sched_ule.c revision 116955
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 116955 2003-06-28 06:19:56Z jeff $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/ktr.h>
34#include <sys/lock.h>
35#include <sys/mutex.h>
36#include <sys/proc.h>
37#include <sys/resource.h>
38#include <sys/sched.h>
39#include <sys/smp.h>
40#include <sys/sx.h>
41#include <sys/sysctl.h>
42#include <sys/sysproto.h>
43#include <sys/vmmeter.h>
44#ifdef DDB
45#include <ddb/ddb.h>
46#endif
47#ifdef KTRACE
48#include <sys/uio.h>
49#include <sys/ktrace.h>
50#endif
51
52#include <machine/cpu.h>
53
54#define KTR_ULE         KTR_NFS
55
56/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
57/* XXX This is bogus compatability crap for ps */
58static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
59SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
60
61static void sched_setup(void *dummy);
62SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
63
64static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
65
66static int sched_strict;
67SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
68
69static int slice_min = 1;
70SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
71
72static int slice_max = 10;
73SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
74
75int realstathz;
76int tickincr = 1;
77
78#ifdef SMP
79/* Callout to handle load balancing SMP systems. */
80static struct callout kseq_lb_callout;
81#endif
82
83/*
84 * These datastructures are allocated within their parent datastructure but
85 * are scheduler specific.
86 */
87
88struct ke_sched {
89	int		ske_slice;
90	struct runq	*ske_runq;
91	/* The following variables are only used for pctcpu calculation */
92	int		ske_ltick;	/* Last tick that we were running on */
93	int		ske_ftick;	/* First tick that we were running on */
94	int		ske_ticks;	/* Tick count */
95	/* CPU that we have affinity for. */
96	u_char		ske_cpu;
97};
98#define	ke_slice	ke_sched->ske_slice
99#define	ke_runq		ke_sched->ske_runq
100#define	ke_ltick	ke_sched->ske_ltick
101#define	ke_ftick	ke_sched->ske_ftick
102#define	ke_ticks	ke_sched->ske_ticks
103#define	ke_cpu		ke_sched->ske_cpu
104
105struct kg_sched {
106	int	skg_slptime;		/* Number of ticks we vol. slept */
107	int	skg_runtime;		/* Number of ticks we were running */
108};
109#define	kg_slptime	kg_sched->skg_slptime
110#define	kg_runtime	kg_sched->skg_runtime
111
112struct td_sched {
113	int	std_slptime;
114};
115#define	td_slptime	td_sched->std_slptime
116
117struct td_sched td_sched;
118struct ke_sched ke_sched;
119struct kg_sched kg_sched;
120
121struct ke_sched *kse0_sched = &ke_sched;
122struct kg_sched *ksegrp0_sched = &kg_sched;
123struct p_sched *proc0_sched = NULL;
124struct td_sched *thread0_sched = &td_sched;
125
126/*
127 * The priority is primarily determined by the interactivity score.  Thus, we
128 * give lower(better) priorities to kse groups that use less CPU.  The nice
129 * value is then directly added to this to allow nice to have some effect
130 * on latency.
131 *
132 * PRI_RANGE:	Total priority range for timeshare threads.
133 * PRI_NRESV:	Number of nice values.
134 * PRI_BASE:	The start of the dynamic range.
135 */
136#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
137#define	SCHED_PRI_NRESV		PRIO_TOTAL
138#define	SCHED_PRI_NHALF		(PRIO_TOTAL / 2)
139#define	SCHED_PRI_NTHRESH	(SCHED_PRI_NHALF - 1)
140#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
141#define	SCHED_PRI_INTERACT(score)					\
142    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
143
144/*
145 * These determine the interactivity of a process.
146 *
147 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
148 *		before throttling back.
149 * SLP_RUN_THROTTLE:	Divisor for reducing slp/run time at fork time.
150 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
151 * INTERACT_THRESH:	Threshhold for placement on the current runq.
152 */
153#define	SCHED_SLP_RUN_MAX	((hz * 2) << 10)
154#define	SCHED_SLP_RUN_THROTTLE	(100)
155#define	SCHED_INTERACT_MAX	(100)
156#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
157#define	SCHED_INTERACT_THRESH	(20)
158
159/*
160 * These parameters and macros determine the size of the time slice that is
161 * granted to each thread.
162 *
163 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
164 * SLICE_MAX:	Maximum time slice granted.
165 * SLICE_RANGE:	Range of available time slices scaled by hz.
166 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
167 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
168 */
169#define	SCHED_SLICE_MIN			(slice_min)
170#define	SCHED_SLICE_MAX			(slice_max)
171#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
172#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
173#define	SCHED_SLICE_NICE(nice)						\
174    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))
175
176/*
177 * This macro determines whether or not the kse belongs on the current or
178 * next run queue.
179 *
180 * XXX nice value should effect how interactive a kg is.
181 */
182#define	SCHED_INTERACTIVE(kg)						\
183    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
184#define	SCHED_CURR(kg, ke)						\
185    (ke->ke_thread->td_priority < PRI_MIN_TIMESHARE || SCHED_INTERACTIVE(kg))
186
187/*
188 * Cpu percentage computation macros and defines.
189 *
190 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
191 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
192 */
193
194#define	SCHED_CPU_TIME	10
195#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
196
197/*
198 * kseq - per processor runqs and statistics.
199 */
200
201#define	KSEQ_NCLASS	(PRI_IDLE + 1)	/* Number of run classes. */
202
203struct kseq {
204	struct runq	ksq_idle;		/* Queue of IDLE threads. */
205	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
206	struct runq	*ksq_next;		/* Next timeshare queue. */
207	struct runq	*ksq_curr;		/* Current queue. */
208	int		ksq_loads[KSEQ_NCLASS];	/* Load for each class */
209	int		ksq_load;		/* Aggregate load. */
210	short		ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
211	short		ksq_nicemin;		/* Least nice. */
212#ifdef SMP
213	unsigned int	ksq_rslices;	/* Slices on run queue */
214#endif
215};
216
217/*
218 * One kse queue per processor.
219 */
220#ifdef SMP
221struct kseq	kseq_cpu[MAXCPU];
222#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
223#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
224#else
225struct kseq	kseq_cpu;
226#define	KSEQ_SELF()	(&kseq_cpu)
227#define	KSEQ_CPU(x)	(&kseq_cpu)
228#endif
229
230static void sched_slice(struct kse *ke);
231static void sched_priority(struct ksegrp *kg);
232static int sched_interact_score(struct ksegrp *kg);
233static void sched_interact_update(struct ksegrp *kg);
234void sched_pctcpu_update(struct kse *ke);
235int sched_pickcpu(void);
236
237/* Operations on per processor queues */
238static struct kse * kseq_choose(struct kseq *kseq);
239static void kseq_setup(struct kseq *kseq);
240static void kseq_add(struct kseq *kseq, struct kse *ke);
241static void kseq_rem(struct kseq *kseq, struct kse *ke);
242static void kseq_nice_add(struct kseq *kseq, int nice);
243static void kseq_nice_rem(struct kseq *kseq, int nice);
244void kseq_print(int cpu);
245#ifdef SMP
246struct kseq * kseq_load_highest(void);
247void kseq_balance(void *arg);
248void kseq_move(struct kseq *from, int cpu);
249#endif
250
251void
252kseq_print(int cpu)
253{
254	struct kseq *kseq;
255	int i;
256
257	kseq = KSEQ_CPU(cpu);
258
259	printf("kseq:\n");
260	printf("\tload:           %d\n", kseq->ksq_load);
261	printf("\tload ITHD:      %d\n", kseq->ksq_loads[PRI_ITHD]);
262	printf("\tload REALTIME:  %d\n", kseq->ksq_loads[PRI_REALTIME]);
263	printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
264	printf("\tload IDLE:      %d\n", kseq->ksq_loads[PRI_IDLE]);
265	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
266	printf("\tnice counts:\n");
267	for (i = 0; i < PRIO_TOTAL + 1; i++)
268		if (kseq->ksq_nice[i])
269			printf("\t\t%d = %d\n",
270			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
271}
272
273static void
274kseq_add(struct kseq *kseq, struct kse *ke)
275{
276	mtx_assert(&sched_lock, MA_OWNED);
277	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
278	kseq->ksq_load++;
279	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
280	CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
281	    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
282	    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
283	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
284		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
285#ifdef SMP
286	kseq->ksq_rslices += ke->ke_slice;
287#endif
288}
289
290static void
291kseq_rem(struct kseq *kseq, struct kse *ke)
292{
293	mtx_assert(&sched_lock, MA_OWNED);
294	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
295	kseq->ksq_load--;
296	ke->ke_runq = NULL;
297	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
298		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
299#ifdef SMP
300	kseq->ksq_rslices -= ke->ke_slice;
301#endif
302}
303
304static void
305kseq_nice_add(struct kseq *kseq, int nice)
306{
307	mtx_assert(&sched_lock, MA_OWNED);
308	/* Normalize to zero. */
309	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
310	if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 1)
311		kseq->ksq_nicemin = nice;
312}
313
314static void
315kseq_nice_rem(struct kseq *kseq, int nice)
316{
317	int n;
318
319	mtx_assert(&sched_lock, MA_OWNED);
320	/* Normalize to zero. */
321	n = nice + SCHED_PRI_NHALF;
322	kseq->ksq_nice[n]--;
323	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
324
325	/*
326	 * If this wasn't the smallest nice value or there are more in
327	 * this bucket we can just return.  Otherwise we have to recalculate
328	 * the smallest nice.
329	 */
330	if (nice != kseq->ksq_nicemin ||
331	    kseq->ksq_nice[n] != 0 ||
332	    kseq->ksq_loads[PRI_TIMESHARE] == 0)
333		return;
334
335	for (; n < SCHED_PRI_NRESV + 1; n++)
336		if (kseq->ksq_nice[n]) {
337			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
338			return;
339		}
340}
341
342#ifdef SMP
343/*
344 * kseq_balance is a simple CPU load balancing algorithm.  It operates by
345 * finding the least loaded and most loaded cpu and equalizing their load
346 * by migrating some processes.
347 *
348 * Dealing only with two CPUs at a time has two advantages.  Firstly, most
349 * installations will only have 2 cpus.  Secondly, load balancing too much at
350 * once can have an unpleasant effect on the system.  The scheduler rarely has
351 * enough information to make perfect decisions.  So this algorithm chooses
352 * algorithm simplicity and more gradual effects on load in larger systems.
353 *
354 * It could be improved by considering the priorities and slices assigned to
355 * each task prior to balancing them.  There are many pathological cases with
356 * any approach and so the semi random algorithm below may work as well as any.
357 *
358 */
359void
360kseq_balance(void *arg)
361{
362	struct kseq *kseq;
363	int high_load;
364	int low_load;
365	int high_cpu;
366	int low_cpu;
367	int move;
368	int diff;
369	int i;
370
371	high_cpu = 0;
372	low_cpu = 0;
373	high_load = 0;
374	low_load = -1;
375
376	mtx_lock_spin(&sched_lock);
377	for (i = 0; i < mp_maxid; i++) {
378		if (CPU_ABSENT(i))
379			continue;
380		kseq = KSEQ_CPU(i);
381		if (kseq->ksq_load > high_load) {
382			high_load = kseq->ksq_load;
383			high_cpu = i;
384		}
385		if (low_load == -1 || kseq->ksq_load < low_load) {
386			low_load = kseq->ksq_load;
387			low_cpu = i;
388		}
389	}
390
391	/*
392	 * Nothing to do.
393	 */
394	if (high_load < 2 || low_load == high_load)
395		goto out;
396
397	diff = high_load - low_load;
398	move = diff / 2;
399	if (diff & 0x1)
400		move++;
401
402	for (i = 0; i < move; i++)
403		kseq_move(KSEQ_CPU(high_cpu), low_cpu);
404
405out:
406	mtx_unlock_spin(&sched_lock);
407	callout_reset(&kseq_lb_callout, hz, kseq_balance, NULL);
408
409	return;
410}
411
412struct kseq *
413kseq_load_highest(void)
414{
415	struct kseq *kseq;
416	int load;
417	int cpu;
418	int i;
419
420	mtx_assert(&sched_lock, MA_OWNED);
421	cpu = 0;
422	load = 0;
423
424	for (i = 0; i < mp_maxid; i++) {
425		if (CPU_ABSENT(i))
426			continue;
427		kseq = KSEQ_CPU(i);
428		if (kseq->ksq_load > load) {
429			load = kseq->ksq_load;
430			cpu = i;
431		}
432	}
433	if (load > 1)
434		return (KSEQ_CPU(cpu));
435
436	return (NULL);
437}
438
439void
440kseq_move(struct kseq *from, int cpu)
441{
442	struct kse *ke;
443
444	ke = kseq_choose(from);
445	runq_remove(ke->ke_runq, ke);
446	ke->ke_state = KES_THREAD;
447	kseq_rem(from, ke);
448
449	ke->ke_cpu = cpu;
450	sched_add(ke);
451}
452#endif
453
454struct kse *
455kseq_choose(struct kseq *kseq)
456{
457	struct kse *ke;
458	struct runq *swap;
459
460	mtx_assert(&sched_lock, MA_OWNED);
461	swap = NULL;
462
463	for (;;) {
464		ke = runq_choose(kseq->ksq_curr);
465		if (ke == NULL) {
466			/*
467			 * We already swaped once and didn't get anywhere.
468			 */
469			if (swap)
470				break;
471			swap = kseq->ksq_curr;
472			kseq->ksq_curr = kseq->ksq_next;
473			kseq->ksq_next = swap;
474			continue;
475		}
476		/*
477		 * If we encounter a slice of 0 the kse is in a
478		 * TIMESHARE kse group and its nice was too far out
479		 * of the range that receives slices.
480		 */
481		if (ke->ke_slice == 0) {
482			runq_remove(ke->ke_runq, ke);
483			sched_slice(ke);
484			ke->ke_runq = kseq->ksq_next;
485			runq_add(ke->ke_runq, ke);
486			continue;
487		}
488		return (ke);
489	}
490
491	return (runq_choose(&kseq->ksq_idle));
492}
493
494static void
495kseq_setup(struct kseq *kseq)
496{
497	runq_init(&kseq->ksq_timeshare[0]);
498	runq_init(&kseq->ksq_timeshare[1]);
499	runq_init(&kseq->ksq_idle);
500
501	kseq->ksq_curr = &kseq->ksq_timeshare[0];
502	kseq->ksq_next = &kseq->ksq_timeshare[1];
503
504	kseq->ksq_loads[PRI_ITHD] = 0;
505	kseq->ksq_loads[PRI_REALTIME] = 0;
506	kseq->ksq_loads[PRI_TIMESHARE] = 0;
507	kseq->ksq_loads[PRI_IDLE] = 0;
508	kseq->ksq_load = 0;
509#ifdef SMP
510	kseq->ksq_rslices = 0;
511#endif
512}
513
514static void
515sched_setup(void *dummy)
516{
517	int i;
518
519	slice_min = (hz/100);	/* 10ms */
520	slice_max = (hz/7);	/* ~140ms */
521
522	mtx_lock_spin(&sched_lock);
523	/* init kseqs */
524	for (i = 0; i < MAXCPU; i++)
525		kseq_setup(KSEQ_CPU(i));
526
527	kseq_add(KSEQ_SELF(), &kse0);
528	mtx_unlock_spin(&sched_lock);
529#ifdef SMP
530	callout_init(&kseq_lb_callout, 1);
531	kseq_balance(NULL);
532#endif
533}
534
535/*
536 * Scale the scheduling priority according to the "interactivity" of this
537 * process.
538 */
539static void
540sched_priority(struct ksegrp *kg)
541{
542	int pri;
543
544	if (kg->kg_pri_class != PRI_TIMESHARE)
545		return;
546
547	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
548	pri += SCHED_PRI_BASE;
549	pri += kg->kg_nice;
550
551	if (pri > PRI_MAX_TIMESHARE)
552		pri = PRI_MAX_TIMESHARE;
553	else if (pri < PRI_MIN_TIMESHARE)
554		pri = PRI_MIN_TIMESHARE;
555
556	kg->kg_user_pri = pri;
557
558	return;
559}
560
561/*
562 * Calculate a time slice based on the properties of the kseg and the runq
563 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
564 */
565static void
566sched_slice(struct kse *ke)
567{
568	struct kseq *kseq;
569	struct ksegrp *kg;
570
571	kg = ke->ke_ksegrp;
572	kseq = KSEQ_CPU(ke->ke_cpu);
573
574	/*
575	 * Rationale:
576	 * KSEs in interactive ksegs get the minimum slice so that we
577	 * quickly notice if it abuses its advantage.
578	 *
579	 * KSEs in non-interactive ksegs are assigned a slice that is
580	 * based on the ksegs nice value relative to the least nice kseg
581	 * on the run queue for this cpu.
582	 *
583	 * If the KSE is less nice than all others it gets the maximum
584	 * slice and other KSEs will adjust their slice relative to
585	 * this when they first expire.
586	 *
587	 * There is 20 point window that starts relative to the least
588	 * nice kse on the run queue.  Slice size is determined by
589	 * the kse distance from the last nice ksegrp.
590	 *
591	 * If you are outside of the window you will get no slice and
592	 * you will be reevaluated each time you are selected on the
593	 * run queue.
594	 *
595	 */
596
597	if (!SCHED_INTERACTIVE(kg)) {
598		int nice;
599
600		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
601		if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
602		    kg->kg_nice < kseq->ksq_nicemin)
603			ke->ke_slice = SCHED_SLICE_MAX;
604		else if (nice <= SCHED_PRI_NTHRESH)
605			ke->ke_slice = SCHED_SLICE_NICE(nice);
606		else
607			ke->ke_slice = 0;
608	} else
609		ke->ke_slice = SCHED_SLICE_MIN;
610
611	CTR6(KTR_ULE,
612	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
613	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
614	    kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));
615
616	/*
617	 * Check to see if we need to scale back the slp and run time
618	 * in the kg.  This will cause us to forget old interactivity
619	 * while maintaining the current ratio.
620	 */
621	sched_interact_update(kg);
622
623	return;
624}
625
626static void
627sched_interact_update(struct ksegrp *kg)
628{
629	/* XXX Fixme, use a linear algorithm and not a while loop. */
630	while ((kg->kg_runtime + kg->kg_slptime) >  SCHED_SLP_RUN_MAX) {
631		kg->kg_runtime = (kg->kg_runtime / 5) * 4;
632		kg->kg_slptime = (kg->kg_slptime / 5) * 4;
633	}
634}
635
636static int
637sched_interact_score(struct ksegrp *kg)
638{
639	int div;
640
641	if (kg->kg_runtime > kg->kg_slptime) {
642		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
643		return (SCHED_INTERACT_HALF +
644		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
645	} if (kg->kg_slptime > kg->kg_runtime) {
646		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
647		return (kg->kg_runtime / div);
648	}
649
650	/*
651	 * This can happen if slptime and runtime are 0.
652	 */
653	return (0);
654
655}
656
657/*
658 * This is only somewhat accurate since given many processes of the same
659 * priority they will switch when their slices run out, which will be
660 * at most SCHED_SLICE_MAX.
661 */
662int
663sched_rr_interval(void)
664{
665	return (SCHED_SLICE_MAX);
666}
667
668void
669sched_pctcpu_update(struct kse *ke)
670{
671	/*
672	 * Adjust counters and watermark for pctcpu calc.
673	 */
674
675	/*
676	 * Shift the tick count out so that the divide doesn't round away
677	 * our results.
678	 */
679	ke->ke_ticks <<= 10;
680	ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
681		    SCHED_CPU_TICKS;
682	ke->ke_ticks >>= 10;
683	ke->ke_ltick = ticks;
684	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
685}
686
687#ifdef SMP
688/* XXX Should be changed to kseq_load_lowest() */
689int
690sched_pickcpu(void)
691{
692	struct kseq *kseq;
693	int load;
694	int cpu;
695	int i;
696
697	mtx_assert(&sched_lock, MA_OWNED);
698	if (!smp_started)
699		return (0);
700
701	load = 0;
702	cpu = 0;
703
704	for (i = 0; i < mp_maxid; i++) {
705		if (CPU_ABSENT(i))
706			continue;
707		kseq = KSEQ_CPU(i);
708		if (kseq->ksq_load < load) {
709			cpu = i;
710			load = kseq->ksq_load;
711		}
712	}
713
714	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
715	return (cpu);
716}
717#else
718int
719sched_pickcpu(void)
720{
721	return (0);
722}
723#endif
724
725void
726sched_prio(struct thread *td, u_char prio)
727{
728	struct kse *ke;
729	struct runq *rq;
730
731	mtx_assert(&sched_lock, MA_OWNED);
732	ke = td->td_kse;
733	td->td_priority = prio;
734
735	if (TD_ON_RUNQ(td)) {
736		rq = ke->ke_runq;
737
738		runq_remove(rq, ke);
739		runq_add(rq, ke);
740	}
741}
742
743void
744sched_switchout(struct thread *td)
745{
746	struct kse *ke;
747
748	mtx_assert(&sched_lock, MA_OWNED);
749
750	ke = td->td_kse;
751
752	td->td_last_kse = ke;
753        td->td_lastcpu = td->td_oncpu;
754	td->td_oncpu = NOCPU;
755        td->td_flags &= ~TDF_NEEDRESCHED;
756
757	if (TD_IS_RUNNING(td)) {
758		/*
759		 * This queue is always correct except for idle threads which
760		 * have a higher priority due to priority propagation.
761		 */
762		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE &&
763		    ke->ke_thread->td_priority > PRI_MIN_IDLE)
764			ke->ke_runq = KSEQ_SELF()->ksq_curr;
765		runq_add(ke->ke_runq, ke);
766		/* setrunqueue(td); */
767		return;
768	}
769	if (ke->ke_runq)
770		kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
771	/*
772	 * We will not be on the run queue. So we must be
773	 * sleeping or similar.
774	 */
775	if (td->td_proc->p_flag & P_SA)
776		kse_reassign(ke);
777}
778
779void
780sched_switchin(struct thread *td)
781{
782	/* struct kse *ke = td->td_kse; */
783	mtx_assert(&sched_lock, MA_OWNED);
784
785	td->td_oncpu = PCPU_GET(cpuid);
786}
787
788void
789sched_nice(struct ksegrp *kg, int nice)
790{
791	struct kse *ke;
792	struct thread *td;
793	struct kseq *kseq;
794
795	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
796	mtx_assert(&sched_lock, MA_OWNED);
797	/*
798	 * We need to adjust the nice counts for running KSEs.
799	 */
800	if (kg->kg_pri_class == PRI_TIMESHARE)
801		FOREACH_KSE_IN_GROUP(kg, ke) {
802			if (ke->ke_runq == NULL)
803				continue;
804			kseq = KSEQ_CPU(ke->ke_cpu);
805			kseq_nice_rem(kseq, kg->kg_nice);
806			kseq_nice_add(kseq, nice);
807		}
808	kg->kg_nice = nice;
809	sched_priority(kg);
810	FOREACH_THREAD_IN_GROUP(kg, td)
811		td->td_flags |= TDF_NEEDRESCHED;
812}
813
814void
815sched_sleep(struct thread *td, u_char prio)
816{
817	mtx_assert(&sched_lock, MA_OWNED);
818
819	td->td_slptime = ticks;
820	td->td_priority = prio;
821
822	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
823	    td->td_kse, td->td_slptime);
824}
825
826void
827sched_wakeup(struct thread *td)
828{
829	mtx_assert(&sched_lock, MA_OWNED);
830
831	/*
832	 * Let the kseg know how long we slept for.  This is because process
833	 * interactivity behavior is modeled in the kseg.
834	 */
835	if (td->td_slptime) {
836		struct ksegrp *kg;
837		int hzticks;
838
839		kg = td->td_ksegrp;
840		hzticks = ticks - td->td_slptime;
841		kg->kg_slptime += hzticks << 10;
842		sched_interact_update(kg);
843		sched_priority(kg);
844		if (td->td_kse)
845			sched_slice(td->td_kse);
846		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
847		    td->td_kse, hzticks);
848		td->td_slptime = 0;
849	}
850	setrunqueue(td);
851        if (td->td_priority < curthread->td_priority)
852                curthread->td_flags |= TDF_NEEDRESCHED;
853}
854
855/*
856 * Penalize the parent for creating a new child and initialize the child's
857 * priority.
858 */
859void
860sched_fork(struct proc *p, struct proc *p1)
861{
862
863	mtx_assert(&sched_lock, MA_OWNED);
864
865	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
866	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
867	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
868}
869
870void
871sched_fork_kse(struct kse *ke, struct kse *child)
872{
873
874	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
875	child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
876	child->ke_runq = NULL;
877
878	/*
879	 * Claim that we've been running for one second for statistical
880	 * purposes.
881	 */
882	child->ke_ticks = 0;
883	child->ke_ltick = ticks;
884	child->ke_ftick = ticks - hz;
885}
886
887void
888sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
889{
890
891	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
892	/* XXX Need something better here */
893
894	child->kg_slptime = kg->kg_slptime / SCHED_SLP_RUN_THROTTLE;
895	child->kg_runtime = kg->kg_runtime / SCHED_SLP_RUN_THROTTLE;
896	kg->kg_runtime += tickincr << 10;
897	sched_interact_update(kg);
898
899	child->kg_user_pri = kg->kg_user_pri;
900	child->kg_nice = kg->kg_nice;
901}
902
903void
904sched_fork_thread(struct thread *td, struct thread *child)
905{
906}
907
908void
909sched_class(struct ksegrp *kg, int class)
910{
911	struct kseq *kseq;
912	struct kse *ke;
913
914	mtx_assert(&sched_lock, MA_OWNED);
915	if (kg->kg_pri_class == class)
916		return;
917
918	FOREACH_KSE_IN_GROUP(kg, ke) {
919		if (ke->ke_state != KES_ONRUNQ &&
920		    ke->ke_state != KES_THREAD)
921			continue;
922		kseq = KSEQ_CPU(ke->ke_cpu);
923
924		kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
925		kseq->ksq_loads[PRI_BASE(class)]++;
926
927		if (kg->kg_pri_class == PRI_TIMESHARE)
928			kseq_nice_rem(kseq, kg->kg_nice);
929		else if (class == PRI_TIMESHARE)
930			kseq_nice_add(kseq, kg->kg_nice);
931	}
932
933	kg->kg_pri_class = class;
934}
935
936/*
937 * Return some of the child's priority and interactivity to the parent.
938 */
939void
940sched_exit(struct proc *p, struct proc *child)
941{
942	/* XXX Need something better here */
943	mtx_assert(&sched_lock, MA_OWNED);
944	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
945	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
946}
947
948void
949sched_exit_kse(struct kse *ke, struct kse *child)
950{
951	kseq_rem(KSEQ_CPU(child->ke_cpu), child);
952}
953
954void
955sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
956{
957	/* kg->kg_slptime += child->kg_slptime; */
958	kg->kg_runtime += child->kg_runtime;
959	sched_interact_update(kg);
960}
961
962void
963sched_exit_thread(struct thread *td, struct thread *child)
964{
965}
966
967void
968sched_clock(struct kse *ke)
969{
970	struct kseq *kseq;
971	struct ksegrp *kg;
972	struct thread *td;
973#if 0
974	struct kse *nke;
975#endif
976
977	/*
978	 * sched_setup() apparently happens prior to stathz being set.  We
979	 * need to resolve the timers earlier in the boot so we can avoid
980	 * calculating this here.
981	 */
982	if (realstathz == 0) {
983		realstathz = stathz ? stathz : hz;
984		tickincr = hz / realstathz;
985		/*
986		 * XXX This does not work for values of stathz that are much
987		 * larger than hz.
988		 */
989		if (tickincr == 0)
990			tickincr = 1;
991	}
992
993	td = ke->ke_thread;
994	kg = ke->ke_ksegrp;
995
996	mtx_assert(&sched_lock, MA_OWNED);
997	KASSERT((td != NULL), ("schedclock: null thread pointer"));
998
999	/* Adjust ticks for pctcpu */
1000	ke->ke_ticks++;
1001	ke->ke_ltick = ticks;
1002
1003	/* Go up to one second beyond our max and then trim back down */
1004	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1005		sched_pctcpu_update(ke);
1006
1007	if (td->td_flags & TDF_IDLETD)
1008		return;
1009
1010	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1011	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1012
1013	/*
1014	 * We only do slicing code for TIMESHARE ksegrps.
1015	 */
1016	if (kg->kg_pri_class != PRI_TIMESHARE)
1017		return;
1018	/*
1019	 * Check for a higher priority task on the run queue.  This can happen
1020	 * on SMP if another processor woke up a process on our runq.
1021	 */
1022	kseq = KSEQ_SELF();
1023#if 0
1024	if (kseq->ksq_load > 1 && (nke = kseq_choose(kseq)) != NULL) {
1025		if (sched_strict &&
1026		    nke->ke_thread->td_priority < td->td_priority)
1027			td->td_flags |= TDF_NEEDRESCHED;
1028		else if (nke->ke_thread->td_priority <
1029		    td->td_priority SCHED_PRIO_SLOP)
1030
1031		if (nke->ke_thread->td_priority < td->td_priority)
1032			td->td_flags |= TDF_NEEDRESCHED;
1033	}
1034#endif
1035	/*
1036	 * We used a tick charge it to the ksegrp so that we can compute our
1037	 * interactivity.
1038	 */
1039	kg->kg_runtime += tickincr << 10;
1040	sched_interact_update(kg);
1041
1042	/*
1043	 * We used up one time slice.
1044	 */
1045	ke->ke_slice--;
1046#ifdef SMP
1047	kseq->ksq_rslices--;
1048#endif
1049
1050	if (ke->ke_slice > 0)
1051		return;
1052	/*
1053	 * We're out of time, recompute priorities and requeue.
1054	 */
1055	kseq_rem(kseq, ke);
1056	sched_priority(kg);
1057	sched_slice(ke);
1058	if (SCHED_CURR(kg, ke))
1059		ke->ke_runq = kseq->ksq_curr;
1060	else
1061		ke->ke_runq = kseq->ksq_next;
1062	kseq_add(kseq, ke);
1063	td->td_flags |= TDF_NEEDRESCHED;
1064}
1065
1066int
1067sched_runnable(void)
1068{
1069	struct kseq *kseq;
1070	int load;
1071
1072	load = 1;
1073
1074	mtx_lock_spin(&sched_lock);
1075	kseq = KSEQ_SELF();
1076
1077	if (kseq->ksq_load)
1078		goto out;
1079#ifdef SMP
1080	/*
1081	 * For SMP we may steal other processor's KSEs.  Just search until we
1082	 * verify that at least on other cpu has a runnable task.
1083	 */
1084	if (smp_started) {
1085		int i;
1086
1087		for (i = 0; i < mp_maxid; i++) {
1088			if (CPU_ABSENT(i))
1089				continue;
1090			kseq = KSEQ_CPU(i);
1091			if (kseq->ksq_load > 1)
1092				goto out;
1093		}
1094	}
1095#endif
1096	load = 0;
1097out:
1098	mtx_unlock_spin(&sched_lock);
1099	return (load);
1100}
1101
1102void
1103sched_userret(struct thread *td)
1104{
1105	struct ksegrp *kg;
1106	struct kseq *kseq;
1107	struct kse *ke;
1108
1109	kg = td->td_ksegrp;
1110
1111	if (td->td_priority != kg->kg_user_pri) {
1112		mtx_lock_spin(&sched_lock);
1113		td->td_priority = kg->kg_user_pri;
1114		kseq = KSEQ_SELF();
1115		if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
1116		    kseq->ksq_load > 1 &&
1117		    (ke = kseq_choose(kseq)) != NULL &&
1118		    ke->ke_thread->td_priority < td->td_priority)
1119			curthread->td_flags |= TDF_NEEDRESCHED;
1120		mtx_unlock_spin(&sched_lock);
1121	}
1122}
1123
1124struct kse *
1125sched_choose(void)
1126{
1127	struct kseq *kseq;
1128	struct kse *ke;
1129
1130	mtx_assert(&sched_lock, MA_OWNED);
1131#ifdef SMP
1132retry:
1133#endif
1134	kseq = KSEQ_SELF();
1135	ke = kseq_choose(kseq);
1136	if (ke) {
1137		runq_remove(ke->ke_runq, ke);
1138		ke->ke_state = KES_THREAD;
1139
1140		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1141			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1142			    ke, ke->ke_runq, ke->ke_slice,
1143			    ke->ke_thread->td_priority);
1144		}
1145		return (ke);
1146	}
1147
1148#ifdef SMP
1149	if (smp_started) {
1150		/*
1151		 * Find the cpu with the highest load and steal one proc.
1152		 */
1153		if ((kseq = kseq_load_highest()) == NULL)
1154			return (NULL);
1155
1156		/*
1157		 * Remove this kse from this kseq and runq and then requeue
1158		 * on the current processor.  Then we will dequeue it
1159		 * normally above.
1160		 */
1161		kseq_move(kseq, PCPU_GET(cpuid));
1162		goto retry;
1163	}
1164#endif
1165
1166	return (NULL);
1167}
1168
1169void
1170sched_add(struct kse *ke)
1171{
1172	struct kseq *kseq;
1173	struct ksegrp *kg;
1174
1175	mtx_assert(&sched_lock, MA_OWNED);
1176	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1177	KASSERT((ke->ke_thread->td_kse != NULL),
1178	    ("sched_add: No KSE on thread"));
1179	KASSERT(ke->ke_state != KES_ONRUNQ,
1180	    ("sched_add: kse %p (%s) already in run queue", ke,
1181	    ke->ke_proc->p_comm));
1182	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1183	    ("sched_add: process swapped out"));
1184	KASSERT(ke->ke_runq == NULL,
1185	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1186
1187	kg = ke->ke_ksegrp;
1188
1189	switch (PRI_BASE(kg->kg_pri_class)) {
1190	case PRI_ITHD:
1191	case PRI_REALTIME:
1192		kseq = KSEQ_SELF();
1193		ke->ke_runq = kseq->ksq_curr;
1194		ke->ke_slice = SCHED_SLICE_MAX;
1195		ke->ke_cpu = PCPU_GET(cpuid);
1196		break;
1197	case PRI_TIMESHARE:
1198		kseq = KSEQ_CPU(ke->ke_cpu);
1199		if (SCHED_CURR(kg, ke))
1200			ke->ke_runq = kseq->ksq_curr;
1201		else
1202			ke->ke_runq = kseq->ksq_next;
1203		break;
1204	case PRI_IDLE:
1205		kseq = KSEQ_CPU(ke->ke_cpu);
1206		/*
1207		 * This is for priority prop.
1208		 */
1209		if (ke->ke_thread->td_priority > PRI_MIN_IDLE)
1210			ke->ke_runq = kseq->ksq_curr;
1211		else
1212			ke->ke_runq = &kseq->ksq_idle;
1213		ke->ke_slice = SCHED_SLICE_MIN;
1214		break;
1215	default:
1216		panic("Unknown pri class.\n");
1217		break;
1218	}
1219
1220	ke->ke_ksegrp->kg_runq_kses++;
1221	ke->ke_state = KES_ONRUNQ;
1222
1223	runq_add(ke->ke_runq, ke);
1224	kseq_add(kseq, ke);
1225}
1226
1227void
1228sched_rem(struct kse *ke)
1229{
1230	struct kseq *kseq;
1231
1232	mtx_assert(&sched_lock, MA_OWNED);
1233	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1234
1235	ke->ke_state = KES_THREAD;
1236	ke->ke_ksegrp->kg_runq_kses--;
1237	kseq = KSEQ_CPU(ke->ke_cpu);
1238	runq_remove(ke->ke_runq, ke);
1239	kseq_rem(kseq, ke);
1240}
1241
1242fixpt_t
1243sched_pctcpu(struct kse *ke)
1244{
1245	fixpt_t pctcpu;
1246
1247	pctcpu = 0;
1248
1249	mtx_lock_spin(&sched_lock);
1250	if (ke->ke_ticks) {
1251		int rtick;
1252
1253		/*
1254		 * Don't update more frequently than twice a second.  Allowing
1255		 * this causes the cpu usage to decay away too quickly due to
1256		 * rounding errors.
1257		 */
1258		if (ke->ke_ltick < (ticks - (hz / 2)))
1259			sched_pctcpu_update(ke);
1260
1261		/* How many rtick per second ? */
1262		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1263		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1264	}
1265
1266	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1267	mtx_unlock_spin(&sched_lock);
1268
1269	return (pctcpu);
1270}
1271
1272int
1273sched_sizeof_kse(void)
1274{
1275	return (sizeof(struct kse) + sizeof(struct ke_sched));
1276}
1277
1278int
1279sched_sizeof_ksegrp(void)
1280{
1281	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1282}
1283
1284int
1285sched_sizeof_proc(void)
1286{
1287	return (sizeof(struct proc));
1288}
1289
1290int
1291sched_sizeof_thread(void)
1292{
1293	return (sizeof(struct thread) + sizeof(struct td_sched));
1294}
1295