kern_malloc.c revision 50477
1/*
2 * Copyright (c) 1987, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/kern/kern_malloc.c 50477 1999-08-28 01:08:13Z peter $
35 */
36
37#include "opt_vm.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#define MALLOC_INSTANTIATE
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/vmmeter.h>
46#include <sys/lock.h>
47
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_extern.h>
52#include <vm/pmap.h>
53#include <vm/vm_map.h>
54
55static void kmeminit __P((void *));
56SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
57
58static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
59
60static struct malloc_type *kmemstatistics;
61static struct kmembuckets bucket[MINBUCKET + 16];
62static struct kmemusage *kmemusage;
63static char *kmembase;
64static char *kmemlimit;
65static int vm_kmem_size;
66
67#ifdef INVARIANTS
68/*
69 * This structure provides a set of masks to catch unaligned frees.
70 */
71static long addrmask[] = { 0,
72	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
73	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
74	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
75	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
76};
77
78/*
79 * The WEIRD_ADDR is used as known text to copy into free objects so
80 * that modifications after frees can be detected.
81 */
82#define WEIRD_ADDR	0xdeadc0de
83#define MAX_COPY	64
84
85/*
86 * Normally the first word of the structure is used to hold the list
87 * pointer for free objects. However, when running with diagnostics,
88 * we use the third and fourth fields, so as to catch modifications
89 * in the most commonly trashed first two words.
90 */
91struct freelist {
92	long	spare0;
93	struct malloc_type *type;
94	long	spare1;
95	caddr_t	next;
96};
97#else /* !INVARIANTS */
98struct freelist {
99	caddr_t	next;
100};
101#endif /* INVARIANTS */
102
103/*
104 *	malloc:
105 *
106 *	Allocate a block of memory.
107 *
108 *	If M_NOWAIT is set, this routine will not block and return NULL if
109 *	the allocation fails.
110 *
111 *	If M_ASLEEP is set (M_NOWAIT must also be set), this routine
112 *	will have the side effect of calling asleep() if it returns NULL,
113 *	allowing the parent to await() at some future time.
114 */
115void *
116malloc(size, type, flags)
117	unsigned long size;
118	struct malloc_type *type;
119	int flags;
120{
121	register struct kmembuckets *kbp;
122	register struct kmemusage *kup;
123	register struct freelist *freep;
124	long indx, npg, allocsize;
125	int s;
126	caddr_t va, cp, savedlist;
127#ifdef INVARIANTS
128	long *end, *lp;
129	int copysize;
130	const char *savedtype;
131#endif
132	register struct malloc_type *ksp = type;
133
134	/*
135	 * Must be at splmem() prior to initializing segment to handle
136	 * potential initialization race.
137	 */
138
139	s = splmem();
140
141	if (type->ks_limit == 0)
142		malloc_init(type);
143
144	indx = BUCKETINDX(size);
145	kbp = &bucket[indx];
146
147	while (ksp->ks_memuse >= ksp->ks_limit) {
148		if (flags & M_ASLEEP) {
149			if (ksp->ks_limblocks < 65535)
150				ksp->ks_limblocks++;
151			asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
152		}
153		if (flags & M_NOWAIT) {
154			splx(s);
155			return ((void *) NULL);
156		}
157		if (ksp->ks_limblocks < 65535)
158			ksp->ks_limblocks++;
159		tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
160	}
161	ksp->ks_size |= 1 << indx;
162#ifdef INVARIANTS
163	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
164#endif
165	if (kbp->kb_next == NULL) {
166		kbp->kb_last = NULL;
167		if (size > MAXALLOCSAVE)
168			allocsize = roundup(size, PAGE_SIZE);
169		else
170			allocsize = 1 << indx;
171		npg = btoc(allocsize);
172		va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
173		if (va == NULL) {
174			splx(s);
175			return ((void *) NULL);
176		}
177		kbp->kb_total += kbp->kb_elmpercl;
178		kup = btokup(va);
179		kup->ku_indx = indx;
180		if (allocsize > MAXALLOCSAVE) {
181			if (npg > 65535)
182				panic("malloc: allocation too large");
183			kup->ku_pagecnt = npg;
184			ksp->ks_memuse += allocsize;
185			goto out;
186		}
187		kup->ku_freecnt = kbp->kb_elmpercl;
188		kbp->kb_totalfree += kbp->kb_elmpercl;
189		/*
190		 * Just in case we blocked while allocating memory,
191		 * and someone else also allocated memory for this
192		 * bucket, don't assume the list is still empty.
193		 */
194		savedlist = kbp->kb_next;
195		kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
196		for (;;) {
197			freep = (struct freelist *)cp;
198#ifdef INVARIANTS
199			/*
200			 * Copy in known text to detect modification
201			 * after freeing.
202			 */
203			end = (long *)&cp[copysize];
204			for (lp = (long *)cp; lp < end; lp++)
205				*lp = WEIRD_ADDR;
206			freep->type = M_FREE;
207#endif /* INVARIANTS */
208			if (cp <= va)
209				break;
210			cp -= allocsize;
211			freep->next = cp;
212		}
213		freep->next = savedlist;
214		if (kbp->kb_last == NULL)
215			kbp->kb_last = (caddr_t)freep;
216	}
217	va = kbp->kb_next;
218	kbp->kb_next = ((struct freelist *)va)->next;
219#ifdef INVARIANTS
220	freep = (struct freelist *)va;
221	savedtype = (const char *) type->ks_shortdesc;
222#if BYTE_ORDER == BIG_ENDIAN
223	freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
224#endif
225#if BYTE_ORDER == LITTLE_ENDIAN
226	freep->type = (struct malloc_type *)WEIRD_ADDR;
227#endif
228	if ((intptr_t)(void *)&freep->next & 0x2)
229		freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
230	else
231		freep->next = (caddr_t)WEIRD_ADDR;
232	end = (long *)&va[copysize];
233	for (lp = (long *)va; lp < end; lp++) {
234		if (*lp == WEIRD_ADDR)
235			continue;
236		printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
237			"Data modified on freelist: word",
238			(long)(lp - (long *)va), (void *)va, size,
239			"previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
240		break;
241	}
242	freep->spare0 = 0;
243#endif /* INVARIANTS */
244	kup = btokup(va);
245	if (kup->ku_indx != indx)
246		panic("malloc: wrong bucket");
247	if (kup->ku_freecnt == 0)
248		panic("malloc: lost data");
249	kup->ku_freecnt--;
250	kbp->kb_totalfree--;
251	ksp->ks_memuse += 1 << indx;
252out:
253	kbp->kb_calls++;
254	ksp->ks_inuse++;
255	ksp->ks_calls++;
256	if (ksp->ks_memuse > ksp->ks_maxused)
257		ksp->ks_maxused = ksp->ks_memuse;
258	splx(s);
259	return ((void *) va);
260}
261
262/*
263 *	free:
264 *
265 *	Free a block of memory allocated by malloc.
266 *
267 *	This routine may not block.
268 */
269void
270free(addr, type)
271	void *addr;
272	struct malloc_type *type;
273{
274	register struct kmembuckets *kbp;
275	register struct kmemusage *kup;
276	register struct freelist *freep;
277	long size;
278	int s;
279#ifdef INVARIANTS
280	struct freelist *fp;
281	long *end, *lp, alloc, copysize;
282#endif
283	register struct malloc_type *ksp = type;
284
285	if (type->ks_limit == 0)
286		panic("freeing with unknown type (%s)", type->ks_shortdesc);
287
288	KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
289	    ("free: address %p out of range", (void *)addr));
290	kup = btokup(addr);
291	size = 1 << kup->ku_indx;
292	kbp = &bucket[kup->ku_indx];
293	s = splmem();
294#ifdef INVARIANTS
295	/*
296	 * Check for returns of data that do not point to the
297	 * beginning of the allocation.
298	 */
299	if (size > PAGE_SIZE)
300		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
301	else
302		alloc = addrmask[kup->ku_indx];
303	if (((uintptr_t)(void *)addr & alloc) != 0)
304		panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
305		    (void *)addr, size, type->ks_shortdesc, alloc);
306#endif /* INVARIANTS */
307	if (size > MAXALLOCSAVE) {
308		kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
309		size = kup->ku_pagecnt << PAGE_SHIFT;
310		ksp->ks_memuse -= size;
311		kup->ku_indx = 0;
312		kup->ku_pagecnt = 0;
313		if (ksp->ks_memuse + size >= ksp->ks_limit &&
314		    ksp->ks_memuse < ksp->ks_limit)
315			wakeup((caddr_t)ksp);
316		ksp->ks_inuse--;
317		kbp->kb_total -= 1;
318		splx(s);
319		return;
320	}
321	freep = (struct freelist *)addr;
322#ifdef INVARIANTS
323	/*
324	 * Check for multiple frees. Use a quick check to see if
325	 * it looks free before laboriously searching the freelist.
326	 */
327	if (freep->spare0 == WEIRD_ADDR) {
328		fp = (struct freelist *)kbp->kb_next;
329		while (fp) {
330			if (fp->spare0 != WEIRD_ADDR)
331				panic("free: free item %p modified", fp);
332			else if (addr == (caddr_t)fp)
333				panic("free: multiple freed item %p", addr);
334			fp = (struct freelist *)fp->next;
335		}
336	}
337	/*
338	 * Copy in known text to detect modification after freeing
339	 * and to make it look free. Also, save the type being freed
340	 * so we can list likely culprit if modification is detected
341	 * when the object is reallocated.
342	 */
343	copysize = size < MAX_COPY ? size : MAX_COPY;
344	end = (long *)&((caddr_t)addr)[copysize];
345	for (lp = (long *)addr; lp < end; lp++)
346		*lp = WEIRD_ADDR;
347	freep->type = type;
348#endif /* INVARIANTS */
349	kup->ku_freecnt++;
350	if (kup->ku_freecnt >= kbp->kb_elmpercl) {
351		if (kup->ku_freecnt > kbp->kb_elmpercl)
352			panic("free: multiple frees");
353		else if (kbp->kb_totalfree > kbp->kb_highwat)
354			kbp->kb_couldfree++;
355	}
356	kbp->kb_totalfree++;
357	ksp->ks_memuse -= size;
358	if (ksp->ks_memuse + size >= ksp->ks_limit &&
359	    ksp->ks_memuse < ksp->ks_limit)
360		wakeup((caddr_t)ksp);
361	ksp->ks_inuse--;
362#ifdef OLD_MALLOC_MEMORY_POLICY
363	if (kbp->kb_next == NULL)
364		kbp->kb_next = addr;
365	else
366		((struct freelist *)kbp->kb_last)->next = addr;
367	freep->next = NULL;
368	kbp->kb_last = addr;
369#else
370	/*
371	 * Return memory to the head of the queue for quick reuse.  This
372	 * can improve performance by improving the probability of the
373	 * item being in the cache when it is reused.
374	 */
375	if (kbp->kb_next == NULL) {
376		kbp->kb_next = addr;
377		kbp->kb_last = addr;
378		freep->next = NULL;
379	} else {
380		freep->next = kbp->kb_next;
381		kbp->kb_next = addr;
382	}
383#endif
384	splx(s);
385}
386
387/*
388 * Initialize the kernel memory allocator
389 */
390/* ARGSUSED*/
391static void
392kmeminit(dummy)
393	void *dummy;
394{
395	register long indx;
396	int npg;
397	int mem_size;
398	int xvm_kmem_size;
399
400#if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
401#error "kmeminit: MAXALLOCSAVE not power of 2"
402#endif
403#if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
404#error "kmeminit: MAXALLOCSAVE too big"
405#endif
406#if	(MAXALLOCSAVE < PAGE_SIZE)
407#error "kmeminit: MAXALLOCSAVE too small"
408#endif
409
410	/*
411	 * Try to auto-tune the kernel memory size, so that it is
412	 * more applicable for a wider range of machine sizes.
413	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
414	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
415	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
416	 * available, and on an X86 with a total KVA space of 256MB,
417	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
418	 *
419	 * Note that the kmem_map is also used by the zone allocator,
420	 * so make sure that there is enough space.
421	 */
422	xvm_kmem_size = VM_KMEM_SIZE;
423	mem_size = cnt.v_page_count * PAGE_SIZE;
424
425#if defined(VM_KMEM_SIZE_SCALE)
426	if ((mem_size / VM_KMEM_SIZE_SCALE) > xvm_kmem_size)
427		xvm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
428#endif
429
430#if defined(VM_KMEM_SIZE_MAX)
431	if (xvm_kmem_size >= VM_KMEM_SIZE_MAX)
432		xvm_kmem_size = VM_KMEM_SIZE_MAX;
433#endif
434
435	/* Allow final override from the kernel environment */
436	TUNABLE_INT_FETCH("kern.vm.kmem.size", xvm_kmem_size, vm_kmem_size);
437
438	if (vm_kmem_size > 2 * (cnt.v_page_count * PAGE_SIZE))
439		vm_kmem_size = 2 * (cnt.v_page_count * PAGE_SIZE);
440
441	npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size)
442		/ PAGE_SIZE;
443
444	kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
445		(vm_size_t)(npg * sizeof(struct kmemusage)));
446	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
447		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
448	kmem_map->system_map = 1;
449	for (indx = 0; indx < MINBUCKET + 16; indx++) {
450		if (1 << indx >= PAGE_SIZE)
451			bucket[indx].kb_elmpercl = 1;
452		else
453			bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
454		bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
455	}
456}
457
458void
459malloc_init(data)
460	void *data;
461{
462	struct malloc_type *type = (struct malloc_type *)data;
463
464	if (type->ks_magic != M_MAGIC)
465		panic("malloc type lacks magic");
466
467	if (type->ks_limit != 0)
468		return;
469
470	if (cnt.v_page_count == 0)
471		panic("malloc_init not allowed before vm init");
472
473	/*
474	 * The default limits for each malloc region is 1/2 of the
475	 * malloc portion of the kmem map size.
476	 */
477	type->ks_limit = vm_kmem_size / 2;
478	type->ks_next = kmemstatistics;
479	kmemstatistics = type;
480}
481
482void
483malloc_uninit(data)
484	void *data;
485{
486	struct malloc_type *type = (struct malloc_type *)data;
487	struct malloc_type *t;
488
489	if (type->ks_magic != M_MAGIC)
490		panic("malloc type lacks magic");
491
492	if (cnt.v_page_count == 0)
493		panic("malloc_uninit not allowed before vm init");
494
495	if (type->ks_limit == 0)
496		panic("malloc_uninit on uninitialized type");
497
498	if (type == kmemstatistics)
499		kmemstatistics = type->ks_next;
500	else {
501		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
502			if (t->ks_next == type) {
503				t->ks_next = type->ks_next;
504				break;
505			}
506		}
507	}
508	type->ks_next = NULL;
509	type->ks_limit = 0;
510}
511