1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
9
10#include <sys/cdefs.h>
11__FBSDID("$FreeBSD$");
12
13#include "opt_compat.h"
14#include "opt_ntp.h"
15
16#include <sys/param.h>
17#include <sys/kernel.h>
18#include <sys/sysctl.h>
19#include <sys/syslog.h>
20#include <sys/systm.h>
21#include <sys/timepps.h>
22#include <sys/timetc.h>
23#include <sys/timex.h>
24#include <sys/vdso.h>
25
26/*
27 * A large step happens on boot.  This constant detects such steps.
28 * It is relatively small so that ntp_update_second gets called enough
29 * in the typical 'missed a couple of seconds' case, but doesn't loop
30 * forever when the time step is large.
31 */
32#define LARGE_STEP	200
33
34/*
35 * Implement a dummy timecounter which we can use until we get a real one
36 * in the air.  This allows the console and other early stuff to use
37 * time services.
38 */
39
40static u_int
41dummy_get_timecount(struct timecounter *tc)
42{
43	static u_int now;
44
45	return (++now);
46}
47
48static struct timecounter dummy_timecounter = {
49	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
50};
51
52struct timehands {
53	/* These fields must be initialized by the driver. */
54	struct timecounter	*th_counter;
55	int64_t			th_adjustment;
56	uint64_t		th_scale;
57	u_int	 		th_offset_count;
58	struct bintime		th_offset;
59	struct timeval		th_microtime;
60	struct timespec		th_nanotime;
61	/* Fields not to be copied in tc_windup start with th_generation. */
62	volatile u_int		th_generation;
63	struct timehands	*th_next;
64};
65
66static struct timehands th0;
67static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
68static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
69static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
70static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
71static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
72static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
73static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
74static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
75static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
76static struct timehands th0 = {
77	&dummy_timecounter,
78	0,
79	(uint64_t)-1 / 1000000,
80	0,
81	{1, 0},
82	{0, 0},
83	{0, 0},
84	1,
85	&th1
86};
87
88static struct timehands *volatile timehands = &th0;
89struct timecounter *timecounter = &dummy_timecounter;
90static struct timecounter *timecounters = &dummy_timecounter;
91
92int tc_min_ticktock_freq = 1;
93
94volatile time_t time_second = 1;
95volatile time_t time_uptime = 1;
96
97struct bintime boottimebin;
98struct timeval boottime;
99static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
100SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
101    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
102
103SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
104static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
105
106static int timestepwarnings;
107SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
108    &timestepwarnings, 0, "Log time steps");
109
110static void tc_windup(void);
111static void cpu_tick_calibrate(int);
112
113void dtrace_getnanotime(struct timespec *tsp);
114
115static int
116sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
117{
118#ifdef SCTL_MASK32
119	int tv[2];
120
121	if (req->flags & SCTL_MASK32) {
122		tv[0] = boottime.tv_sec;
123		tv[1] = boottime.tv_usec;
124		return SYSCTL_OUT(req, tv, sizeof(tv));
125	} else
126#endif
127		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
128}
129
130static int
131sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
132{
133	u_int ncount;
134	struct timecounter *tc = arg1;
135
136	ncount = tc->tc_get_timecount(tc);
137	return sysctl_handle_int(oidp, &ncount, 0, req);
138}
139
140static int
141sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
142{
143	uint64_t freq;
144	struct timecounter *tc = arg1;
145
146	freq = tc->tc_frequency;
147	return sysctl_handle_64(oidp, &freq, 0, req);
148}
149
150/*
151 * Return the difference between the timehands' counter value now and what
152 * was when we copied it to the timehands' offset_count.
153 */
154static __inline u_int
155tc_delta(struct timehands *th)
156{
157	struct timecounter *tc;
158
159	tc = th->th_counter;
160	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
161	    tc->tc_counter_mask);
162}
163
164/*
165 * Functions for reading the time.  We have to loop until we are sure that
166 * the timehands that we operated on was not updated under our feet.  See
167 * the comment in <sys/time.h> for a description of these 12 functions.
168 */
169
170void
171binuptime(struct bintime *bt)
172{
173	struct timehands *th;
174	u_int gen;
175
176	do {
177		th = timehands;
178		gen = th->th_generation;
179		*bt = th->th_offset;
180		bintime_addx(bt, th->th_scale * tc_delta(th));
181	} while (gen == 0 || gen != th->th_generation);
182}
183
184void
185nanouptime(struct timespec *tsp)
186{
187	struct bintime bt;
188
189	binuptime(&bt);
190	bintime2timespec(&bt, tsp);
191}
192
193void
194microuptime(struct timeval *tvp)
195{
196	struct bintime bt;
197
198	binuptime(&bt);
199	bintime2timeval(&bt, tvp);
200}
201
202void
203bintime(struct bintime *bt)
204{
205
206	binuptime(bt);
207	bintime_add(bt, &boottimebin);
208}
209
210void
211nanotime(struct timespec *tsp)
212{
213	struct bintime bt;
214
215	bintime(&bt);
216	bintime2timespec(&bt, tsp);
217}
218
219void
220microtime(struct timeval *tvp)
221{
222	struct bintime bt;
223
224	bintime(&bt);
225	bintime2timeval(&bt, tvp);
226}
227
228void
229getbinuptime(struct bintime *bt)
230{
231	struct timehands *th;
232	u_int gen;
233
234	do {
235		th = timehands;
236		gen = th->th_generation;
237		*bt = th->th_offset;
238	} while (gen == 0 || gen != th->th_generation);
239}
240
241void
242getnanouptime(struct timespec *tsp)
243{
244	struct timehands *th;
245	u_int gen;
246
247	do {
248		th = timehands;
249		gen = th->th_generation;
250		bintime2timespec(&th->th_offset, tsp);
251	} while (gen == 0 || gen != th->th_generation);
252}
253
254void
255getmicrouptime(struct timeval *tvp)
256{
257	struct timehands *th;
258	u_int gen;
259
260	do {
261		th = timehands;
262		gen = th->th_generation;
263		bintime2timeval(&th->th_offset, tvp);
264	} while (gen == 0 || gen != th->th_generation);
265}
266
267void
268getbintime(struct bintime *bt)
269{
270	struct timehands *th;
271	u_int gen;
272
273	do {
274		th = timehands;
275		gen = th->th_generation;
276		*bt = th->th_offset;
277	} while (gen == 0 || gen != th->th_generation);
278	bintime_add(bt, &boottimebin);
279}
280
281void
282getnanotime(struct timespec *tsp)
283{
284	struct timehands *th;
285	u_int gen;
286
287	do {
288		th = timehands;
289		gen = th->th_generation;
290		*tsp = th->th_nanotime;
291	} while (gen == 0 || gen != th->th_generation);
292}
293
294void
295getmicrotime(struct timeval *tvp)
296{
297	struct timehands *th;
298	u_int gen;
299
300	do {
301		th = timehands;
302		gen = th->th_generation;
303		*tvp = th->th_microtime;
304	} while (gen == 0 || gen != th->th_generation);
305}
306
307/*
308 * This is a clone of getnanotime and used for walltimestamps.
309 * The dtrace_ prefix prevents fbt from creating probes for
310 * it so walltimestamp can be safely used in all fbt probes.
311 */
312void
313dtrace_getnanotime(struct timespec *tsp)
314{
315	struct timehands *th;
316	u_int gen;
317
318	do {
319		th = timehands;
320		gen = th->th_generation;
321		*tsp = th->th_nanotime;
322	} while (gen == 0 || gen != th->th_generation);
323}
324
325/*
326 * Initialize a new timecounter and possibly use it.
327 */
328void
329tc_init(struct timecounter *tc)
330{
331	u_int u;
332	struct sysctl_oid *tc_root;
333
334	u = tc->tc_frequency / tc->tc_counter_mask;
335	/* XXX: We need some margin here, 10% is a guess */
336	u *= 11;
337	u /= 10;
338	if (u > hz && tc->tc_quality >= 0) {
339		tc->tc_quality = -2000;
340		if (bootverbose) {
341			printf("Timecounter \"%s\" frequency %ju Hz",
342			    tc->tc_name, (uintmax_t)tc->tc_frequency);
343			printf(" -- Insufficient hz, needs at least %u\n", u);
344		}
345	} else if (tc->tc_quality >= 0 || bootverbose) {
346		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
347		    tc->tc_name, (uintmax_t)tc->tc_frequency,
348		    tc->tc_quality);
349	}
350
351	tc->tc_next = timecounters;
352	timecounters = tc;
353	/*
354	 * Set up sysctl tree for this counter.
355	 */
356	tc_root = SYSCTL_ADD_NODE(NULL,
357	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
358	    CTLFLAG_RW, 0, "timecounter description");
359	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
360	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
361	    "mask for implemented bits");
362	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
363	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
364	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
365	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
366	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
367	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
368	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
369	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
370	    "goodness of time counter");
371	/*
372	 * Never automatically use a timecounter with negative quality.
373	 * Even though we run on the dummy counter, switching here may be
374	 * worse since this timecounter may not be monotonous.
375	 */
376	if (tc->tc_quality < 0)
377		return;
378	if (tc->tc_quality < timecounter->tc_quality)
379		return;
380	if (tc->tc_quality == timecounter->tc_quality &&
381	    tc->tc_frequency < timecounter->tc_frequency)
382		return;
383	(void)tc->tc_get_timecount(tc);
384	(void)tc->tc_get_timecount(tc);
385	timecounter = tc;
386}
387
388/* Report the frequency of the current timecounter. */
389uint64_t
390tc_getfrequency(void)
391{
392
393	return (timehands->th_counter->tc_frequency);
394}
395
396/*
397 * Step our concept of UTC.  This is done by modifying our estimate of
398 * when we booted.
399 * XXX: not locked.
400 */
401void
402tc_setclock(struct timespec *ts)
403{
404	struct timespec tbef, taft;
405	struct bintime bt, bt2;
406
407	cpu_tick_calibrate(1);
408	nanotime(&tbef);
409	timespec2bintime(ts, &bt);
410	binuptime(&bt2);
411	bintime_sub(&bt, &bt2);
412	bintime_add(&bt2, &boottimebin);
413	boottimebin = bt;
414	bintime2timeval(&bt, &boottime);
415
416	/* XXX fiddle all the little crinkly bits around the fiords... */
417	tc_windup();
418	nanotime(&taft);
419	if (timestepwarnings) {
420		log(LOG_INFO,
421		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
422		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
423		    (intmax_t)taft.tv_sec, taft.tv_nsec,
424		    (intmax_t)ts->tv_sec, ts->tv_nsec);
425	}
426	cpu_tick_calibrate(1);
427}
428
429/*
430 * Initialize the next struct timehands in the ring and make
431 * it the active timehands.  Along the way we might switch to a different
432 * timecounter and/or do seconds processing in NTP.  Slightly magic.
433 */
434static void
435tc_windup(void)
436{
437	struct bintime bt;
438	struct timehands *th, *tho;
439	uint64_t scale;
440	u_int delta, ncount, ogen;
441	int i;
442	time_t t;
443
444	/*
445	 * Make the next timehands a copy of the current one, but do not
446	 * overwrite the generation or next pointer.  While we update
447	 * the contents, the generation must be zero.
448	 */
449	tho = timehands;
450	th = tho->th_next;
451	ogen = th->th_generation;
452	th->th_generation = 0;
453	bcopy(tho, th, offsetof(struct timehands, th_generation));
454
455	/*
456	 * Capture a timecounter delta on the current timecounter and if
457	 * changing timecounters, a counter value from the new timecounter.
458	 * Update the offset fields accordingly.
459	 */
460	delta = tc_delta(th);
461	if (th->th_counter != timecounter)
462		ncount = timecounter->tc_get_timecount(timecounter);
463	else
464		ncount = 0;
465	th->th_offset_count += delta;
466	th->th_offset_count &= th->th_counter->tc_counter_mask;
467	while (delta > th->th_counter->tc_frequency) {
468		/* Eat complete unadjusted seconds. */
469		delta -= th->th_counter->tc_frequency;
470		th->th_offset.sec++;
471	}
472	if ((delta > th->th_counter->tc_frequency / 2) &&
473	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
474		/* The product th_scale * delta just barely overflows. */
475		th->th_offset.sec++;
476	}
477	bintime_addx(&th->th_offset, th->th_scale * delta);
478
479	/*
480	 * Hardware latching timecounters may not generate interrupts on
481	 * PPS events, so instead we poll them.  There is a finite risk that
482	 * the hardware might capture a count which is later than the one we
483	 * got above, and therefore possibly in the next NTP second which might
484	 * have a different rate than the current NTP second.  It doesn't
485	 * matter in practice.
486	 */
487	if (tho->th_counter->tc_poll_pps)
488		tho->th_counter->tc_poll_pps(tho->th_counter);
489
490	/*
491	 * Deal with NTP second processing.  The for loop normally
492	 * iterates at most once, but in extreme situations it might
493	 * keep NTP sane if timeouts are not run for several seconds.
494	 * At boot, the time step can be large when the TOD hardware
495	 * has been read, so on really large steps, we call
496	 * ntp_update_second only twice.  We need to call it twice in
497	 * case we missed a leap second.
498	 */
499	bt = th->th_offset;
500	bintime_add(&bt, &boottimebin);
501	i = bt.sec - tho->th_microtime.tv_sec;
502	if (i > LARGE_STEP)
503		i = 2;
504	for (; i > 0; i--) {
505		t = bt.sec;
506		ntp_update_second(&th->th_adjustment, &bt.sec);
507		if (bt.sec != t)
508			boottimebin.sec += bt.sec - t;
509	}
510	/* Update the UTC timestamps used by the get*() functions. */
511	/* XXX shouldn't do this here.  Should force non-`get' versions. */
512	bintime2timeval(&bt, &th->th_microtime);
513	bintime2timespec(&bt, &th->th_nanotime);
514
515	/* Now is a good time to change timecounters. */
516	if (th->th_counter != timecounter) {
517#ifndef __arm__
518		if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0)
519			cpu_disable_deep_sleep++;
520		if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0)
521			cpu_disable_deep_sleep--;
522#endif
523		th->th_counter = timecounter;
524		th->th_offset_count = ncount;
525		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
526		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
527	}
528
529	/*-
530	 * Recalculate the scaling factor.  We want the number of 1/2^64
531	 * fractions of a second per period of the hardware counter, taking
532	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
533	 * processing provides us with.
534	 *
535	 * The th_adjustment is nanoseconds per second with 32 bit binary
536	 * fraction and we want 64 bit binary fraction of second:
537	 *
538	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
539	 *
540	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
541	 * we can only multiply by about 850 without overflowing, that
542	 * leaves no suitably precise fractions for multiply before divide.
543	 *
544	 * Divide before multiply with a fraction of 2199/512 results in a
545	 * systematic undercompensation of 10PPM of th_adjustment.  On a
546	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
547 	 *
548	 * We happily sacrifice the lowest of the 64 bits of our result
549	 * to the goddess of code clarity.
550	 *
551	 */
552	scale = (uint64_t)1 << 63;
553	scale += (th->th_adjustment / 1024) * 2199;
554	scale /= th->th_counter->tc_frequency;
555	th->th_scale = scale * 2;
556
557	/*
558	 * Now that the struct timehands is again consistent, set the new
559	 * generation number, making sure to not make it zero.
560	 */
561	if (++ogen == 0)
562		ogen = 1;
563	th->th_generation = ogen;
564
565	/* Go live with the new struct timehands. */
566	time_second = th->th_microtime.tv_sec;
567	time_uptime = th->th_offset.sec;
568	timehands = th;
569	timekeep_push_vdso();
570}
571
572/* Report or change the active timecounter hardware. */
573static int
574sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
575{
576	char newname[32];
577	struct timecounter *newtc, *tc;
578	int error;
579
580	tc = timecounter;
581	strlcpy(newname, tc->tc_name, sizeof(newname));
582
583	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
584	if (error != 0 || req->newptr == NULL ||
585	    strcmp(newname, tc->tc_name) == 0)
586		return (error);
587	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
588		if (strcmp(newname, newtc->tc_name) != 0)
589			continue;
590
591		/* Warm up new timecounter. */
592		(void)newtc->tc_get_timecount(newtc);
593		(void)newtc->tc_get_timecount(newtc);
594
595		timecounter = newtc;
596		timekeep_push_vdso();
597		return (0);
598	}
599	return (EINVAL);
600}
601
602SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
603    0, 0, sysctl_kern_timecounter_hardware, "A",
604    "Timecounter hardware selected");
605
606
607/* Report or change the active timecounter hardware. */
608static int
609sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
610{
611	char buf[32], *spc;
612	struct timecounter *tc;
613	int error;
614
615	spc = "";
616	error = 0;
617	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
618		sprintf(buf, "%s%s(%d)",
619		    spc, tc->tc_name, tc->tc_quality);
620		error = SYSCTL_OUT(req, buf, strlen(buf));
621		spc = " ";
622	}
623	return (error);
624}
625
626SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
627    0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
628
629/*
630 * RFC 2783 PPS-API implementation.
631 */
632
633int
634pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
635{
636	pps_params_t *app;
637	struct pps_fetch_args *fapi;
638#ifdef PPS_SYNC
639	struct pps_kcbind_args *kapi;
640#endif
641
642	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
643	switch (cmd) {
644	case PPS_IOC_CREATE:
645		return (0);
646	case PPS_IOC_DESTROY:
647		return (0);
648	case PPS_IOC_SETPARAMS:
649		app = (pps_params_t *)data;
650		if (app->mode & ~pps->ppscap)
651			return (EINVAL);
652		pps->ppsparam = *app;
653		return (0);
654	case PPS_IOC_GETPARAMS:
655		app = (pps_params_t *)data;
656		*app = pps->ppsparam;
657		app->api_version = PPS_API_VERS_1;
658		return (0);
659	case PPS_IOC_GETCAP:
660		*(int*)data = pps->ppscap;
661		return (0);
662	case PPS_IOC_FETCH:
663		fapi = (struct pps_fetch_args *)data;
664		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
665			return (EINVAL);
666		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
667			return (EOPNOTSUPP);
668		pps->ppsinfo.current_mode = pps->ppsparam.mode;
669		fapi->pps_info_buf = pps->ppsinfo;
670		return (0);
671	case PPS_IOC_KCBIND:
672#ifdef PPS_SYNC
673		kapi = (struct pps_kcbind_args *)data;
674		/* XXX Only root should be able to do this */
675		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
676			return (EINVAL);
677		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
678			return (EINVAL);
679		if (kapi->edge & ~pps->ppscap)
680			return (EINVAL);
681		pps->kcmode = kapi->edge;
682		return (0);
683#else
684		return (EOPNOTSUPP);
685#endif
686	default:
687		return (ENOIOCTL);
688	}
689}
690
691void
692pps_init(struct pps_state *pps)
693{
694	pps->ppscap |= PPS_TSFMT_TSPEC;
695	if (pps->ppscap & PPS_CAPTUREASSERT)
696		pps->ppscap |= PPS_OFFSETASSERT;
697	if (pps->ppscap & PPS_CAPTURECLEAR)
698		pps->ppscap |= PPS_OFFSETCLEAR;
699}
700
701void
702pps_capture(struct pps_state *pps)
703{
704	struct timehands *th;
705
706	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
707	th = timehands;
708	pps->capgen = th->th_generation;
709	pps->capth = th;
710	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
711	if (pps->capgen != th->th_generation)
712		pps->capgen = 0;
713}
714
715void
716pps_event(struct pps_state *pps, int event)
717{
718	struct bintime bt;
719	struct timespec ts, *tsp, *osp;
720	u_int tcount, *pcount;
721	int foff, fhard;
722	pps_seq_t *pseq;
723
724	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
725	/* If the timecounter was wound up underneath us, bail out. */
726	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
727		return;
728
729	/* Things would be easier with arrays. */
730	if (event == PPS_CAPTUREASSERT) {
731		tsp = &pps->ppsinfo.assert_timestamp;
732		osp = &pps->ppsparam.assert_offset;
733		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
734		fhard = pps->kcmode & PPS_CAPTUREASSERT;
735		pcount = &pps->ppscount[0];
736		pseq = &pps->ppsinfo.assert_sequence;
737	} else {
738		tsp = &pps->ppsinfo.clear_timestamp;
739		osp = &pps->ppsparam.clear_offset;
740		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
741		fhard = pps->kcmode & PPS_CAPTURECLEAR;
742		pcount = &pps->ppscount[1];
743		pseq = &pps->ppsinfo.clear_sequence;
744	}
745
746	/*
747	 * If the timecounter changed, we cannot compare the count values, so
748	 * we have to drop the rest of the PPS-stuff until the next event.
749	 */
750	if (pps->ppstc != pps->capth->th_counter) {
751		pps->ppstc = pps->capth->th_counter;
752		*pcount = pps->capcount;
753		pps->ppscount[2] = pps->capcount;
754		return;
755	}
756
757	/* Convert the count to a timespec. */
758	tcount = pps->capcount - pps->capth->th_offset_count;
759	tcount &= pps->capth->th_counter->tc_counter_mask;
760	bt = pps->capth->th_offset;
761	bintime_addx(&bt, pps->capth->th_scale * tcount);
762	bintime_add(&bt, &boottimebin);
763	bintime2timespec(&bt, &ts);
764
765	/* If the timecounter was wound up underneath us, bail out. */
766	if (pps->capgen != pps->capth->th_generation)
767		return;
768
769	*pcount = pps->capcount;
770	(*pseq)++;
771	*tsp = ts;
772
773	if (foff) {
774		timespecadd(tsp, osp);
775		if (tsp->tv_nsec < 0) {
776			tsp->tv_nsec += 1000000000;
777			tsp->tv_sec -= 1;
778		}
779	}
780#ifdef PPS_SYNC
781	if (fhard) {
782		uint64_t scale;
783
784		/*
785		 * Feed the NTP PLL/FLL.
786		 * The FLL wants to know how many (hardware) nanoseconds
787		 * elapsed since the previous event.
788		 */
789		tcount = pps->capcount - pps->ppscount[2];
790		pps->ppscount[2] = pps->capcount;
791		tcount &= pps->capth->th_counter->tc_counter_mask;
792		scale = (uint64_t)1 << 63;
793		scale /= pps->capth->th_counter->tc_frequency;
794		scale *= 2;
795		bt.sec = 0;
796		bt.frac = 0;
797		bintime_addx(&bt, scale * tcount);
798		bintime2timespec(&bt, &ts);
799		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
800	}
801#endif
802}
803
804/*
805 * Timecounters need to be updated every so often to prevent the hardware
806 * counter from overflowing.  Updating also recalculates the cached values
807 * used by the get*() family of functions, so their precision depends on
808 * the update frequency.
809 */
810
811static int tc_tick;
812SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
813    "Approximate number of hardclock ticks in a millisecond");
814
815void
816tc_ticktock(int cnt)
817{
818	static int count;
819
820	count += cnt;
821	if (count < tc_tick)
822		return;
823	count = 0;
824	tc_windup();
825}
826
827static void
828inittimecounter(void *dummy)
829{
830	u_int p;
831
832	/*
833	 * Set the initial timeout to
834	 * max(1, <approx. number of hardclock ticks in a millisecond>).
835	 * People should probably not use the sysctl to set the timeout
836	 * to smaller than its inital value, since that value is the
837	 * smallest reasonable one.  If they want better timestamps they
838	 * should use the non-"get"* functions.
839	 */
840	if (hz > 1000)
841		tc_tick = (hz + 500) / 1000;
842	else
843		tc_tick = 1;
844	p = (tc_tick * 1000000) / hz;
845	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
846
847	/* warm up new timecounter (again) and get rolling. */
848	(void)timecounter->tc_get_timecount(timecounter);
849	(void)timecounter->tc_get_timecount(timecounter);
850	tc_windup();
851}
852
853SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
854
855/* Cpu tick handling -------------------------------------------------*/
856
857static int cpu_tick_variable;
858static uint64_t	cpu_tick_frequency;
859
860static uint64_t
861tc_cpu_ticks(void)
862{
863	static uint64_t base;
864	static unsigned last;
865	unsigned u;
866	struct timecounter *tc;
867
868	tc = timehands->th_counter;
869	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
870	if (u < last)
871		base += (uint64_t)tc->tc_counter_mask + 1;
872	last = u;
873	return (u + base);
874}
875
876void
877cpu_tick_calibration(void)
878{
879	static time_t last_calib;
880
881	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
882		cpu_tick_calibrate(0);
883		last_calib = time_uptime;
884	}
885}
886
887/*
888 * This function gets called every 16 seconds on only one designated
889 * CPU in the system from hardclock() via cpu_tick_calibration()().
890 *
891 * Whenever the real time clock is stepped we get called with reset=1
892 * to make sure we handle suspend/resume and similar events correctly.
893 */
894
895static void
896cpu_tick_calibrate(int reset)
897{
898	static uint64_t c_last;
899	uint64_t c_this, c_delta;
900	static struct bintime  t_last;
901	struct bintime t_this, t_delta;
902	uint32_t divi;
903
904	if (reset) {
905		/* The clock was stepped, abort & reset */
906		t_last.sec = 0;
907		return;
908	}
909
910	/* we don't calibrate fixed rate cputicks */
911	if (!cpu_tick_variable)
912		return;
913
914	getbinuptime(&t_this);
915	c_this = cpu_ticks();
916	if (t_last.sec != 0) {
917		c_delta = c_this - c_last;
918		t_delta = t_this;
919		bintime_sub(&t_delta, &t_last);
920		/*
921		 * Headroom:
922		 * 	2^(64-20) / 16[s] =
923		 * 	2^(44) / 16[s] =
924		 * 	17.592.186.044.416 / 16 =
925		 * 	1.099.511.627.776 [Hz]
926		 */
927		divi = t_delta.sec << 20;
928		divi |= t_delta.frac >> (64 - 20);
929		c_delta <<= 20;
930		c_delta /= divi;
931		if (c_delta > cpu_tick_frequency) {
932			if (0 && bootverbose)
933				printf("cpu_tick increased to %ju Hz\n",
934				    c_delta);
935			cpu_tick_frequency = c_delta;
936		}
937	}
938	c_last = c_this;
939	t_last = t_this;
940}
941
942void
943set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
944{
945
946	if (func == NULL) {
947		cpu_ticks = tc_cpu_ticks;
948	} else {
949		cpu_tick_frequency = freq;
950		cpu_tick_variable = var;
951		cpu_ticks = func;
952	}
953}
954
955uint64_t
956cpu_tickrate(void)
957{
958
959	if (cpu_ticks == tc_cpu_ticks)
960		return (tc_getfrequency());
961	return (cpu_tick_frequency);
962}
963
964/*
965 * We need to be slightly careful converting cputicks to microseconds.
966 * There is plenty of margin in 64 bits of microseconds (half a million
967 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
968 * before divide conversion (to retain precision) we find that the
969 * margin shrinks to 1.5 hours (one millionth of 146y).
970 * With a three prong approach we never lose significant bits, no
971 * matter what the cputick rate and length of timeinterval is.
972 */
973
974uint64_t
975cputick2usec(uint64_t tick)
976{
977
978	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
979		return (tick / (cpu_tickrate() / 1000000LL));
980	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
981		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
982	else
983		return ((tick * 1000000LL) / cpu_tickrate());
984}
985
986cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
987
988static int vdso_th_enable = 1;
989static int
990sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
991{
992	int old_vdso_th_enable, error;
993
994	old_vdso_th_enable = vdso_th_enable;
995	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
996	if (error != 0)
997		return (error);
998	vdso_th_enable = old_vdso_th_enable;
999	timekeep_push_vdso();
1000	return (0);
1001}
1002SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
1003    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1004    NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
1005
1006uint32_t
1007tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
1008{
1009	struct timehands *th;
1010	uint32_t enabled;
1011
1012	th = timehands;
1013	vdso_th->th_algo = VDSO_TH_ALGO_1;
1014	vdso_th->th_scale = th->th_scale;
1015	vdso_th->th_offset_count = th->th_offset_count;
1016	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
1017	vdso_th->th_offset = th->th_offset;
1018	vdso_th->th_boottime = boottimebin;
1019	enabled = cpu_fill_vdso_timehands(vdso_th);
1020	if (!vdso_th_enable)
1021		enabled = 0;
1022	return (enabled);
1023}
1024
1025#ifdef COMPAT_FREEBSD32
1026uint32_t
1027tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
1028{
1029	struct timehands *th;
1030	uint32_t enabled;
1031
1032	th = timehands;
1033	vdso_th32->th_algo = VDSO_TH_ALGO_1;
1034	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
1035	vdso_th32->th_offset_count = th->th_offset_count;
1036	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
1037	vdso_th32->th_offset.sec = th->th_offset.sec;
1038	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
1039	vdso_th32->th_boottime.sec = boottimebin.sec;
1040	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
1041	enabled = cpu_fill_vdso_timehands32(vdso_th32);
1042	if (!vdso_th_enable)
1043		enabled = 0;
1044	return (enabled);
1045}
1046#endif
1047