sched_ule.c revision 113660
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/kern/sched_ule.c 113660 2003-04-18 05:24:10Z jeff $
27 */
28
29#include <sys/param.h>
30#include <sys/systm.h>
31#include <sys/kernel.h>
32#include <sys/ktr.h>
33#include <sys/lock.h>
34#include <sys/mutex.h>
35#include <sys/proc.h>
36#include <sys/resource.h>
37#include <sys/sched.h>
38#include <sys/smp.h>
39#include <sys/sx.h>
40#include <sys/sysctl.h>
41#include <sys/sysproto.h>
42#include <sys/vmmeter.h>
43#ifdef DDB
44#include <ddb/ddb.h>
45#endif
46#ifdef KTRACE
47#include <sys/uio.h>
48#include <sys/ktrace.h>
49#endif
50
51#include <machine/cpu.h>
52
53#define KTR_ULE         KTR_NFS
54
55/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
56/* XXX This is bogus compatability crap for ps */
57static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
58SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
59
60static void sched_setup(void *dummy);
61SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
62
63static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
64
65static int sched_strict;
66SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
67
68static int slice_min = 1;
69SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
70
71static int slice_max = 2;
72SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
73
74int realstathz;
75int tickincr = 1;
76
77/*
78 * These datastructures are allocated within their parent datastructure but
79 * are scheduler specific.
80 */
81
82struct ke_sched {
83	int		ske_slice;
84	struct runq	*ske_runq;
85	/* The following variables are only used for pctcpu calculation */
86	int		ske_ltick;	/* Last tick that we were running on */
87	int		ske_ftick;	/* First tick that we were running on */
88	int		ske_ticks;	/* Tick count */
89	/* CPU that we have affinity for. */
90	u_char		ske_cpu;
91};
92#define	ke_slice	ke_sched->ske_slice
93#define	ke_runq		ke_sched->ske_runq
94#define	ke_ltick	ke_sched->ske_ltick
95#define	ke_ftick	ke_sched->ske_ftick
96#define	ke_ticks	ke_sched->ske_ticks
97#define	ke_cpu		ke_sched->ske_cpu
98
99struct kg_sched {
100	int	skg_slptime;		/* Number of ticks we vol. slept */
101	int	skg_runtime;		/* Number of ticks we were running */
102};
103#define	kg_slptime	kg_sched->skg_slptime
104#define	kg_runtime	kg_sched->skg_runtime
105
106struct td_sched {
107	int	std_slptime;
108};
109#define	td_slptime	td_sched->std_slptime
110
111struct td_sched td_sched;
112struct ke_sched ke_sched;
113struct kg_sched kg_sched;
114
115struct ke_sched *kse0_sched = &ke_sched;
116struct kg_sched *ksegrp0_sched = &kg_sched;
117struct p_sched *proc0_sched = NULL;
118struct td_sched *thread0_sched = &td_sched;
119
120/*
121 * This priority range has 20 priorities on either end that are reachable
122 * only through nice values.
123 *
124 * PRI_RANGE:	Total priority range for timeshare threads.
125 * PRI_NRESV:	Reserved priorities for nice.
126 * PRI_BASE:	The start of the dynamic range.
127 * DYN_RANGE:	Number of priorities that are available int the dynamic
128 *		priority range.
129 */
130#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
131#define	SCHED_PRI_NRESV		PRIO_TOTAL
132#define	SCHED_PRI_NHALF		(PRIO_TOTAL / 2)
133#define	SCHED_PRI_NTHRESH	(SCHED_PRI_NHALF - 1)
134#define	SCHED_PRI_BASE		((SCHED_PRI_NRESV / 2) + PRI_MIN_TIMESHARE)
135#define	SCHED_DYN_RANGE		(SCHED_PRI_RANGE - SCHED_PRI_NRESV)
136#define	SCHED_PRI_INTERACT(score)					\
137    ((score) * SCHED_DYN_RANGE / SCHED_INTERACT_RANGE)
138
139/*
140 * These determine the interactivity of a process.
141 *
142 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
143 *		before throttling back.
144 * SLP_RUN_THROTTLE:	Divisor for reducing slp/run time.
145 * INTERACT_RANGE:	Range of interactivity values.  Smaller is better.
146 * INTERACT_HALF:	Convenience define, half of the interactivity range.
147 * INTERACT_THRESH:	Threshhold for placement on the current runq.
148 */
149#define	SCHED_SLP_RUN_MAX	((hz / 10) << 10)
150#define	SCHED_SLP_RUN_THROTTLE	(10)
151#define	SCHED_INTERACT_RANGE	(100)
152#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_RANGE / 2)
153#define	SCHED_INTERACT_THRESH	(10)
154
155/*
156 * These parameters and macros determine the size of the time slice that is
157 * granted to each thread.
158 *
159 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
160 * SLICE_MAX:	Maximum time slice granted.
161 * SLICE_RANGE:	Range of available time slices scaled by hz.
162 * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
163 * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
164 */
165#define	SCHED_SLICE_MIN			(slice_min)
166#define	SCHED_SLICE_MAX			(slice_max)
167#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
168#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
169#define	SCHED_SLICE_NICE(nice)						\
170    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))
171
172/*
173 * This macro determines whether or not the kse belongs on the current or
174 * next run queue.
175 *
176 * XXX nice value should effect how interactive a kg is.
177 */
178#define	SCHED_INTERACTIVE(kg)						\
179    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
180#define	SCHED_CURR(kg, ke)						\
181    (ke->ke_thread->td_priority < PRI_MIN_TIMESHARE || SCHED_INTERACTIVE(kg))
182
183/*
184 * Cpu percentage computation macros and defines.
185 *
186 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
187 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
188 */
189
190#define	SCHED_CPU_TIME	10
191#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
192
193/*
194 * kseq - per processor runqs and statistics.
195 */
196
197#define	KSEQ_NCLASS	(PRI_IDLE + 1)	/* Number of run classes. */
198
199struct kseq {
200	struct runq	ksq_idle;		/* Queue of IDLE threads. */
201	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
202	struct runq	*ksq_next;		/* Next timeshare queue. */
203	struct runq	*ksq_curr;		/* Current queue. */
204	int		ksq_loads[KSEQ_NCLASS];	/* Load for each class */
205	int		ksq_load;		/* Aggregate load. */
206	short		ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
207	short		ksq_nicemin;		/* Least nice. */
208#ifdef SMP
209	unsigned int	ksq_rslices;	/* Slices on run queue */
210#endif
211};
212
213/*
214 * One kse queue per processor.
215 */
216#ifdef SMP
217struct kseq	kseq_cpu[MAXCPU];
218#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
219#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
220#else
221struct kseq	kseq_cpu;
222#define	KSEQ_SELF()	(&kseq_cpu)
223#define	KSEQ_CPU(x)	(&kseq_cpu)
224#endif
225
226static void sched_slice(struct kse *ke);
227static void sched_priority(struct ksegrp *kg);
228static int sched_interact_score(struct ksegrp *kg);
229void sched_pctcpu_update(struct kse *ke);
230int sched_pickcpu(void);
231
232/* Operations on per processor queues */
233static struct kse * kseq_choose(struct kseq *kseq);
234static void kseq_setup(struct kseq *kseq);
235static void kseq_add(struct kseq *kseq, struct kse *ke);
236static void kseq_rem(struct kseq *kseq, struct kse *ke);
237static void kseq_nice_add(struct kseq *kseq, int nice);
238static void kseq_nice_rem(struct kseq *kseq, int nice);
239void kseq_print(int cpu);
240#ifdef SMP
241struct kseq * kseq_load_highest(void);
242#endif
243
244void
245kseq_print(int cpu)
246{
247	struct kseq *kseq;
248	int i;
249
250	kseq = KSEQ_CPU(cpu);
251
252	printf("kseq:\n");
253	printf("\tload:           %d\n", kseq->ksq_load);
254	printf("\tload ITHD:      %d\n", kseq->ksq_loads[PRI_ITHD]);
255	printf("\tload REALTIME:  %d\n", kseq->ksq_loads[PRI_REALTIME]);
256	printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
257	printf("\tload IDLE:      %d\n", kseq->ksq_loads[PRI_IDLE]);
258	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
259	printf("\tnice counts:\n");
260	for (i = 0; i < PRIO_TOTAL + 1; i++)
261		if (kseq->ksq_nice[i])
262			printf("\t\t%d = %d\n",
263			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
264}
265
266static void
267kseq_add(struct kseq *kseq, struct kse *ke)
268{
269	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
270	kseq->ksq_load++;
271	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
272	CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
273	    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
274	    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
275	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
276		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
277#ifdef SMP
278	kseq->ksq_rslices += ke->ke_slice;
279#endif
280}
281
282static void
283kseq_rem(struct kseq *kseq, struct kse *ke)
284{
285	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
286	kseq->ksq_load--;
287	ke->ke_runq = NULL;
288	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
289		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
290#ifdef SMP
291	kseq->ksq_rslices -= ke->ke_slice;
292#endif
293}
294
295static void
296kseq_nice_add(struct kseq *kseq, int nice)
297{
298	/* Normalize to zero. */
299	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
300	if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 0)
301		kseq->ksq_nicemin = nice;
302}
303
304static void
305kseq_nice_rem(struct kseq *kseq, int nice)
306{
307	int n;
308
309	/* Normalize to zero. */
310	n = nice + SCHED_PRI_NHALF;
311	kseq->ksq_nice[n]--;
312	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
313
314	/*
315	 * If this wasn't the smallest nice value or there are more in
316	 * this bucket we can just return.  Otherwise we have to recalculate
317	 * the smallest nice.
318	 */
319	if (nice != kseq->ksq_nicemin ||
320	    kseq->ksq_nice[n] != 0 ||
321	    kseq->ksq_loads[PRI_TIMESHARE] == 0)
322		return;
323
324	for (; n < SCHED_PRI_NRESV + 1; n++)
325		if (kseq->ksq_nice[n]) {
326			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
327			return;
328		}
329}
330
331#ifdef SMP
332struct kseq *
333kseq_load_highest(void)
334{
335	struct kseq *kseq;
336	int load;
337	int cpu;
338	int i;
339
340	cpu = 0;
341	load = 0;
342
343	for (i = 0; i < mp_maxid; i++) {
344		if (CPU_ABSENT(i))
345			continue;
346		kseq = KSEQ_CPU(i);
347		if (kseq->ksq_load > load) {
348			load = kseq->ksq_load;
349			cpu = i;
350		}
351	}
352	if (load > 1)
353		return (KSEQ_CPU(cpu));
354
355	return (NULL);
356}
357#endif
358
359struct kse *
360kseq_choose(struct kseq *kseq)
361{
362	struct kse *ke;
363	struct runq *swap;
364
365	swap = NULL;
366
367	for (;;) {
368		ke = runq_choose(kseq->ksq_curr);
369		if (ke == NULL) {
370			/*
371			 * We already swaped once and didn't get anywhere.
372			 */
373			if (swap)
374				break;
375			swap = kseq->ksq_curr;
376			kseq->ksq_curr = kseq->ksq_next;
377			kseq->ksq_next = swap;
378			continue;
379		}
380		/*
381		 * If we encounter a slice of 0 the kse is in a
382		 * TIMESHARE kse group and its nice was too far out
383		 * of the range that receives slices.
384		 */
385		if (ke->ke_slice == 0) {
386			runq_remove(ke->ke_runq, ke);
387			sched_slice(ke);
388			ke->ke_runq = kseq->ksq_next;
389			runq_add(ke->ke_runq, ke);
390			continue;
391		}
392		return (ke);
393	}
394
395	return (runq_choose(&kseq->ksq_idle));
396}
397
398static void
399kseq_setup(struct kseq *kseq)
400{
401	runq_init(&kseq->ksq_timeshare[0]);
402	runq_init(&kseq->ksq_timeshare[1]);
403	runq_init(&kseq->ksq_idle);
404
405	kseq->ksq_curr = &kseq->ksq_timeshare[0];
406	kseq->ksq_next = &kseq->ksq_timeshare[1];
407
408	kseq->ksq_loads[PRI_ITHD] = 0;
409	kseq->ksq_loads[PRI_REALTIME] = 0;
410	kseq->ksq_loads[PRI_TIMESHARE] = 0;
411	kseq->ksq_loads[PRI_IDLE] = 0;
412	kseq->ksq_load = 0;
413#ifdef SMP
414	kseq->ksq_rslices = 0;
415#endif
416}
417
418static void
419sched_setup(void *dummy)
420{
421	int i;
422
423	slice_min = (hz/100);
424	slice_max = (hz/10);
425
426	mtx_lock_spin(&sched_lock);
427	/* init kseqs */
428	for (i = 0; i < MAXCPU; i++)
429		kseq_setup(KSEQ_CPU(i));
430
431	kseq_add(KSEQ_SELF(), &kse0);
432	mtx_unlock_spin(&sched_lock);
433}
434
435/*
436 * Scale the scheduling priority according to the "interactivity" of this
437 * process.
438 */
439static void
440sched_priority(struct ksegrp *kg)
441{
442	int pri;
443
444	if (kg->kg_pri_class != PRI_TIMESHARE)
445		return;
446
447	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
448	pri += SCHED_PRI_BASE;
449	pri += kg->kg_nice;
450
451	if (pri > PRI_MAX_TIMESHARE)
452		pri = PRI_MAX_TIMESHARE;
453	else if (pri < PRI_MIN_TIMESHARE)
454		pri = PRI_MIN_TIMESHARE;
455
456	kg->kg_user_pri = pri;
457
458	return;
459}
460
461/*
462 * Calculate a time slice based on the properties of the kseg and the runq
463 * that we're on.  This is only for PRI_TIMESHARE ksegrps.
464 */
465static void
466sched_slice(struct kse *ke)
467{
468	struct kseq *kseq;
469	struct ksegrp *kg;
470
471	kg = ke->ke_ksegrp;
472	kseq = KSEQ_CPU(ke->ke_cpu);
473
474	/*
475	 * Rationale:
476	 * KSEs in interactive ksegs get the minimum slice so that we
477	 * quickly notice if it abuses its advantage.
478	 *
479	 * KSEs in non-interactive ksegs are assigned a slice that is
480	 * based on the ksegs nice value relative to the least nice kseg
481	 * on the run queue for this cpu.
482	 *
483	 * If the KSE is less nice than all others it gets the maximum
484	 * slice and other KSEs will adjust their slice relative to
485	 * this when they first expire.
486	 *
487	 * There is 20 point window that starts relative to the least
488	 * nice kse on the run queue.  Slice size is determined by
489	 * the kse distance from the last nice ksegrp.
490	 *
491	 * If you are outside of the window you will get no slice and
492	 * you will be reevaluated each time you are selected on the
493	 * run queue.
494	 *
495	 */
496
497	if (!SCHED_INTERACTIVE(kg)) {
498		int nice;
499
500		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
501		if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
502		    kg->kg_nice < kseq->ksq_nicemin)
503			ke->ke_slice = SCHED_SLICE_MAX;
504		else if (nice <= SCHED_PRI_NTHRESH)
505			ke->ke_slice = SCHED_SLICE_NICE(nice);
506		else
507			ke->ke_slice = 0;
508	} else
509		ke->ke_slice = SCHED_SLICE_MIN;
510
511	CTR6(KTR_ULE,
512	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
513	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
514	    kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));
515
516	/*
517	 * Check to see if we need to scale back the slp and run time
518	 * in the kg.  This will cause us to forget old interactivity
519	 * while maintaining the current ratio.
520	 */
521	CTR4(KTR_ULE, "Slp vs Run %p (Slp %d, Run %d, Score %d)",
522	    ke, kg->kg_slptime >> 10, kg->kg_runtime >> 10,
523	    sched_interact_score(kg));
524
525	if ((kg->kg_runtime + kg->kg_slptime) >  SCHED_SLP_RUN_MAX) {
526		kg->kg_runtime /= SCHED_SLP_RUN_THROTTLE;
527		kg->kg_slptime /= SCHED_SLP_RUN_THROTTLE;
528	}
529	CTR4(KTR_ULE, "Slp vs Run(2) %p (Slp %d, Run %d, Score %d)",
530	    ke, kg->kg_slptime >> 10, kg->kg_runtime >> 10,
531	    sched_interact_score(kg));
532
533	return;
534}
535
536static int
537sched_interact_score(struct ksegrp *kg)
538{
539	int big;
540	int small;
541	int base;
542
543	if (kg->kg_runtime > kg->kg_slptime) {
544		big = kg->kg_runtime;
545		small = kg->kg_slptime;
546		base = SCHED_INTERACT_HALF;
547	} else {
548		big = kg->kg_slptime;
549		small = kg->kg_runtime;
550		base = 0;
551	}
552
553	big /= SCHED_INTERACT_HALF;
554	if (big != 0)
555		small /= big;
556	else
557		small = 0;
558
559	small += base;
560	/* XXX Factor in nice */
561	return (small);
562}
563
564/*
565 * This is only somewhat accurate since given many processes of the same
566 * priority they will switch when their slices run out, which will be
567 * at most SCHED_SLICE_MAX.
568 */
569int
570sched_rr_interval(void)
571{
572	return (SCHED_SLICE_MAX);
573}
574
575void
576sched_pctcpu_update(struct kse *ke)
577{
578	/*
579	 * Adjust counters and watermark for pctcpu calc.
580	 *
581	 * Shift the tick count out so that the divide doesn't round away
582	 * our results.
583	 */
584	ke->ke_ticks <<= 10;
585	ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
586		    SCHED_CPU_TICKS;
587	ke->ke_ticks >>= 10;
588	ke->ke_ltick = ticks;
589	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
590}
591
592#ifdef SMP
593/* XXX Should be changed to kseq_load_lowest() */
594int
595sched_pickcpu(void)
596{
597	struct kseq *kseq;
598	int load;
599	int cpu;
600	int i;
601
602	if (!smp_started)
603		return (0);
604
605	load = 0;
606	cpu = 0;
607
608	for (i = 0; i < mp_maxid; i++) {
609		if (CPU_ABSENT(i))
610			continue;
611		kseq = KSEQ_CPU(i);
612		if (kseq->ksq_load < load) {
613			cpu = i;
614			load = kseq->ksq_load;
615		}
616	}
617
618	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
619	return (cpu);
620}
621#else
622int
623sched_pickcpu(void)
624{
625	return (0);
626}
627#endif
628
629void
630sched_prio(struct thread *td, u_char prio)
631{
632	struct kse *ke;
633	struct runq *rq;
634
635	mtx_assert(&sched_lock, MA_OWNED);
636	ke = td->td_kse;
637	td->td_priority = prio;
638
639	if (TD_ON_RUNQ(td)) {
640		rq = ke->ke_runq;
641
642		runq_remove(rq, ke);
643		runq_add(rq, ke);
644	}
645}
646
647void
648sched_switchout(struct thread *td)
649{
650	struct kse *ke;
651
652	mtx_assert(&sched_lock, MA_OWNED);
653
654	ke = td->td_kse;
655
656	td->td_last_kse = ke;
657        td->td_lastcpu = td->td_oncpu;
658	td->td_oncpu = NOCPU;
659        td->td_flags &= ~TDF_NEEDRESCHED;
660
661	if (TD_IS_RUNNING(td)) {
662		runq_add(ke->ke_runq, ke);
663		/* setrunqueue(td); */
664		return;
665	}
666	if (ke->ke_runq)
667		kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
668	/*
669	 * We will not be on the run queue. So we must be
670	 * sleeping or similar.
671	 */
672	if (td->td_proc->p_flag & P_THREADED)
673		kse_reassign(ke);
674}
675
676void
677sched_switchin(struct thread *td)
678{
679	/* struct kse *ke = td->td_kse; */
680	mtx_assert(&sched_lock, MA_OWNED);
681
682	td->td_oncpu = PCPU_GET(cpuid);
683
684	if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
685	    td->td_priority != td->td_ksegrp->kg_user_pri)
686		curthread->td_flags |= TDF_NEEDRESCHED;
687}
688
689void
690sched_nice(struct ksegrp *kg, int nice)
691{
692	struct kse *ke;
693	struct thread *td;
694	struct kseq *kseq;
695
696	/*
697	 * We need to adjust the nice counts for running KSEs.
698	 */
699	if (kg->kg_pri_class == PRI_TIMESHARE)
700		FOREACH_KSE_IN_GROUP(kg, ke) {
701			if (ke->ke_state != KES_ONRUNQ &&
702			    ke->ke_state != KES_THREAD)
703				continue;
704			kseq = KSEQ_CPU(ke->ke_cpu);
705			kseq_nice_rem(kseq, kg->kg_nice);
706			kseq_nice_add(kseq, nice);
707		}
708	kg->kg_nice = nice;
709	sched_priority(kg);
710	FOREACH_THREAD_IN_GROUP(kg, td)
711		td->td_flags |= TDF_NEEDRESCHED;
712}
713
714void
715sched_sleep(struct thread *td, u_char prio)
716{
717	mtx_assert(&sched_lock, MA_OWNED);
718
719	td->td_slptime = ticks;
720	td->td_priority = prio;
721
722	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
723	    td->td_kse, td->td_slptime);
724}
725
726void
727sched_wakeup(struct thread *td)
728{
729	mtx_assert(&sched_lock, MA_OWNED);
730
731	/*
732	 * Let the kseg know how long we slept for.  This is because process
733	 * interactivity behavior is modeled in the kseg.
734	 */
735	if (td->td_slptime) {
736		struct ksegrp *kg;
737		int hzticks;
738
739		kg = td->td_ksegrp;
740		hzticks = ticks - td->td_slptime;
741		kg->kg_slptime += hzticks << 10;
742		sched_priority(kg);
743		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
744		    td->td_kse, hzticks);
745		td->td_slptime = 0;
746	}
747	setrunqueue(td);
748        if (td->td_priority < curthread->td_priority)
749                curthread->td_flags |= TDF_NEEDRESCHED;
750}
751
752/*
753 * Penalize the parent for creating a new child and initialize the child's
754 * priority.
755 */
756void
757sched_fork(struct proc *p, struct proc *p1)
758{
759
760	mtx_assert(&sched_lock, MA_OWNED);
761
762	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
763	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
764	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
765}
766
767void
768sched_fork_kse(struct kse *ke, struct kse *child)
769{
770	child->ke_slice = ke->ke_slice;
771	child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
772	child->ke_runq = NULL;
773
774	/*
775	 * Claim that we've been running for one second for statistical
776	 * purposes.
777	 */
778	child->ke_ticks = 0;
779	child->ke_ltick = ticks;
780	child->ke_ftick = ticks - hz;
781}
782
783void
784sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
785{
786	/* XXX Need something better here */
787	if (kg->kg_slptime > kg->kg_runtime) {
788		child->kg_slptime = SCHED_DYN_RANGE;
789		child->kg_runtime = kg->kg_slptime / SCHED_DYN_RANGE;
790	} else {
791		child->kg_runtime = SCHED_DYN_RANGE;
792		child->kg_slptime = kg->kg_runtime / SCHED_DYN_RANGE;
793	}
794
795	child->kg_user_pri = kg->kg_user_pri;
796	child->kg_nice = kg->kg_nice;
797}
798
799void
800sched_fork_thread(struct thread *td, struct thread *child)
801{
802}
803
804void
805sched_class(struct ksegrp *kg, int class)
806{
807	struct kseq *kseq;
808	struct kse *ke;
809
810	if (kg->kg_pri_class == class)
811		return;
812
813	FOREACH_KSE_IN_GROUP(kg, ke) {
814		if (ke->ke_state != KES_ONRUNQ &&
815		    ke->ke_state != KES_THREAD)
816			continue;
817		kseq = KSEQ_CPU(ke->ke_cpu);
818
819		kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
820		kseq->ksq_loads[PRI_BASE(class)]++;
821
822		if (kg->kg_pri_class == PRI_TIMESHARE)
823			kseq_nice_rem(kseq, kg->kg_nice);
824		else if (class == PRI_TIMESHARE)
825			kseq_nice_add(kseq, kg->kg_nice);
826	}
827
828	kg->kg_pri_class = class;
829}
830
831/*
832 * Return some of the child's priority and interactivity to the parent.
833 */
834void
835sched_exit(struct proc *p, struct proc *child)
836{
837	/* XXX Need something better here */
838	mtx_assert(&sched_lock, MA_OWNED);
839	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
840}
841
842void
843sched_exit_kse(struct kse *ke, struct kse *child)
844{
845	kseq_rem(KSEQ_CPU(child->ke_cpu), child);
846}
847
848void
849sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
850{
851}
852
853void
854sched_exit_thread(struct thread *td, struct thread *child)
855{
856}
857
858void
859sched_clock(struct kse *ke)
860{
861	struct kseq *kseq;
862	struct ksegrp *kg;
863	struct thread *td;
864#if 0
865	struct kse *nke;
866#endif
867
868	/*
869	 * sched_setup() apparently happens prior to stathz being set.  We
870	 * need to resolve the timers earlier in the boot so we can avoid
871	 * calculating this here.
872	 */
873	if (realstathz == 0) {
874		realstathz = stathz ? stathz : hz;
875		tickincr = hz / realstathz;
876		/*
877		 * XXX This does not work for values of stathz that are much
878		 * larger than hz.
879		 */
880		if (tickincr == 0)
881			tickincr = 1;
882	}
883
884	td = ke->ke_thread;
885	kg = ke->ke_ksegrp;
886
887	mtx_assert(&sched_lock, MA_OWNED);
888	KASSERT((td != NULL), ("schedclock: null thread pointer"));
889
890	/* Adjust ticks for pctcpu */
891	ke->ke_ticks++;
892	ke->ke_ltick = ticks;
893
894	/* Go up to one second beyond our max and then trim back down */
895	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
896		sched_pctcpu_update(ke);
897
898	if (td->td_kse->ke_flags & KEF_IDLEKSE)
899		return;
900
901	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
902	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
903
904	/*
905	 * We only do slicing code for TIMESHARE ksegrps.
906	 */
907	if (kg->kg_pri_class != PRI_TIMESHARE)
908		return;
909	/*
910	 * Check for a higher priority task on the run queue.  This can happen
911	 * on SMP if another processor woke up a process on our runq.
912	 */
913	kseq = KSEQ_SELF();
914#if 0
915	if (kseq->ksq_load > 1 && (nke = kseq_choose(kseq)) != NULL) {
916		if (sched_strict &&
917		    nke->ke_thread->td_priority < td->td_priority)
918			td->td_flags |= TDF_NEEDRESCHED;
919		else if (nke->ke_thread->td_priority <
920		    td->td_priority SCHED_PRIO_SLOP)
921
922		if (nke->ke_thread->td_priority < td->td_priority)
923			td->td_flags |= TDF_NEEDRESCHED;
924	}
925#endif
926	/*
927	 * We used a tick charge it to the ksegrp so that we can compute our
928	 * interactivity.
929	 */
930	kg->kg_runtime += tickincr << 10;
931
932	/*
933	 * We used up one time slice.
934	 */
935	ke->ke_slice--;
936#ifdef SMP
937	kseq->ksq_rslices--;
938#endif
939
940	if (ke->ke_slice > 0)
941		return;
942	/*
943	 * We're out of time, recompute priorities and requeue.
944	 */
945	kseq_rem(kseq, ke);
946	sched_priority(kg);
947	sched_slice(ke);
948	if (SCHED_CURR(kg, ke))
949		ke->ke_runq = kseq->ksq_curr;
950	else
951		ke->ke_runq = kseq->ksq_next;
952	kseq_add(kseq, ke);
953	td->td_flags |= TDF_NEEDRESCHED;
954}
955
956int
957sched_runnable(void)
958{
959	struct kseq *kseq;
960
961	kseq = KSEQ_SELF();
962
963	if (kseq->ksq_load)
964		return (1);
965#ifdef SMP
966	/*
967	 * For SMP we may steal other processor's KSEs.  Just search until we
968	 * verify that at least on other cpu has a runnable task.
969	 */
970	if (smp_started) {
971		int i;
972
973		for (i = 0; i < mp_maxid; i++) {
974			if (CPU_ABSENT(i))
975				continue;
976			kseq = KSEQ_CPU(i);
977			if (kseq->ksq_load > 1)
978				return (1);
979		}
980	}
981#endif
982	return (0);
983}
984
985void
986sched_userret(struct thread *td)
987{
988	struct ksegrp *kg;
989
990	kg = td->td_ksegrp;
991
992	if (td->td_priority != kg->kg_user_pri) {
993		mtx_lock_spin(&sched_lock);
994		td->td_priority = kg->kg_user_pri;
995		mtx_unlock_spin(&sched_lock);
996	}
997}
998
999struct kse *
1000sched_choose(void)
1001{
1002	struct kseq *kseq;
1003	struct kse *ke;
1004
1005#ifdef SMP
1006retry:
1007#endif
1008	kseq = KSEQ_SELF();
1009	ke = kseq_choose(kseq);
1010	if (ke) {
1011		runq_remove(ke->ke_runq, ke);
1012		ke->ke_state = KES_THREAD;
1013
1014		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1015			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1016			    ke, ke->ke_runq, ke->ke_slice,
1017			    ke->ke_thread->td_priority);
1018		}
1019		return (ke);
1020	}
1021
1022#ifdef SMP
1023	if (smp_started) {
1024		/*
1025		 * Find the cpu with the highest load and steal one proc.
1026		 */
1027		if ((kseq = kseq_load_highest()) == NULL)
1028			return (NULL);
1029
1030		/*
1031		 * Remove this kse from this kseq and runq and then requeue
1032		 * on the current processor.  Then we will dequeue it
1033		 * normally above.
1034		 */
1035		ke = kseq_choose(kseq);
1036		runq_remove(ke->ke_runq, ke);
1037		ke->ke_state = KES_THREAD;
1038		kseq_rem(kseq, ke);
1039
1040		ke->ke_cpu = PCPU_GET(cpuid);
1041		sched_add(ke);
1042		goto retry;
1043	}
1044#endif
1045
1046	return (NULL);
1047}
1048
1049void
1050sched_add(struct kse *ke)
1051{
1052	struct kseq *kseq;
1053	struct ksegrp *kg;
1054
1055	mtx_assert(&sched_lock, MA_OWNED);
1056	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1057	KASSERT((ke->ke_thread->td_kse != NULL),
1058	    ("sched_add: No KSE on thread"));
1059	KASSERT(ke->ke_state != KES_ONRUNQ,
1060	    ("sched_add: kse %p (%s) already in run queue", ke,
1061	    ke->ke_proc->p_comm));
1062	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1063	    ("sched_add: process swapped out"));
1064	KASSERT(ke->ke_runq == NULL,
1065	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1066
1067	kg = ke->ke_ksegrp;
1068
1069	switch (PRI_BASE(kg->kg_pri_class)) {
1070	case PRI_ITHD:
1071	case PRI_REALTIME:
1072		kseq = KSEQ_SELF();
1073		ke->ke_runq = kseq->ksq_curr;
1074		ke->ke_slice = SCHED_SLICE_MAX;
1075		ke->ke_cpu = PCPU_GET(cpuid);
1076		break;
1077	case PRI_TIMESHARE:
1078		kseq = KSEQ_CPU(ke->ke_cpu);
1079		if (SCHED_CURR(kg, ke))
1080			ke->ke_runq = kseq->ksq_curr;
1081		else
1082			ke->ke_runq = kseq->ksq_next;
1083		break;
1084	case PRI_IDLE:
1085		kseq = KSEQ_CPU(ke->ke_cpu);
1086		/*
1087		 * This is for priority prop.
1088		 */
1089		if (ke->ke_thread->td_priority < PRI_MAX_TIMESHARE)
1090			ke->ke_runq = kseq->ksq_curr;
1091		else
1092			ke->ke_runq = &kseq->ksq_idle;
1093		ke->ke_slice = SCHED_SLICE_MIN;
1094		break;
1095	default:
1096		panic("Unknown pri class.\n");
1097		break;
1098	}
1099
1100	ke->ke_ksegrp->kg_runq_kses++;
1101	ke->ke_state = KES_ONRUNQ;
1102
1103	runq_add(ke->ke_runq, ke);
1104	kseq_add(kseq, ke);
1105}
1106
1107void
1108sched_rem(struct kse *ke)
1109{
1110	struct kseq *kseq;
1111
1112	mtx_assert(&sched_lock, MA_OWNED);
1113	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1114
1115	ke->ke_state = KES_THREAD;
1116	ke->ke_ksegrp->kg_runq_kses--;
1117	kseq = KSEQ_CPU(ke->ke_cpu);
1118	runq_remove(ke->ke_runq, ke);
1119	kseq_rem(kseq, ke);
1120}
1121
1122fixpt_t
1123sched_pctcpu(struct kse *ke)
1124{
1125	fixpt_t pctcpu;
1126
1127	pctcpu = 0;
1128
1129	if (ke->ke_ticks) {
1130		int rtick;
1131
1132		/* Update to account for time potentially spent sleeping */
1133		ke->ke_ltick = ticks;
1134		sched_pctcpu_update(ke);
1135
1136		/* How many rtick per second ? */
1137		rtick = ke->ke_ticks / SCHED_CPU_TIME;
1138		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1139	}
1140
1141	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1142
1143	return (pctcpu);
1144}
1145
1146int
1147sched_sizeof_kse(void)
1148{
1149	return (sizeof(struct kse) + sizeof(struct ke_sched));
1150}
1151
1152int
1153sched_sizeof_ksegrp(void)
1154{
1155	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1156}
1157
1158int
1159sched_sizeof_proc(void)
1160{
1161	return (sizeof(struct proc));
1162}
1163
1164int
1165sched_sizeof_thread(void)
1166{
1167	return (sizeof(struct thread) + sizeof(struct td_sched));
1168}
1169