kern_malloc.c revision 62231
1/*
2 * Copyright (c) 1987, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/kern/kern_malloc.c 62231 2000-06-29 03:41:30Z bp $
35 */
36
37#include "opt_vm.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/vmmeter.h>
45#include <sys/lock.h>
46
47#include <vm/vm.h>
48#include <vm/vm_param.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_extern.h>
51#include <vm/pmap.h>
52#include <vm/vm_map.h>
53
54#if defined(INVARIANTS) && defined(__i386__)
55#include <machine/cpu.h>
56#endif
57
58MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
59MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
60MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
61
62MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
63MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
64
65static void kmeminit __P((void *));
66SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
67
68static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
69
70static struct malloc_type *kmemstatistics;
71static struct kmembuckets bucket[MINBUCKET + 16];
72static struct kmemusage *kmemusage;
73static char *kmembase;
74static char *kmemlimit;
75
76u_int vm_kmem_size;
77
78#ifdef INVARIANTS
79/*
80 * This structure provides a set of masks to catch unaligned frees.
81 */
82static long addrmask[] = { 0,
83	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
84	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
85	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
86	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
87};
88
89/*
90 * The WEIRD_ADDR is used as known text to copy into free objects so
91 * that modifications after frees can be detected.
92 */
93#define WEIRD_ADDR	0xdeadc0de
94#define MAX_COPY	64
95
96/*
97 * Normally the first word of the structure is used to hold the list
98 * pointer for free objects. However, when running with diagnostics,
99 * we use the third and fourth fields, so as to catch modifications
100 * in the most commonly trashed first two words.
101 */
102struct freelist {
103	long	spare0;
104	struct malloc_type *type;
105	long	spare1;
106	caddr_t	next;
107};
108#else /* !INVARIANTS */
109struct freelist {
110	caddr_t	next;
111};
112#endif /* INVARIANTS */
113
114/*
115 *	malloc:
116 *
117 *	Allocate a block of memory.
118 *
119 *	If M_NOWAIT is set, this routine will not block and return NULL if
120 *	the allocation fails.
121 *
122 *	If M_ASLEEP is set (M_NOWAIT must also be set), this routine
123 *	will have the side effect of calling asleep() if it returns NULL,
124 *	allowing the parent to await() at some future time.
125 */
126void *
127malloc(size, type, flags)
128	unsigned long size;
129	struct malloc_type *type;
130	int flags;
131{
132	register struct kmembuckets *kbp;
133	register struct kmemusage *kup;
134	register struct freelist *freep;
135	long indx, npg, allocsize;
136	int s;
137	caddr_t va, cp, savedlist;
138#ifdef INVARIANTS
139	long *end, *lp;
140	int copysize;
141	const char *savedtype;
142#endif
143	register struct malloc_type *ksp = type;
144
145#if defined(INVARIANTS) && defined(__i386__)
146	if (flags == M_WAITOK)
147		KASSERT(intr_nesting_level == 0,
148		   ("malloc(M_WAITOK) in interrupt context"));
149#endif
150	indx = BUCKETINDX(size);
151	kbp = &bucket[indx];
152	s = splmem();
153	while (ksp->ks_memuse >= ksp->ks_limit) {
154		if (flags & M_ASLEEP) {
155			if (ksp->ks_limblocks < 65535)
156				ksp->ks_limblocks++;
157			asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
158		}
159		if (flags & M_NOWAIT) {
160			splx(s);
161			return ((void *) NULL);
162		}
163		if (ksp->ks_limblocks < 65535)
164			ksp->ks_limblocks++;
165		tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
166	}
167	ksp->ks_size |= 1 << indx;
168#ifdef INVARIANTS
169	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
170#endif
171	if (kbp->kb_next == NULL) {
172		kbp->kb_last = NULL;
173		if (size > MAXALLOCSAVE)
174			allocsize = roundup(size, PAGE_SIZE);
175		else
176			allocsize = 1 << indx;
177		npg = btoc(allocsize);
178		va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
179		if (va == NULL) {
180			splx(s);
181			return ((void *) NULL);
182		}
183		kbp->kb_total += kbp->kb_elmpercl;
184		kup = btokup(va);
185		kup->ku_indx = indx;
186		if (allocsize > MAXALLOCSAVE) {
187			if (npg > 65535)
188				panic("malloc: allocation too large");
189			kup->ku_pagecnt = npg;
190			ksp->ks_memuse += allocsize;
191			goto out;
192		}
193		kup->ku_freecnt = kbp->kb_elmpercl;
194		kbp->kb_totalfree += kbp->kb_elmpercl;
195		/*
196		 * Just in case we blocked while allocating memory,
197		 * and someone else also allocated memory for this
198		 * bucket, don't assume the list is still empty.
199		 */
200		savedlist = kbp->kb_next;
201		kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
202		for (;;) {
203			freep = (struct freelist *)cp;
204#ifdef INVARIANTS
205			/*
206			 * Copy in known text to detect modification
207			 * after freeing.
208			 */
209			end = (long *)&cp[copysize];
210			for (lp = (long *)cp; lp < end; lp++)
211				*lp = WEIRD_ADDR;
212			freep->type = M_FREE;
213#endif /* INVARIANTS */
214			if (cp <= va)
215				break;
216			cp -= allocsize;
217			freep->next = cp;
218		}
219		freep->next = savedlist;
220		if (kbp->kb_last == NULL)
221			kbp->kb_last = (caddr_t)freep;
222	}
223	va = kbp->kb_next;
224	kbp->kb_next = ((struct freelist *)va)->next;
225#ifdef INVARIANTS
226	freep = (struct freelist *)va;
227	savedtype = (const char *) freep->type->ks_shortdesc;
228#if BYTE_ORDER == BIG_ENDIAN
229	freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
230#endif
231#if BYTE_ORDER == LITTLE_ENDIAN
232	freep->type = (struct malloc_type *)WEIRD_ADDR;
233#endif
234	if ((intptr_t)(void *)&freep->next & 0x2)
235		freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
236	else
237		freep->next = (caddr_t)WEIRD_ADDR;
238	end = (long *)&va[copysize];
239	for (lp = (long *)va; lp < end; lp++) {
240		if (*lp == WEIRD_ADDR)
241			continue;
242		printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
243			"Data modified on freelist: word",
244			(long)(lp - (long *)va), (void *)va, size,
245			"previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
246		break;
247	}
248	freep->spare0 = 0;
249#endif /* INVARIANTS */
250	kup = btokup(va);
251	if (kup->ku_indx != indx)
252		panic("malloc: wrong bucket");
253	if (kup->ku_freecnt == 0)
254		panic("malloc: lost data");
255	kup->ku_freecnt--;
256	kbp->kb_totalfree--;
257	ksp->ks_memuse += 1 << indx;
258out:
259	kbp->kb_calls++;
260	ksp->ks_inuse++;
261	ksp->ks_calls++;
262	if (ksp->ks_memuse > ksp->ks_maxused)
263		ksp->ks_maxused = ksp->ks_memuse;
264	splx(s);
265	return ((void *) va);
266}
267
268/*
269 *	free:
270 *
271 *	Free a block of memory allocated by malloc.
272 *
273 *	This routine may not block.
274 */
275void
276free(addr, type)
277	void *addr;
278	struct malloc_type *type;
279{
280	register struct kmembuckets *kbp;
281	register struct kmemusage *kup;
282	register struct freelist *freep;
283	long size;
284	int s;
285#ifdef INVARIANTS
286	struct freelist *fp;
287	long *end, *lp, alloc, copysize;
288#endif
289	register struct malloc_type *ksp = type;
290
291	KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
292	    ("free: address %p out of range", (void *)addr));
293	kup = btokup(addr);
294	size = 1 << kup->ku_indx;
295	kbp = &bucket[kup->ku_indx];
296	s = splmem();
297#ifdef INVARIANTS
298	/*
299	 * Check for returns of data that do not point to the
300	 * beginning of the allocation.
301	 */
302	if (size > PAGE_SIZE)
303		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
304	else
305		alloc = addrmask[kup->ku_indx];
306	if (((uintptr_t)(void *)addr & alloc) != 0)
307		panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
308		    (void *)addr, size, type->ks_shortdesc, alloc);
309#endif /* INVARIANTS */
310	if (size > MAXALLOCSAVE) {
311		kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
312		size = kup->ku_pagecnt << PAGE_SHIFT;
313		ksp->ks_memuse -= size;
314		kup->ku_indx = 0;
315		kup->ku_pagecnt = 0;
316		if (ksp->ks_memuse + size >= ksp->ks_limit &&
317		    ksp->ks_memuse < ksp->ks_limit)
318			wakeup((caddr_t)ksp);
319		ksp->ks_inuse--;
320		kbp->kb_total -= 1;
321		splx(s);
322		return;
323	}
324	freep = (struct freelist *)addr;
325#ifdef INVARIANTS
326	/*
327	 * Check for multiple frees. Use a quick check to see if
328	 * it looks free before laboriously searching the freelist.
329	 */
330	if (freep->spare0 == WEIRD_ADDR) {
331		fp = (struct freelist *)kbp->kb_next;
332		while (fp) {
333			if (fp->spare0 != WEIRD_ADDR)
334				panic("free: free item %p modified", fp);
335			else if (addr == (caddr_t)fp)
336				panic("free: multiple freed item %p", addr);
337			fp = (struct freelist *)fp->next;
338		}
339	}
340	/*
341	 * Copy in known text to detect modification after freeing
342	 * and to make it look free. Also, save the type being freed
343	 * so we can list likely culprit if modification is detected
344	 * when the object is reallocated.
345	 */
346	copysize = size < MAX_COPY ? size : MAX_COPY;
347	end = (long *)&((caddr_t)addr)[copysize];
348	for (lp = (long *)addr; lp < end; lp++)
349		*lp = WEIRD_ADDR;
350	freep->type = type;
351#endif /* INVARIANTS */
352	kup->ku_freecnt++;
353	if (kup->ku_freecnt >= kbp->kb_elmpercl) {
354		if (kup->ku_freecnt > kbp->kb_elmpercl)
355			panic("free: multiple frees");
356		else if (kbp->kb_totalfree > kbp->kb_highwat)
357			kbp->kb_couldfree++;
358	}
359	kbp->kb_totalfree++;
360	ksp->ks_memuse -= size;
361	if (ksp->ks_memuse + size >= ksp->ks_limit &&
362	    ksp->ks_memuse < ksp->ks_limit)
363		wakeup((caddr_t)ksp);
364	ksp->ks_inuse--;
365#ifdef OLD_MALLOC_MEMORY_POLICY
366	if (kbp->kb_next == NULL)
367		kbp->kb_next = addr;
368	else
369		((struct freelist *)kbp->kb_last)->next = addr;
370	freep->next = NULL;
371	kbp->kb_last = addr;
372#else
373	/*
374	 * Return memory to the head of the queue for quick reuse.  This
375	 * can improve performance by improving the probability of the
376	 * item being in the cache when it is reused.
377	 */
378	if (kbp->kb_next == NULL) {
379		kbp->kb_next = addr;
380		kbp->kb_last = addr;
381		freep->next = NULL;
382	} else {
383		freep->next = kbp->kb_next;
384		kbp->kb_next = addr;
385	}
386#endif
387	splx(s);
388}
389
390/*
391 * Initialize the kernel memory allocator
392 */
393/* ARGSUSED*/
394static void
395kmeminit(dummy)
396	void *dummy;
397{
398	register long indx;
399	u_long npg;
400	u_long mem_size;
401	u_long xvm_kmem_size;
402
403#if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
404#error "kmeminit: MAXALLOCSAVE not power of 2"
405#endif
406#if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
407#error "kmeminit: MAXALLOCSAVE too big"
408#endif
409#if	(MAXALLOCSAVE < PAGE_SIZE)
410#error "kmeminit: MAXALLOCSAVE too small"
411#endif
412
413	/*
414	 * Try to auto-tune the kernel memory size, so that it is
415	 * more applicable for a wider range of machine sizes.
416	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
417	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
418	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
419	 * available, and on an X86 with a total KVA space of 256MB,
420	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
421	 *
422	 * Note that the kmem_map is also used by the zone allocator,
423	 * so make sure that there is enough space.
424	 */
425	xvm_kmem_size = VM_KMEM_SIZE;
426	mem_size = cnt.v_page_count * PAGE_SIZE;
427
428#if defined(VM_KMEM_SIZE_SCALE)
429	if ((mem_size / VM_KMEM_SIZE_SCALE) > xvm_kmem_size)
430		xvm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
431#endif
432
433#if defined(VM_KMEM_SIZE_MAX)
434	if (xvm_kmem_size >= VM_KMEM_SIZE_MAX)
435		xvm_kmem_size = VM_KMEM_SIZE_MAX;
436#endif
437
438	/* Allow final override from the kernel environment */
439	TUNABLE_INT_FETCH("kern.vm.kmem.size", xvm_kmem_size, vm_kmem_size);
440
441	/*
442	 * Limit kmem virtual size to twice the physical memory.
443	 * This allows for kmem map sparseness, but limits the size
444	 * to something sane. Be careful to not overflow the 32bit
445	 * ints while doing the check.
446	 */
447	if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE))
448		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
449
450	npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size)
451		/ PAGE_SIZE;
452
453	kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
454		(vm_size_t)(npg * sizeof(struct kmemusage)));
455	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
456		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
457	kmem_map->system_map = 1;
458	for (indx = 0; indx < MINBUCKET + 16; indx++) {
459		if (1 << indx >= PAGE_SIZE)
460			bucket[indx].kb_elmpercl = 1;
461		else
462			bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
463		bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
464	}
465}
466
467void
468malloc_init(data)
469	void *data;
470{
471	struct malloc_type *type = (struct malloc_type *)data;
472
473	if (type->ks_magic != M_MAGIC)
474		panic("malloc type lacks magic");
475
476	if (type->ks_limit != 0)
477		return;
478
479	if (cnt.v_page_count == 0)
480		panic("malloc_init not allowed before vm init");
481
482	/*
483	 * The default limits for each malloc region is 1/2 of the
484	 * malloc portion of the kmem map size.
485	 */
486	type->ks_limit = vm_kmem_size / 2;
487	type->ks_next = kmemstatistics;
488	kmemstatistics = type;
489}
490
491void
492malloc_uninit(data)
493	void *data;
494{
495	struct malloc_type *type = (struct malloc_type *)data;
496	struct malloc_type *t;
497	struct kmembuckets *kbp;
498	struct freelist *freep;
499	long indx;
500#ifdef INVARIANTS
501	int s;
502#endif
503
504	if (type->ks_magic != M_MAGIC)
505		panic("malloc type lacks magic");
506
507	if (cnt.v_page_count == 0)
508		panic("malloc_uninit not allowed before vm init");
509
510	if (type->ks_limit == 0)
511		panic("malloc_uninit on uninitialized type");
512
513#ifdef INVARIANTS
514	s = splmem();
515	for (indx = 0; indx < MINBUCKET + 16; indx++) {
516		kbp = bucket + indx;
517		freep = (struct freelist*)kbp->kb_next;
518		while (freep) {
519			if (freep->type == type)
520				freep->type = M_FREE;
521			freep = (struct freelist*)freep->next;
522		}
523	}
524	splx(s);
525
526	if (type->ks_memuse != 0)
527		printf("malloc_uninit: %ld bytes of '%s' still allocated\n",
528		    type->ks_memuse, type->ks_shortdesc);
529#endif
530
531	if (type == kmemstatistics)
532		kmemstatistics = type->ks_next;
533	else {
534		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
535			if (t->ks_next == type) {
536				t->ks_next = type->ks_next;
537				break;
538			}
539		}
540	}
541	type->ks_next = NULL;
542	type->ks_limit = 0;
543}
544