sched_ule.c revision 110028
1/*-
2 * Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/kern/sched_ule.c 110028 2003-01-29 07:00:51Z jeff $
27 */
28
29#include <sys/param.h>
30#include <sys/systm.h>
31#include <sys/kernel.h>
32#include <sys/ktr.h>
33#include <sys/lock.h>
34#include <sys/mutex.h>
35#include <sys/proc.h>
36#include <sys/sched.h>
37#include <sys/smp.h>
38#include <sys/sx.h>
39#include <sys/sysctl.h>
40#include <sys/sysproto.h>
41#include <sys/vmmeter.h>
42#ifdef DDB
43#include <ddb/ddb.h>
44#endif
45#ifdef KTRACE
46#include <sys/uio.h>
47#include <sys/ktrace.h>
48#endif
49
50#include <machine/cpu.h>
51
52/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
53/* XXX This is bogus compatability crap for ps */
54static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
55SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
56
57static void sched_setup(void *dummy);
58SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
59
60/*
61 * These datastructures are allocated within their parent datastructure but
62 * are scheduler specific.
63 */
64
65struct ke_sched {
66	int		ske_slice;
67	struct runq	*ske_runq;
68	/* The following variables are only used for pctcpu calculation */
69	int		ske_ltick;	/* Last tick that we were running on */
70	int		ske_ftick;	/* First tick that we were running on */
71	int		ske_ticks;	/* Tick count */
72};
73#define	ke_slice	ke_sched->ske_slice
74#define	ke_runq		ke_sched->ske_runq
75#define	ke_ltick	ke_sched->ske_ltick
76#define	ke_ftick	ke_sched->ske_ftick
77#define	ke_ticks	ke_sched->ske_ticks
78
79struct kg_sched {
80	int	skg_slptime;
81};
82#define	kg_slptime	kg_sched->skg_slptime
83
84struct td_sched {
85	int	std_slptime;
86};
87#define	td_slptime	td_sched->std_slptime
88
89struct ke_sched ke_sched;
90struct kg_sched kg_sched;
91struct td_sched td_sched;
92
93struct ke_sched *kse0_sched = &ke_sched;
94struct kg_sched *ksegrp0_sched = &kg_sched;
95struct p_sched *proc0_sched = NULL;
96struct td_sched *thread0_sched = &td_sched;
97
98/*
99 * This priority range has 20 priorities on either end that are reachable
100 * only through nice values.
101 */
102#define	SCHED_PRI_NRESV	40
103#define	SCHED_PRI_RANGE	((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) - \
104    SCHED_PRI_NRESV)
105
106/*
107 * These determine how sleep time effects the priority of a process.
108 *
109 * SLP_MAX:	Maximum amount of accrued sleep time.
110 * SLP_SCALE:	Scale the number of ticks slept across the dynamic priority
111 *		range.
112 * SLP_TOPRI:	Convert a number of ticks slept into a priority value.
113 * SLP_DECAY:	Reduce the sleep time to 50% for every granted slice.
114 */
115#define	SCHED_SLP_MAX	(hz * 2)
116#define	SCHED_SLP_SCALE(slp)	(((slp) * SCHED_PRI_RANGE) / SCHED_SLP_MAX)
117#define	SCHED_SLP_TOPRI(slp)	(SCHED_PRI_RANGE - SCHED_SLP_SCALE((slp)) + \
118    SCHED_PRI_NRESV / 2)
119#define	SCHED_SLP_DECAY(slp)	((slp) / 2)	/* XXX Multiple kses break */
120
121/*
122 * These parameters and macros determine the size of the time slice that is
123 * granted to each thread.
124 *
125 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
126 * SLICE_MAX:	Maximum time slice granted.
127 * SLICE_RANGE:	Range of available time slices scaled by hz.
128 * SLICE_SCALE:	The number slices granted per unit of pri or slp.
129 * PRI_TOSLICE:	Compute a slice size that is proportional to the priority.
130 * SLP_TOSLICE:	Compute a slice size that is inversely proportional to the
131 *		amount of time slept. (smaller slices for interactive ksegs)
132 * PRI_COMP:	This determines what fraction of the actual slice comes from
133 *		the slice size computed from the priority.
134 * SLP_COMP:	This determines what component of the actual slice comes from
135 *		the slize size computed from the sleep time.
136 */
137#define	SCHED_SLICE_MIN		(hz / 100)
138#define	SCHED_SLICE_MAX		(hz / 10)
139#define	SCHED_SLICE_RANGE	(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
140#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
141#define	SCHED_PRI_TOSLICE(pri)						\
142    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((pri), SCHED_PRI_RANGE))
143#define	SCHED_SLP_TOSLICE(slp)						\
144    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((slp), SCHED_SLP_MAX))
145#define	SCHED_SLP_COMP(slice)	(((slice) / 5) * 3)	/* 60% */
146#define	SCHED_PRI_COMP(slice)	(((slice) / 5) * 2)	/* 40% */
147
148/*
149 * This macro determines whether or not the kse belongs on the current or
150 * next run queue.
151 */
152#define	SCHED_CURR(kg)	((kg)->kg_slptime > (hz / 4) || \
153    (kg)->kg_pri_class != PRI_TIMESHARE)
154
155/*
156 * Cpu percentage computation macros and defines.
157 *
158 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
159 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
160 */
161
162#define	SCHED_CPU_TIME	60
163#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
164
165/*
166 * kseq - pair of runqs per processor
167 */
168
169struct kseq {
170	struct runq	ksq_runqs[2];
171	struct runq	*ksq_curr;
172	struct runq	*ksq_next;
173	int		ksq_load;	/* Total runnable */
174};
175
176/*
177 * One kse queue per processor.
178 */
179#ifdef SMP
180struct kseq	kseq_cpu[MAXCPU];
181#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
182#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
183#else
184struct kseq	kseq_cpu;
185#define	KSEQ_SELF()	(&kseq_cpu)
186#define	KSEQ_CPU(x)	(&kseq_cpu)
187#endif
188
189static int sched_slice(struct ksegrp *kg);
190static int sched_priority(struct ksegrp *kg);
191void sched_pctcpu_update(struct kse *ke);
192int sched_pickcpu(void);
193
194static struct kse * kseq_choose(struct kseq *kseq);
195static void kseq_setup(struct kseq *kseq);
196
197static void
198kseq_setup(struct kseq *kseq)
199{
200	kseq->ksq_load = 0;
201	kseq->ksq_curr = &kseq->ksq_runqs[0];
202	kseq->ksq_next = &kseq->ksq_runqs[1];
203	runq_init(kseq->ksq_curr);
204	runq_init(kseq->ksq_next);
205}
206
207static void
208sched_setup(void *dummy)
209{
210	int i;
211
212	mtx_lock_spin(&sched_lock);
213	/* init kseqs */
214	for (i = 0; i < MAXCPU; i++)
215		kseq_setup(KSEQ_CPU(i));
216	mtx_unlock_spin(&sched_lock);
217}
218
219/*
220 * Scale the scheduling priority according to the "interactivity" of this
221 * process.
222 */
223static int
224sched_priority(struct ksegrp *kg)
225{
226	int pri;
227
228	if (kg->kg_pri_class != PRI_TIMESHARE)
229		return (kg->kg_user_pri);
230
231	pri = SCHED_SLP_TOPRI(kg->kg_slptime);
232	CTR2(KTR_RUNQ, "sched_priority: slptime: %d\tpri: %d",
233	    kg->kg_slptime, pri);
234
235	pri += PRI_MIN_TIMESHARE;
236	pri += kg->kg_nice;
237
238	if (pri > PRI_MAX_TIMESHARE)
239		pri = PRI_MAX_TIMESHARE;
240	else if (pri < PRI_MIN_TIMESHARE)
241		pri = PRI_MIN_TIMESHARE;
242
243	kg->kg_user_pri = pri;
244
245	return (kg->kg_user_pri);
246}
247
248/*
249 * Calculate a time slice based on the process priority.
250 */
251static int
252sched_slice(struct ksegrp *kg)
253{
254	int pslice;
255	int sslice;
256	int slice;
257	int pri;
258
259	pri = kg->kg_user_pri;
260	pri -= PRI_MIN_TIMESHARE;
261	pslice = SCHED_PRI_TOSLICE(pri);
262	sslice = SCHED_SLP_TOSLICE(kg->kg_slptime);
263	slice = SCHED_SLP_COMP(sslice) + SCHED_PRI_COMP(pslice);
264	kg->kg_slptime = SCHED_SLP_DECAY(kg->kg_slptime);
265
266	CTR4(KTR_RUNQ,
267	    "sched_slice: pri: %d\tsslice: %d\tpslice: %d\tslice: %d",
268	    pri, sslice, pslice, slice);
269
270	if (slice < SCHED_SLICE_MIN)
271		slice = SCHED_SLICE_MIN;
272	else if (slice > SCHED_SLICE_MAX)
273		slice = SCHED_SLICE_MAX;
274
275	return (slice);
276}
277
278int
279sched_rr_interval(void)
280{
281	return (SCHED_SLICE_MAX);
282}
283
284void
285sched_pctcpu_update(struct kse *ke)
286{
287	/*
288	 * Adjust counters and watermark for pctcpu calc.
289	 */
290	ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
291		    SCHED_CPU_TICKS;
292	ke->ke_ltick = ticks;
293	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
294}
295
296#ifdef SMP
297int
298sched_pickcpu(void)
299{
300	struct kseq *kseq;
301	int load;
302	int cpu;
303	int i;
304
305	if (!smp_started)
306		return (0);
307
308	load = 0;
309	cpu = 0;
310
311	for (i = 0; i < mp_maxid; i++) {
312		if (CPU_ABSENT(i))
313			continue;
314		kseq = KSEQ_CPU(i);
315		if (kseq->ksq_load < load) {
316			cpu = i;
317			load = kseq->ksq_load;
318		}
319	}
320
321	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
322	return (cpu);
323}
324#else
325int
326sched_pickcpu(void)
327{
328	return (0);
329}
330#endif
331
332void
333sched_prio(struct thread *td, u_char prio)
334{
335	struct kse *ke;
336	struct runq *rq;
337
338	mtx_assert(&sched_lock, MA_OWNED);
339	ke = td->td_kse;
340	td->td_priority = prio;
341
342	if (TD_ON_RUNQ(td)) {
343		rq = ke->ke_runq;
344
345		runq_remove(rq, ke);
346		runq_add(rq, ke);
347	}
348}
349
350void
351sched_switchout(struct thread *td)
352{
353	struct kse *ke;
354
355	mtx_assert(&sched_lock, MA_OWNED);
356
357	ke = td->td_kse;
358
359	td->td_last_kse = ke;
360        td->td_lastcpu = ke->ke_oncpu;
361        ke->ke_flags &= ~KEF_NEEDRESCHED;
362
363	if (TD_IS_RUNNING(td)) {
364		setrunqueue(td);
365		return;
366	} else
367		td->td_kse->ke_runq = NULL;
368
369	/*
370	 * We will not be on the run queue. So we must be
371	 * sleeping or similar.
372	 */
373	if (td->td_proc->p_flag & P_KSES)
374		kse_reassign(ke);
375}
376
377void
378sched_switchin(struct thread *td)
379{
380	/* struct kse *ke = td->td_kse; */
381	mtx_assert(&sched_lock, MA_OWNED);
382
383	td->td_kse->ke_oncpu = PCPU_GET(cpuid); /* XXX */
384	if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
385	    td->td_priority != td->td_ksegrp->kg_user_pri)
386		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
387}
388
389void
390sched_nice(struct ksegrp *kg, int nice)
391{
392	struct thread *td;
393
394	kg->kg_nice = nice;
395	sched_priority(kg);
396	FOREACH_THREAD_IN_GROUP(kg, td) {
397		td->td_kse->ke_flags |= KEF_NEEDRESCHED;
398	}
399}
400
401void
402sched_sleep(struct thread *td, u_char prio)
403{
404	mtx_assert(&sched_lock, MA_OWNED);
405
406	td->td_slptime = ticks;
407	td->td_priority = prio;
408
409	/*
410	 * If this is an interactive task clear its queue so it moves back
411	 * on to curr when it wakes up.  Otherwise let it stay on the queue
412	 * that it was assigned to.
413	 */
414	if (SCHED_CURR(td->td_kse->ke_ksegrp))
415		td->td_kse->ke_runq = NULL;
416#if 0
417	if (td->td_priority < PZERO)
418		kseq_cpu[td->td_kse->ke_oncpu].ksq_load++;
419#endif
420}
421
422void
423sched_wakeup(struct thread *td)
424{
425	struct ksegrp *kg;
426
427	mtx_assert(&sched_lock, MA_OWNED);
428
429	/*
430	 * Let the kseg know how long we slept for.  This is because process
431	 * interactivity behavior is modeled in the kseg.
432	 */
433	kg = td->td_ksegrp;
434
435	if (td->td_slptime) {
436		kg->kg_slptime += ticks - td->td_slptime;
437		if (kg->kg_slptime > SCHED_SLP_MAX)
438			kg->kg_slptime = SCHED_SLP_MAX;
439		td->td_priority = sched_priority(kg);
440	}
441	td->td_slptime = 0;
442#if 0
443	if (td->td_priority < PZERO)
444		kseq_cpu[td->td_kse->ke_oncpu].ksq_load--;
445#endif
446	setrunqueue(td);
447        if (td->td_priority < curthread->td_priority)
448                curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
449}
450
451/*
452 * Penalize the parent for creating a new child and initialize the child's
453 * priority.
454 */
455void
456sched_fork(struct ksegrp *kg, struct ksegrp *child)
457{
458	struct kse *ckse;
459	struct kse *pkse;
460
461	mtx_assert(&sched_lock, MA_OWNED);
462	ckse = FIRST_KSE_IN_KSEGRP(child);
463	pkse = FIRST_KSE_IN_KSEGRP(kg);
464
465	/* XXX Need something better here */
466	child->kg_slptime = kg->kg_slptime;
467	child->kg_user_pri = kg->kg_user_pri;
468
469	if (pkse->ke_oncpu != PCPU_GET(cpuid)) {
470		printf("pkse->ke_oncpu = %d\n", pkse->ke_oncpu);
471		printf("cpuid = %d", PCPU_GET(cpuid));
472		Debugger("stop");
473	}
474
475	ckse->ke_slice = pkse->ke_slice;
476	ckse->ke_oncpu = pkse->ke_oncpu; /* sched_pickcpu(); */
477	ckse->ke_runq = NULL;
478	/*
479	 * Claim that we've been running for one second for statistical
480	 * purposes.
481	 */
482	ckse->ke_ticks = 0;
483	ckse->ke_ltick = ticks;
484	ckse->ke_ftick = ticks - hz;
485}
486
487/*
488 * Return some of the child's priority and interactivity to the parent.
489 */
490void
491sched_exit(struct ksegrp *kg, struct ksegrp *child)
492{
493	/* XXX Need something better here */
494	mtx_assert(&sched_lock, MA_OWNED);
495	kg->kg_slptime = child->kg_slptime;
496	sched_priority(kg);
497}
498
499void
500sched_clock(struct thread *td)
501{
502	struct kse *ke;
503	struct kse *nke;
504	struct kseq *kseq;
505	struct ksegrp *kg;
506
507
508	ke = td->td_kse;
509	kg = td->td_ksegrp;
510
511	mtx_assert(&sched_lock, MA_OWNED);
512	KASSERT((td != NULL), ("schedclock: null thread pointer"));
513
514	/* Adjust ticks for pctcpu */
515	ke->ke_ticks += 10000;
516	ke->ke_ltick = ticks;
517	/* Go up to one second beyond our max and then trim back down */
518	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
519		sched_pctcpu_update(ke);
520
521	if (td->td_kse->ke_flags & KEF_IDLEKSE)
522		return;
523
524	/*
525	 * Check for a higher priority task on the run queue.  This can happen
526	 * on SMP if another processor woke up a process on our runq.
527	 */
528	kseq = KSEQ_SELF();
529	nke = runq_choose(kseq->ksq_curr);
530
531	if (nke && nke->ke_thread &&
532	    nke->ke_thread->td_priority < td->td_priority)
533		ke->ke_flags |= KEF_NEEDRESCHED;
534	/*
535	 * We used a tick, decrease our total sleep time.  This decreases our
536	 * "interactivity".
537	 */
538	if (kg->kg_slptime)
539		kg->kg_slptime--;
540	/*
541	 * We used up one time slice.
542	 */
543	ke->ke_slice--;
544	/*
545	 * We're out of time, recompute priorities and requeue
546	 */
547	if (ke->ke_slice == 0) {
548		td->td_priority = sched_priority(kg);
549		ke->ke_slice = sched_slice(kg);
550		ke->ke_flags |= KEF_NEEDRESCHED;
551		ke->ke_runq = NULL;
552	}
553}
554
555int
556sched_runnable(void)
557{
558	struct kseq *kseq;
559
560	kseq = KSEQ_SELF();
561
562	if (kseq->ksq_load)
563		return (1);
564#ifdef SMP
565	/*
566	 * For SMP we may steal other processor's KSEs.  Just search until we
567	 * verify that at least on other cpu has a runnable task.
568	 */
569	if (smp_started) {
570		int i;
571
572		for (i = 0; i < mp_maxid; i++) {
573			if (CPU_ABSENT(i))
574				continue;
575			kseq = KSEQ_CPU(i);
576			if (kseq->ksq_load)
577				return (1);
578		}
579	}
580#endif
581	return (0);
582}
583
584void
585sched_userret(struct thread *td)
586{
587	struct ksegrp *kg;
588
589	kg = td->td_ksegrp;
590
591	if (td->td_priority != kg->kg_user_pri) {
592		mtx_lock_spin(&sched_lock);
593		td->td_priority = kg->kg_user_pri;
594		mtx_unlock_spin(&sched_lock);
595	}
596}
597
598struct kse *
599kseq_choose(struct kseq *kseq)
600{
601	struct kse *ke;
602	struct runq *swap;
603
604	if ((ke = runq_choose(kseq->ksq_curr)) == NULL) {
605		swap = kseq->ksq_curr;
606		kseq->ksq_curr = kseq->ksq_next;
607		kseq->ksq_next = swap;
608		ke = runq_choose(kseq->ksq_curr);
609	}
610
611	return (ke);
612}
613
614struct kse *
615sched_choose(void)
616{
617	struct kseq *kseq;
618	struct kse *ke;
619
620	kseq = KSEQ_SELF();
621	ke = kseq_choose(kseq);
622
623	if (ke) {
624		runq_remove(ke->ke_runq, ke);
625		kseq->ksq_load--;
626		ke->ke_state = KES_THREAD;
627	}
628
629#ifdef SMP
630	if (ke == NULL && smp_started) {
631		int load;
632		int cpu;
633		int i;
634
635		load = 0;
636		cpu = 0;
637
638		/*
639		 * Find the cpu with the highest load and steal one proc.
640		 */
641		for (i = 0; i < mp_maxid; i++) {
642			if (CPU_ABSENT(i))
643				continue;
644			kseq = KSEQ_CPU(i);
645			if (kseq->ksq_load > load) {
646				load = kseq->ksq_load;
647				cpu = i;
648			}
649		}
650		if (load) {
651			kseq = KSEQ_CPU(cpu);
652			ke = kseq_choose(kseq);
653			kseq->ksq_load--;
654			ke->ke_state = KES_THREAD;
655			runq_remove(ke->ke_runq, ke);
656			ke->ke_runq = NULL;
657			ke->ke_oncpu = PCPU_GET(cpuid);
658		}
659
660	}
661#endif
662	return (ke);
663}
664
665void
666sched_add(struct kse *ke)
667{
668
669	mtx_assert(&sched_lock, MA_OWNED);
670	KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
671	KASSERT((ke->ke_thread->td_kse != NULL),
672	    ("runq_add: No KSE on thread"));
673	KASSERT(ke->ke_state != KES_ONRUNQ,
674	    ("runq_add: kse %p (%s) already in run queue", ke,
675	    ke->ke_proc->p_comm));
676	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
677	    ("runq_add: process swapped out"));
678
679
680	if (ke->ke_runq == NULL) {
681		struct kseq *kseq;
682
683		kseq = KSEQ_CPU(ke->ke_oncpu);
684		if (SCHED_CURR(ke->ke_ksegrp))
685			ke->ke_runq = kseq->ksq_curr;
686		else
687			ke->ke_runq = kseq->ksq_next;
688	}
689	ke->ke_ksegrp->kg_runq_kses++;
690	ke->ke_state = KES_ONRUNQ;
691
692	runq_add(ke->ke_runq, ke);
693	KSEQ_CPU(ke->ke_oncpu)->ksq_load++;
694}
695
696void
697sched_rem(struct kse *ke)
698{
699	mtx_assert(&sched_lock, MA_OWNED);
700	/* KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue")); */
701
702	runq_remove(ke->ke_runq, ke);
703	ke->ke_runq = NULL;
704	ke->ke_state = KES_THREAD;
705	ke->ke_ksegrp->kg_runq_kses--;
706	KSEQ_CPU(ke->ke_oncpu)->ksq_load--;
707}
708
709fixpt_t
710sched_pctcpu(struct kse *ke)
711{
712	fixpt_t pctcpu;
713
714	pctcpu = 0;
715
716	if (ke->ke_ticks) {
717		int rtick;
718
719		/* Update to account for time potentially spent sleeping */
720		ke->ke_ltick = ticks;
721		sched_pctcpu_update(ke);
722
723		/* How many rtick per second ? */
724		rtick = ke->ke_ticks / (SCHED_CPU_TIME * 10000);
725		pctcpu = (FSCALE * ((FSCALE * rtick)/stathz)) >> FSHIFT;
726	}
727
728	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
729
730	return (pctcpu);
731}
732
733int
734sched_sizeof_kse(void)
735{
736	return (sizeof(struct kse) + sizeof(struct ke_sched));
737}
738
739int
740sched_sizeof_ksegrp(void)
741{
742	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
743}
744
745int
746sched_sizeof_proc(void)
747{
748	return (sizeof(struct proc));
749}
750
751int
752sched_sizeof_thread(void)
753{
754	return (sizeof(struct thread) + sizeof(struct td_sched));
755}
756