sched_ule.c revision 123126
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 123126 2003-12-03 14:57:26Z jhb $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/ktr.h>
34#include <sys/lock.h>
35#include <sys/mutex.h>
36#include <sys/proc.h>
37#include <sys/resource.h>
38#include <sys/resourcevar.h>
39#include <sys/sched.h>
40#include <sys/smp.h>
41#include <sys/sx.h>
42#include <sys/sysctl.h>
43#include <sys/sysproto.h>
44#include <sys/vmmeter.h>
45#ifdef DDB
46#include <ddb/ddb.h>
47#endif
48#ifdef KTRACE
49#include <sys/uio.h>
50#include <sys/ktrace.h>
51#endif
52
53#include <machine/cpu.h>
54#include <machine/smp.h>
55
56#define KTR_ULE         KTR_NFS
57
58/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
59/* XXX This is bogus compatability crap for ps */
60static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
61SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
62
63static void sched_setup(void *dummy);
64SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
65
66static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67
68static int sched_strict;
69SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
70
71static int slice_min = 1;
72SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
73
74static int slice_max = 10;
75SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
76
77int realstathz;
78int tickincr = 1;
79
80#ifdef SMP
81/* Callout to handle load balancing SMP systems. */
82static struct callout kseq_lb_callout;
83#endif
84
85/*
86 * These datastructures are allocated within their parent datastructure but
87 * are scheduler specific.
88 */
89
90struct ke_sched {
91	int		ske_slice;
92	struct runq	*ske_runq;
93	/* The following variables are only used for pctcpu calculation */
94	int		ske_ltick;	/* Last tick that we were running on */
95	int		ske_ftick;	/* First tick that we were running on */
96	int		ske_ticks;	/* Tick count */
97	/* CPU that we have affinity for. */
98	u_char		ske_cpu;
99};
100#define	ke_slice	ke_sched->ske_slice
101#define	ke_runq		ke_sched->ske_runq
102#define	ke_ltick	ke_sched->ske_ltick
103#define	ke_ftick	ke_sched->ske_ftick
104#define	ke_ticks	ke_sched->ske_ticks
105#define	ke_cpu		ke_sched->ske_cpu
106#define	ke_assign	ke_procq.tqe_next
107
108#define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
109#define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
110
111struct kg_sched {
112	int	skg_slptime;		/* Number of ticks we vol. slept */
113	int	skg_runtime;		/* Number of ticks we were running */
114};
115#define	kg_slptime	kg_sched->skg_slptime
116#define	kg_runtime	kg_sched->skg_runtime
117
118struct td_sched {
119	int	std_slptime;
120};
121#define	td_slptime	td_sched->std_slptime
122
123struct td_sched td_sched;
124struct ke_sched ke_sched;
125struct kg_sched kg_sched;
126
127struct ke_sched *kse0_sched = &ke_sched;
128struct kg_sched *ksegrp0_sched = &kg_sched;
129struct p_sched *proc0_sched = NULL;
130struct td_sched *thread0_sched = &td_sched;
131
132/*
133 * The priority is primarily determined by the interactivity score.  Thus, we
134 * give lower(better) priorities to kse groups that use less CPU.  The nice
135 * value is then directly added to this to allow nice to have some effect
136 * on latency.
137 *
138 * PRI_RANGE:	Total priority range for timeshare threads.
139 * PRI_NRESV:	Number of nice values.
140 * PRI_BASE:	The start of the dynamic range.
141 */
142#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
143#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
144#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
145#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
146#define	SCHED_PRI_INTERACT(score)					\
147    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
148
149/*
150 * These determine the interactivity of a process.
151 *
152 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
153 *		before throttling back.
154 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
155 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
156 * INTERACT_THRESH:	Threshhold for placement on the current runq.
157 */
158#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
159#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
160#define	SCHED_INTERACT_MAX	(100)
161#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
162#define	SCHED_INTERACT_THRESH	(30)
163
164/*
165 * These parameters and macros determine the size of the time slice that is
166 * granted to each thread.
167 *
168 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
169 * SLICE_MAX:	Maximum time slice granted.
170 * SLICE_RANGE:	Range of available time slices scaled by hz.
171 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
172 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
173 * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
174 */
175#define	SCHED_SLICE_MIN			(slice_min)
176#define	SCHED_SLICE_MAX			(slice_max)
177#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
178#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
179#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
180#define	SCHED_SLICE_NICE(nice)						\
181    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
182
183/*
184 * This macro determines whether or not the kse belongs on the current or
185 * next run queue.
186 */
187#define	SCHED_INTERACTIVE(kg)						\
188    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
189#define	SCHED_CURR(kg, ke)						\
190    (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
191    SCHED_INTERACTIVE(kg))
192
193/*
194 * Cpu percentage computation macros and defines.
195 *
196 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
197 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
198 */
199
200#define	SCHED_CPU_TIME	10
201#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
202
203/*
204 * kseq - per processor runqs and statistics.
205 */
206
207#define	KSEQ_NCLASS	(PRI_IDLE + 1)	/* Number of run classes. */
208
209struct kseq {
210	struct runq	ksq_idle;		/* Queue of IDLE threads. */
211	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
212	struct runq	*ksq_next;		/* Next timeshare queue. */
213	struct runq	*ksq_curr;		/* Current queue. */
214	int		ksq_load_timeshare;	/* Load for timeshare. */
215	int		ksq_load;		/* Aggregate load. */
216	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
217	short		ksq_nicemin;		/* Least nice. */
218#ifdef SMP
219	int		ksq_load_transferable;	/* kses that may be migrated. */
220	int		ksq_idled;
221	int		ksq_cpus;	/* Count of CPUs in this kseq. */
222	volatile struct kse *ksq_assigned;	/* assigned by another CPU. */
223#endif
224};
225
226/*
227 * One kse queue per processor.
228 */
229#ifdef SMP
230static int kseq_idle;
231static struct kseq	kseq_cpu[MAXCPU];
232static struct kseq	*kseq_idmap[MAXCPU];
233#define	KSEQ_SELF()	(kseq_idmap[PCPU_GET(cpuid)])
234#define	KSEQ_CPU(x)	(kseq_idmap[(x)])
235#else
236static struct kseq	kseq_cpu;
237#define	KSEQ_SELF()	(&kseq_cpu)
238#define	KSEQ_CPU(x)	(&kseq_cpu)
239#endif
240
241static void sched_slice(struct kse *ke);
242static void sched_priority(struct ksegrp *kg);
243static int sched_interact_score(struct ksegrp *kg);
244static void sched_interact_update(struct ksegrp *kg);
245static void sched_interact_fork(struct ksegrp *kg);
246static void sched_pctcpu_update(struct kse *ke);
247
248/* Operations on per processor queues */
249static struct kse * kseq_choose(struct kseq *kseq);
250static void kseq_setup(struct kseq *kseq);
251static void kseq_load_add(struct kseq *kseq, struct kse *ke);
252static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
253static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
254static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
255static void kseq_nice_add(struct kseq *kseq, int nice);
256static void kseq_nice_rem(struct kseq *kseq, int nice);
257void kseq_print(int cpu);
258#ifdef SMP
259static struct kse *runq_steal(struct runq *rq);
260static void sched_balance(void *arg);
261static void kseq_move(struct kseq *from, int cpu);
262static __inline void kseq_setidle(struct kseq *kseq);
263static void kseq_notify(struct kse *ke, int cpu);
264static void kseq_assign(struct kseq *);
265static struct kse *kseq_steal(struct kseq *kseq);
266#define	KSE_CAN_MIGRATE(ke, class)					\
267    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
268    ((ke)->ke_flags & KEF_BOUND) == 0)
269#endif
270
271void
272kseq_print(int cpu)
273{
274	struct kseq *kseq;
275	int i;
276
277	kseq = KSEQ_CPU(cpu);
278
279	printf("kseq:\n");
280	printf("\tload:           %d\n", kseq->ksq_load);
281	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
282#ifdef SMP
283	printf("\tload transferable: %d\n", kseq->ksq_load_transferable);
284#endif
285	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
286	printf("\tnice counts:\n");
287	for (i = 0; i < SCHED_PRI_NRESV; i++)
288		if (kseq->ksq_nice[i])
289			printf("\t\t%d = %d\n",
290			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
291}
292
293static __inline void
294kseq_runq_add(struct kseq *kseq, struct kse *ke)
295{
296#ifdef SMP
297	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
298		kseq->ksq_load_transferable++;
299#endif
300	runq_add(ke->ke_runq, ke);
301}
302
303static __inline void
304kseq_runq_rem(struct kseq *kseq, struct kse *ke)
305{
306#ifdef SMP
307	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
308		kseq->ksq_load_transferable--;
309#endif
310	runq_remove(ke->ke_runq, ke);
311}
312
313static void
314kseq_load_add(struct kseq *kseq, struct kse *ke)
315{
316	int class;
317	mtx_assert(&sched_lock, MA_OWNED);
318	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
319	if (class == PRI_TIMESHARE)
320		kseq->ksq_load_timeshare++;
321	kseq->ksq_load++;
322	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
323		CTR6(KTR_ULE,
324		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
325		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
326		    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
327	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
328		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
329}
330
331static void
332kseq_load_rem(struct kseq *kseq, struct kse *ke)
333{
334	int class;
335	mtx_assert(&sched_lock, MA_OWNED);
336	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
337	if (class == PRI_TIMESHARE)
338		kseq->ksq_load_timeshare--;
339	kseq->ksq_load--;
340	ke->ke_runq = NULL;
341	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
342		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
343}
344
345static void
346kseq_nice_add(struct kseq *kseq, int nice)
347{
348	mtx_assert(&sched_lock, MA_OWNED);
349	/* Normalize to zero. */
350	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
351	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
352		kseq->ksq_nicemin = nice;
353}
354
355static void
356kseq_nice_rem(struct kseq *kseq, int nice)
357{
358	int n;
359
360	mtx_assert(&sched_lock, MA_OWNED);
361	/* Normalize to zero. */
362	n = nice + SCHED_PRI_NHALF;
363	kseq->ksq_nice[n]--;
364	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
365
366	/*
367	 * If this wasn't the smallest nice value or there are more in
368	 * this bucket we can just return.  Otherwise we have to recalculate
369	 * the smallest nice.
370	 */
371	if (nice != kseq->ksq_nicemin ||
372	    kseq->ksq_nice[n] != 0 ||
373	    kseq->ksq_load_timeshare == 0)
374		return;
375
376	for (; n < SCHED_PRI_NRESV; n++)
377		if (kseq->ksq_nice[n]) {
378			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
379			return;
380		}
381}
382
383#ifdef SMP
384/*
385 * sched_balance is a simple CPU load balancing algorithm.  It operates by
386 * finding the least loaded and most loaded cpu and equalizing their load
387 * by migrating some processes.
388 *
389 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
390 * installations will only have 2 cpus.  Secondly, load balancing too much at
391 * once can have an unpleasant effect on the system.  The scheduler rarely has
392 * enough information to make perfect decisions.  So this algorithm chooses
393 * algorithm simplicity and more gradual effects on load in larger systems.
394 *
395 * It could be improved by considering the priorities and slices assigned to
396 * each task prior to balancing them.  There are many pathological cases with
397 * any approach and so the semi random algorithm below may work as well as any.
398 *
399 */
400static void
401sched_balance(void *arg)
402{
403	struct kseq *kseq;
404	int high_load;
405	int low_load;
406	int high_cpu;
407	int low_cpu;
408	int move;
409	int diff;
410	int i;
411
412	high_cpu = 0;
413	low_cpu = 0;
414	high_load = 0;
415	low_load = -1;
416
417	mtx_lock_spin(&sched_lock);
418	if (smp_started == 0)
419		goto out;
420
421	for (i = 0; i <= mp_maxid; i++) {
422		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
423			continue;
424		kseq = KSEQ_CPU(i);
425		if (kseq->ksq_load_transferable > high_load) {
426			high_load = kseq->ksq_load_transferable;
427			high_cpu = i;
428		}
429		if (low_load == -1 || kseq->ksq_load < low_load) {
430			low_load = kseq->ksq_load;
431			low_cpu = i;
432		}
433	}
434	kseq = KSEQ_CPU(high_cpu);
435	/*
436	 * Nothing to do.
437	 */
438	if (high_load == 0 || low_load >= kseq->ksq_load)
439		goto out;
440	/*
441	 * Determine what the imbalance is and then adjust that to how many
442	 * kses we actually have to give up (load_transferable).
443	 */
444	diff = kseq->ksq_load - low_load;
445	move = diff / 2;
446	if (diff & 0x1)
447		move++;
448	move = min(move, high_load);
449	for (i = 0; i < move; i++)
450		kseq_move(kseq, low_cpu);
451out:
452	mtx_unlock_spin(&sched_lock);
453	callout_reset(&kseq_lb_callout, hz, sched_balance, NULL);
454
455	return;
456}
457
458static void
459kseq_move(struct kseq *from, int cpu)
460{
461	struct kse *ke;
462
463	ke = kseq_steal(from);
464	ke->ke_state = KES_THREAD;
465	kseq_runq_rem(from, ke);
466	kseq_load_rem(from, ke);
467
468	ke->ke_cpu = cpu;
469	kseq_notify(ke, cpu);
470}
471
472static __inline void
473kseq_setidle(struct kseq *kseq)
474{
475	if (kseq->ksq_idled)
476		return;
477	kseq->ksq_idled = 1;
478	atomic_set_int(&kseq_idle, PCPU_GET(cpumask));
479	return;
480}
481
482static void
483kseq_assign(struct kseq *kseq)
484{
485	struct kse *nke;
486	struct kse *ke;
487
488	do {
489		(volatile struct kse *)ke = kseq->ksq_assigned;
490	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
491	for (; ke != NULL; ke = nke) {
492		nke = ke->ke_assign;
493		ke->ke_flags &= ~KEF_ASSIGNED;
494		sched_add(ke->ke_thread);
495	}
496}
497
498static void
499kseq_notify(struct kse *ke, int cpu)
500{
501	struct kseq *kseq;
502	struct thread *td;
503	struct pcpu *pcpu;
504
505	ke->ke_flags |= KEF_ASSIGNED;
506
507	kseq = KSEQ_CPU(cpu);
508
509	/*
510	 * Place a KSE on another cpu's queue and force a resched.
511	 */
512	do {
513		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
514	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
515	pcpu = pcpu_find(cpu);
516	td = pcpu->pc_curthread;
517	if (ke->ke_thread->td_priority < td->td_priority ||
518	    td == pcpu->pc_idlethread) {
519		td->td_flags |= TDF_NEEDRESCHED;
520		ipi_selected(1 << cpu, IPI_AST);
521	}
522}
523
524static struct kse *
525runq_steal(struct runq *rq)
526{
527	struct rqhead *rqh;
528	struct rqbits *rqb;
529	struct kse *ke;
530	int word;
531	int bit;
532
533	mtx_assert(&sched_lock, MA_OWNED);
534	rqb = &rq->rq_status;
535	for (word = 0; word < RQB_LEN; word++) {
536		if (rqb->rqb_bits[word] == 0)
537			continue;
538		for (bit = 0; bit < RQB_BPW; bit++) {
539			if ((rqb->rqb_bits[word] & (1 << bit)) == 0)
540				continue;
541			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
542			TAILQ_FOREACH(ke, rqh, ke_procq) {
543				if (KSE_CAN_MIGRATE(ke,
544				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
545					return (ke);
546			}
547		}
548	}
549	return (NULL);
550}
551
552static struct kse *
553kseq_steal(struct kseq *kseq)
554{
555	struct kse *ke;
556
557	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
558		return (ke);
559	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
560		return (ke);
561	return (runq_steal(&kseq->ksq_idle));
562}
563#endif	/* SMP */
564
565/*
566 * Pick the highest priority task we have and return it.
567 */
568
569static struct kse *
570kseq_choose(struct kseq *kseq)
571{
572	struct kse *ke;
573	struct runq *swap;
574
575	mtx_assert(&sched_lock, MA_OWNED);
576	swap = NULL;
577
578	for (;;) {
579		ke = runq_choose(kseq->ksq_curr);
580		if (ke == NULL) {
581			/*
582			 * We already swaped once and didn't get anywhere.
583			 */
584			if (swap)
585				break;
586			swap = kseq->ksq_curr;
587			kseq->ksq_curr = kseq->ksq_next;
588			kseq->ksq_next = swap;
589			continue;
590		}
591		/*
592		 * If we encounter a slice of 0 the kse is in a
593		 * TIMESHARE kse group and its nice was too far out
594		 * of the range that receives slices.
595		 */
596		if (ke->ke_slice == 0) {
597			runq_remove(ke->ke_runq, ke);
598			sched_slice(ke);
599			ke->ke_runq = kseq->ksq_next;
600			runq_add(ke->ke_runq, ke);
601			continue;
602		}
603		return (ke);
604	}
605
606	return (runq_choose(&kseq->ksq_idle));
607}
608
609static void
610kseq_setup(struct kseq *kseq)
611{
612	runq_init(&kseq->ksq_timeshare[0]);
613	runq_init(&kseq->ksq_timeshare[1]);
614	runq_init(&kseq->ksq_idle);
615	kseq->ksq_curr = &kseq->ksq_timeshare[0];
616	kseq->ksq_next = &kseq->ksq_timeshare[1];
617	kseq->ksq_load = 0;
618	kseq->ksq_load_timeshare = 0;
619#ifdef SMP
620	kseq->ksq_load_transferable = 0;
621	kseq->ksq_idled = 0;
622	kseq->ksq_assigned = NULL;
623#endif
624}
625
626static void
627sched_setup(void *dummy)
628{
629#ifdef SMP
630	int i;
631#endif
632
633	slice_min = (hz/100);	/* 10ms */
634	slice_max = (hz/7);	/* ~140ms */
635
636#ifdef SMP
637	/* init kseqs */
638	/* Create the idmap. */
639#ifdef ULE_HTT_EXPERIMENTAL
640	if (smp_topology == NULL) {
641#else
642	if (1) {
643#endif
644		for (i = 0; i < MAXCPU; i++) {
645			kseq_setup(&kseq_cpu[i]);
646			kseq_idmap[i] = &kseq_cpu[i];
647			kseq_cpu[i].ksq_cpus = 1;
648		}
649	} else {
650		int j;
651
652		for (i = 0; i < smp_topology->ct_count; i++) {
653			struct cpu_group *cg;
654
655			cg = &smp_topology->ct_group[i];
656			kseq_setup(&kseq_cpu[i]);
657
658			for (j = 0; j < MAXCPU; j++)
659				if ((cg->cg_mask & (1 << j)) != 0)
660					kseq_idmap[j] = &kseq_cpu[i];
661			kseq_cpu[i].ksq_cpus = cg->cg_count;
662		}
663	}
664	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
665	sched_balance(NULL);
666#else
667	kseq_setup(KSEQ_SELF());
668#endif
669	mtx_lock_spin(&sched_lock);
670	kseq_load_add(KSEQ_SELF(), &kse0);
671	mtx_unlock_spin(&sched_lock);
672}
673
674/*
675 * Scale the scheduling priority according to the "interactivity" of this
676 * process.
677 */
678static void
679sched_priority(struct ksegrp *kg)
680{
681	int pri;
682
683	if (kg->kg_pri_class != PRI_TIMESHARE)
684		return;
685
686	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
687	pri += SCHED_PRI_BASE;
688	pri += kg->kg_nice;
689
690	if (pri > PRI_MAX_TIMESHARE)
691		pri = PRI_MAX_TIMESHARE;
692	else if (pri < PRI_MIN_TIMESHARE)
693		pri = PRI_MIN_TIMESHARE;
694
695	kg->kg_user_pri = pri;
696
697	return;
698}
699
700/*
701 * Calculate a time slice based on the properties of the kseg and the runq
702 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
703 */
704static void
705sched_slice(struct kse *ke)
706{
707	struct kseq *kseq;
708	struct ksegrp *kg;
709
710	kg = ke->ke_ksegrp;
711	kseq = KSEQ_CPU(ke->ke_cpu);
712
713	/*
714	 * Rationale:
715	 * KSEs in interactive ksegs get the minimum slice so that we
716	 * quickly notice if it abuses its advantage.
717	 *
718	 * KSEs in non-interactive ksegs are assigned a slice that is
719	 * based on the ksegs nice value relative to the least nice kseg
720	 * on the run queue for this cpu.
721	 *
722	 * If the KSE is less nice than all others it gets the maximum
723	 * slice and other KSEs will adjust their slice relative to
724	 * this when they first expire.
725	 *
726	 * There is 20 point window that starts relative to the least
727	 * nice kse on the run queue.  Slice size is determined by
728	 * the kse distance from the last nice ksegrp.
729	 *
730	 * If the kse is outside of the window it will get no slice
731	 * and will be reevaluated each time it is selected on the
732	 * run queue.  The exception to this is nice 0 ksegs when
733	 * a nice -20 is running.  They are always granted a minimum
734	 * slice.
735	 */
736	if (!SCHED_INTERACTIVE(kg)) {
737		int nice;
738
739		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
740		if (kseq->ksq_load_timeshare == 0 ||
741		    kg->kg_nice < kseq->ksq_nicemin)
742			ke->ke_slice = SCHED_SLICE_MAX;
743		else if (nice <= SCHED_SLICE_NTHRESH)
744			ke->ke_slice = SCHED_SLICE_NICE(nice);
745		else if (kg->kg_nice == 0)
746			ke->ke_slice = SCHED_SLICE_MIN;
747		else
748			ke->ke_slice = 0;
749	} else
750		ke->ke_slice = SCHED_SLICE_MIN;
751
752	CTR6(KTR_ULE,
753	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
754	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
755	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
756
757	return;
758}
759
760/*
761 * This routine enforces a maximum limit on the amount of scheduling history
762 * kept.  It is called after either the slptime or runtime is adjusted.
763 * This routine will not operate correctly when slp or run times have been
764 * adjusted to more than double their maximum.
765 */
766static void
767sched_interact_update(struct ksegrp *kg)
768{
769	int sum;
770
771	sum = kg->kg_runtime + kg->kg_slptime;
772	if (sum < SCHED_SLP_RUN_MAX)
773		return;
774	/*
775	 * If we have exceeded by more than 1/5th then the algorithm below
776	 * will not bring us back into range.  Dividing by two here forces
777	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
778	 */
779	if (sum > (SCHED_INTERACT_MAX / 5) * 6) {
780		kg->kg_runtime /= 2;
781		kg->kg_slptime /= 2;
782		return;
783	}
784	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
785	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
786}
787
788static void
789sched_interact_fork(struct ksegrp *kg)
790{
791	int ratio;
792	int sum;
793
794	sum = kg->kg_runtime + kg->kg_slptime;
795	if (sum > SCHED_SLP_RUN_FORK) {
796		ratio = sum / SCHED_SLP_RUN_FORK;
797		kg->kg_runtime /= ratio;
798		kg->kg_slptime /= ratio;
799	}
800}
801
802static int
803sched_interact_score(struct ksegrp *kg)
804{
805	int div;
806
807	if (kg->kg_runtime > kg->kg_slptime) {
808		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
809		return (SCHED_INTERACT_HALF +
810		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
811	} if (kg->kg_slptime > kg->kg_runtime) {
812		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
813		return (kg->kg_runtime / div);
814	}
815
816	/*
817	 * This can happen if slptime and runtime are 0.
818	 */
819	return (0);
820
821}
822
823/*
824 * This is only somewhat accurate since given many processes of the same
825 * priority they will switch when their slices run out, which will be
826 * at most SCHED_SLICE_MAX.
827 */
828int
829sched_rr_interval(void)
830{
831	return (SCHED_SLICE_MAX);
832}
833
834static void
835sched_pctcpu_update(struct kse *ke)
836{
837	/*
838	 * Adjust counters and watermark for pctcpu calc.
839	 */
840	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
841		/*
842		 * Shift the tick count out so that the divide doesn't
843		 * round away our results.
844		 */
845		ke->ke_ticks <<= 10;
846		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
847			    SCHED_CPU_TICKS;
848		ke->ke_ticks >>= 10;
849	} else
850		ke->ke_ticks = 0;
851	ke->ke_ltick = ticks;
852	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
853}
854
855void
856sched_prio(struct thread *td, u_char prio)
857{
858	struct kse *ke;
859
860	ke = td->td_kse;
861	mtx_assert(&sched_lock, MA_OWNED);
862	if (TD_ON_RUNQ(td)) {
863		/*
864		 * If the priority has been elevated due to priority
865		 * propagation, we may have to move ourselves to a new
866		 * queue.  We still call adjustrunqueue below in case kse
867		 * needs to fix things up.
868		 */
869		if (prio < td->td_priority && ke &&
870		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
871		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
872			runq_remove(ke->ke_runq, ke);
873			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
874			runq_add(ke->ke_runq, ke);
875		}
876		adjustrunqueue(td, prio);
877	} else
878		td->td_priority = prio;
879}
880
881void
882sched_switch(struct thread *td)
883{
884	struct thread *newtd;
885	struct kse *ke;
886
887	mtx_assert(&sched_lock, MA_OWNED);
888
889	ke = td->td_kse;
890
891	td->td_last_kse = ke;
892        td->td_lastcpu = td->td_oncpu;
893	td->td_oncpu = NOCPU;
894        td->td_flags &= ~TDF_NEEDRESCHED;
895
896	if (TD_IS_RUNNING(td)) {
897		if (td->td_proc->p_flag & P_SA) {
898			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
899			setrunqueue(td);
900		} else {
901			/*
902			 * This queue is always correct except for idle threads
903			 * which have a higher priority due to priority
904			 * propagation.
905			 */
906			if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE) {
907				if (td->td_priority < PRI_MIN_IDLE)
908					ke->ke_runq = KSEQ_SELF()->ksq_curr;
909				else
910					ke->ke_runq = &KSEQ_SELF()->ksq_idle;
911			}
912			kseq_runq_add(KSEQ_SELF(), ke);
913		}
914	} else {
915		if (ke->ke_runq)
916			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
917		/*
918		 * We will not be on the run queue. So we must be
919		 * sleeping or similar.
920		 */
921		if (td->td_proc->p_flag & P_SA)
922			kse_reassign(ke);
923	}
924	newtd = choosethread();
925	if (td != newtd)
926		cpu_switch(td, newtd);
927	sched_lock.mtx_lock = (uintptr_t)td;
928
929	td->td_oncpu = PCPU_GET(cpuid);
930}
931
932void
933sched_nice(struct ksegrp *kg, int nice)
934{
935	struct kse *ke;
936	struct thread *td;
937	struct kseq *kseq;
938
939	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
940	mtx_assert(&sched_lock, MA_OWNED);
941	/*
942	 * We need to adjust the nice counts for running KSEs.
943	 */
944	if (kg->kg_pri_class == PRI_TIMESHARE)
945		FOREACH_KSE_IN_GROUP(kg, ke) {
946			if (ke->ke_runq == NULL)
947				continue;
948			kseq = KSEQ_CPU(ke->ke_cpu);
949			kseq_nice_rem(kseq, kg->kg_nice);
950			kseq_nice_add(kseq, nice);
951		}
952	kg->kg_nice = nice;
953	sched_priority(kg);
954	FOREACH_THREAD_IN_GROUP(kg, td)
955		td->td_flags |= TDF_NEEDRESCHED;
956}
957
958void
959sched_sleep(struct thread *td, u_char prio)
960{
961	mtx_assert(&sched_lock, MA_OWNED);
962
963	td->td_slptime = ticks;
964	td->td_priority = prio;
965
966	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
967	    td->td_kse, td->td_slptime);
968}
969
970void
971sched_wakeup(struct thread *td)
972{
973	mtx_assert(&sched_lock, MA_OWNED);
974
975	/*
976	 * Let the kseg know how long we slept for.  This is because process
977	 * interactivity behavior is modeled in the kseg.
978	 */
979	if (td->td_slptime) {
980		struct ksegrp *kg;
981		int hzticks;
982
983		kg = td->td_ksegrp;
984		hzticks = (ticks - td->td_slptime) << 10;
985		if (hzticks >= SCHED_SLP_RUN_MAX) {
986			kg->kg_slptime = SCHED_SLP_RUN_MAX;
987			kg->kg_runtime = 1;
988		} else {
989			kg->kg_slptime += hzticks;
990			sched_interact_update(kg);
991		}
992		sched_priority(kg);
993		if (td->td_kse)
994			sched_slice(td->td_kse);
995		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
996		    td->td_kse, hzticks);
997		td->td_slptime = 0;
998	}
999	setrunqueue(td);
1000}
1001
1002/*
1003 * Penalize the parent for creating a new child and initialize the child's
1004 * priority.
1005 */
1006void
1007sched_fork(struct proc *p, struct proc *p1)
1008{
1009
1010	mtx_assert(&sched_lock, MA_OWNED);
1011
1012	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
1013	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
1014	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
1015}
1016
1017void
1018sched_fork_kse(struct kse *ke, struct kse *child)
1019{
1020
1021	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1022	child->ke_cpu = ke->ke_cpu;
1023	child->ke_runq = NULL;
1024
1025	/* Grab our parents cpu estimation information. */
1026	child->ke_ticks = ke->ke_ticks;
1027	child->ke_ltick = ke->ke_ltick;
1028	child->ke_ftick = ke->ke_ftick;
1029}
1030
1031void
1032sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1033{
1034	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1035
1036	child->kg_slptime = kg->kg_slptime;
1037	child->kg_runtime = kg->kg_runtime;
1038	child->kg_user_pri = kg->kg_user_pri;
1039	child->kg_nice = kg->kg_nice;
1040	sched_interact_fork(child);
1041	kg->kg_runtime += tickincr << 10;
1042	sched_interact_update(kg);
1043
1044	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1045	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1046	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1047}
1048
1049void
1050sched_fork_thread(struct thread *td, struct thread *child)
1051{
1052}
1053
1054void
1055sched_class(struct ksegrp *kg, int class)
1056{
1057	struct kseq *kseq;
1058	struct kse *ke;
1059	int nclass;
1060	int oclass;
1061
1062	mtx_assert(&sched_lock, MA_OWNED);
1063	if (kg->kg_pri_class == class)
1064		return;
1065
1066	nclass = PRI_BASE(class);
1067	oclass = PRI_BASE(kg->kg_pri_class);
1068	FOREACH_KSE_IN_GROUP(kg, ke) {
1069		if (ke->ke_state != KES_ONRUNQ &&
1070		    ke->ke_state != KES_THREAD)
1071			continue;
1072		kseq = KSEQ_CPU(ke->ke_cpu);
1073
1074#ifdef SMP
1075		/*
1076		 * On SMP if we're on the RUNQ we must adjust the transferable
1077		 * count because could be changing to or from an interrupt
1078		 * class.
1079		 */
1080		if (ke->ke_state == KES_ONRUNQ) {
1081			if (KSE_CAN_MIGRATE(ke, oclass))
1082				kseq->ksq_load_transferable--;
1083			if (KSE_CAN_MIGRATE(ke, nclass))
1084				kseq->ksq_load_transferable++;
1085		}
1086#endif
1087		if (oclass == PRI_TIMESHARE) {
1088			kseq->ksq_load_timeshare--;
1089			kseq_nice_rem(kseq, kg->kg_nice);
1090		}
1091		if (nclass == PRI_TIMESHARE) {
1092			kseq->ksq_load_timeshare++;
1093			kseq_nice_add(kseq, kg->kg_nice);
1094		}
1095	}
1096
1097	kg->kg_pri_class = class;
1098}
1099
1100/*
1101 * Return some of the child's priority and interactivity to the parent.
1102 */
1103void
1104sched_exit(struct proc *p, struct proc *child)
1105{
1106	mtx_assert(&sched_lock, MA_OWNED);
1107	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1108	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1109}
1110
1111void
1112sched_exit_kse(struct kse *ke, struct kse *child)
1113{
1114	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1115}
1116
1117void
1118sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1119{
1120	/* kg->kg_slptime += child->kg_slptime; */
1121	kg->kg_runtime += child->kg_runtime;
1122	sched_interact_update(kg);
1123}
1124
1125void
1126sched_exit_thread(struct thread *td, struct thread *child)
1127{
1128}
1129
1130void
1131sched_clock(struct thread *td)
1132{
1133	struct kseq *kseq;
1134	struct ksegrp *kg;
1135	struct kse *ke;
1136
1137	/*
1138	 * sched_setup() apparently happens prior to stathz being set.  We
1139	 * need to resolve the timers earlier in the boot so we can avoid
1140	 * calculating this here.
1141	 */
1142	if (realstathz == 0) {
1143		realstathz = stathz ? stathz : hz;
1144		tickincr = hz / realstathz;
1145		/*
1146		 * XXX This does not work for values of stathz that are much
1147		 * larger than hz.
1148		 */
1149		if (tickincr == 0)
1150			tickincr = 1;
1151	}
1152
1153	ke = td->td_kse;
1154	kg = ke->ke_ksegrp;
1155
1156	mtx_assert(&sched_lock, MA_OWNED);
1157	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1158
1159	/* Adjust ticks for pctcpu */
1160	ke->ke_ticks++;
1161	ke->ke_ltick = ticks;
1162
1163	/* Go up to one second beyond our max and then trim back down */
1164	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1165		sched_pctcpu_update(ke);
1166
1167	if (td->td_flags & TDF_IDLETD)
1168		return;
1169
1170	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1171	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1172	/*
1173	 * We only do slicing code for TIMESHARE ksegrps.
1174	 */
1175	if (kg->kg_pri_class != PRI_TIMESHARE)
1176		return;
1177	/*
1178	 * We used a tick charge it to the ksegrp so that we can compute our
1179	 * interactivity.
1180	 */
1181	kg->kg_runtime += tickincr << 10;
1182	sched_interact_update(kg);
1183
1184	/*
1185	 * We used up one time slice.
1186	 */
1187	if (--ke->ke_slice > 0)
1188		return;
1189	/*
1190	 * We're out of time, recompute priorities and requeue.
1191	 */
1192	kseq = KSEQ_SELF();
1193	kseq_load_rem(kseq, ke);
1194	sched_priority(kg);
1195	sched_slice(ke);
1196	if (SCHED_CURR(kg, ke))
1197		ke->ke_runq = kseq->ksq_curr;
1198	else
1199		ke->ke_runq = kseq->ksq_next;
1200	kseq_load_add(kseq, ke);
1201	td->td_flags |= TDF_NEEDRESCHED;
1202}
1203
1204int
1205sched_runnable(void)
1206{
1207	struct kseq *kseq;
1208	int load;
1209
1210	load = 1;
1211
1212	kseq = KSEQ_SELF();
1213#ifdef SMP
1214	if (kseq->ksq_assigned) {
1215		mtx_lock_spin(&sched_lock);
1216		kseq_assign(kseq);
1217		mtx_unlock_spin(&sched_lock);
1218	}
1219#endif
1220	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1221		if (kseq->ksq_load > 0)
1222			goto out;
1223	} else
1224		if (kseq->ksq_load - 1 > 0)
1225			goto out;
1226	load = 0;
1227out:
1228	return (load);
1229}
1230
1231void
1232sched_userret(struct thread *td)
1233{
1234	struct ksegrp *kg;
1235
1236	kg = td->td_ksegrp;
1237
1238	if (td->td_priority != kg->kg_user_pri) {
1239		mtx_lock_spin(&sched_lock);
1240		td->td_priority = kg->kg_user_pri;
1241		mtx_unlock_spin(&sched_lock);
1242	}
1243}
1244
1245struct kse *
1246sched_choose(void)
1247{
1248	struct kseq *kseq;
1249	struct kse *ke;
1250
1251	mtx_assert(&sched_lock, MA_OWNED);
1252	kseq = KSEQ_SELF();
1253#ifdef SMP
1254	if (kseq->ksq_assigned)
1255		kseq_assign(kseq);
1256#endif
1257	ke = kseq_choose(kseq);
1258	if (ke) {
1259#ifdef SMP
1260		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1261			kseq_setidle(kseq);
1262#endif
1263		kseq_runq_rem(kseq, ke);
1264		ke->ke_state = KES_THREAD;
1265
1266		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1267			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1268			    ke, ke->ke_runq, ke->ke_slice,
1269			    ke->ke_thread->td_priority);
1270		}
1271		return (ke);
1272	}
1273#ifdef SMP
1274	kseq_setidle(kseq);
1275#endif
1276	return (NULL);
1277}
1278
1279void
1280sched_add(struct thread *td)
1281{
1282	struct kseq *kseq;
1283	struct ksegrp *kg;
1284	struct kse *ke;
1285	int class;
1286
1287	mtx_assert(&sched_lock, MA_OWNED);
1288	ke = td->td_kse;
1289	kg = td->td_ksegrp;
1290	if (ke->ke_flags & KEF_ASSIGNED)
1291		return;
1292	kseq = KSEQ_SELF();
1293	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1294	KASSERT((ke->ke_thread->td_kse != NULL),
1295	    ("sched_add: No KSE on thread"));
1296	KASSERT(ke->ke_state != KES_ONRUNQ,
1297	    ("sched_add: kse %p (%s) already in run queue", ke,
1298	    ke->ke_proc->p_comm));
1299	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1300	    ("sched_add: process swapped out"));
1301	KASSERT(ke->ke_runq == NULL,
1302	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1303
1304	class = PRI_BASE(kg->kg_pri_class);
1305	switch (class) {
1306	case PRI_ITHD:
1307	case PRI_REALTIME:
1308		ke->ke_runq = kseq->ksq_curr;
1309		ke->ke_slice = SCHED_SLICE_MAX;
1310		ke->ke_cpu = PCPU_GET(cpuid);
1311		break;
1312	case PRI_TIMESHARE:
1313#ifdef SMP
1314		if (ke->ke_cpu != PCPU_GET(cpuid)) {
1315			kseq_notify(ke, ke->ke_cpu);
1316			return;
1317		}
1318#endif
1319		if (SCHED_CURR(kg, ke))
1320			ke->ke_runq = kseq->ksq_curr;
1321		else
1322			ke->ke_runq = kseq->ksq_next;
1323		break;
1324	case PRI_IDLE:
1325#ifdef SMP
1326		if (ke->ke_cpu != PCPU_GET(cpuid)) {
1327			kseq_notify(ke, ke->ke_cpu);
1328			return;
1329		}
1330#endif
1331		/*
1332		 * This is for priority prop.
1333		 */
1334		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1335			ke->ke_runq = kseq->ksq_curr;
1336		else
1337			ke->ke_runq = &kseq->ksq_idle;
1338		ke->ke_slice = SCHED_SLICE_MIN;
1339		break;
1340	default:
1341		panic("Unknown pri class.");
1342		break;
1343	}
1344#ifdef SMP
1345	/*
1346	 * If there are any idle processors, give them our extra load.  The
1347	 * threshold at which we start to reassign kses has a large impact
1348	 * on the overall performance of the system.  Tuned too high and
1349	 * some CPUs may idle.  Too low and there will be excess migration
1350	 * and context swiches.
1351	 */
1352	if (kseq->ksq_load_transferable > kseq->ksq_cpus &&
1353	    KSE_CAN_MIGRATE(ke, class) && kseq_idle) {
1354		int cpu;
1355
1356		/*
1357		 * Multiple cpus could find this bit simultaneously but the
1358		 * race shouldn't be terrible.
1359		 */
1360		cpu = ffs(kseq_idle);
1361		if (cpu) {
1362			cpu--;
1363			atomic_clear_int(&kseq_idle, 1 << cpu);
1364			ke->ke_cpu = cpu;
1365			ke->ke_runq = NULL;
1366			kseq_notify(ke, cpu);
1367			return;
1368		}
1369	}
1370	if (kseq->ksq_idled &&
1371	    (class == PRI_TIMESHARE || class == PRI_REALTIME)) {
1372		atomic_clear_int(&kseq_idle, PCPU_GET(cpumask));
1373		kseq->ksq_idled = 0;
1374	}
1375#endif
1376        if (td->td_priority < curthread->td_priority)
1377                curthread->td_flags |= TDF_NEEDRESCHED;
1378
1379	ke->ke_ksegrp->kg_runq_kses++;
1380	ke->ke_state = KES_ONRUNQ;
1381
1382	kseq_runq_add(kseq, ke);
1383	kseq_load_add(kseq, ke);
1384}
1385
1386void
1387sched_rem(struct thread *td)
1388{
1389	struct kseq *kseq;
1390	struct kse *ke;
1391
1392	ke = td->td_kse;
1393	/*
1394	 * It is safe to just return here because sched_rem() is only ever
1395	 * used in places where we're immediately going to add the
1396	 * kse back on again.  In that case it'll be added with the correct
1397	 * thread and priority when the caller drops the sched_lock.
1398	 */
1399	if (ke->ke_flags & KEF_ASSIGNED)
1400		return;
1401	mtx_assert(&sched_lock, MA_OWNED);
1402	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1403
1404	ke->ke_state = KES_THREAD;
1405	ke->ke_ksegrp->kg_runq_kses--;
1406	kseq = KSEQ_CPU(ke->ke_cpu);
1407	kseq_runq_rem(kseq, ke);
1408	kseq_load_rem(kseq, ke);
1409}
1410
1411fixpt_t
1412sched_pctcpu(struct thread *td)
1413{
1414	fixpt_t pctcpu;
1415	struct kse *ke;
1416
1417	pctcpu = 0;
1418	ke = td->td_kse;
1419	if (ke == NULL)
1420		return (0);
1421
1422	mtx_lock_spin(&sched_lock);
1423	if (ke->ke_ticks) {
1424		int rtick;
1425
1426		/*
1427		 * Don't update more frequently than twice a second.  Allowing
1428		 * this causes the cpu usage to decay away too quickly due to
1429		 * rounding errors.
1430		 */
1431		if (ke->ke_ltick < (ticks - (hz / 2)))
1432			sched_pctcpu_update(ke);
1433		/* How many rtick per second ? */
1434		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1435		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1436	}
1437
1438	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1439	mtx_unlock_spin(&sched_lock);
1440
1441	return (pctcpu);
1442}
1443
1444void
1445sched_bind(struct thread *td, int cpu)
1446{
1447	struct kse *ke;
1448
1449	mtx_assert(&sched_lock, MA_OWNED);
1450	ke = td->td_kse;
1451#ifndef SMP
1452	ke->ke_flags |= KEF_BOUND;
1453#else
1454	if (PCPU_GET(cpuid) == cpu) {
1455		ke->ke_flags |= KEF_BOUND;
1456		return;
1457	}
1458	/* sched_rem without the runq_remove */
1459	ke->ke_state = KES_THREAD;
1460	ke->ke_ksegrp->kg_runq_kses--;
1461	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1462	ke->ke_cpu = cpu;
1463	kseq_notify(ke, cpu);
1464	/* When we return from mi_switch we'll be on the correct cpu. */
1465	td->td_proc->p_stats->p_ru.ru_nvcsw++;
1466	mi_switch();
1467#endif
1468}
1469
1470void
1471sched_unbind(struct thread *td)
1472{
1473	mtx_assert(&sched_lock, MA_OWNED);
1474	td->td_kse->ke_flags &= ~KEF_BOUND;
1475}
1476
1477int
1478sched_sizeof_kse(void)
1479{
1480	return (sizeof(struct kse) + sizeof(struct ke_sched));
1481}
1482
1483int
1484sched_sizeof_ksegrp(void)
1485{
1486	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1487}
1488
1489int
1490sched_sizeof_proc(void)
1491{
1492	return (sizeof(struct proc));
1493}
1494
1495int
1496sched_sizeof_thread(void)
1497{
1498	return (sizeof(struct thread) + sizeof(struct td_sched));
1499}
1500