sched_ule.c revision 111032
1/*-
2 * Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/kern/sched_ule.c 111032 2003-02-17 09:55:10Z julian $
27 */
28
29#include <sys/param.h>
30#include <sys/systm.h>
31#include <sys/kernel.h>
32#include <sys/ktr.h>
33#include <sys/lock.h>
34#include <sys/mutex.h>
35#include <sys/proc.h>
36#include <sys/sched.h>
37#include <sys/smp.h>
38#include <sys/sx.h>
39#include <sys/sysctl.h>
40#include <sys/sysproto.h>
41#include <sys/vmmeter.h>
42#ifdef DDB
43#include <ddb/ddb.h>
44#endif
45#ifdef KTRACE
46#include <sys/uio.h>
47#include <sys/ktrace.h>
48#endif
49
50#include <machine/cpu.h>
51
52/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
53/* XXX This is bogus compatability crap for ps */
54static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
55SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
56
57static void sched_setup(void *dummy);
58SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
59
60#define	SCHED_STRICT_RESCHED 1
61
62/*
63 * These datastructures are allocated within their parent datastructure but
64 * are scheduler specific.
65 */
66
67struct ke_sched {
68	int		ske_slice;
69	struct runq	*ske_runq;
70	/* The following variables are only used for pctcpu calculation */
71	int		ske_ltick;	/* Last tick that we were running on */
72	int		ske_ftick;	/* First tick that we were running on */
73	int		ske_ticks;	/* Tick count */
74	u_char		ske_cpu;
75};
76#define	ke_slice	ke_sched->ske_slice
77#define	ke_runq		ke_sched->ske_runq
78#define	ke_ltick	ke_sched->ske_ltick
79#define	ke_ftick	ke_sched->ske_ftick
80#define	ke_ticks	ke_sched->ske_ticks
81#define	ke_cpu		ke_sched->ske_cpu
82
83struct kg_sched {
84	int	skg_slptime;		/* Number of ticks we vol. slept */
85	int	skg_runtime;		/* Number of ticks we were running */
86};
87#define	kg_slptime	kg_sched->skg_slptime
88#define	kg_runtime	kg_sched->skg_runtime
89
90struct td_sched {
91	int	std_slptime;
92	int	std_schedflag;
93};
94#define	td_slptime	td_sched->std_slptime
95#define	td_schedflag	td_sched->std_schedflag
96
97#define	TD_SCHED_BLOAD	0x0001		/*
98					 * thread was counted as being in short
99					 * term sleep.
100					 */
101struct td_sched td_sched;
102struct ke_sched ke_sched;
103struct kg_sched kg_sched;
104
105struct ke_sched *kse0_sched = &ke_sched;
106struct kg_sched *ksegrp0_sched = &kg_sched;
107struct p_sched *proc0_sched = NULL;
108struct td_sched *thread0_sched = &td_sched;
109
110/*
111 * This priority range has 20 priorities on either end that are reachable
112 * only through nice values.
113 */
114#define	SCHED_PRI_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
115#define	SCHED_PRI_NRESV	40
116#define	SCHED_PRI_BASE	(SCHED_PRI_NRESV / 2)
117#define	SCHED_PRI_DYN	(SCHED_PRI_RANGE - SCHED_PRI_NRESV)
118#define	SCHED_PRI_DYN_HALF	(SCHED_PRI_DYN / 2)
119
120/*
121 * These determine how sleep time effects the priority of a process.
122 *
123 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
124 *		before throttling back.
125 * SLP_RUN_THORTTLE:	Divisor for reducing slp/run time.
126 * SLP_RATIO:	Compute a bounded ratio of slp time vs run time.
127 * SLP_TOPRI:	Convert a number of ticks slept and ticks ran into a priority
128 */
129#define	SCHED_SLP_RUN_MAX	((hz * 30) * 1024)
130#define	SCHED_SLP_RUN_THROTTLE	(10)
131static __inline int
132sched_slp_ratio(int b, int s)
133{
134	b /= SCHED_PRI_DYN_HALF;
135	if (b == 0)
136		return (0);
137	s /= b;
138	return (s);
139}
140#define	SCHED_SLP_TOPRI(slp, run)					\
141    ((((slp) > (run))?							\
142    sched_slp_ratio((slp), (run)):					\
143    SCHED_PRI_DYN_HALF + (SCHED_PRI_DYN_HALF - sched_slp_ratio((run), (slp))))+ \
144    SCHED_PRI_NRESV / 2)
145/*
146 * These parameters and macros determine the size of the time slice that is
147 * granted to each thread.
148 *
149 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
150 * SLICE_MAX:	Maximum time slice granted.
151 * SLICE_RANGE:	Range of available time slices scaled by hz.
152 * SLICE_SCALE:	The number slices granted per unit of pri or slp.
153 * PRI_TOSLICE:	Compute a slice size that is proportional to the priority.
154 * SLP_TOSLICE:	Compute a slice size that is inversely proportional to the
155 *		amount of time slept. (smaller slices for interactive ksegs)
156 * PRI_COMP:	This determines what fraction of the actual slice comes from
157 *		the slice size computed from the priority.
158 * SLP_COMP:	This determines what component of the actual slice comes from
159 *		the slize size computed from the sleep time.
160 */
161#define	SCHED_SLICE_MIN		(hz / 100)
162#define	SCHED_SLICE_MAX		(hz / 4)
163#define	SCHED_SLICE_RANGE	(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
164#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
165#define	SCHED_PRI_TOSLICE(pri)						\
166    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((pri), SCHED_PRI_RANGE))
167#define	SCHED_SLP_TOSLICE(slp)						\
168    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((slp), SCHED_PRI_DYN))
169#define	SCHED_SLP_COMP(slice)	(((slice) / 5) * 3)	/* 60% */
170#define	SCHED_PRI_COMP(slice)	(((slice) / 5) * 2)	/* 40% */
171
172/*
173 * This macro determines whether or not the kse belongs on the current or
174 * next run queue.
175 *
176 * XXX nice value should effect how interactive a kg is.
177 */
178#define	SCHED_CURR(kg)	(((kg)->kg_slptime > (kg)->kg_runtime &&	\
179	sched_slp_ratio((kg)->kg_slptime, (kg)->kg_runtime) > 4) ||	\
180	(kg)->kg_pri_class != PRI_TIMESHARE)
181
182/*
183 * Cpu percentage computation macros and defines.
184 *
185 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
186 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
187 */
188
189#define	SCHED_CPU_TIME	60
190#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
191
192/*
193 * kseq - pair of runqs per processor
194 */
195
196struct kseq {
197	struct runq	ksq_runqs[2];
198	struct runq	*ksq_curr;
199	struct runq	*ksq_next;
200	int		ksq_load;	/* Total runnable */
201#ifdef SMP
202	unsigned int	ksq_rslices;	/* Slices on run queue */
203	unsigned int	ksq_bload;	/* Threads waiting on IO */
204#endif
205};
206
207/*
208 * One kse queue per processor.
209 */
210#ifdef SMP
211struct kseq	kseq_cpu[MAXCPU];
212#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
213#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
214#else
215struct kseq	kseq_cpu;
216#define	KSEQ_SELF()	(&kseq_cpu)
217#define	KSEQ_CPU(x)	(&kseq_cpu)
218#endif
219
220static int sched_slice(struct ksegrp *kg);
221static int sched_priority(struct ksegrp *kg);
222void sched_pctcpu_update(struct kse *ke);
223int sched_pickcpu(void);
224
225/* Operations on per processor queues */
226static struct kse * kseq_choose(struct kseq *kseq);
227static void kseq_setup(struct kseq *kseq);
228static __inline void kseq_add(struct kseq *kseq, struct kse *ke);
229static __inline void kseq_rem(struct kseq *kseq, struct kse *ke);
230#ifdef SMP
231static __inline void kseq_sleep(struct kseq *kseq, struct kse *ke);
232static __inline void kseq_wakeup(struct kseq *kseq, struct kse *ke);
233struct kseq * kseq_load_highest(void);
234#endif
235
236static __inline void
237kseq_add(struct kseq *kseq, struct kse *ke)
238{
239	runq_add(ke->ke_runq, ke);
240	kseq->ksq_load++;
241#ifdef SMP
242	kseq->ksq_rslices += ke->ke_slice;
243#endif
244}
245static __inline void
246kseq_rem(struct kseq *kseq, struct kse *ke)
247{
248	kseq->ksq_load--;
249	runq_remove(ke->ke_runq, ke);
250#ifdef SMP
251	kseq->ksq_rslices -= ke->ke_slice;
252#endif
253}
254
255#ifdef SMP
256static __inline void
257kseq_sleep(struct kseq *kseq, struct kse *ke)
258{
259	kseq->ksq_bload++;
260}
261
262static __inline void
263kseq_wakeup(struct kseq *kseq, struct kse *ke)
264{
265	kseq->ksq_bload--;
266}
267
268struct kseq *
269kseq_load_highest(void)
270{
271	struct kseq *kseq;
272	int load;
273	int cpu;
274	int i;
275
276	cpu = 0;
277	load = 0;
278
279	for (i = 0; i < mp_maxid; i++) {
280		if (CPU_ABSENT(i))
281			continue;
282		kseq = KSEQ_CPU(i);
283		if (kseq->ksq_load > load) {
284			load = kseq->ksq_load;
285			cpu = i;
286		}
287	}
288	if (load)
289		return (KSEQ_CPU(cpu));
290
291	return (NULL);
292}
293#endif
294
295struct kse *
296kseq_choose(struct kseq *kseq)
297{
298	struct kse *ke;
299	struct runq *swap;
300
301	if ((ke = runq_choose(kseq->ksq_curr)) == NULL) {
302		swap = kseq->ksq_curr;
303		kseq->ksq_curr = kseq->ksq_next;
304		kseq->ksq_next = swap;
305		ke = runq_choose(kseq->ksq_curr);
306	}
307
308	return (ke);
309}
310
311
312static void
313kseq_setup(struct kseq *kseq)
314{
315	kseq->ksq_curr = &kseq->ksq_runqs[0];
316	kseq->ksq_next = &kseq->ksq_runqs[1];
317	runq_init(kseq->ksq_curr);
318	runq_init(kseq->ksq_next);
319	kseq->ksq_load = 0;
320#ifdef SMP
321	kseq->ksq_rslices = 0;
322	kseq->ksq_bload = 0;
323#endif
324}
325
326static void
327sched_setup(void *dummy)
328{
329	int i;
330
331	mtx_lock_spin(&sched_lock);
332	/* init kseqs */
333	for (i = 0; i < MAXCPU; i++)
334		kseq_setup(KSEQ_CPU(i));
335	mtx_unlock_spin(&sched_lock);
336}
337
338/*
339 * Scale the scheduling priority according to the "interactivity" of this
340 * process.
341 */
342static int
343sched_priority(struct ksegrp *kg)
344{
345	int pri;
346
347	if (kg->kg_pri_class != PRI_TIMESHARE)
348		return (kg->kg_user_pri);
349
350	pri = SCHED_SLP_TOPRI(kg->kg_slptime, kg->kg_runtime);
351	CTR2(KTR_RUNQ, "sched_priority: slptime: %d\tpri: %d",
352	    kg->kg_slptime, pri);
353
354	pri += PRI_MIN_TIMESHARE;
355	pri += kg->kg_nice;
356
357	if (pri > PRI_MAX_TIMESHARE)
358		pri = PRI_MAX_TIMESHARE;
359	else if (pri < PRI_MIN_TIMESHARE)
360		pri = PRI_MIN_TIMESHARE;
361
362	kg->kg_user_pri = pri;
363
364	return (kg->kg_user_pri);
365}
366
367/*
368 * Calculate a time slice based on the process priority.
369 */
370static int
371sched_slice(struct ksegrp *kg)
372{
373	int pslice;
374	int sslice;
375	int slice;
376	int pri;
377
378	pri = kg->kg_user_pri;
379	pri -= PRI_MIN_TIMESHARE;
380	pslice = SCHED_PRI_TOSLICE(pri);
381	sslice = SCHED_PRI_TOSLICE(SCHED_SLP_TOPRI(kg->kg_slptime, kg->kg_runtime));
382/*
383SCHED_SLP_TOSLICE(SCHED_SLP_RATIO(
384	    kg->kg_slptime, kg->kg_runtime));
385*/
386	slice = SCHED_SLP_COMP(sslice) + SCHED_PRI_COMP(pslice);
387
388	CTR4(KTR_RUNQ,
389	    "sched_slice: pri: %d\tsslice: %d\tpslice: %d\tslice: %d",
390	    pri, sslice, pslice, slice);
391
392	if (slice < SCHED_SLICE_MIN)
393		slice = SCHED_SLICE_MIN;
394	else if (slice > SCHED_SLICE_MAX)
395		slice = SCHED_SLICE_MAX;
396
397	/*
398	 * Every time we grant a new slice check to see if we need to scale
399	 * back the slp and run time in the kg.  This will cause us to forget
400	 * old interactivity while maintaining the current ratio.
401	 */
402	if ((kg->kg_runtime + kg->kg_slptime) >  SCHED_SLP_RUN_MAX) {
403		kg->kg_runtime /= SCHED_SLP_RUN_THROTTLE;
404		kg->kg_slptime /= SCHED_SLP_RUN_THROTTLE;
405	}
406
407	return (slice);
408}
409
410int
411sched_rr_interval(void)
412{
413	return (SCHED_SLICE_MAX);
414}
415
416void
417sched_pctcpu_update(struct kse *ke)
418{
419	/*
420	 * Adjust counters and watermark for pctcpu calc.
421	 */
422	ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
423		    SCHED_CPU_TICKS;
424	ke->ke_ltick = ticks;
425	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
426}
427
428#ifdef SMP
429/* XXX Should be changed to kseq_load_lowest() */
430int
431sched_pickcpu(void)
432{
433	struct kseq *kseq;
434	int load;
435	int cpu;
436	int i;
437
438	if (!smp_started)
439		return (0);
440
441	load = 0;
442	cpu = 0;
443
444	for (i = 0; i < mp_maxid; i++) {
445		if (CPU_ABSENT(i))
446			continue;
447		kseq = KSEQ_CPU(i);
448		if (kseq->ksq_load < load) {
449			cpu = i;
450			load = kseq->ksq_load;
451		}
452	}
453
454	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
455	return (cpu);
456}
457#else
458int
459sched_pickcpu(void)
460{
461	return (0);
462}
463#endif
464
465void
466sched_prio(struct thread *td, u_char prio)
467{
468	struct kse *ke;
469	struct runq *rq;
470
471	mtx_assert(&sched_lock, MA_OWNED);
472	ke = td->td_kse;
473	td->td_priority = prio;
474
475	if (TD_ON_RUNQ(td)) {
476		rq = ke->ke_runq;
477
478		runq_remove(rq, ke);
479		runq_add(rq, ke);
480	}
481}
482
483void
484sched_switchout(struct thread *td)
485{
486	struct kse *ke;
487
488	mtx_assert(&sched_lock, MA_OWNED);
489
490	ke = td->td_kse;
491
492	td->td_last_kse = ke;
493        td->td_lastcpu = ke->ke_oncpu;
494	ke->ke_oncpu = NOCPU;
495        td->td_flags &= ~TDF_NEEDRESCHED;
496
497	if (TD_IS_RUNNING(td)) {
498		setrunqueue(td);
499		return;
500	} else
501		td->td_kse->ke_runq = NULL;
502
503	/*
504	 * We will not be on the run queue. So we must be
505	 * sleeping or similar.
506	 */
507	if (td->td_proc->p_flag & P_KSES)
508		kse_reassign(ke);
509}
510
511void
512sched_switchin(struct thread *td)
513{
514	/* struct kse *ke = td->td_kse; */
515	mtx_assert(&sched_lock, MA_OWNED);
516
517	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
518#if SCHED_STRICT_RESCHED
519	if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
520	    td->td_priority != td->td_ksegrp->kg_user_pri)
521		curthread->td_flags |= TDF_NEEDRESCHED;
522#endif
523}
524
525void
526sched_nice(struct ksegrp *kg, int nice)
527{
528	struct thread *td;
529
530	kg->kg_nice = nice;
531	sched_priority(kg);
532	FOREACH_THREAD_IN_GROUP(kg, td) {
533		td->td_flags |= TDF_NEEDRESCHED;
534	}
535}
536
537void
538sched_sleep(struct thread *td, u_char prio)
539{
540	mtx_assert(&sched_lock, MA_OWNED);
541
542	td->td_slptime = ticks;
543	td->td_priority = prio;
544
545	/*
546	 * If this is an interactive task clear its queue so it moves back
547	 * on to curr when it wakes up.  Otherwise let it stay on the queue
548	 * that it was assigned to.
549	 */
550	if (SCHED_CURR(td->td_kse->ke_ksegrp))
551		td->td_kse->ke_runq = NULL;
552#ifdef SMP
553	if (td->td_priority < PZERO) {
554		kseq_sleep(KSEQ_CPU(td->td_kse->ke_cpu), td->td_kse);
555		td->td_schedflag |= TD_SCHED_BLOAD;
556	}
557#endif
558}
559
560void
561sched_wakeup(struct thread *td)
562{
563	struct ksegrp *kg;
564
565	mtx_assert(&sched_lock, MA_OWNED);
566
567	/*
568	 * Let the kseg know how long we slept for.  This is because process
569	 * interactivity behavior is modeled in the kseg.
570	 */
571	kg = td->td_ksegrp;
572
573	if (td->td_slptime) {
574		kg->kg_slptime += (ticks - td->td_slptime) * 1024;
575		td->td_priority = sched_priority(kg);
576	}
577	td->td_slptime = 0;
578#ifdef SMP
579	if (td->td_priority < PZERO && td->td_schedflag & TD_SCHED_BLOAD) {
580		kseq_wakeup(KSEQ_CPU(td->td_kse->ke_cpu), td->td_kse);
581		td->td_schedflag &= ~TD_SCHED_BLOAD;
582	}
583#endif
584	setrunqueue(td);
585#if SCHED_STRICT_RESCHED
586        if (td->td_priority < curthread->td_priority)
587                curthread->td_flags |= TDF_NEEDRESCHED;
588#endif
589}
590
591/*
592 * Penalize the parent for creating a new child and initialize the child's
593 * priority.
594 */
595void
596sched_fork(struct ksegrp *kg, struct ksegrp *child)
597{
598	struct kse *ckse;
599	struct kse *pkse;
600
601	mtx_assert(&sched_lock, MA_OWNED);
602	ckse = FIRST_KSE_IN_KSEGRP(child);
603	pkse = FIRST_KSE_IN_KSEGRP(kg);
604
605	/* XXX Need something better here */
606	if (kg->kg_slptime > kg->kg_runtime) {
607		child->kg_slptime = SCHED_PRI_DYN;
608		child->kg_runtime = kg->kg_slptime / SCHED_PRI_DYN;
609	} else {
610		child->kg_runtime = SCHED_PRI_DYN;
611		child->kg_slptime = kg->kg_runtime / SCHED_PRI_DYN;
612	}
613#if 0
614	child->kg_slptime = kg->kg_slptime;
615	child->kg_runtime = kg->kg_runtime;
616#endif
617	child->kg_user_pri = kg->kg_user_pri;
618
619#if 0
620	if (pkse->ke_cpu != PCPU_GET(cpuid)) {
621		printf("pkse->ke_cpu = %d\n", pkse->ke_cpu);
622		printf("cpuid = %d", PCPU_GET(cpuid));
623		Debugger("stop");
624	}
625#endif
626
627	ckse->ke_slice = pkse->ke_slice;
628	ckse->ke_cpu = pkse->ke_cpu; /* sched_pickcpu(); */
629	ckse->ke_runq = NULL;
630	/*
631	 * Claim that we've been running for one second for statistical
632	 * purposes.
633	 */
634	ckse->ke_ticks = 0;
635	ckse->ke_ltick = ticks;
636	ckse->ke_ftick = ticks - hz;
637}
638
639/*
640 * Return some of the child's priority and interactivity to the parent.
641 */
642void
643sched_exit(struct ksegrp *kg, struct ksegrp *child)
644{
645	/* XXX Need something better here */
646	mtx_assert(&sched_lock, MA_OWNED);
647	kg->kg_slptime = child->kg_slptime;
648	kg->kg_runtime = child->kg_runtime;
649	sched_priority(kg);
650}
651
652void
653sched_clock(struct thread *td)
654{
655	struct kse *ke;
656#if SCHED_STRICT_RESCHED
657	struct kse *nke;
658	struct kseq *kseq;
659#endif
660	struct ksegrp *kg;
661
662
663	ke = td->td_kse;
664	kg = td->td_ksegrp;
665
666	mtx_assert(&sched_lock, MA_OWNED);
667	KASSERT((td != NULL), ("schedclock: null thread pointer"));
668
669	/* Adjust ticks for pctcpu */
670	ke->ke_ticks += 10000;
671	ke->ke_ltick = ticks;
672	/* Go up to one second beyond our max and then trim back down */
673	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
674		sched_pctcpu_update(ke);
675
676	if (td->td_kse->ke_flags & KEF_IDLEKSE)
677		return;
678
679	/*
680	 * Check for a higher priority task on the run queue.  This can happen
681	 * on SMP if another processor woke up a process on our runq.
682	 */
683#if SCHED_STRICT_RESCHED
684	kseq = KSEQ_SELF();
685	nke = runq_choose(kseq->ksq_curr);
686
687	if (nke && nke->ke_thread &&
688	    nke->ke_thread->td_priority < td->td_priority)
689		td->td_flags |= TDF_NEEDRESCHED;
690#endif
691	/*
692	 * We used a tick charge it to the ksegrp so that we can compute our
693	 * "interactivity".
694	 */
695	kg->kg_runtime += 1024;
696
697	/*
698	 * We used up one time slice.
699	 */
700	ke->ke_slice--;
701	/*
702	 * We're out of time, recompute priorities and requeue
703	 */
704	if (ke->ke_slice == 0) {
705		td->td_priority = sched_priority(kg);
706		ke->ke_slice = sched_slice(kg);
707		td->td_flags |= TDF_NEEDRESCHED;
708		ke->ke_runq = NULL;
709	}
710}
711
712int
713sched_runnable(void)
714{
715	struct kseq *kseq;
716
717	kseq = KSEQ_SELF();
718
719	if (kseq->ksq_load)
720		return (1);
721#ifdef SMP
722	/*
723	 * For SMP we may steal other processor's KSEs.  Just search until we
724	 * verify that at least on other cpu has a runnable task.
725	 */
726	if (smp_started) {
727		int i;
728
729#if 0
730		if (kseq->ksq_bload)
731			return (0);
732#endif
733
734		for (i = 0; i < mp_maxid; i++) {
735			if (CPU_ABSENT(i))
736				continue;
737			kseq = KSEQ_CPU(i);
738			if (kseq->ksq_load)
739				return (1);
740		}
741	}
742#endif
743	return (0);
744}
745
746void
747sched_userret(struct thread *td)
748{
749	struct ksegrp *kg;
750
751	kg = td->td_ksegrp;
752
753	if (td->td_priority != kg->kg_user_pri) {
754		mtx_lock_spin(&sched_lock);
755		td->td_priority = kg->kg_user_pri;
756		mtx_unlock_spin(&sched_lock);
757	}
758}
759
760struct kse *
761sched_choose(void)
762{
763	struct kseq *kseq;
764	struct kse *ke;
765
766	kseq = KSEQ_SELF();
767	ke = kseq_choose(kseq);
768
769	if (ke) {
770		ke->ke_state = KES_THREAD;
771		kseq_rem(kseq, ke);
772	}
773
774#ifdef SMP
775	if (ke == NULL && smp_started) {
776#if 0
777		if (kseq->ksq_bload)
778			return (NULL);
779#endif
780		/*
781		 * Find the cpu with the highest load and steal one proc.
782		 */
783		kseq = kseq_load_highest();
784		if (kseq == NULL)
785			return (NULL);
786		ke = kseq_choose(kseq);
787		kseq_rem(kseq, ke);
788
789		ke->ke_state = KES_THREAD;
790		ke->ke_runq = NULL;
791		ke->ke_cpu = PCPU_GET(cpuid);
792	}
793#endif
794	return (ke);
795}
796
797void
798sched_add(struct kse *ke)
799{
800	struct kseq *kseq;
801
802	mtx_assert(&sched_lock, MA_OWNED);
803	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
804	KASSERT((ke->ke_thread->td_kse != NULL),
805	    ("sched_add: No KSE on thread"));
806	KASSERT(ke->ke_state != KES_ONRUNQ,
807	    ("sched_add: kse %p (%s) already in run queue", ke,
808	    ke->ke_proc->p_comm));
809	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
810	    ("sched_add: process swapped out"));
811
812	kseq = KSEQ_CPU(ke->ke_cpu);
813
814	if (ke->ke_runq == NULL) {
815		if (SCHED_CURR(ke->ke_ksegrp))
816			ke->ke_runq = kseq->ksq_curr;
817		else
818			ke->ke_runq = kseq->ksq_next;
819	}
820	ke->ke_ksegrp->kg_runq_kses++;
821	ke->ke_state = KES_ONRUNQ;
822
823	kseq_add(kseq, ke);
824}
825
826void
827sched_rem(struct kse *ke)
828{
829	mtx_assert(&sched_lock, MA_OWNED);
830	/* KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue")); */
831
832	ke->ke_runq = NULL;
833	ke->ke_state = KES_THREAD;
834	ke->ke_ksegrp->kg_runq_kses--;
835
836	kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
837}
838
839fixpt_t
840sched_pctcpu(struct kse *ke)
841{
842	fixpt_t pctcpu;
843	int realstathz;
844
845	pctcpu = 0;
846	realstathz = stathz ? stathz : hz;
847
848	if (ke->ke_ticks) {
849		int rtick;
850
851		/* Update to account for time potentially spent sleeping */
852		ke->ke_ltick = ticks;
853		sched_pctcpu_update(ke);
854
855		/* How many rtick per second ? */
856		rtick = ke->ke_ticks / (SCHED_CPU_TIME * 10000);
857		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
858	}
859
860	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
861
862	return (pctcpu);
863}
864
865int
866sched_sizeof_kse(void)
867{
868	return (sizeof(struct kse) + sizeof(struct ke_sched));
869}
870
871int
872sched_sizeof_ksegrp(void)
873{
874	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
875}
876
877int
878sched_sizeof_proc(void)
879{
880	return (sizeof(struct proc));
881}
882
883int
884sched_sizeof_thread(void)
885{
886	return (sizeof(struct thread) + sizeof(struct td_sched));
887}
888