struct kseq *from, int cpu);
285static int kseq_idled(struct kseq *kseq);
286static void kseq_notify(struct kse *ke, int cpu);
287static void kseq_assign(struct kseq *);
288static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
289/*
290 * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
291 * this, we can't pin interrupts to the cpu that they were delivered to,
292 * otherwise all ithreads only run on CPU 0.
293 */
294#ifdef __i386__
295#define	KSE_CAN_MIGRATE(ke, class)					\
296    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
297#else /* !__i386__ */
298#define	KSE_CAN_MIGRATE(ke, class)					\
299    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
300    ((ke)->ke_flags & KEF_BOUND) == 0)
301#endif /* !__i386__ */
302#endif
303
304void
305kseq_print(int cpu)
306{
307	struct kseq *kseq;
308	int i;
309
310	kseq = KSEQ_CPU(cpu);
311
312	printf("kseq:\n");
313	printf("\tload:           %d\n", kseq->ksq_load);
314	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
315#ifdef SMP
316	printf("\tload transferable: %d\n", kseq->ksq_transferable);
317#endif
318	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
319	printf("\tnice counts:\n");
320	for (i = 0; i < SCHED_PRI_NRESV; i++)
321		if (kseq->ksq_nice[i])
322			printf("\t\t%d = %d\n",
323			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
324}
325
326static __inline void
327kseq_runq_add(struct kseq *kseq, struct kse *ke)
328{
329#ifdef SMP
330	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
331		kseq->ksq_transferable++;
332		kseq->ksq_group->ksg_transferable++;
333	}
334#endif
335	runq_add(ke->ke_runq, ke);
336}
337
338static __inline void
339kseq_runq_rem(struct kseq *kseq, struct kse *ke)
340{
341#ifdef SMP
342	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
343		kseq->ksq_transferable--;
344		kseq->ksq_group->ksg_transferable--;
345	}
346#endif
347	runq_remove(ke->ke_runq, ke);
348}
349
350static void
351kseq_load_add(struct kseq *kseq, struct kse *ke)
352{
353	int class;
354	mtx_assert(&sched_lock, MA_OWNED);
355	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
356	if (class == PRI_TIMESHARE)
357		kseq->ksq_load_timeshare++;
358	kseq->ksq_load++;
359	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
360#ifdef SMP
361		kseq->ksq_group->ksg_load++;
362#else
363		kseq->ksq_sysload++;
364#endif
365	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
366		CTR6(KTR_ULE,
367		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
368		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
369		    ke->ke_proc->p_nice, kseq->ksq_nicemin);
370	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
371		kseq_nice_add(kseq, ke->ke_proc->p_nice);
372}
373
374static void
375kseq_load_rem(struct kseq *kseq, struct kse *ke)
376{
377	int class;
378	mtx_assert(&sched_lock, MA_OWNED);
379	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
380	if (class == PRI_TIMESHARE)
381		kseq->ksq_load_timeshare--;
382	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
383#ifdef SMP
384		kseq->ksq_group->ksg_load--;
385#else
386		kseq->ksq_sysload--;
387#endif
388	kseq->ksq_load--;
389	ke->ke_runq = NULL;
390	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
391		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
392}
393
394static void
395kseq_nice_add(struct kseq *kseq, int nice)
396{
397	mtx_assert(&sched_lock, MA_OWNED);
398	/* Normalize to zero. */
399	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
400	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
401		kseq->ksq_nicemin = nice;
402}
403
404static void
405kseq_nice_rem(struct kseq *kseq, int nice)
406{
407	int n;
408
409	mtx_assert(&sched_lock, MA_OWNED);
410	/* Normalize to zero. */
411	n = nice + SCHED_PRI_NHALF;
412	kseq->ksq_nice[n]--;
413	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
414
415	/*
416	 * If this wasn't the smallest nice value or there are more in
417	 * this bucket we can just return.  Otherwise we have to recalculate
418	 * the smallest nice.
419	 */
420	if (nice != kseq->ksq_nicemin ||
421	    kseq->ksq_nice[n] != 0 ||
422	    kseq->ksq_load_timeshare == 0)
423		return;
424
425	for (; n < SCHED_PRI_NRESV; n++)
426		if (kseq->ksq_nice[n]) {
427			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
428			return;
429		}
430}
431
432#ifdef SMP
433/*
434 * sched_balance is a simple CPU load balancing algorithm.  It operates by
435 * finding the least loaded and most loaded cpu and equalizing their load
436 * by migrating some processes.
437 *
438 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
439 * installations will only have 2 cpus.  Secondly, load balancing too much at
440 * once can have an unpleasant effect on the system.  The scheduler rarely has
441 * enough information to make perfect decisions.  So this algorithm chooses
442 * algorithm simplicity and more gradual effects on load in larger systems.
443 *
444 * It could be improved by considering the priorities and slices assigned to
445 * each task prior to balancing them.  There are many pathological cases with
446 * any approach and so the semi random algorithm below may work as well as any.
447 *
448 */
449static void
450sched_balance(void)
451{
452	struct kseq_group *high;
453	struct kseq_group *low;
454	struct kseq_group *ksg;
455	int cnt;
456	int i;
457
458	if (smp_started == 0)
459		goto out;
460	low = high = NULL;
461	i = random() % (ksg_maxid + 1);
462	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
463		ksg = KSEQ_GROUP(i);
464		/*
465		 * Find the CPU with the highest load that has some
466		 * threads to transfer.
467		 */
468		if ((high == NULL || ksg->ksg_load > high->ksg_load)
469		    && ksg->ksg_transferable)
470			high = ksg;
471		if (low == NULL || ksg->ksg_load < low->ksg_load)
472			low = ksg;
473		if (++i > ksg_maxid)
474			i = 0;
475	}
476	if (low != NULL && high != NULL && high != low)
477		sched_balance_pair(LIST_FIRST(&high->ksg_members),
478		    LIST_FIRST(&low->ksg_members));
479out:
480	bal_tick = ticks + (random() % (hz * 2));
481}
482
483static void
484sched_balance_groups(void)
485{
486	int i;
487
488	mtx_assert(&sched_lock, MA_OWNED);
489	if (smp_started)
490		for (i = 0; i <= ksg_maxid; i++)
491			sched_balance_group(KSEQ_GROUP(i));
492	gbal_tick = ticks + (random() % (hz * 2));
493}
494
495static void
496sched_balance_group(struct kseq_group *ksg)
497{
498	struct kseq *kseq;
499	struct kseq *high;
500	struct kseq *low;
501	int load;
502
503	if (ksg->ksg_transferable == 0)
504		return;
505	low = NULL;
506	high = NULL;
507	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
508		load = kseq->ksq_load;
509		if (high == NULL || load > high->ksq_load)
510			high = kseq;
511		if (low == NULL || load < low->ksq_load)
512			low = kseq;
513	}
514	if (high != NULL && low != NULL && high != low)
515		sched_balance_pair(high, low);
516}
517
518static void
519sched_balance_pair(struct kseq *high, struct kseq *low)
520{
521	int transferable;
522	int high_load;
523	int low_load;
524	int move;
525	int diff;
526	int i;
527
528	/*
529	 * If we're transfering within a group we have to use this specific
530	 * kseq's transferable count, otherwise we can steal from other members
531	 * of the group.
532	 */
533	if (high->ksq_group == low->ksq_group) {
534		transferable = high->ksq_transferable;
535		high_load = high->ksq_load;
536		low_load = low->ksq_load;
537	} else {
538		transferable = high->ksq_group->ksg_transferable;
539		high_load = high->ksq_group->ksg_load;
540		low_load = low->ksq_group->ksg_load;
541	}
542	if (transferable == 0)
543		return;
544	/*
545	 * Determine what the imbalance is and then adjust that to how many
546	 * kses we actually have to give up (transferable).
547	 */
548	diff = high_load - low_load;
549	move = diff / 2;
550	if (diff & 0x1)
551		move++;
552	move = min(move, transferable);
553	for (i = 0; i < move; i++)
554		kseq_move(high, KSEQ_ID(low));
555	return;
556}
557
558static void
559kseq_move(struct kseq *from, int cpu)
560{
561	struct kseq *kseq;
562	struct kseq *to;
563	struct kse *ke;
564
565	kseq = from;
566	to = KSEQ_CPU(cpu);
567	ke = kseq_steal(kseq, 1);
568	if (ke == NULL) {
569		struct kseq_group *ksg;
570
571		ksg = kseq->ksq_group;
572		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
573			if (kseq == from || kseq->ksq_transferable == 0)
574				continue;
575			ke = kseq_steal(kseq, 1);
576			break;
577		}
578		if (ke == NULL)
579			panic("kseq_move: No KSEs available with a "
580			    "transferable count of %d\n",
581			    ksg->ksg_transferable);
582	}
583	if (kseq == to)
584		return;
585	ke->ke_state = KES_THREAD;
586	kseq_runq_rem(kseq, ke);
587	kseq_load_rem(kseq, ke);
588	kseq_notify(ke, cpu);
589}
590
591static int
592kseq_idled(struct kseq *kseq)
593{
594	struct kseq_group *ksg;
595	struct kseq *steal;
596	struct kse *ke;
597
598	ksg = kseq->ksq_group;
599	/*
600	 * If we're in a cpu group, try and steal kses from another cpu in
601	 * the group before idling.
602	 */
603	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
604		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
605			if (steal == kseq || steal->ksq_transferable == 0)
606				continue;
607			ke = kseq_steal(steal, 0);
608			if (ke == NULL)
609				continue;
610			ke->ke_state = KES_THREAD;
611			kseq_runq_rem(steal, ke);
612			kseq_load_rem(steal, ke);
613			ke->ke_cpu = PCPU_GET(cpuid);
614			sched_add(ke->ke_thread);
615			return (0);
616		}
617	}
618	/*
619	 * We only set the idled bit when all of the cpus in the group are
620	 * idle.  Otherwise we could get into a situation where a KSE bounces
621	 * back and forth between two idle cores on seperate physical CPUs.
622	 */
623	ksg->ksg_idlemask |= PCPU_GET(cpumask);
624	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
625		return (1);
626	atomic_set_int(&kseq_idle, ksg->ksg_mask);
627	return (1);
628}
629
630static void
631kseq_assign(struct kseq *kseq)
632{
633	struct kse *nke;
634	struct kse *ke;
635
636	do {
637		(volatile struct kse *)ke = kseq->ksq_assigned;
638	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
639	for (; ke != NULL; ke = nke) {
640		nke = ke->ke_assign;
641		ke->ke_flags &= ~KEF_ASSIGNED;
642		sched_add(ke->ke_thread);
643	}
644}
645
646static void
647kseq_notify(struct kse *ke, int cpu)
648{
649	struct kseq *kseq;
650	struct thread *td;
651	struct pcpu *pcpu;
652
653	ke->ke_cpu = cpu;
654	ke->ke_flags |= KEF_ASSIGNED;
655
656	kseq = KSEQ_CPU(cpu);
657
658	/*
659	 * Place a KSE on another cpu's queue and force a resched.
660	 */
661	do {
662		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
663	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
664	pcpu = pcpu_find(cpu);
665	td = pcpu->pc_curthread;
666	if (ke->ke_thread->td_priority < td->td_priority ||
667	    td == pcpu->pc_idlethread) {
668		td->td_flags |= TDF_NEEDRESCHED;
669		ipi_selected(1 << cpu, IPI_AST);
670	}
671}
672
673static struct kse *
674runq_steal(struct runq *rq)
675{
676	struct rqhead *rqh;
677	struct rqbits *rqb;
678	struct kse *ke;
679	int word;
680	int bit;
681
682	mtx_assert(&sched_lock, MA_OWNED);
683	rqb = &rq->rq_status;
684	for (word = 0; word < RQB_LEN; word++) {
685		if (rqb->rqb_bits[word] == 0)
686			continue;
687		for (bit = 0; bit < RQB_BPW; bit++) {
688			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
689				continue;
690			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
691			TAILQ_FOREACH(ke, rqh, ke_procq) {
692				if (KSE_CAN_MIGRATE(ke,
693				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
694					return (ke);
695			}
696		}
697	}
698	return (NULL);
699}
700
701static struct kse *
702kseq_steal(struct kseq *kseq, int stealidle)
703{
704	struct kse *ke;
705
706	/*
707	 * Steal from next first to try to get a non-interactive task that
708	 * may not have run for a while.
709	 */
710	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
711		return (ke);
712	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
713		return (ke);
714	if (stealidle)
715		return (runq_steal(&kseq->ksq_idle));
716	return (NULL);
717}
718
719int
720kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
721{
722	struct kseq_group *ksg;
723	int cpu;
724
725	if (smp_started == 0)
726		return (0);
727	cpu = 0;
728	ksg = kseq->ksq_group;
729
730	/*
731	 * If there are any idle groups, give them our extra load.  The
732	 * threshold at which we start to reassign kses has a large impact
733	 * on the overall performance of the system.  Tuned too high and
734	 * some CPUs may idle.  Too low and there will be excess migration
735	 * and context switches.
736	 */
737	if (ksg->ksg_load > (ksg->ksg_cpus * 2) && kseq_idle) {
738		/*
739		 * Multiple cpus could find this bit simultaneously
740		 * but the race shouldn't be terrible.
741		 */
742		cpu = ffs(kseq_idle);
743		if (cpu)
744			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
745	}
746	/*
747	 * If another cpu in this group has idled, assign a thread over
748	 * to them after checking to see if there are idled groups.
749	 */
750	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
751		cpu = ffs(ksg->ksg_idlemask);
752		if (cpu)
753			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
754	}
755	/*
756	 * Now that we've found an idle CPU, migrate the thread.
757	 */
758	if (cpu) {
759		cpu--;
760		ke->ke_runq = NULL;
761		kseq_notify(ke, cpu);
762		return (1);
763	}
764	return (0);
765}
766
767#endif	/* SMP */
768
769/*
770 * Pick the highest priority task we have and return it.
771 */
772
773static struct kse *
774kseq_choose(struct kseq *kseq)
775{
776	struct kse *ke;
777	struct runq *swap;
778
779	mtx_assert(&sched_lock, MA_OWNED);
780	swap = NULL;
781
782	for (;;) {
783		ke = runq_choose(kseq->ksq_curr);
784		if (ke == NULL) {
785			/*
786			 * We already swaped once and didn't get anywhere.
787			 */
788			if (swap)
789				break;
790			swap = kseq->ksq_curr;
791			kseq->ksq_curr = kseq->ksq_next;
792			kseq->ksq_next = swap;
793			continue;
794		}
795		/*
796		 * If we encounter a slice of 0 the kse is in a
797		 * TIMESHARE kse group and its nice was too far out
798		 * of the range that receives slices.
799		 */
800		if (ke->ke_slice == 0) {
801			runq_remove(ke->ke_runq, ke);
802			sched_slice(ke);
803			ke->ke_runq = kseq->ksq_next;
804			runq_add(ke->ke_runq, ke);
805			continue;
806		}
807		return (ke);
808	}
809
810	return (runq_choose(&kseq->ksq_idle));
811}
812
813static void
814kseq_setup(struct kseq *kseq)
815{
816	runq_init(&kseq->ksq_timeshare[0]);
817	runq_init(&kseq->ksq_timeshare[1]);
818	runq_init(&kseq->ksq_idle);
819	kseq->ksq_curr = &kseq->ksq_timeshare[0];
820	kseq->ksq_next = &kseq->ksq_timeshare[1];
821	kseq->ksq_load = 0;
822	kseq->ksq_load_timeshare = 0;
823}
824
825static void
826sched_setup(void *dummy)
827{
828#ifdef SMP
829	int balance_groups;
830	int i;
831#endif
832
833	slice_min = (hz/100);	/* 10ms */
834	slice_max = (hz/7);	/* ~140ms */
835
836#ifdef SMP
837	balance_groups = 0;
838	/*
839	 * Initialize the kseqs.
840	 */
841	for (i = 0; i < MAXCPU; i++) {
842		struct kseq *ksq;
843
844		ksq = &kseq_cpu[i];
845		ksq->ksq_assigned = NULL;
846		kseq_setup(&kseq_cpu[i]);
847	}
848	if (smp_topology == NULL) {
849		struct kseq_group *ksg;
850		struct kseq *ksq;
851
852		for (i = 0; i < MAXCPU; i++) {
853			ksq = &kseq_cpu[i];
854			ksg = &kseq_groups[i];
855			/*
856			 * Setup a kseq group with one member.
857			 */
858			ksq->ksq_transferable = 0;
859			ksq->ksq_group = ksg;
860			ksg->ksg_cpus = 1;
861			ksg->ksg_idlemask = 0;
862			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
863			ksg->ksg_load = 0;
864			ksg->ksg_transferable = 0;
865			LIST_INIT(&ksg->ksg_members);
866			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
867		}
868	} else {
869		struct kseq_group *ksg;
870		struct cpu_group *cg;
871		int j;
872
873		for (i = 0; i < smp_topology->ct_count; i++) {
874			cg = &smp_topology->ct_group[i];
875			ksg = &kseq_groups[i];
876			/*
877			 * Initialize the group.
878			 */
879			ksg->ksg_idlemask = 0;
880			ksg->ksg_load = 0;
881			ksg->ksg_transferable = 0;
882			ksg->ksg_cpus = cg->cg_count;
883			ksg->ksg_cpumask = cg->cg_mask;
884			LIST_INIT(&ksg->ksg_members);
885			/*
886			 * Find all of the group members and add them.
887			 */
888			for (j = 0; j < MAXCPU; j++) {
889				if ((cg->cg_mask & (1 << j)) != 0) {
890					if (ksg->ksg_mask == 0)
891						ksg->ksg_mask = 1 << j;
892					kseq_cpu[j].ksq_transferable = 0;
893					kseq_cpu[j].ksq_group = ksg;
894					LIST_INSERT_HEAD(&ksg->ksg_members,
895					    &kseq_cpu[j], ksq_siblings);
896				}
897			}
898			if (ksg->ksg_cpus > 1)
899				balance_groups = 1;
900		}
901		ksg_maxid = smp_topology->ct_count - 1;
902	}
903	/*
904	 * Stagger the group and global load balancer so they do not
905	 * interfere with each other.
906	 */
907	bal_tick = ticks + hz;
908	if (balance_groups)
909		gbal_tick = ticks + (hz / 2);
910#else
911	kseq_setup(KSEQ_SELF());
912#endif
913	mtx_lock_spin(&sched_lock);
914	kseq_load_add(KSEQ_SELF(), &kse0);
915	mtx_unlock_spin(&sched_lock);
916}
917
918/*
919 * Scale the scheduling priority according to the "interactivity" of this
920 * process.
921 */
922static void
923sched_priority(struct ksegrp *kg)
924{
925	int pri;
926
927	if (kg->kg_pri_class != PRI_TIMESHARE)
928		return;
929
930	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
931	pri += SCHED_PRI_BASE;
932	pri += kg->kg_proc->p_nice;
933
934	if (pri > PRI_MAX_TIMESHARE)
935		pri = PRI_MAX_TIMESHARE;
936	else if (pri < PRI_MIN_TIMESHARE)
937		pri = PRI_MIN_TIMESHARE;
938
939	kg->kg_user_pri = pri;
940
941	return;
942}
943
944/*
945 * Calculate a time slice based on the properties of the kseg and the runq
946 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
947 */
948static void
949sched_slice(struct kse *ke)
950{
951	struct kseq *kseq;
952	struct ksegrp *kg;
953
954	kg = ke->ke_ksegrp;
955	kseq = KSEQ_CPU(ke->ke_cpu);
956
957	/*
958	 * Rationale:
959	 * KSEs in interactive ksegs get the minimum slice so that we
960	 * quickly notice if it abuses its advantage.
961	 *
962	 * KSEs in non-interactive ksegs are assigned a slice that is
963	 * based on the ksegs nice value relative to the least nice kseg
964	 * on the run queue for this cpu.
965	 *
966	 * If the KSE is less nice than all others it gets the maximum
967	 * slice and other KSEs will adjust their slice relative to
968	 * this when they first expire.
969	 *
970	 * There is 20 point window that starts relative to the least
971	 * nice kse on the run queue.  Slice size is determined by
972	 * the kse distance from the last nice ksegrp.
973	 *
974	 * If the kse is outside of the window it will get no slice
975	 * and will be reevaluated each time it is selected on the
976	 * run queue.  The exception to this is nice 0 ksegs when
977	 * a nice -20 is running.  They are always granted a minimum
978	 * slice.
979	 */
980	if (!SCHED_INTERACTIVE(kg)) {
981		int nice;
982
983		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
984		if (kseq->ksq_load_timeshare == 0 ||
985		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
986			ke->ke_slice = SCHED_SLICE_MAX;
987		else if (nice <= SCHED_SLICE_NTHRESH)
988			ke->ke_slice = SCHED_SLICE_NICE(nice);
989		else if (kg->kg_proc->p_nice == 0)
990			ke->ke_slice = SCHED_SLICE_MIN;
991		else
992			ke->ke_slice = 0;
993	} else
994		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
995
996	CTR6(KTR_ULE,
997	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
998	    ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
999	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1000
1001	return;
1002}
1003
1004/*
1005 * This routine enforces a maximum limit on the amount of scheduling history
1006 * kept.  It is called after either the slptime or runtime is adjusted.
1007 * This routine will not operate correctly when slp or run times have been
1008 * adjusted to more than double their maximum.
1009 */
1010static void
1011sched_interact_update(struct ksegrp *kg)
1012{
1013	int sum;
1014
1015	sum = kg->kg_runtime + kg->kg_slptime;
1016	if (sum < SCHED_SLP_RUN_MAX)
1017		return;
1018	/*
1019	 * If we have exceeded by more than 1/5th then the algorithm below
1020	 * will not bring us back into range.  Dividing by two here forces
1021	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1022	 */
1023	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1024		kg->kg_runtime /= 2;
1025		kg->kg_slptime /= 2;
1026		return;
1027	}
1028	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1029	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1030}
1031
1032static void
1033sched_interact_fork(struct ksegrp *kg)
1034{
1035	int ratio;
1036	int sum;
1037
1038	sum = kg->kg_runtime + kg->kg_slptime;
1039	if (sum > SCHED_SLP_RUN_FORK) {
1040		ratio = sum / SCHED_SLP_RUN_FORK;
1041		kg->kg_runtime /= ratio;
1042		kg->kg_slptime /= ratio;
1043	}
1044}
1045
1046static int
1047sched_interact_score(struct ksegrp *kg)
1048{
1049	int div;
1050
1051	if (kg->kg_runtime > kg->kg_slptime) {
1052		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1053		return (SCHED_INTERACT_HALF +
1054		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1055	} if (kg->kg_slptime > kg->kg_runtime) {
1056		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1057		return (kg->kg_runtime / div);
1058	}
1059
1060	/*
1061	 * This can happen if slptime and runtime are 0.
1062	 */
1063	return (0);
1064
1065}
1066
1067/*
1068 * This is only somewhat accurate since given many processes of the same
1069 * priority they will switch when their slices run out, which will be
1070 * at most SCHED_SLICE_MAX.
1071 */
1072int
1073sched_rr_interval(void)
1074{
1075	return (SCHED_SLICE_MAX);
1076}
1077
1078static void
1079sched_pctcpu_update(struct kse *ke)
1080{
1081	/*
1082	 * Adjust counters and watermark for pctcpu calc.
1083	 */
1084	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1085		/*
1086		 * Shift the tick count out so that the divide doesn't
1087		 * round away our results.
1088		 */
1089		ke->ke_ticks <<= 10;
1090		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1091			    SCHED_CPU_TICKS;
1092		ke->ke_ticks >>= 10;
1093	} else
1094		ke->ke_ticks = 0;
1095	ke->ke_ltick = ticks;
1096	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1097}
1098
1099void
1100sched_prio(struct thread *td, u_char prio)
1101{
1102	struct kse *ke;
1103
1104	ke = td->td_kse;
1105	mtx_assert(&sched_lock, MA_OWNED);
1106	if (TD_ON_RUNQ(td)) {
1107		/*
1108		 * If the priority has been elevated due to priority
1109		 * propagation, we may have to move ourselves to a new
1110		 * queue.  We still call adjustrunqueue below in case kse
1111		 * needs to fix things up.
1112		 */
1113		if (prio < td->td_priority && ke &&
1114		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1115		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1116			runq_remove(ke->ke_runq, ke);
1117			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1118			runq_add(ke->ke_runq, ke);
1119		}
1120		adjustrunqueue(td, prio);
1121	} else
1122		td->td_priority = prio;
1123}
1124
1125void
1126sched_switch(struct thread *td)
1127{
1128	struct thread *newtd;
1129	struct kse *ke;
1130
1131	mtx_assert(&sched_lock, MA_OWNED);
1132
1133	ke = td->td_kse;
1134
1135	td->td_last_kse = ke;
1136        td->td_lastcpu = td->td_oncpu;
1137	td->td_oncpu = NOCPU;
1138        td->td_flags &= ~TDF_NEEDRESCHED;
1139
1140	/*
1141	 * If the KSE has been assigned it may be in the process of switching
1142	 * to the new cpu.  This is the case in sched_bind().
1143	 */
1144	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1145		if (TD_IS_RUNNING(td)) {
1146			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1147			setrunqueue(td);
1148		} else {
1149			if (ke->ke_runq) {
1150				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1151			} else if ((td->td_flags & TDF_IDLETD) == 0)
1152				backtrace();
1153			/*
1154			 * We will not be on the run queue. So we must be
1155			 * sleeping or similar.
1156			 */
1157			if (td->td_proc->p_flag & P_SA)
1158				kse_reassign(ke);
1159		}
1160	}
1161	newtd = choosethread();
1162	if (td != newtd)
1163		cpu_switch(td, newtd);
1164	sched_lock.mtx_lock = (uintptr_t)td;
1165
1166	td->td_oncpu = PCPU_GET(cpuid);
1167}
1168
1169void
1170sched_nice(struct proc *p, int nice)
1171{
1172	struct ksegrp *kg;
1173	struct kse *ke;
1174	struct thread *td;
1175	struct kseq *kseq;
1176
1177	PROC_LOCK_ASSERT(p, MA_OWNED);
1178	mtx_assert(&sched_lock, MA_OWNED);
1179	/*
1180	 * We need to adjust the nice counts for running KSEs.
1181	 */
1182	FOREACH_KSEGRP_IN_PROC(p, kg) {
1183		if (kg->kg_pri_class == PRI_TIMESHARE) {
1184			FOREACH_KSE_IN_GROUP(kg, ke) {
1185				if (ke->ke_runq == NULL)
1186					continue;
1187				kseq = KSEQ_CPU(ke->ke_cpu);
1188				kseq_nice_rem(kseq, p->p_nice);
1189				kseq_nice_add(kseq, nice);
1190			}
1191		}
1192	}
1193	p->p_nice = nice;
1194	FOREACH_KSEGRP_IN_PROC(p, kg) {
1195		sched_priority(kg);
1196		FOREACH_THREAD_IN_GROUP(kg, td)
1197			td->td_flags |= TDF_NEEDRESCHED;
1198	}
1199}
1200
1201void
1202sched_sleep(struct thread *td)
1203{
1204	mtx_assert(&sched_lock, MA_OWNED);
1205
1206	td->td_slptime = ticks;
1207	td->td_base_pri = td->td_priority;
1208
1209	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
1210	    td->td_kse, td->td_slptime);
1211}
1212
1213void
1214sched_wakeup(struct thread *td)
1215{
1216	mtx_assert(&sched_lock, MA_OWNED);
1217
1218	/*
1219	 * Let the kseg know how long we slept for.  This is because process
1220	 * interactivity behavior is modeled in the kseg.
1221	 */
1222	if (td->td_slptime) {
1223		struct ksegrp *kg;
1224		int hzticks;
1225
1226		kg = td->td_ksegrp;
1227		hzticks = (ticks - td->td_slptime) << 10;
1228		if (hzticks >= SCHED_SLP_RUN_MAX) {
1229			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1230			kg->kg_runtime = 1;
1231		} else {
1232			kg->kg_slptime += hzticks;
1233			sched_interact_update(kg);
1234		}
1235		sched_priority(kg);
1236		if (td->td_kse)
1237			sched_slice(td->td_kse);
1238		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
1239		    td->td_kse, hzticks);
1240		td->td_slptime = 0;
1241	}
1242	setrunqueue(td);
1243}
1244
1245/*
1246 * Penalize the parent for creating a new child and initialize the child's
1247 * priority.
1248 */
1249void
1250sched_fork(struct proc *p, struct proc *p1)
1251{
1252
1253	mtx_assert(&sched_lock, MA_OWNED);
1254
1255	p1->p_nice = p->p_nice;
1256	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
1257	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
1258	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
1259}
1260
1261void
1262sched_fork_kse(struct kse *ke, struct kse *child)
1263{
1264
1265	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1266	child->ke_cpu = ke->ke_cpu;
1267	child->ke_runq = NULL;
1268
1269	/* Grab our parents cpu estimation information. */
1270	child->ke_ticks = ke->ke_ticks;
1271	child->ke_ltick = ke->ke_ltick;
1272	child->ke_ftick = ke->ke_ftick;
1273}
1274
1275void
1276sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1277{
1278	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1279
1280	child->kg_slptime = kg->kg_slptime;
1281	child->kg_runtime = kg->kg_runtime;
1282	child->kg_user_pri = kg->kg_user_pri;
1283	sched_interact_fork(child);
1284	kg->kg_runtime += tickincr << 10;
1285	sched_interact_update(kg);
1286
1287	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1288	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1289	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1290}
1291
1292void
1293sched_fork_thread(struct thread *td, struct thread *child)
1294{
1295}
1296
1297void
1298sched_class(struct ksegrp *kg, int class)
1299{
1300	struct kseq *kseq;
1301	struct kse *ke;
1302	int nclass;
1303	int oclass;
1304
1305	mtx_assert(&sched_lock, MA_OWNED);
1306	if (kg->kg_pri_class == class)
1307		return;
1308
1309	nclass = PRI_BASE(class);
1310	oclass = PRI_BASE(kg->kg_pri_class);
1311	FOREACH_KSE_IN_GROUP(kg, ke) {
1312		if (ke->ke_state != KES_ONRUNQ &&
1313		    ke->ke_state != KES_THREAD)
1314			continue;
1315		kseq = KSEQ_CPU(ke->ke_cpu);
1316
1317#ifdef SMP
1318		/*
1319		 * On SMP if we're on the RUNQ we must adjust the transferable
1320		 * count because could be changing to or from an interrupt
1321		 * class.
1322		 */
1323		if (ke->ke_state == KES_ONRUNQ) {
1324			if (KSE_CAN_MIGRATE(ke, oclass)) {
1325				kseq->ksq_transferable--;
1326				kseq->ksq_group->ksg_transferable--;
1327			}
1328			if (KSE_CAN_MIGRATE(ke, nclass)) {
1329				kseq->ksq_transferable++;
1330				kseq->ksq_group->ksg_transferable++;
1331			}
1332		}
1333#endif
1334		if (oclass == PRI_TIMESHARE) {
1335			kseq->ksq_load_timeshare--;
1336			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1337		}
1338		if (nclass == PRI_TIMESHARE) {
1339			kseq->ksq_load_timeshare++;
1340			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1341		}
1342	}
1343
1344	kg->kg_pri_class = class;
1345}
1346
1347/*
1348 * Return some of the child's priority and interactivity to the parent.
1349 */
1350void
1351sched_exit(struct proc *p, struct proc *child)
1352{
1353	mtx_assert(&sched_lock, MA_OWNED);
1354	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1355	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1356}
1357
1358void
1359sched_exit_kse(struct kse *ke, struct kse *child)
1360{
1361	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1362}
1363
1364void
1365sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1366{
1367	/* kg->kg_slptime += child->kg_slptime; */
1368	kg->kg_runtime += child->kg_runtime;
1369	sched_interact_update(kg);
1370}
1371
1372void
1373sched_exit_thread(struct thread *td, struct thread *child)
1374{
1375}
1376
1377void
1378sched_clock(struct thread *td)
1379{
1380	struct kseq *kseq;
1381	struct ksegrp *kg;
1382	struct kse *ke;
1383
1384	mtx_assert(&sched_lock, MA_OWNED);
1385#ifdef SMP
1386	if (ticks == bal_tick)
1387		sched_balance();
1388	if (ticks == gbal_tick)
1389		sched_balance_groups();
1390#endif
1391	/*
1392	 * sched_setup() apparently happens prior to stathz being set.  We
1393	 * need to resolve the timers earlier in the boot so we can avoid
1394	 * calculating this here.
1395	 */
1396	if (realstathz == 0) {
1397		realstathz = stathz ? stathz : hz;
1398		tickincr = hz / realstathz;
1399		/*
1400		 * XXX This does not work for values of stathz that are much
1401		 * larger than hz.
1402		 */
1403		if (tickincr == 0)
1404			tickincr = 1;
1405	}
1406
1407	ke = td->td_kse;
1408	kg = ke->ke_ksegrp;
1409
1410	/* Adjust ticks for pctcpu */
1411	ke->ke_ticks++;
1412	ke->ke_ltick = ticks;
1413
1414	/* Go up to one second beyond our max and then trim back down */
1415	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1416		sched_pctcpu_update(ke);
1417
1418	if (td->td_flags & TDF_IDLETD)
1419		return;
1420
1421	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1422	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1423	/*
1424	 * We only do slicing code for TIMESHARE ksegrps.
1425	 */
1426	if (kg->kg_pri_class != PRI_TIMESHARE)
1427		return;
1428	/*
1429	 * We used a tick charge it to the ksegrp so that we can compute our
1430	 * interactivity.
1431	 */
1432	kg->kg_runtime += tickincr << 10;
1433	sched_interact_update(kg);
1434
1435	/*
1436	 * We used up one time slice.
1437	 */
1438	if (--ke->ke_slice > 0)
1439		return;
1440	/*
1441	 * We're out of time, recompute priorities and requeue.
1442	 */
1443	kseq = KSEQ_SELF();
1444	kseq_load_rem(kseq, ke);
1445	sched_priority(kg);
1446	sched_slice(ke);
1447	if (SCHED_CURR(kg, ke))
1448		ke->ke_runq = kseq->ksq_curr;
1449	else
1450		ke->ke_runq = kseq->ksq_next;
1451	kseq_load_add(kseq, ke);
1452	td->td_flags |= TDF_NEEDRESCHED;
1453}
1454
1455int
1456sched_runnable(void)
1457{
1458	struct kseq *kseq;
1459	int load;
1460
1461	load = 1;
1462
1463	kseq = KSEQ_SELF();
1464#ifdef SMP
1465	if (kseq->ksq_assigned) {
1466		mtx_lock_spin(&sched_lock);
1467		kseq_assign(kseq);
1468		mtx_unlock_spin(&sched_lock);
1469	}
1470#endif
1471	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1472		if (kseq->ksq_load > 0)
1473			goto out;
1474	} else
1475		if (kseq->ksq_load - 1 > 0)
1476			goto out;
1477	load = 0;
1478out:
1479	return (load);
1480}
1481
1482void
1483sched_userret(struct thread *td)
1484{
1485	struct ksegrp *kg;
1486
1487	kg = td->td_ksegrp;
1488
1489	if (td->td_priority != kg->kg_user_pri) {
1490		mtx_lock_spin(&sched_lock);
1491		td->td_priority = kg->kg_user_pri;
1492		mtx_unlock_spin(&sched_lock);
1493	}
1494}
1495
1496struct kse *
1497sched_choose(void)
1498{
1499	struct kseq *kseq;
1500	struct kse *ke;
1501
1502	mtx_assert(&sched_lock, MA_OWNED);
1503	kseq = KSEQ_SELF();
1504#ifdef SMP
1505restart:
1506	if (kseq->ksq_assigned)
1507		kseq_assign(kseq);
1508#endif
1509	ke = kseq_choose(kseq);
1510	if (ke) {
1511#ifdef SMP
1512		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1513			if (kseq_idled(kseq) == 0)
1514				goto restart;
1515#endif
1516		kseq_runq_rem(kseq, ke);
1517		ke->ke_state = KES_THREAD;
1518
1519		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1520			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1521			    ke, ke->ke_runq, ke->ke_slice,
1522			    ke->ke_thread->td_priority);
1523		}
1524		return (ke);
1525	}
1526#ifdef SMP
1527	if (kseq_idled(kseq) == 0)
1528		goto restart;
1529#endif
1530	return (NULL);
1531}
1532
1533void
1534sched_add(struct thread *td)
1535{
1536	struct kseq *kseq;
1537	struct ksegrp *kg;
1538	struct kse *ke;
1539	int class;
1540
1541	mtx_assert(&sched_lock, MA_OWNED);
1542	ke = td->td_kse;
1543	kg = td->td_ksegrp;
1544	if (ke->ke_flags & KEF_ASSIGNED)
1545		return;
1546	kseq = KSEQ_SELF();
1547	KASSERT((ke->ke_thread != NULL),
1548	    ("sched_add: No thread on KSE"));
1549	KASSERT((ke->ke_thread->td_kse != NULL),
1550	    ("sched_add: No KSE on thread"));
1551	KASSERT(ke->ke_state != KES_ONRUNQ,
1552	    ("sched_add: kse %p (%s) already in run queue", ke,
1553	    ke->ke_proc->p_comm));
1554	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1555	    ("sched_add: process swapped out"));
1556	KASSERT(ke->ke_runq == NULL,
1557	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1558
1559	class = PRI_BASE(kg->kg_pri_class);
1560	switch (class) {
1561	case PRI_ITHD:
1562	case PRI_REALTIME:
1563		ke->ke_runq = kseq->ksq_curr;
1564		ke->ke_slice = SCHED_SLICE_MAX;
1565		ke->ke_cpu = PCPU_GET(cpuid);
1566		break;
1567	case PRI_TIMESHARE:
1568		if (SCHED_CURR(kg, ke))
1569			ke->ke_runq = kseq->ksq_curr;
1570		else
1571			ke->ke_runq = kseq->ksq_next;
1572		break;
1573	case PRI_IDLE:
1574		/*
1575		 * This is for priority prop.
1576		 */
1577		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1578			ke->ke_runq = kseq->ksq_curr;
1579		else
1580			ke->ke_runq = &kseq->ksq_idle;
1581		ke->ke_slice = SCHED_SLICE_MIN;
1582		break;
1583	default:
1584		panic("Unknown pri class.");
1585		break;
1586	}
1587#ifdef SMP
1588	if (ke->ke_cpu != PCPU_GET(cpuid)) {
1589		ke->ke_runq = NULL;
1590		kseq_notify(ke, ke->ke_cpu);
1591		return;
1592	}
1593	/*
1594	 * If we had been idle, clear our bit in the group and potentially
1595	 * the global bitmap.  If not, see if we should transfer this thread.
1596	 */
1597	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1598	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1599		/*
1600		 * Check to see if our group is unidling, and if so, remove it
1601		 * from the global idle mask.
1602		 */
1603		if (kseq->ksq_group->ksg_idlemask ==
1604		    kseq->ksq_group->ksg_cpumask)
1605			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1606		/*
1607		 * Now remove ourselves from the group specific idle mask.
1608		 */
1609		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1610	} else if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1611		if (kseq_transfer(kseq, ke, class))
1612			return;
1613#endif
1614        if (td->td_priority < curthread->td_priority)
1615                curthread->td_flags |= TDF_NEEDRESCHED;
1616
1617	ke->ke_ksegrp->kg_runq_kses++;
1618	ke->ke_state = KES_ONRUNQ;
1619
1620	kseq_runq_add(kseq, ke);
1621	kseq_load_add(kseq, ke);
1622}
1623
1624void
1625sched_rem(struct thread *td)
1626{
1627	struct kseq *kseq;
1628	struct kse *ke;
1629
1630	ke = td->td_kse;
1631	/*
1632	 * It is safe to just return here because sched_rem() is only ever
1633	 * used in places where we're immediately going to add the
1634	 * kse back on again.  In that case it'll be added with the correct
1635	 * thread and priority when the caller drops the sched_lock.
1636	 */
1637	if (ke->ke_flags & KEF_ASSIGNED)
1638		return;
1639	mtx_assert(&sched_lock, MA_OWNED);
1640	KASSERT((ke->ke_state == KES_ONRUNQ),
1641	    ("sched_rem: KSE not on run queue"));
1642
1643	ke->ke_state = KES_THREAD;
1644	ke->ke_ksegrp->kg_runq_kses--;
1645	kseq = KSEQ_CPU(ke->ke_cpu);
1646	kseq_runq_rem(kseq, ke);
1647	kseq_load_rem(kseq, ke);
1648}
1649
1650fixpt_t
1651sched_pctcpu(struct thread *td)
1652{
1653	fixpt_t pctcpu;
1654	struct kse *ke;
1655
1656	pctcpu = 0;
1657	ke = td->td_kse;
1658	if (ke == NULL)
1659		return (0);
1660
1661	mtx_lock_spin(&sched_lock);
1662	if (ke->ke_ticks) {
1663		int rtick;
1664
1665		/*
1666		 * Don't update more frequently than twice a second.  Allowing
1667		 * this causes the cpu usage to decay away too quickly due to
1668		 * rounding errors.
1669		 */
1670		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1671		    ke->ke_ltick < (ticks - (hz / 2)))
1672			sched_pctcpu_update(ke);
1673		/* How many rtick per second ? */
1674		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1675		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1676	}
1677
1678	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1679	mtx_unlock_spin(&sched_lock);
1680
1681	return (pctcpu);
1682}
1683
1684void
1685sched_bind(struct thread *td, int cpu)
1686{
1687	struct kse *ke;
1688
1689	mtx_assert(&sched_lock, MA_OWNED);
1690	ke = td->td_kse;
1691	ke->ke_flags |= KEF_BOUND;
1692#ifdef SMP
1693	if (PCPU_GET(cpuid) == cpu)
1694		return;
1695	/* sched_rem without the runq_remove */
1696	ke->ke_state = KES_THREAD;
1697	ke->ke_ksegrp->kg_runq_kses--;
1698	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1699	kseq_notify(ke, cpu);
1700	/* When we return from mi_switch we'll be on the correct cpu. */
1701	mi_switch(SW_VOL);
1702#endif
1703}
1704
1705void
1706sched_unbind(struct thread *td)
1707{
1708	mtx_assert(&sched_lock, MA_OWNED);
1709	td->td_kse->ke_flags &= ~KEF_BOUND;
1710}
1711
1712int
1713sched_load(void)
1714{
1715#ifdef SMP
1716	int total;
1717	int i;
1718
1719	total = 0;
1720	for (i = 0; i <= ksg_maxid; i++)
1721		total += KSEQ_GROUP(i)->ksg_load;
1722	return (total);
1723#else
1724	return (KSEQ_SELF()->ksq_sysload);
1725#endif
1726}
1727
1728int
1729sched_sizeof_kse(void)
1730{
1731	return (sizeof(struct kse) + sizeof(struct ke_sched));
1732}
1733
1734int
1735sched_sizeof_ksegrp(void)
1736{
1737	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1738}
1739
1740int
1741sched_sizeof_proc(void)
1742{
1743	return (sizeof(struct proc));
1744}
1745
1746int
1747sched_sizeof_thread(void)
1748{
1749	return (sizeof(struct thread) + sizeof(struct td_sched));
1750}
1751