sched_ule.c revision 121605
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 121605 2003-10-27 06:47:05Z jeff $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/ktr.h>
34#include <sys/lock.h>
35#include <sys/mutex.h>
36#include <sys/proc.h>
37#include <sys/resource.h>
38#include <sys/sched.h>
39#include <sys/smp.h>
40#include <sys/sx.h>
41#include <sys/sysctl.h>
42#include <sys/sysproto.h>
43#include <sys/vmmeter.h>
44#ifdef DDB
45#include <ddb/ddb.h>
46#endif
47#ifdef KTRACE
48#include <sys/uio.h>
49#include <sys/ktrace.h>
50#endif
51
52#include <machine/cpu.h>
53
54#define KTR_ULE         KTR_NFS
55
56/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
57/* XXX This is bogus compatability crap for ps */
58static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
59SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
60
61static void sched_setup(void *dummy);
62SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
63
64static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
65
66static int sched_strict;
67SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
68
69static int slice_min = 1;
70SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
71
72static int slice_max = 10;
73SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
74
75int realstathz;
76int tickincr = 1;
77
78#ifdef SMP
79/* Callout to handle load balancing SMP systems. */
80static struct callout kseq_lb_callout;
81#endif
82
83/*
84 * These datastructures are allocated within their parent datastructure but
85 * are scheduler specific.
86 */
87
88struct ke_sched {
89	int		ske_slice;
90	struct runq	*ske_runq;
91	/* The following variables are only used for pctcpu calculation */
92	int		ske_ltick;	/* Last tick that we were running on */
93	int		ske_ftick;	/* First tick that we were running on */
94	int		ske_ticks;	/* Tick count */
95	/* CPU that we have affinity for. */
96	u_char		ske_cpu;
97};
98#define	ke_slice	ke_sched->ske_slice
99#define	ke_runq		ke_sched->ske_runq
100#define	ke_ltick	ke_sched->ske_ltick
101#define	ke_ftick	ke_sched->ske_ftick
102#define	ke_ticks	ke_sched->ske_ticks
103#define	ke_cpu		ke_sched->ske_cpu
104
105struct kg_sched {
106	int	skg_slptime;		/* Number of ticks we vol. slept */
107	int	skg_runtime;		/* Number of ticks we were running */
108};
109#define	kg_slptime	kg_sched->skg_slptime
110#define	kg_runtime	kg_sched->skg_runtime
111
112struct td_sched {
113	int	std_slptime;
114};
115#define	td_slptime	td_sched->std_slptime
116
117struct td_sched td_sched;
118struct ke_sched ke_sched;
119struct kg_sched kg_sched;
120
121struct ke_sched *kse0_sched = &ke_sched;
122struct kg_sched *ksegrp0_sched = &kg_sched;
123struct p_sched *proc0_sched = NULL;
124struct td_sched *thread0_sched = &td_sched;
125
126/*
127 * The priority is primarily determined by the interactivity score.  Thus, we
128 * give lower(better) priorities to kse groups that use less CPU.  The nice
129 * value is then directly added to this to allow nice to have some effect
130 * on latency.
131 *
132 * PRI_RANGE:	Total priority range for timeshare threads.
133 * PRI_NRESV:	Number of nice values.
134 * PRI_BASE:	The start of the dynamic range.
135 */
136#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
137#define	SCHED_PRI_NRESV		PRIO_TOTAL
138#define	SCHED_PRI_NHALF		(PRIO_TOTAL / 2)
139#define	SCHED_PRI_NTHRESH	(SCHED_PRI_NHALF - 1)
140#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
141#define	SCHED_PRI_INTERACT(score)					\
142    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
143
144/*
145 * These determine the interactivity of a process.
146 *
147 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
148 *		before throttling back.
149 * SLP_RUN_THROTTLE:	Divisor for reducing slp/run time at fork time.
150 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
151 * INTERACT_THRESH:	Threshhold for placement on the current runq.
152 */
153#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
154#define	SCHED_SLP_RUN_THROTTLE	(100)
155#define	SCHED_INTERACT_MAX	(100)
156#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
157#define	SCHED_INTERACT_THRESH	(30)
158
159/*
160 * These parameters and macros determine the size of the time slice that is
161 * granted to each thread.
162 *
163 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
164 * SLICE_MAX:	Maximum time slice granted.
165 * SLICE_RANGE:	Range of available time slices scaled by hz.
166 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
167 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
168 */
169#define	SCHED_SLICE_MIN			(slice_min)
170#define	SCHED_SLICE_MAX			(slice_max)
171#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
172#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
173#define	SCHED_SLICE_NICE(nice)						\
174    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))
175
176/*
177 * This macro determines whether or not the kse belongs on the current or
178 * next run queue.
179 *
180 * XXX nice value should effect how interactive a kg is.
181 */
182#define	SCHED_INTERACTIVE(kg)						\
183    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
184#define	SCHED_CURR(kg, ke)						\
185    (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
186    SCHED_INTERACTIVE(kg))
187
188/*
189 * Cpu percentage computation macros and defines.
190 *
191 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
192 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
193 */
194
195#define	SCHED_CPU_TIME	10
196#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
197
198/*
199 * kseq - per processor runqs and statistics.
200 */
201
202#define	KSEQ_NCLASS	(PRI_IDLE + 1)	/* Number of run classes. */
203
204struct kseq {
205	struct runq	ksq_idle;		/* Queue of IDLE threads. */
206	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
207	struct runq	*ksq_next;		/* Next timeshare queue. */
208	struct runq	*ksq_curr;		/* Current queue. */
209	int		ksq_loads[KSEQ_NCLASS];	/* Load for each class */
210	int		ksq_load;		/* Aggregate load. */
211	short		ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
212	short		ksq_nicemin;		/* Least nice. */
213#ifdef SMP
214	int		ksq_cpus;	/* Count of CPUs in this kseq. */
215	unsigned int	ksq_rslices;	/* Slices on run queue */
216#endif
217};
218
219/*
220 * One kse queue per processor.
221 */
222#ifdef SMP
223struct kseq	kseq_cpu[MAXCPU];
224struct kseq	*kseq_idmap[MAXCPU];
225#define	KSEQ_SELF()	(kseq_idmap[PCPU_GET(cpuid)])
226#define	KSEQ_CPU(x)	(kseq_idmap[(x)])
227#else
228struct kseq	kseq_cpu;
229#define	KSEQ_SELF()	(&kseq_cpu)
230#define	KSEQ_CPU(x)	(&kseq_cpu)
231#endif
232
233static void sched_slice(struct kse *ke);
234static void sched_priority(struct ksegrp *kg);
235static int sched_interact_score(struct ksegrp *kg);
236static void sched_interact_update(struct ksegrp *kg);
237void sched_pctcpu_update(struct kse *ke);
238int sched_pickcpu(void);
239
240/* Operations on per processor queues */
241static struct kse * kseq_choose(struct kseq *kseq, int steal);
242static void kseq_setup(struct kseq *kseq);
243static void kseq_add(struct kseq *kseq, struct kse *ke);
244static void kseq_rem(struct kseq *kseq, struct kse *ke);
245static void kseq_nice_add(struct kseq *kseq, int nice);
246static void kseq_nice_rem(struct kseq *kseq, int nice);
247void kseq_print(int cpu);
248#ifdef SMP
249struct kseq * kseq_load_highest(void);
250void kseq_balance(void *arg);
251void kseq_move(struct kseq *from, int cpu);
252#endif
253
254void
255kseq_print(int cpu)
256{
257	struct kseq *kseq;
258	int i;
259
260	kseq = KSEQ_CPU(cpu);
261
262	printf("kseq:\n");
263	printf("\tload:           %d\n", kseq->ksq_load);
264	printf("\tload ITHD:      %d\n", kseq->ksq_loads[PRI_ITHD]);
265	printf("\tload REALTIME:  %d\n", kseq->ksq_loads[PRI_REALTIME]);
266	printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
267	printf("\tload IDLE:      %d\n", kseq->ksq_loads[PRI_IDLE]);
268	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
269	printf("\tnice counts:\n");
270	for (i = 0; i < PRIO_TOTAL + 1; i++)
271		if (kseq->ksq_nice[i])
272			printf("\t\t%d = %d\n",
273			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
274}
275
276static void
277kseq_add(struct kseq *kseq, struct kse *ke)
278{
279	mtx_assert(&sched_lock, MA_OWNED);
280	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
281	kseq->ksq_load++;
282	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
283	CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
284	    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
285	    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
286	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
287		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
288#ifdef SMP
289	kseq->ksq_rslices += ke->ke_slice;
290#endif
291}
292
293static void
294kseq_rem(struct kseq *kseq, struct kse *ke)
295{
296	mtx_assert(&sched_lock, MA_OWNED);
297	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
298	kseq->ksq_load--;
299	ke->ke_runq = NULL;
300	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
301		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
302#ifdef SMP
303	kseq->ksq_rslices -= ke->ke_slice;
304#endif
305}
306
307static void
308kseq_nice_add(struct kseq *kseq, int nice)
309{
310	mtx_assert(&sched_lock, MA_OWNED);
311	/* Normalize to zero. */
312	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
313	if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 1)
314		kseq->ksq_nicemin = nice;
315}
316
317static void
318kseq_nice_rem(struct kseq *kseq, int nice)
319{
320	int n;
321
322	mtx_assert(&sched_lock, MA_OWNED);
323	/* Normalize to zero. */
324	n = nice + SCHED_PRI_NHALF;
325	kseq->ksq_nice[n]--;
326	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
327
328	/*
329	 * If this wasn't the smallest nice value or there are more in
330	 * this bucket we can just return.  Otherwise we have to recalculate
331	 * the smallest nice.
332	 */
333	if (nice != kseq->ksq_nicemin ||
334	    kseq->ksq_nice[n] != 0 ||
335	    kseq->ksq_loads[PRI_TIMESHARE] == 0)
336		return;
337
338	for (; n < SCHED_PRI_NRESV + 1; n++)
339		if (kseq->ksq_nice[n]) {
340			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
341			return;
342		}
343}
344
345#ifdef SMP
346/*
347 * kseq_balance is a simple CPU load balancing algorithm.  It operates by
348 * finding the least loaded and most loaded cpu and equalizing their load
349 * by migrating some processes.
350 *
351 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
352 * installations will only have 2 cpus.  Secondly, load balancing too much at
353 * once can have an unpleasant effect on the system.  The scheduler rarely has
354 * enough information to make perfect decisions.  So this algorithm chooses
355 * algorithm simplicity and more gradual effects on load in larger systems.
356 *
357 * It could be improved by considering the priorities and slices assigned to
358 * each task prior to balancing them.  There are many pathological cases with
359 * any approach and so the semi random algorithm below may work as well as any.
360 *
361 */
362void
363kseq_balance(void *arg)
364{
365	struct kseq *kseq;
366	int high_load;
367	int low_load;
368	int high_cpu;
369	int low_cpu;
370	int move;
371	int diff;
372	int i;
373
374	high_cpu = 0;
375	low_cpu = 0;
376	high_load = 0;
377	low_load = -1;
378
379	mtx_lock_spin(&sched_lock);
380	if (smp_started == 0)
381		goto out;
382
383	for (i = 0; i < mp_maxid; i++) {
384		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
385			continue;
386		kseq = KSEQ_CPU(i);
387		if (kseq->ksq_load > high_load) {
388			high_load = kseq->ksq_load;
389			high_cpu = i;
390		}
391		if (low_load == -1 || kseq->ksq_load < low_load) {
392			low_load = kseq->ksq_load;
393			low_cpu = i;
394		}
395	}
396
397	kseq = KSEQ_CPU(high_cpu);
398
399	/*
400	 * Nothing to do.
401	 */
402	if (high_load < kseq->ksq_cpus + 1)
403		goto out;
404
405	high_load -= kseq->ksq_cpus;
406
407	if (low_load >= high_load)
408		goto out;
409
410	diff = high_load - low_load;
411	move = diff / 2;
412	if (diff & 0x1)
413		move++;
414
415	for (i = 0; i < move; i++)
416		kseq_move(kseq, low_cpu);
417
418out:
419	mtx_unlock_spin(&sched_lock);
420	callout_reset(&kseq_lb_callout, hz, kseq_balance, NULL);
421
422	return;
423}
424
425struct kseq *
426kseq_load_highest(void)
427{
428	struct kseq *kseq;
429	int load;
430	int cpu;
431	int i;
432
433	mtx_assert(&sched_lock, MA_OWNED);
434	cpu = 0;
435	load = 0;
436
437	for (i = 0; i < mp_maxid; i++) {
438		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
439			continue;
440		kseq = KSEQ_CPU(i);
441		if (kseq->ksq_load > load) {
442			load = kseq->ksq_load;
443			cpu = i;
444		}
445	}
446	kseq = KSEQ_CPU(cpu);
447
448	if (load > kseq->ksq_cpus)
449		return (kseq);
450
451	return (NULL);
452}
453
454void
455kseq_move(struct kseq *from, int cpu)
456{
457	struct kse *ke;
458
459	ke = kseq_choose(from, 1);
460	runq_remove(ke->ke_runq, ke);
461	ke->ke_state = KES_THREAD;
462	kseq_rem(from, ke);
463
464	ke->ke_cpu = cpu;
465	sched_add(ke->ke_thread);
466}
467#endif
468
469/*
470 * Pick the highest priority task we have and return it.   If steal is 1 we
471 * will return kses that have been denied slices due to their nice being too
472 * low.  In the future we should prohibit stealing interrupt threads as well.
473 */
474
475struct kse *
476kseq_choose(struct kseq *kseq, int steal)
477{
478	struct kse *ke;
479	struct runq *swap;
480
481	mtx_assert(&sched_lock, MA_OWNED);
482	swap = NULL;
483
484	for (;;) {
485		ke = runq_choose(kseq->ksq_curr);
486		if (ke == NULL) {
487			/*
488			 * We already swaped once and didn't get anywhere.
489			 */
490			if (swap)
491				break;
492			swap = kseq->ksq_curr;
493			kseq->ksq_curr = kseq->ksq_next;
494			kseq->ksq_next = swap;
495			continue;
496		}
497		/*
498		 * If we encounter a slice of 0 the kse is in a
499		 * TIMESHARE kse group and its nice was too far out
500		 * of the range that receives slices.
501		 */
502		if (ke->ke_slice == 0 && steal == 0) {
503			runq_remove(ke->ke_runq, ke);
504			sched_slice(ke);
505			ke->ke_runq = kseq->ksq_next;
506			runq_add(ke->ke_runq, ke);
507			continue;
508		}
509		return (ke);
510	}
511
512	return (runq_choose(&kseq->ksq_idle));
513}
514
515static void
516kseq_setup(struct kseq *kseq)
517{
518	runq_init(&kseq->ksq_timeshare[0]);
519	runq_init(&kseq->ksq_timeshare[1]);
520	runq_init(&kseq->ksq_idle);
521
522	kseq->ksq_curr = &kseq->ksq_timeshare[0];
523	kseq->ksq_next = &kseq->ksq_timeshare[1];
524
525	kseq->ksq_loads[PRI_ITHD] = 0;
526	kseq->ksq_loads[PRI_REALTIME] = 0;
527	kseq->ksq_loads[PRI_TIMESHARE] = 0;
528	kseq->ksq_loads[PRI_IDLE] = 0;
529	kseq->ksq_load = 0;
530#ifdef SMP
531	kseq->ksq_rslices = 0;
532#endif
533}
534
535static void
536sched_setup(void *dummy)
537{
538#ifdef SMP
539	int i;
540#endif
541
542	slice_min = (hz/100);	/* 10ms */
543	slice_max = (hz/7);	/* ~140ms */
544
545#ifdef SMP
546	/* init kseqs */
547	/* Create the idmap. */
548#ifdef ULE_HTT_EXPERIMENTAL
549	if (smp_topology == NULL) {
550#else
551	if (1) {
552#endif
553		for (i = 0; i < MAXCPU; i++) {
554			kseq_setup(&kseq_cpu[i]);
555			kseq_idmap[i] = &kseq_cpu[i];
556			kseq_cpu[i].ksq_cpus = 1;
557		}
558	} else {
559		int j;
560
561		for (i = 0; i < smp_topology->ct_count; i++) {
562			struct cpu_group *cg;
563
564			cg = &smp_topology->ct_group[i];
565			kseq_setup(&kseq_cpu[i]);
566
567			for (j = 0; j < MAXCPU; j++)
568				if ((cg->cg_mask & (1 << j)) != 0)
569					kseq_idmap[j] = &kseq_cpu[i];
570			kseq_cpu[i].ksq_cpus = cg->cg_count;
571		}
572	}
573	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
574	kseq_balance(NULL);
575#else
576	kseq_setup(KSEQ_SELF());
577#endif
578	mtx_lock_spin(&sched_lock);
579	kseq_add(KSEQ_SELF(), &kse0);
580	mtx_unlock_spin(&sched_lock);
581}
582
583/*
584 * Scale the scheduling priority according to the "interactivity" of this
585 * process.
586 */
587static void
588sched_priority(struct ksegrp *kg)
589{
590	int pri;
591
592	if (kg->kg_pri_class != PRI_TIMESHARE)
593		return;
594
595	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
596	pri += SCHED_PRI_BASE;
597	pri += kg->kg_nice;
598
599	if (pri > PRI_MAX_TIMESHARE)
600		pri = PRI_MAX_TIMESHARE;
601	else if (pri < PRI_MIN_TIMESHARE)
602		pri = PRI_MIN_TIMESHARE;
603
604	kg->kg_user_pri = pri;
605
606	return;
607}
608
609/*
610 * Calculate a time slice based on the properties of the kseg and the runq
611 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
612 */
613static void
614sched_slice(struct kse *ke)
615{
616	struct kseq *kseq;
617	struct ksegrp *kg;
618
619	kg = ke->ke_ksegrp;
620	kseq = KSEQ_CPU(ke->ke_cpu);
621
622	/*
623	 * Rationale:
624	 * KSEs in interactive ksegs get the minimum slice so that we
625	 * quickly notice if it abuses its advantage.
626	 *
627	 * KSEs in non-interactive ksegs are assigned a slice that is
628	 * based on the ksegs nice value relative to the least nice kseg
629	 * on the run queue for this cpu.
630	 *
631	 * If the KSE is less nice than all others it gets the maximum
632	 * slice and other KSEs will adjust their slice relative to
633	 * this when they first expire.
634	 *
635	 * There is 20 point window that starts relative to the least
636	 * nice kse on the run queue.  Slice size is determined by
637	 * the kse distance from the last nice ksegrp.
638	 *
639	 * If you are outside of the window you will get no slice and
640	 * you will be reevaluated each time you are selected on the
641	 * run queue.
642	 *
643	 */
644
645	if (!SCHED_INTERACTIVE(kg)) {
646		int nice;
647
648		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
649		if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
650		    kg->kg_nice < kseq->ksq_nicemin)
651			ke->ke_slice = SCHED_SLICE_MAX;
652		else if (nice <= SCHED_PRI_NTHRESH)
653			ke->ke_slice = SCHED_SLICE_NICE(nice);
654		else
655			ke->ke_slice = 0;
656	} else
657		ke->ke_slice = SCHED_SLICE_MIN;
658
659	CTR6(KTR_ULE,
660	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
661	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
662	    kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));
663
664	/*
665	 * Check to see if we need to scale back the slp and run time
666	 * in the kg.  This will cause us to forget old interactivity
667	 * while maintaining the current ratio.
668	 */
669	sched_interact_update(kg);
670
671	return;
672}
673
674static void
675sched_interact_update(struct ksegrp *kg)
676{
677        int ratio;
678
679	if ((kg->kg_runtime + kg->kg_slptime) > SCHED_SLP_RUN_MAX) {
680		ratio = ((SCHED_SLP_RUN_MAX * 15) / (kg->kg_runtime +
681		    kg->kg_slptime ));
682		kg->kg_runtime = (kg->kg_runtime * ratio) / 16;
683		kg->kg_slptime = (kg->kg_slptime * ratio) / 16;
684	}
685}
686
687static int
688sched_interact_score(struct ksegrp *kg)
689{
690	int div;
691
692	if (kg->kg_runtime > kg->kg_slptime) {
693		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
694		return (SCHED_INTERACT_HALF +
695		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
696	} if (kg->kg_slptime > kg->kg_runtime) {
697		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
698		return (kg->kg_runtime / div);
699	}
700
701	/*
702	 * This can happen if slptime and runtime are 0.
703	 */
704	return (0);
705
706}
707
708/*
709 * This is only somewhat accurate since given many processes of the same
710 * priority they will switch when their slices run out, which will be
711 * at most SCHED_SLICE_MAX.
712 */
713int
714sched_rr_interval(void)
715{
716	return (SCHED_SLICE_MAX);
717}
718
719void
720sched_pctcpu_update(struct kse *ke)
721{
722	/*
723	 * Adjust counters and watermark for pctcpu calc.
724	 */
725	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
726		/*
727		 * Shift the tick count out so that the divide doesn't
728		 * round away our results.
729		 */
730		ke->ke_ticks <<= 10;
731		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
732			    SCHED_CPU_TICKS;
733		ke->ke_ticks >>= 10;
734	} else
735		ke->ke_ticks = 0;
736	ke->ke_ltick = ticks;
737	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
738}
739
740#ifdef SMP
741/* XXX Should be changed to kseq_load_lowest() */
742int
743sched_pickcpu(void)
744{
745	struct kseq *kseq;
746	int load;
747	int cpu;
748	int i;
749
750	mtx_assert(&sched_lock, MA_OWNED);
751	if (!smp_started)
752		return (0);
753
754	load = 0;
755	cpu = 0;
756
757	for (i = 0; i < mp_maxid; i++) {
758		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
759			continue;
760		kseq = KSEQ_CPU(i);
761		if (kseq->ksq_load < load) {
762			cpu = i;
763			load = kseq->ksq_load;
764		}
765	}
766
767	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
768	return (cpu);
769}
770#else
771int
772sched_pickcpu(void)
773{
774	return (0);
775}
776#endif
777
778void
779sched_prio(struct thread *td, u_char prio)
780{
781	struct kse *ke;
782
783	ke = td->td_kse;
784	mtx_assert(&sched_lock, MA_OWNED);
785	if (TD_ON_RUNQ(td)) {
786		/*
787		 * If the priority has been elevated due to priority
788		 * propagation, we may have to move ourselves to a new
789		 * queue.  We still call adjustrunqueue below in case kse
790		 * needs to fix things up.
791		 */
792		if ((td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
793		    prio < td->td_ksegrp->kg_user_pri) ||
794		    (td->td_ksegrp->kg_pri_class == PRI_IDLE &&
795		    prio < PRI_MIN_IDLE)) {
796			runq_remove(ke->ke_runq, ke);
797			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
798			runq_add(ke->ke_runq, ke);
799		}
800		adjustrunqueue(td, prio);
801	} else
802		td->td_priority = prio;
803}
804
805void
806sched_switch(struct thread *td)
807{
808	struct thread *newtd;
809	u_int sched_nest;
810	struct kse *ke;
811
812	mtx_assert(&sched_lock, MA_OWNED);
813
814	ke = td->td_kse;
815
816	td->td_last_kse = ke;
817        td->td_lastcpu = td->td_oncpu;
818	td->td_oncpu = NOCPU;
819        td->td_flags &= ~TDF_NEEDRESCHED;
820
821	if (TD_IS_RUNNING(td)) {
822		if (td->td_proc->p_flag & P_SA) {
823			kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
824			setrunqueue(td);
825		} else {
826			/*
827			 * This queue is always correct except for idle threads
828			 * which have a higher priority due to priority
829			 * propagation.
830			 */
831			if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE) {
832				if (td->td_priority < PRI_MIN_IDLE)
833					ke->ke_runq = KSEQ_SELF()->ksq_curr;
834				else
835					ke->ke_runq = &KSEQ_SELF()->ksq_idle;
836			}
837			runq_add(ke->ke_runq, ke);
838			/* setrunqueue(td); */
839		}
840	} else {
841		if (ke->ke_runq)
842			kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
843		/*
844		 * We will not be on the run queue. So we must be
845		 * sleeping or similar.
846		 */
847		if (td->td_proc->p_flag & P_SA)
848			kse_reassign(ke);
849	}
850	sched_nest = sched_lock.mtx_recurse;
851	newtd = choosethread();
852	if (td != newtd)
853		cpu_switch(td, newtd);
854	sched_lock.mtx_recurse = sched_nest;
855	sched_lock.mtx_lock = (uintptr_t)td;
856
857	td->td_oncpu = PCPU_GET(cpuid);
858}
859
860void
861sched_nice(struct ksegrp *kg, int nice)
862{
863	struct kse *ke;
864	struct thread *td;
865	struct kseq *kseq;
866
867	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
868	mtx_assert(&sched_lock, MA_OWNED);
869	/*
870	 * We need to adjust the nice counts for running KSEs.
871	 */
872	if (kg->kg_pri_class == PRI_TIMESHARE)
873		FOREACH_KSE_IN_GROUP(kg, ke) {
874			if (ke->ke_runq == NULL)
875				continue;
876			kseq = KSEQ_CPU(ke->ke_cpu);
877			kseq_nice_rem(kseq, kg->kg_nice);
878			kseq_nice_add(kseq, nice);
879		}
880	kg->kg_nice = nice;
881	sched_priority(kg);
882	FOREACH_THREAD_IN_GROUP(kg, td)
883		td->td_flags |= TDF_NEEDRESCHED;
884}
885
886void
887sched_sleep(struct thread *td, u_char prio)
888{
889	mtx_assert(&sched_lock, MA_OWNED);
890
891	td->td_slptime = ticks;
892	td->td_priority = prio;
893
894	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
895	    td->td_kse, td->td_slptime);
896}
897
898void
899sched_wakeup(struct thread *td)
900{
901	mtx_assert(&sched_lock, MA_OWNED);
902
903	/*
904	 * Let the kseg know how long we slept for.  This is because process
905	 * interactivity behavior is modeled in the kseg.
906	 */
907	if (td->td_slptime) {
908		struct ksegrp *kg;
909		int hzticks;
910
911		kg = td->td_ksegrp;
912		hzticks = ticks - td->td_slptime;
913		kg->kg_slptime += hzticks << 10;
914		sched_interact_update(kg);
915		sched_priority(kg);
916		if (td->td_kse)
917			sched_slice(td->td_kse);
918		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
919		    td->td_kse, hzticks);
920		td->td_slptime = 0;
921	}
922	setrunqueue(td);
923        if (td->td_priority < curthread->td_priority)
924                curthread->td_flags |= TDF_NEEDRESCHED;
925}
926
927/*
928 * Penalize the parent for creating a new child and initialize the child's
929 * priority.
930 */
931void
932sched_fork(struct proc *p, struct proc *p1)
933{
934
935	mtx_assert(&sched_lock, MA_OWNED);
936
937	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
938	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
939	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
940}
941
942void
943sched_fork_kse(struct kse *ke, struct kse *child)
944{
945
946	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
947	child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
948	child->ke_runq = NULL;
949
950	/* Grab our parents cpu estimation information. */
951	child->ke_ticks = ke->ke_ticks;
952	child->ke_ltick = ke->ke_ltick;
953	child->ke_ftick = ke->ke_ftick;
954}
955
956void
957sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
958{
959
960	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
961	/* XXX Need something better here */
962
963	child->kg_slptime = kg->kg_slptime / SCHED_SLP_RUN_THROTTLE;
964	child->kg_runtime = kg->kg_runtime / SCHED_SLP_RUN_THROTTLE;
965	kg->kg_runtime += tickincr << 10;
966	sched_interact_update(kg);
967
968	child->kg_user_pri = kg->kg_user_pri;
969	child->kg_nice = kg->kg_nice;
970}
971
972void
973sched_fork_thread(struct thread *td, struct thread *child)
974{
975}
976
977void
978sched_class(struct ksegrp *kg, int class)
979{
980	struct kseq *kseq;
981	struct kse *ke;
982
983	mtx_assert(&sched_lock, MA_OWNED);
984	if (kg->kg_pri_class == class)
985		return;
986
987	FOREACH_KSE_IN_GROUP(kg, ke) {
988		if (ke->ke_state != KES_ONRUNQ &&
989		    ke->ke_state != KES_THREAD)
990			continue;
991		kseq = KSEQ_CPU(ke->ke_cpu);
992
993		kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
994		kseq->ksq_loads[PRI_BASE(class)]++;
995
996		if (kg->kg_pri_class == PRI_TIMESHARE)
997			kseq_nice_rem(kseq, kg->kg_nice);
998		else if (class == PRI_TIMESHARE)
999			kseq_nice_add(kseq, kg->kg_nice);
1000	}
1001
1002	kg->kg_pri_class = class;
1003}
1004
1005/*
1006 * Return some of the child's priority and interactivity to the parent.
1007 */
1008void
1009sched_exit(struct proc *p, struct proc *child)
1010{
1011	/* XXX Need something better here */
1012	mtx_assert(&sched_lock, MA_OWNED);
1013	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1014	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1015}
1016
1017void
1018sched_exit_kse(struct kse *ke, struct kse *child)
1019{
1020	kseq_rem(KSEQ_CPU(child->ke_cpu), child);
1021}
1022
1023void
1024sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1025{
1026	/* kg->kg_slptime += child->kg_slptime; */
1027	kg->kg_runtime += child->kg_runtime;
1028	sched_interact_update(kg);
1029}
1030
1031void
1032sched_exit_thread(struct thread *td, struct thread *child)
1033{
1034}
1035
1036void
1037sched_clock(struct thread *td)
1038{
1039	struct kseq *kseq;
1040	struct ksegrp *kg;
1041	struct kse *ke;
1042
1043	/*
1044	 * sched_setup() apparently happens prior to stathz being set.  We
1045	 * need to resolve the timers earlier in the boot so we can avoid
1046	 * calculating this here.
1047	 */
1048	if (realstathz == 0) {
1049		realstathz = stathz ? stathz : hz;
1050		tickincr = hz / realstathz;
1051		/*
1052		 * XXX This does not work for values of stathz that are much
1053		 * larger than hz.
1054		 */
1055		if (tickincr == 0)
1056			tickincr = 1;
1057	}
1058
1059	ke = td->td_kse;
1060	kg = ke->ke_ksegrp;
1061
1062	mtx_assert(&sched_lock, MA_OWNED);
1063	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1064
1065	/* Adjust ticks for pctcpu */
1066	ke->ke_ticks++;
1067	ke->ke_ltick = ticks;
1068
1069	/* Go up to one second beyond our max and then trim back down */
1070	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1071		sched_pctcpu_update(ke);
1072
1073	if (td->td_flags & TDF_IDLETD)
1074		return;
1075
1076	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1077	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1078
1079	/*
1080	 * Idle tasks should always resched.
1081	 */
1082	if (kg->kg_pri_class == PRI_IDLE) {
1083		td->td_flags |= TDF_NEEDRESCHED;
1084		return;
1085	}
1086	/*
1087	 * We only do slicing code for TIMESHARE ksegrps.
1088	 */
1089	if (kg->kg_pri_class != PRI_TIMESHARE)
1090		return;
1091	/*
1092	 * We used a tick charge it to the ksegrp so that we can compute our
1093	 * interactivity.
1094	 */
1095	kg->kg_runtime += tickincr << 10;
1096	sched_interact_update(kg);
1097
1098	/*
1099	 * We used up one time slice.
1100	 */
1101	ke->ke_slice--;
1102	kseq = KSEQ_SELF();
1103#ifdef SMP
1104	kseq->ksq_rslices--;
1105#endif
1106
1107	if (ke->ke_slice > 0)
1108		return;
1109	/*
1110	 * We're out of time, recompute priorities and requeue.
1111	 */
1112	kseq_rem(kseq, ke);
1113	sched_priority(kg);
1114	sched_slice(ke);
1115	if (SCHED_CURR(kg, ke))
1116		ke->ke_runq = kseq->ksq_curr;
1117	else
1118		ke->ke_runq = kseq->ksq_next;
1119	kseq_add(kseq, ke);
1120	td->td_flags |= TDF_NEEDRESCHED;
1121}
1122
1123int
1124sched_runnable(void)
1125{
1126	struct kseq *kseq;
1127	int load;
1128
1129	load = 1;
1130
1131	mtx_lock_spin(&sched_lock);
1132	kseq = KSEQ_SELF();
1133
1134	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1135		if (kseq->ksq_load > 0)
1136			goto out;
1137	} else
1138		if (kseq->ksq_load - 1 > 0)
1139			goto out;
1140#ifdef SMP
1141	/*
1142	 * For SMP we may steal other processor's KSEs.  Just search until we
1143	 * verify that at least on other cpu has a runnable task.
1144	 */
1145	if (smp_started) {
1146		int i;
1147
1148		for (i = 0; i < mp_maxid; i++) {
1149			if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
1150				continue;
1151			kseq = KSEQ_CPU(i);
1152			if (kseq->ksq_load > kseq->ksq_cpus)
1153				goto out;
1154		}
1155	}
1156#endif
1157	load = 0;
1158out:
1159	mtx_unlock_spin(&sched_lock);
1160	return (load);
1161}
1162
1163void
1164sched_userret(struct thread *td)
1165{
1166	struct ksegrp *kg;
1167
1168	kg = td->td_ksegrp;
1169
1170	if (td->td_priority != kg->kg_user_pri) {
1171		mtx_lock_spin(&sched_lock);
1172		td->td_priority = kg->kg_user_pri;
1173		mtx_unlock_spin(&sched_lock);
1174	}
1175}
1176
1177struct kse *
1178sched_choose(void)
1179{
1180	struct kseq *kseq;
1181	struct kse *ke;
1182
1183	mtx_assert(&sched_lock, MA_OWNED);
1184#ifdef SMP
1185retry:
1186#endif
1187	kseq = KSEQ_SELF();
1188	ke = kseq_choose(kseq, 0);
1189	if (ke) {
1190		runq_remove(ke->ke_runq, ke);
1191		ke->ke_state = KES_THREAD;
1192
1193		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1194			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1195			    ke, ke->ke_runq, ke->ke_slice,
1196			    ke->ke_thread->td_priority);
1197		}
1198		return (ke);
1199	}
1200
1201#ifdef SMP
1202	if (smp_started) {
1203		/*
1204		 * Find the cpu with the highest load and steal one proc.
1205		 */
1206		if ((kseq = kseq_load_highest()) == NULL)
1207			return (NULL);
1208
1209		/*
1210		 * Remove this kse from this kseq and runq and then requeue
1211		 * on the current processor.  Then we will dequeue it
1212		 * normally above.
1213		 */
1214		kseq_move(kseq, PCPU_GET(cpuid));
1215		goto retry;
1216	}
1217#endif
1218
1219	return (NULL);
1220}
1221
1222void
1223sched_add(struct thread *td)
1224{
1225	struct kseq *kseq;
1226	struct ksegrp *kg;
1227	struct kse *ke;
1228
1229	ke = td->td_kse;
1230	kg = td->td_ksegrp;
1231	mtx_assert(&sched_lock, MA_OWNED);
1232	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1233	KASSERT((ke->ke_thread->td_kse != NULL),
1234	    ("sched_add: No KSE on thread"));
1235	KASSERT(ke->ke_state != KES_ONRUNQ,
1236	    ("sched_add: kse %p (%s) already in run queue", ke,
1237	    ke->ke_proc->p_comm));
1238	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1239	    ("sched_add: process swapped out"));
1240	KASSERT(ke->ke_runq == NULL,
1241	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1242
1243
1244	switch (PRI_BASE(kg->kg_pri_class)) {
1245	case PRI_ITHD:
1246	case PRI_REALTIME:
1247		kseq = KSEQ_SELF();
1248		ke->ke_runq = kseq->ksq_curr;
1249		ke->ke_slice = SCHED_SLICE_MAX;
1250		ke->ke_cpu = PCPU_GET(cpuid);
1251		break;
1252	case PRI_TIMESHARE:
1253		kseq = KSEQ_CPU(ke->ke_cpu);
1254		if (SCHED_CURR(kg, ke))
1255			ke->ke_runq = kseq->ksq_curr;
1256		else
1257			ke->ke_runq = kseq->ksq_next;
1258		break;
1259	case PRI_IDLE:
1260		kseq = KSEQ_CPU(ke->ke_cpu);
1261		/*
1262		 * This is for priority prop.
1263		 */
1264		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1265			ke->ke_runq = kseq->ksq_curr;
1266		else
1267			ke->ke_runq = &kseq->ksq_idle;
1268		ke->ke_slice = SCHED_SLICE_MIN;
1269		break;
1270	default:
1271		panic("Unknown pri class.\n");
1272		break;
1273	}
1274
1275	ke->ke_ksegrp->kg_runq_kses++;
1276	ke->ke_state = KES_ONRUNQ;
1277
1278	runq_add(ke->ke_runq, ke);
1279	kseq_add(kseq, ke);
1280}
1281
1282void
1283sched_rem(struct thread *td)
1284{
1285	struct kseq *kseq;
1286	struct kse *ke;
1287
1288	ke = td->td_kse;
1289
1290	mtx_assert(&sched_lock, MA_OWNED);
1291	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1292
1293	ke->ke_state = KES_THREAD;
1294	ke->ke_ksegrp->kg_runq_kses--;
1295	kseq = KSEQ_CPU(ke->ke_cpu);
1296	runq_remove(ke->ke_runq, ke);
1297	kseq_rem(kseq, ke);
1298}
1299
1300fixpt_t
1301sched_pctcpu(struct thread *td)
1302{
1303	fixpt_t pctcpu;
1304	struct kse *ke;
1305
1306	pctcpu = 0;
1307	ke = td->td_kse;
1308	if (ke == NULL)
1309		return (0);
1310
1311	mtx_lock_spin(&sched_lock);
1312	if (ke->ke_ticks) {
1313		int rtick;
1314
1315		/*
1316		 * Don't update more frequently than twice a second.  Allowing
1317		 * this causes the cpu usage to decay away too quickly due to
1318		 * rounding errors.
1319		 */
1320		if (ke->ke_ltick < (ticks - (hz / 2)))
1321			sched_pctcpu_update(ke);
1322		/* How many rtick per second ? */
1323		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1324		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1325	}
1326
1327	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1328	mtx_unlock_spin(&sched_lock);
1329
1330	return (pctcpu);
1331}
1332
1333int
1334sched_sizeof_kse(void)
1335{
1336	return (sizeof(struct kse) + sizeof(struct ke_sched));
1337}
1338
1339int
1340sched_sizeof_ksegrp(void)
1341{
1342	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1343}
1344
1345int
1346sched_sizeof_proc(void)
1347{
1348	return (sizeof(struct proc));
1349}
1350
1351int
1352sched_sizeof_thread(void)
1353{
1354	return (sizeof(struct thread) + sizeof(struct td_sched));
1355}
1356