kern_malloc.c revision 65649
1/*
2 * Copyright (c) 1987, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/kern/kern_malloc.c 65649 2000-09-09 22:27:35Z jasone $
35 */
36
37#include "opt_vm.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/vmmeter.h>
45#include <sys/lock.h>
46#include <sys/proc.h>
47#include <machine/mutex.h>
48
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_kern.h>
52#include <vm/vm_extern.h>
53#include <vm/pmap.h>
54#include <vm/vm_map.h>
55
56#if defined(INVARIANTS) && defined(__i386__)
57#include <machine/cpu.h>
58#endif
59
60MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
61MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
62MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
63
64MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
65MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
66
67static void kmeminit __P((void *));
68SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
69
70static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
71
72static struct malloc_type *kmemstatistics;
73static struct kmembuckets bucket[MINBUCKET + 16];
74static struct kmemusage *kmemusage;
75static char *kmembase;
76static char *kmemlimit;
77
78static mtx_t malloc_mtx;
79
80u_int vm_kmem_size;
81
82#ifdef INVARIANTS
83/*
84 * This structure provides a set of masks to catch unaligned frees.
85 */
86static long addrmask[] = { 0,
87	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
88	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
89	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
90	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
91};
92
93/*
94 * The WEIRD_ADDR is used as known text to copy into free objects so
95 * that modifications after frees can be detected.
96 */
97#define WEIRD_ADDR	0xdeadc0de
98#define MAX_COPY	64
99
100/*
101 * Normally the first word of the structure is used to hold the list
102 * pointer for free objects. However, when running with diagnostics,
103 * we use the third and fourth fields, so as to catch modifications
104 * in the most commonly trashed first two words.
105 */
106struct freelist {
107	long	spare0;
108	struct malloc_type *type;
109	long	spare1;
110	caddr_t	next;
111};
112#else /* !INVARIANTS */
113struct freelist {
114	caddr_t	next;
115};
116#endif /* INVARIANTS */
117
118/*
119 *	malloc:
120 *
121 *	Allocate a block of memory.
122 *
123 *	If M_NOWAIT is set, this routine will not block and return NULL if
124 *	the allocation fails.
125 *
126 *	If M_ASLEEP is set (M_NOWAIT must also be set), this routine
127 *	will have the side effect of calling asleep() if it returns NULL,
128 *	allowing the parent to await() at some future time.
129 */
130void *
131malloc(size, type, flags)
132	unsigned long size;
133	struct malloc_type *type;
134	int flags;
135{
136	register struct kmembuckets *kbp;
137	register struct kmemusage *kup;
138	register struct freelist *freep;
139	long indx, npg, allocsize;
140	int s;
141	caddr_t va, cp, savedlist;
142#ifdef INVARIANTS
143	long *end, *lp;
144	int copysize;
145	const char *savedtype;
146#endif
147	register struct malloc_type *ksp = type;
148
149#if defined(INVARIANTS) && defined(__i386__)
150	if (flags == M_WAITOK)
151		KASSERT(intr_nesting_level == 0,
152		   ("malloc(M_WAITOK) in interrupt context"));
153#endif
154	indx = BUCKETINDX(size);
155	kbp = &bucket[indx];
156	s = splmem();
157	mtx_enter(&malloc_mtx, MTX_DEF);
158	while (ksp->ks_memuse >= ksp->ks_limit) {
159		if (flags & M_ASLEEP) {
160			if (ksp->ks_limblocks < 65535)
161				ksp->ks_limblocks++;
162			asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
163		}
164		if (flags & M_NOWAIT) {
165			splx(s);
166			mtx_exit(&malloc_mtx, MTX_DEF);
167			return ((void *) NULL);
168		}
169		if (ksp->ks_limblocks < 65535)
170			ksp->ks_limblocks++;
171		tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
172	}
173	ksp->ks_size |= 1 << indx;
174#ifdef INVARIANTS
175	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
176#endif
177	if (kbp->kb_next == NULL) {
178		kbp->kb_last = NULL;
179		if (size > MAXALLOCSAVE)
180			allocsize = roundup(size, PAGE_SIZE);
181		else
182			allocsize = 1 << indx;
183		npg = btoc(allocsize);
184		va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
185		if (va == NULL) {
186			splx(s);
187			mtx_exit(&malloc_mtx, MTX_DEF);
188			return ((void *) NULL);
189		}
190		kbp->kb_total += kbp->kb_elmpercl;
191		kup = btokup(va);
192		kup->ku_indx = indx;
193		if (allocsize > MAXALLOCSAVE) {
194			if (npg > 65535)
195				panic("malloc: allocation too large");
196			kup->ku_pagecnt = npg;
197			ksp->ks_memuse += allocsize;
198			goto out;
199		}
200		kup->ku_freecnt = kbp->kb_elmpercl;
201		kbp->kb_totalfree += kbp->kb_elmpercl;
202		/*
203		 * Just in case we blocked while allocating memory,
204		 * and someone else also allocated memory for this
205		 * bucket, don't assume the list is still empty.
206		 */
207		savedlist = kbp->kb_next;
208		kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
209		for (;;) {
210			freep = (struct freelist *)cp;
211#ifdef INVARIANTS
212			/*
213			 * Copy in known text to detect modification
214			 * after freeing.
215			 */
216			end = (long *)&cp[copysize];
217			for (lp = (long *)cp; lp < end; lp++)
218				*lp = WEIRD_ADDR;
219			freep->type = M_FREE;
220#endif /* INVARIANTS */
221			if (cp <= va)
222				break;
223			cp -= allocsize;
224			freep->next = cp;
225		}
226		freep->next = savedlist;
227		if (kbp->kb_last == NULL)
228			kbp->kb_last = (caddr_t)freep;
229	}
230	va = kbp->kb_next;
231	kbp->kb_next = ((struct freelist *)va)->next;
232#ifdef INVARIANTS
233	freep = (struct freelist *)va;
234	savedtype = (const char *) freep->type->ks_shortdesc;
235#if BYTE_ORDER == BIG_ENDIAN
236	freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
237#endif
238#if BYTE_ORDER == LITTLE_ENDIAN
239	freep->type = (struct malloc_type *)WEIRD_ADDR;
240#endif
241	if ((intptr_t)(void *)&freep->next & 0x2)
242		freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
243	else
244		freep->next = (caddr_t)WEIRD_ADDR;
245	end = (long *)&va[copysize];
246	for (lp = (long *)va; lp < end; lp++) {
247		if (*lp == WEIRD_ADDR)
248			continue;
249		printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
250			"Data modified on freelist: word",
251			(long)(lp - (long *)va), (void *)va, size,
252			"previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
253		break;
254	}
255	freep->spare0 = 0;
256#endif /* INVARIANTS */
257	kup = btokup(va);
258	if (kup->ku_indx != indx)
259		panic("malloc: wrong bucket");
260	if (kup->ku_freecnt == 0)
261		panic("malloc: lost data");
262	kup->ku_freecnt--;
263	kbp->kb_totalfree--;
264	ksp->ks_memuse += 1 << indx;
265out:
266	kbp->kb_calls++;
267	ksp->ks_inuse++;
268	ksp->ks_calls++;
269	if (ksp->ks_memuse > ksp->ks_maxused)
270		ksp->ks_maxused = ksp->ks_memuse;
271	splx(s);
272	mtx_exit(&malloc_mtx, MTX_DEF);
273	return ((void *) va);
274}
275
276/*
277 *	free:
278 *
279 *	Free a block of memory allocated by malloc.
280 *
281 *	This routine may not block.
282 */
283void
284free(addr, type)
285	void *addr;
286	struct malloc_type *type;
287{
288	register struct kmembuckets *kbp;
289	register struct kmemusage *kup;
290	register struct freelist *freep;
291	long size;
292	int s;
293#ifdef INVARIANTS
294	struct freelist *fp;
295	long *end, *lp, alloc, copysize;
296#endif
297	register struct malloc_type *ksp = type;
298
299	KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
300	    ("free: address %p out of range", (void *)addr));
301	kup = btokup(addr);
302	size = 1 << kup->ku_indx;
303	kbp = &bucket[kup->ku_indx];
304	s = splmem();
305	mtx_enter(&malloc_mtx, MTX_DEF);
306#ifdef INVARIANTS
307	/*
308	 * Check for returns of data that do not point to the
309	 * beginning of the allocation.
310	 */
311	if (size > PAGE_SIZE)
312		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
313	else
314		alloc = addrmask[kup->ku_indx];
315	if (((uintptr_t)(void *)addr & alloc) != 0)
316		panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
317		    (void *)addr, size, type->ks_shortdesc, alloc);
318#endif /* INVARIANTS */
319	if (size > MAXALLOCSAVE) {
320		kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
321		size = kup->ku_pagecnt << PAGE_SHIFT;
322		ksp->ks_memuse -= size;
323		kup->ku_indx = 0;
324		kup->ku_pagecnt = 0;
325		if (ksp->ks_memuse + size >= ksp->ks_limit &&
326		    ksp->ks_memuse < ksp->ks_limit)
327			wakeup((caddr_t)ksp);
328		ksp->ks_inuse--;
329		kbp->kb_total -= 1;
330		splx(s);
331		mtx_exit(&malloc_mtx, MTX_DEF);
332		return;
333	}
334	freep = (struct freelist *)addr;
335#ifdef INVARIANTS
336	/*
337	 * Check for multiple frees. Use a quick check to see if
338	 * it looks free before laboriously searching the freelist.
339	 */
340	if (freep->spare0 == WEIRD_ADDR) {
341		fp = (struct freelist *)kbp->kb_next;
342		while (fp) {
343			if (fp->spare0 != WEIRD_ADDR)
344				panic("free: free item %p modified", fp);
345			else if (addr == (caddr_t)fp)
346				panic("free: multiple freed item %p", addr);
347			fp = (struct freelist *)fp->next;
348		}
349	}
350	/*
351	 * Copy in known text to detect modification after freeing
352	 * and to make it look free. Also, save the type being freed
353	 * so we can list likely culprit if modification is detected
354	 * when the object is reallocated.
355	 */
356	copysize = size < MAX_COPY ? size : MAX_COPY;
357	end = (long *)&((caddr_t)addr)[copysize];
358	for (lp = (long *)addr; lp < end; lp++)
359		*lp = WEIRD_ADDR;
360	freep->type = type;
361#endif /* INVARIANTS */
362	kup->ku_freecnt++;
363	if (kup->ku_freecnt >= kbp->kb_elmpercl) {
364		if (kup->ku_freecnt > kbp->kb_elmpercl)
365			panic("free: multiple frees");
366		else if (kbp->kb_totalfree > kbp->kb_highwat)
367			kbp->kb_couldfree++;
368	}
369	kbp->kb_totalfree++;
370	ksp->ks_memuse -= size;
371	if (ksp->ks_memuse + size >= ksp->ks_limit &&
372	    ksp->ks_memuse < ksp->ks_limit)
373		wakeup((caddr_t)ksp);
374	ksp->ks_inuse--;
375#ifdef OLD_MALLOC_MEMORY_POLICY
376	if (kbp->kb_next == NULL)
377		kbp->kb_next = addr;
378	else
379		((struct freelist *)kbp->kb_last)->next = addr;
380	freep->next = NULL;
381	kbp->kb_last = addr;
382#else
383	/*
384	 * Return memory to the head of the queue for quick reuse.  This
385	 * can improve performance by improving the probability of the
386	 * item being in the cache when it is reused.
387	 */
388	if (kbp->kb_next == NULL) {
389		kbp->kb_next = addr;
390		kbp->kb_last = addr;
391		freep->next = NULL;
392	} else {
393		freep->next = kbp->kb_next;
394		kbp->kb_next = addr;
395	}
396#endif
397	splx(s);
398	mtx_exit(&malloc_mtx, MTX_DEF);
399}
400
401/*
402 * Initialize the kernel memory allocator
403 */
404/* ARGSUSED*/
405static void
406kmeminit(dummy)
407	void *dummy;
408{
409	register long indx;
410	u_long npg;
411	u_long mem_size;
412	u_long xvm_kmem_size;
413
414#if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
415#error "kmeminit: MAXALLOCSAVE not power of 2"
416#endif
417#if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
418#error "kmeminit: MAXALLOCSAVE too big"
419#endif
420#if	(MAXALLOCSAVE < PAGE_SIZE)
421#error "kmeminit: MAXALLOCSAVE too small"
422#endif
423
424	mtx_init(&malloc_mtx, "malloc", MTX_DEF);
425
426	/*
427	 * Try to auto-tune the kernel memory size, so that it is
428	 * more applicable for a wider range of machine sizes.
429	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
430	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
431	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
432	 * available, and on an X86 with a total KVA space of 256MB,
433	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
434	 *
435	 * Note that the kmem_map is also used by the zone allocator,
436	 * so make sure that there is enough space.
437	 */
438	xvm_kmem_size = VM_KMEM_SIZE;
439	mem_size = cnt.v_page_count * PAGE_SIZE;
440
441#if defined(VM_KMEM_SIZE_SCALE)
442	if ((mem_size / VM_KMEM_SIZE_SCALE) > xvm_kmem_size)
443		xvm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
444#endif
445
446#if defined(VM_KMEM_SIZE_MAX)
447	if (xvm_kmem_size >= VM_KMEM_SIZE_MAX)
448		xvm_kmem_size = VM_KMEM_SIZE_MAX;
449#endif
450
451	/* Allow final override from the kernel environment */
452	TUNABLE_INT_FETCH("kern.vm.kmem.size", xvm_kmem_size, vm_kmem_size);
453
454	/*
455	 * Limit kmem virtual size to twice the physical memory.
456	 * This allows for kmem map sparseness, but limits the size
457	 * to something sane. Be careful to not overflow the 32bit
458	 * ints while doing the check.
459	 */
460	if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE))
461		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
462
463	npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size)
464		/ PAGE_SIZE;
465
466	kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
467		(vm_size_t)(npg * sizeof(struct kmemusage)));
468	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
469		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
470	kmem_map->system_map = 1;
471	for (indx = 0; indx < MINBUCKET + 16; indx++) {
472		if (1 << indx >= PAGE_SIZE)
473			bucket[indx].kb_elmpercl = 1;
474		else
475			bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
476		bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
477	}
478}
479
480void
481malloc_init(data)
482	void *data;
483{
484	struct malloc_type *type = (struct malloc_type *)data;
485
486	if (type->ks_magic != M_MAGIC)
487		panic("malloc type lacks magic");
488
489	if (type->ks_limit != 0)
490		return;
491
492	if (cnt.v_page_count == 0)
493		panic("malloc_init not allowed before vm init");
494
495	/*
496	 * The default limits for each malloc region is 1/2 of the
497	 * malloc portion of the kmem map size.
498	 */
499	type->ks_limit = vm_kmem_size / 2;
500	type->ks_next = kmemstatistics;
501	kmemstatistics = type;
502}
503
504void
505malloc_uninit(data)
506	void *data;
507{
508	struct malloc_type *type = (struct malloc_type *)data;
509	struct malloc_type *t;
510#ifdef INVARIANTS
511	struct kmembuckets *kbp;
512	struct freelist *freep;
513	long indx;
514	int s;
515#endif
516
517	if (type->ks_magic != M_MAGIC)
518		panic("malloc type lacks magic");
519
520	if (cnt.v_page_count == 0)
521		panic("malloc_uninit not allowed before vm init");
522
523	if (type->ks_limit == 0)
524		panic("malloc_uninit on uninitialized type");
525
526#ifdef INVARIANTS
527	s = splmem();
528	mtx_enter(&malloc_mtx, MTX_DEF);
529	for (indx = 0; indx < MINBUCKET + 16; indx++) {
530		kbp = bucket + indx;
531		freep = (struct freelist*)kbp->kb_next;
532		while (freep) {
533			if (freep->type == type)
534				freep->type = M_FREE;
535			freep = (struct freelist*)freep->next;
536		}
537	}
538	splx(s);
539	mtx_exit(&malloc_mtx, MTX_DEF);
540
541	if (type->ks_memuse != 0)
542		printf("malloc_uninit: %ld bytes of '%s' still allocated\n",
543		    type->ks_memuse, type->ks_shortdesc);
544#endif
545
546	if (type == kmemstatistics)
547		kmemstatistics = type->ks_next;
548	else {
549		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
550			if (t->ks_next == type) {
551				t->ks_next = type->ks_next;
552				break;
553			}
554		}
555	}
556	type->ks_next = NULL;
557	type->ks_limit = 0;
558}
559