1/*-
2 ***********************************************************************
3 *								       *
4 * Copyright (c) David L. Mills 1993-2001			       *
5 *								       *
6 * Permission to use, copy, modify, and distribute this software and   *
7 * its documentation for any purpose and without fee is hereby	       *
8 * granted, provided that the above copyright notice appears in all    *
9 * copies and that both the copyright notice and this permission       *
10 * notice appear in supporting documentation, and that the name	       *
11 * University of Delaware not be used in advertising or publicity      *
12 * pertaining to distribution of the software without specific,	       *
13 * written prior permission. The University of Delaware makes no       *
14 * representations about the suitability this software for any	       *
15 * purpose. It is provided "as is" without express or implied	       *
16 * warranty.							       *
17 *								       *
18 **********************************************************************/
19
20/*
21 * Adapted from the original sources for FreeBSD and timecounters by:
22 * Poul-Henning Kamp <phk@FreeBSD.org>.
23 *
24 * The 32bit version of the "LP" macros seems a bit past its "sell by"
25 * date so I have retained only the 64bit version and included it directly
26 * in this file.
27 *
28 * Only minor changes done to interface with the timecounters over in
29 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30 * confusing and/or plain wrong in that context.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36#include "opt_ntp.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/eventhandler.h>
42#include <sys/kernel.h>
43#include <sys/priv.h>
44#include <sys/proc.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/time.h>
48#include <sys/timex.h>
49#include <sys/timetc.h>
50#include <sys/timepps.h>
51#include <sys/syscallsubr.h>
52#include <sys/sysctl.h>
53
54#ifdef PPS_SYNC
55FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
56#endif
57
58/*
59 * Single-precision macros for 64-bit machines
60 */
61typedef int64_t l_fp;
62#define L_ADD(v, u)	((v) += (u))
63#define L_SUB(v, u)	((v) -= (u))
64#define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
65#define L_NEG(v)	((v) = -(v))
66#define L_RSHIFT(v, n) \
67	do { \
68		if ((v) < 0) \
69			(v) = -(-(v) >> (n)); \
70		else \
71			(v) = (v) >> (n); \
72	} while (0)
73#define L_MPY(v, a)	((v) *= (a))
74#define L_CLR(v)	((v) = 0)
75#define L_ISNEG(v)	((v) < 0)
76#define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
77#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
78
79/*
80 * Generic NTP kernel interface
81 *
82 * These routines constitute the Network Time Protocol (NTP) interfaces
83 * for user and daemon application programs. The ntp_gettime() routine
84 * provides the time, maximum error (synch distance) and estimated error
85 * (dispersion) to client user application programs. The ntp_adjtime()
86 * routine is used by the NTP daemon to adjust the system clock to an
87 * externally derived time. The time offset and related variables set by
88 * this routine are used by other routines in this module to adjust the
89 * phase and frequency of the clock discipline loop which controls the
90 * system clock.
91 *
92 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
93 * defined), the time at each tick interrupt is derived directly from
94 * the kernel time variable. When the kernel time is reckoned in
95 * microseconds, (NTP_NANO undefined), the time is derived from the
96 * kernel time variable together with a variable representing the
97 * leftover nanoseconds at the last tick interrupt. In either case, the
98 * current nanosecond time is reckoned from these values plus an
99 * interpolated value derived by the clock routines in another
100 * architecture-specific module. The interpolation can use either a
101 * dedicated counter or a processor cycle counter (PCC) implemented in
102 * some architectures.
103 *
104 * Note that all routines must run at priority splclock or higher.
105 */
106/*
107 * Phase/frequency-lock loop (PLL/FLL) definitions
108 *
109 * The nanosecond clock discipline uses two variable types, time
110 * variables and frequency variables. Both types are represented as 64-
111 * bit fixed-point quantities with the decimal point between two 32-bit
112 * halves. On a 32-bit machine, each half is represented as a single
113 * word and mathematical operations are done using multiple-precision
114 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
115 * used.
116 *
117 * A time variable is a signed 64-bit fixed-point number in ns and
118 * fraction. It represents the remaining time offset to be amortized
119 * over succeeding tick interrupts. The maximum time offset is about
120 * 0.5 s and the resolution is about 2.3e-10 ns.
121 *
122 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
123 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
124 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125 * |s s s|			 ns				   |
126 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 * |			    fraction				   |
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 *
130 * A frequency variable is a signed 64-bit fixed-point number in ns/s
131 * and fraction. It represents the ns and fraction to be added to the
132 * kernel time variable at each second. The maximum frequency offset is
133 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
134 *
135 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
136 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
137 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138 * |s s s s s s s s s s s s s|	          ns/s			   |
139 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140 * |			    fraction				   |
141 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142 */
143/*
144 * The following variables establish the state of the PLL/FLL and the
145 * residual time and frequency offset of the local clock.
146 */
147#define SHIFT_PLL	4		/* PLL loop gain (shift) */
148#define SHIFT_FLL	2		/* FLL loop gain (shift) */
149
150static int time_state = TIME_OK;	/* clock state */
151static int time_status = STA_UNSYNC;	/* clock status bits */
152static long time_tai;			/* TAI offset (s) */
153static long time_monitor;		/* last time offset scaled (ns) */
154static long time_constant;		/* poll interval (shift) (s) */
155static long time_precision = 1;		/* clock precision (ns) */
156static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
157static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
158static long time_reftime;		/* time at last adjustment (s) */
159static l_fp time_offset;		/* time offset (ns) */
160static l_fp time_freq;			/* frequency offset (ns/s) */
161static l_fp time_adj;			/* tick adjust (ns/s) */
162
163static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
164
165#ifdef PPS_SYNC
166/*
167 * The following variables are used when a pulse-per-second (PPS) signal
168 * is available and connected via a modem control lead. They establish
169 * the engineering parameters of the clock discipline loop when
170 * controlled by the PPS signal.
171 */
172#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
173#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
174#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
175#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
176#define PPS_VALID	120		/* PPS signal watchdog max (s) */
177#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
178#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
179
180static struct timespec pps_tf[3];	/* phase median filter */
181static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
182static long pps_fcount;			/* frequency accumulator */
183static long pps_jitter;			/* nominal jitter (ns) */
184static long pps_stabil;			/* nominal stability (scaled ns/s) */
185static long pps_lastsec;		/* time at last calibration (s) */
186static int pps_valid;			/* signal watchdog counter */
187static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
188static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
189static int pps_intcnt;			/* wander counter */
190
191/*
192 * PPS signal quality monitors
193 */
194static long pps_calcnt;			/* calibration intervals */
195static long pps_jitcnt;			/* jitter limit exceeded */
196static long pps_stbcnt;			/* stability limit exceeded */
197static long pps_errcnt;			/* calibration errors */
198#endif /* PPS_SYNC */
199/*
200 * End of phase/frequency-lock loop (PLL/FLL) definitions
201 */
202
203static void ntp_init(void);
204static void hardupdate(long offset);
205static void ntp_gettime1(struct ntptimeval *ntvp);
206static int ntp_is_time_error(void);
207
208static int
209ntp_is_time_error(void)
210{
211	/*
212	 * Status word error decode. If any of these conditions occur,
213	 * an error is returned, instead of the status word. Most
214	 * applications will care only about the fact the system clock
215	 * may not be trusted, not about the details.
216	 *
217	 * Hardware or software error
218	 */
219	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
220
221	/*
222	 * PPS signal lost when either time or frequency synchronization
223	 * requested
224	 */
225	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
226	    !(time_status & STA_PPSSIGNAL)) ||
227
228	/*
229	 * PPS jitter exceeded when time synchronization requested
230	 */
231	    (time_status & STA_PPSTIME &&
232	    time_status & STA_PPSJITTER) ||
233
234	/*
235	 * PPS wander exceeded or calibration error when frequency
236	 * synchronization requested
237	 */
238	    (time_status & STA_PPSFREQ &&
239	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
240		return (1);
241
242	return (0);
243}
244
245static void
246ntp_gettime1(struct ntptimeval *ntvp)
247{
248	struct timespec atv;	/* nanosecond time */
249
250	GIANT_REQUIRED;
251
252	nanotime(&atv);
253	ntvp->time.tv_sec = atv.tv_sec;
254	ntvp->time.tv_nsec = atv.tv_nsec;
255	ntvp->maxerror = time_maxerror;
256	ntvp->esterror = time_esterror;
257	ntvp->tai = time_tai;
258	ntvp->time_state = time_state;
259
260	if (ntp_is_time_error())
261		ntvp->time_state = TIME_ERROR;
262}
263
264/*
265 * ntp_gettime() - NTP user application interface
266 *
267 * See the timex.h header file for synopsis and API description.  Note that
268 * the TAI offset is returned in the ntvtimeval.tai structure member.
269 */
270#ifndef _SYS_SYSPROTO_H_
271struct ntp_gettime_args {
272	struct ntptimeval *ntvp;
273};
274#endif
275/* ARGSUSED */
276int
277sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
278{
279	struct ntptimeval ntv;
280
281	mtx_lock(&Giant);
282	ntp_gettime1(&ntv);
283	mtx_unlock(&Giant);
284
285	td->td_retval[0] = ntv.time_state;
286	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
287}
288
289static int
290ntp_sysctl(SYSCTL_HANDLER_ARGS)
291{
292	struct ntptimeval ntv;	/* temporary structure */
293
294	ntp_gettime1(&ntv);
295
296	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
297}
298
299SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
300SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
301	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
302
303#ifdef PPS_SYNC
304SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
305SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
306SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
307    &time_monitor, 0, "");
308
309SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
310SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
311#endif
312
313/*
314 * ntp_adjtime() - NTP daemon application interface
315 *
316 * See the timex.h header file for synopsis and API description.  Note that
317 * the timex.constant structure member has a dual purpose to set the time
318 * constant and to set the TAI offset.
319 */
320#ifndef _SYS_SYSPROTO_H_
321struct ntp_adjtime_args {
322	struct timex *tp;
323};
324#endif
325
326int
327sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
328{
329	struct timex ntv;	/* temporary structure */
330	long freq;		/* frequency ns/s) */
331	int modes;		/* mode bits from structure */
332	int s;			/* caller priority */
333	int error;
334
335	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
336	if (error)
337		return(error);
338
339	/*
340	 * Update selected clock variables - only the superuser can
341	 * change anything. Note that there is no error checking here on
342	 * the assumption the superuser should know what it is doing.
343	 * Note that either the time constant or TAI offset are loaded
344	 * from the ntv.constant member, depending on the mode bits. If
345	 * the STA_PLL bit in the status word is cleared, the state and
346	 * status words are reset to the initial values at boot.
347	 */
348	mtx_lock(&Giant);
349	modes = ntv.modes;
350	if (modes)
351		error = priv_check(td, PRIV_NTP_ADJTIME);
352	if (error)
353		goto done2;
354	s = splclock();
355	if (modes & MOD_MAXERROR)
356		time_maxerror = ntv.maxerror;
357	if (modes & MOD_ESTERROR)
358		time_esterror = ntv.esterror;
359	if (modes & MOD_STATUS) {
360		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
361			time_state = TIME_OK;
362			time_status = STA_UNSYNC;
363#ifdef PPS_SYNC
364			pps_shift = PPS_FAVG;
365#endif /* PPS_SYNC */
366		}
367		time_status &= STA_RONLY;
368		time_status |= ntv.status & ~STA_RONLY;
369	}
370	if (modes & MOD_TIMECONST) {
371		if (ntv.constant < 0)
372			time_constant = 0;
373		else if (ntv.constant > MAXTC)
374			time_constant = MAXTC;
375		else
376			time_constant = ntv.constant;
377	}
378	if (modes & MOD_TAI) {
379		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
380			time_tai = ntv.constant;
381	}
382#ifdef PPS_SYNC
383	if (modes & MOD_PPSMAX) {
384		if (ntv.shift < PPS_FAVG)
385			pps_shiftmax = PPS_FAVG;
386		else if (ntv.shift > PPS_FAVGMAX)
387			pps_shiftmax = PPS_FAVGMAX;
388		else
389			pps_shiftmax = ntv.shift;
390	}
391#endif /* PPS_SYNC */
392	if (modes & MOD_NANO)
393		time_status |= STA_NANO;
394	if (modes & MOD_MICRO)
395		time_status &= ~STA_NANO;
396	if (modes & MOD_CLKB)
397		time_status |= STA_CLK;
398	if (modes & MOD_CLKA)
399		time_status &= ~STA_CLK;
400	if (modes & MOD_FREQUENCY) {
401		freq = (ntv.freq * 1000LL) >> 16;
402		if (freq > MAXFREQ)
403			L_LINT(time_freq, MAXFREQ);
404		else if (freq < -MAXFREQ)
405			L_LINT(time_freq, -MAXFREQ);
406		else {
407			/*
408			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
409			 * time_freq is [ns/s * 2^32]
410			 */
411			time_freq = ntv.freq * 1000LL * 65536LL;
412		}
413#ifdef PPS_SYNC
414		pps_freq = time_freq;
415#endif /* PPS_SYNC */
416	}
417	if (modes & MOD_OFFSET) {
418		if (time_status & STA_NANO)
419			hardupdate(ntv.offset);
420		else
421			hardupdate(ntv.offset * 1000);
422	}
423
424	/*
425	 * Retrieve all clock variables. Note that the TAI offset is
426	 * returned only by ntp_gettime();
427	 */
428	if (time_status & STA_NANO)
429		ntv.offset = L_GINT(time_offset);
430	else
431		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
432	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
433	ntv.maxerror = time_maxerror;
434	ntv.esterror = time_esterror;
435	ntv.status = time_status;
436	ntv.constant = time_constant;
437	if (time_status & STA_NANO)
438		ntv.precision = time_precision;
439	else
440		ntv.precision = time_precision / 1000;
441	ntv.tolerance = MAXFREQ * SCALE_PPM;
442#ifdef PPS_SYNC
443	ntv.shift = pps_shift;
444	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
445	if (time_status & STA_NANO)
446		ntv.jitter = pps_jitter;
447	else
448		ntv.jitter = pps_jitter / 1000;
449	ntv.stabil = pps_stabil;
450	ntv.calcnt = pps_calcnt;
451	ntv.errcnt = pps_errcnt;
452	ntv.jitcnt = pps_jitcnt;
453	ntv.stbcnt = pps_stbcnt;
454#endif /* PPS_SYNC */
455	splx(s);
456
457	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
458	if (error)
459		goto done2;
460
461	if (ntp_is_time_error())
462		td->td_retval[0] = TIME_ERROR;
463	else
464		td->td_retval[0] = time_state;
465
466done2:
467	mtx_unlock(&Giant);
468	return (error);
469}
470
471/*
472 * second_overflow() - called after ntp_tick_adjust()
473 *
474 * This routine is ordinarily called immediately following the above
475 * routine ntp_tick_adjust(). While these two routines are normally
476 * combined, they are separated here only for the purposes of
477 * simulation.
478 */
479void
480ntp_update_second(int64_t *adjustment, time_t *newsec)
481{
482	int tickrate;
483	l_fp ftemp;		/* 32/64-bit temporary */
484
485	/*
486	 * On rollover of the second both the nanosecond and microsecond
487	 * clocks are updated and the state machine cranked as
488	 * necessary. The phase adjustment to be used for the next
489	 * second is calculated and the maximum error is increased by
490	 * the tolerance.
491	 */
492	time_maxerror += MAXFREQ / 1000;
493
494	/*
495	 * Leap second processing. If in leap-insert state at
496	 * the end of the day, the system clock is set back one
497	 * second; if in leap-delete state, the system clock is
498	 * set ahead one second. The nano_time() routine or
499	 * external clock driver will insure that reported time
500	 * is always monotonic.
501	 */
502	switch (time_state) {
503
504		/*
505		 * No warning.
506		 */
507		case TIME_OK:
508		if (time_status & STA_INS)
509			time_state = TIME_INS;
510		else if (time_status & STA_DEL)
511			time_state = TIME_DEL;
512		break;
513
514		/*
515		 * Insert second 23:59:60 following second
516		 * 23:59:59.
517		 */
518		case TIME_INS:
519		if (!(time_status & STA_INS))
520			time_state = TIME_OK;
521		else if ((*newsec) % 86400 == 0) {
522			(*newsec)--;
523			time_state = TIME_OOP;
524			time_tai++;
525		}
526		break;
527
528		/*
529		 * Delete second 23:59:59.
530		 */
531		case TIME_DEL:
532		if (!(time_status & STA_DEL))
533			time_state = TIME_OK;
534		else if (((*newsec) + 1) % 86400 == 0) {
535			(*newsec)++;
536			time_tai--;
537			time_state = TIME_WAIT;
538		}
539		break;
540
541		/*
542		 * Insert second in progress.
543		 */
544		case TIME_OOP:
545			time_state = TIME_WAIT;
546		break;
547
548		/*
549		 * Wait for status bits to clear.
550		 */
551		case TIME_WAIT:
552		if (!(time_status & (STA_INS | STA_DEL)))
553			time_state = TIME_OK;
554	}
555
556	/*
557	 * Compute the total time adjustment for the next second
558	 * in ns. The offset is reduced by a factor depending on
559	 * whether the PPS signal is operating. Note that the
560	 * value is in effect scaled by the clock frequency,
561	 * since the adjustment is added at each tick interrupt.
562	 */
563	ftemp = time_offset;
564#ifdef PPS_SYNC
565	/* XXX even if PPS signal dies we should finish adjustment ? */
566	if (time_status & STA_PPSTIME && time_status &
567	    STA_PPSSIGNAL)
568		L_RSHIFT(ftemp, pps_shift);
569	else
570		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
571#else
572		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
573#endif /* PPS_SYNC */
574	time_adj = ftemp;
575	L_SUB(time_offset, ftemp);
576	L_ADD(time_adj, time_freq);
577
578	/*
579	 * Apply any correction from adjtime(2).  If more than one second
580	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
581	 * until the last second is slewed the final < 500 usecs.
582	 */
583	if (time_adjtime != 0) {
584		if (time_adjtime > 1000000)
585			tickrate = 5000;
586		else if (time_adjtime < -1000000)
587			tickrate = -5000;
588		else if (time_adjtime > 500)
589			tickrate = 500;
590		else if (time_adjtime < -500)
591			tickrate = -500;
592		else
593			tickrate = time_adjtime;
594		time_adjtime -= tickrate;
595		L_LINT(ftemp, tickrate * 1000);
596		L_ADD(time_adj, ftemp);
597	}
598	*adjustment = time_adj;
599
600#ifdef PPS_SYNC
601	if (pps_valid > 0)
602		pps_valid--;
603	else
604		time_status &= ~STA_PPSSIGNAL;
605#endif /* PPS_SYNC */
606}
607
608/*
609 * ntp_init() - initialize variables and structures
610 *
611 * This routine must be called after the kernel variables hz and tick
612 * are set or changed and before the next tick interrupt. In this
613 * particular implementation, these values are assumed set elsewhere in
614 * the kernel. The design allows the clock frequency and tick interval
615 * to be changed while the system is running. So, this routine should
616 * probably be integrated with the code that does that.
617 */
618static void
619ntp_init()
620{
621
622	/*
623	 * The following variables are initialized only at startup. Only
624	 * those structures not cleared by the compiler need to be
625	 * initialized, and these only in the simulator. In the actual
626	 * kernel, any nonzero values here will quickly evaporate.
627	 */
628	L_CLR(time_offset);
629	L_CLR(time_freq);
630#ifdef PPS_SYNC
631	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
632	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
633	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
634	pps_fcount = 0;
635	L_CLR(pps_freq);
636#endif /* PPS_SYNC */
637}
638
639SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
640
641/*
642 * hardupdate() - local clock update
643 *
644 * This routine is called by ntp_adjtime() to update the local clock
645 * phase and frequency. The implementation is of an adaptive-parameter,
646 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
647 * time and frequency offset estimates for each call. If the kernel PPS
648 * discipline code is configured (PPS_SYNC), the PPS signal itself
649 * determines the new time offset, instead of the calling argument.
650 * Presumably, calls to ntp_adjtime() occur only when the caller
651 * believes the local clock is valid within some bound (+-128 ms with
652 * NTP). If the caller's time is far different than the PPS time, an
653 * argument will ensue, and it's not clear who will lose.
654 *
655 * For uncompensated quartz crystal oscillators and nominal update
656 * intervals less than 256 s, operation should be in phase-lock mode,
657 * where the loop is disciplined to phase. For update intervals greater
658 * than 1024 s, operation should be in frequency-lock mode, where the
659 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
660 * is selected by the STA_MODE status bit.
661 */
662static void
663hardupdate(offset)
664	long offset;		/* clock offset (ns) */
665{
666	long mtemp;
667	l_fp ftemp;
668
669	/*
670	 * Select how the phase is to be controlled and from which
671	 * source. If the PPS signal is present and enabled to
672	 * discipline the time, the PPS offset is used; otherwise, the
673	 * argument offset is used.
674	 */
675	if (!(time_status & STA_PLL))
676		return;
677	if (!(time_status & STA_PPSTIME && time_status &
678	    STA_PPSSIGNAL)) {
679		if (offset > MAXPHASE)
680			time_monitor = MAXPHASE;
681		else if (offset < -MAXPHASE)
682			time_monitor = -MAXPHASE;
683		else
684			time_monitor = offset;
685		L_LINT(time_offset, time_monitor);
686	}
687
688	/*
689	 * Select how the frequency is to be controlled and in which
690	 * mode (PLL or FLL). If the PPS signal is present and enabled
691	 * to discipline the frequency, the PPS frequency is used;
692	 * otherwise, the argument offset is used to compute it.
693	 */
694	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
695		time_reftime = time_second;
696		return;
697	}
698	if (time_status & STA_FREQHOLD || time_reftime == 0)
699		time_reftime = time_second;
700	mtemp = time_second - time_reftime;
701	L_LINT(ftemp, time_monitor);
702	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
703	L_MPY(ftemp, mtemp);
704	L_ADD(time_freq, ftemp);
705	time_status &= ~STA_MODE;
706	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
707	    MAXSEC)) {
708		L_LINT(ftemp, (time_monitor << 4) / mtemp);
709		L_RSHIFT(ftemp, SHIFT_FLL + 4);
710		L_ADD(time_freq, ftemp);
711		time_status |= STA_MODE;
712	}
713	time_reftime = time_second;
714	if (L_GINT(time_freq) > MAXFREQ)
715		L_LINT(time_freq, MAXFREQ);
716	else if (L_GINT(time_freq) < -MAXFREQ)
717		L_LINT(time_freq, -MAXFREQ);
718}
719
720#ifdef PPS_SYNC
721/*
722 * hardpps() - discipline CPU clock oscillator to external PPS signal
723 *
724 * This routine is called at each PPS interrupt in order to discipline
725 * the CPU clock oscillator to the PPS signal. There are two independent
726 * first-order feedback loops, one for the phase, the other for the
727 * frequency. The phase loop measures and grooms the PPS phase offset
728 * and leaves it in a handy spot for the seconds overflow routine. The
729 * frequency loop averages successive PPS phase differences and
730 * calculates the PPS frequency offset, which is also processed by the
731 * seconds overflow routine. The code requires the caller to capture the
732 * time and architecture-dependent hardware counter values in
733 * nanoseconds at the on-time PPS signal transition.
734 *
735 * Note that, on some Unix systems this routine runs at an interrupt
736 * priority level higher than the timer interrupt routine hardclock().
737 * Therefore, the variables used are distinct from the hardclock()
738 * variables, except for the actual time and frequency variables, which
739 * are determined by this routine and updated atomically.
740 */
741void
742hardpps(tsp, nsec)
743	struct timespec *tsp;	/* time at PPS */
744	long nsec;		/* hardware counter at PPS */
745{
746	long u_sec, u_nsec, v_nsec; /* temps */
747	l_fp ftemp;
748
749	/*
750	 * The signal is first processed by a range gate and frequency
751	 * discriminator. The range gate rejects noise spikes outside
752	 * the range +-500 us. The frequency discriminator rejects input
753	 * signals with apparent frequency outside the range 1 +-500
754	 * PPM. If two hits occur in the same second, we ignore the
755	 * later hit; if not and a hit occurs outside the range gate,
756	 * keep the later hit for later comparison, but do not process
757	 * it.
758	 */
759	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
760	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
761	pps_valid = PPS_VALID;
762	u_sec = tsp->tv_sec;
763	u_nsec = tsp->tv_nsec;
764	if (u_nsec >= (NANOSECOND >> 1)) {
765		u_nsec -= NANOSECOND;
766		u_sec++;
767	}
768	v_nsec = u_nsec - pps_tf[0].tv_nsec;
769	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
770	    MAXFREQ)
771		return;
772	pps_tf[2] = pps_tf[1];
773	pps_tf[1] = pps_tf[0];
774	pps_tf[0].tv_sec = u_sec;
775	pps_tf[0].tv_nsec = u_nsec;
776
777	/*
778	 * Compute the difference between the current and previous
779	 * counter values. If the difference exceeds 0.5 s, assume it
780	 * has wrapped around, so correct 1.0 s. If the result exceeds
781	 * the tick interval, the sample point has crossed a tick
782	 * boundary during the last second, so correct the tick. Very
783	 * intricate.
784	 */
785	u_nsec = nsec;
786	if (u_nsec > (NANOSECOND >> 1))
787		u_nsec -= NANOSECOND;
788	else if (u_nsec < -(NANOSECOND >> 1))
789		u_nsec += NANOSECOND;
790	pps_fcount += u_nsec;
791	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
792		return;
793	time_status &= ~STA_PPSJITTER;
794
795	/*
796	 * A three-stage median filter is used to help denoise the PPS
797	 * time. The median sample becomes the time offset estimate; the
798	 * difference between the other two samples becomes the time
799	 * dispersion (jitter) estimate.
800	 */
801	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
802		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
803			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
804			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
805		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
806			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
807			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
808		} else {
809			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
810			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
811		}
812	} else {
813		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
814			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
815			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
816		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
817			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
818			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
819		} else {
820			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
821			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
822		}
823	}
824
825	/*
826	 * Nominal jitter is due to PPS signal noise and interrupt
827	 * latency. If it exceeds the popcorn threshold, the sample is
828	 * discarded. otherwise, if so enabled, the time offset is
829	 * updated. We can tolerate a modest loss of data here without
830	 * much degrading time accuracy.
831	 */
832	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
833		time_status |= STA_PPSJITTER;
834		pps_jitcnt++;
835	} else if (time_status & STA_PPSTIME) {
836		time_monitor = -v_nsec;
837		L_LINT(time_offset, time_monitor);
838	}
839	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
840	u_sec = pps_tf[0].tv_sec - pps_lastsec;
841	if (u_sec < (1 << pps_shift))
842		return;
843
844	/*
845	 * At the end of the calibration interval the difference between
846	 * the first and last counter values becomes the scaled
847	 * frequency. It will later be divided by the length of the
848	 * interval to determine the frequency update. If the frequency
849	 * exceeds a sanity threshold, or if the actual calibration
850	 * interval is not equal to the expected length, the data are
851	 * discarded. We can tolerate a modest loss of data here without
852	 * much degrading frequency accuracy.
853	 */
854	pps_calcnt++;
855	v_nsec = -pps_fcount;
856	pps_lastsec = pps_tf[0].tv_sec;
857	pps_fcount = 0;
858	u_nsec = MAXFREQ << pps_shift;
859	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
860	    pps_shift)) {
861		time_status |= STA_PPSERROR;
862		pps_errcnt++;
863		return;
864	}
865
866	/*
867	 * Here the raw frequency offset and wander (stability) is
868	 * calculated. If the wander is less than the wander threshold
869	 * for four consecutive averaging intervals, the interval is
870	 * doubled; if it is greater than the threshold for four
871	 * consecutive intervals, the interval is halved. The scaled
872	 * frequency offset is converted to frequency offset. The
873	 * stability metric is calculated as the average of recent
874	 * frequency changes, but is used only for performance
875	 * monitoring.
876	 */
877	L_LINT(ftemp, v_nsec);
878	L_RSHIFT(ftemp, pps_shift);
879	L_SUB(ftemp, pps_freq);
880	u_nsec = L_GINT(ftemp);
881	if (u_nsec > PPS_MAXWANDER) {
882		L_LINT(ftemp, PPS_MAXWANDER);
883		pps_intcnt--;
884		time_status |= STA_PPSWANDER;
885		pps_stbcnt++;
886	} else if (u_nsec < -PPS_MAXWANDER) {
887		L_LINT(ftemp, -PPS_MAXWANDER);
888		pps_intcnt--;
889		time_status |= STA_PPSWANDER;
890		pps_stbcnt++;
891	} else {
892		pps_intcnt++;
893	}
894	if (pps_intcnt >= 4) {
895		pps_intcnt = 4;
896		if (pps_shift < pps_shiftmax) {
897			pps_shift++;
898			pps_intcnt = 0;
899		}
900	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
901		pps_intcnt = -4;
902		if (pps_shift > PPS_FAVG) {
903			pps_shift--;
904			pps_intcnt = 0;
905		}
906	}
907	if (u_nsec < 0)
908		u_nsec = -u_nsec;
909	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
910
911	/*
912	 * The PPS frequency is recalculated and clamped to the maximum
913	 * MAXFREQ. If enabled, the system clock frequency is updated as
914	 * well.
915	 */
916	L_ADD(pps_freq, ftemp);
917	u_nsec = L_GINT(pps_freq);
918	if (u_nsec > MAXFREQ)
919		L_LINT(pps_freq, MAXFREQ);
920	else if (u_nsec < -MAXFREQ)
921		L_LINT(pps_freq, -MAXFREQ);
922	if (time_status & STA_PPSFREQ)
923		time_freq = pps_freq;
924}
925#endif /* PPS_SYNC */
926
927#ifndef _SYS_SYSPROTO_H_
928struct adjtime_args {
929	struct timeval *delta;
930	struct timeval *olddelta;
931};
932#endif
933/* ARGSUSED */
934int
935sys_adjtime(struct thread *td, struct adjtime_args *uap)
936{
937	struct timeval delta, olddelta, *deltap;
938	int error;
939
940	if (uap->delta) {
941		error = copyin(uap->delta, &delta, sizeof(delta));
942		if (error)
943			return (error);
944		deltap = &delta;
945	} else
946		deltap = NULL;
947	error = kern_adjtime(td, deltap, &olddelta);
948	if (uap->olddelta && error == 0)
949		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
950	return (error);
951}
952
953int
954kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
955{
956	struct timeval atv;
957	int error;
958
959	mtx_lock(&Giant);
960	if (olddelta) {
961		atv.tv_sec = time_adjtime / 1000000;
962		atv.tv_usec = time_adjtime % 1000000;
963		if (atv.tv_usec < 0) {
964			atv.tv_usec += 1000000;
965			atv.tv_sec--;
966		}
967		*olddelta = atv;
968	}
969	if (delta) {
970		if ((error = priv_check(td, PRIV_ADJTIME))) {
971			mtx_unlock(&Giant);
972			return (error);
973		}
974		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
975		    delta->tv_usec;
976	}
977	mtx_unlock(&Giant);
978	return (0);
979}
980
981static struct callout resettodr_callout;
982static int resettodr_period = 1800;
983
984static void
985periodic_resettodr(void *arg __unused)
986{
987
988	if (!ntp_is_time_error()) {
989		mtx_lock(&Giant);
990		resettodr();
991		mtx_unlock(&Giant);
992	}
993	if (resettodr_period > 0)
994		callout_schedule(&resettodr_callout, resettodr_period * hz);
995}
996
997static void
998shutdown_resettodr(void *arg __unused, int howto __unused)
999{
1000
1001	callout_drain(&resettodr_callout);
1002	if (resettodr_period > 0 && !ntp_is_time_error()) {
1003		mtx_lock(&Giant);
1004		resettodr();
1005		mtx_unlock(&Giant);
1006	}
1007}
1008
1009static int
1010sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1011{
1012	int error;
1013
1014	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1015	if (error || !req->newptr)
1016		return (error);
1017	if (resettodr_period == 0)
1018		callout_stop(&resettodr_callout);
1019	else
1020		callout_reset(&resettodr_callout, resettodr_period * hz,
1021		    periodic_resettodr, NULL);
1022	return (0);
1023}
1024
1025SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW,
1026	&resettodr_period, 1800, sysctl_resettodr_period, "I",
1027	"Save system time to RTC with this period (in seconds)");
1028TUNABLE_INT("machdep.rtc_save_period", &resettodr_period);
1029
1030static void
1031start_periodic_resettodr(void *arg __unused)
1032{
1033
1034	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1035	    SHUTDOWN_PRI_FIRST);
1036	callout_init(&resettodr_callout, 1);
1037	if (resettodr_period == 0)
1038		return;
1039	callout_reset(&resettodr_callout, resettodr_period * hz,
1040	    periodic_resettodr, NULL);
1041}
1042
1043SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
1044	start_periodic_resettodr, NULL);
1045