kern_malloc.c revision 33181
1/*
2 * Copyright (c) 1987, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34 * $Id: kern_malloc.c,v 1.42 1998/02/06 12:13:23 eivind Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/kernel.h>
40#define MALLOC_INSTANTIATE
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/vmmeter.h>
44#include <sys/lock.h>
45
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_kern.h>
49#include <vm/vm_extern.h>
50#include <vm/pmap.h>
51#include <vm/vm_map.h>
52
53static void kmeminit __P((void *));
54static void malloc_init __P((struct malloc_type *));
55SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
56
57static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
58
59static struct malloc_type *kmemstatistics = M_FREE;
60static struct kmembuckets bucket[MINBUCKET + 16];
61static struct kmemusage *kmemusage;
62static char *kmembase;
63static char *kmemlimit;
64
65#ifdef DIAGNOSTIC
66/*
67 * This structure provides a set of masks to catch unaligned frees.
68 */
69static long addrmask[] = { 0,
70	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
71	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
72	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
73	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
74};
75
76/*
77 * The WEIRD_ADDR is used as known text to copy into free objects so
78 * that modifications after frees can be detected.
79 */
80#define WEIRD_ADDR	0xdeadc0de
81#define MAX_COPY	64
82
83/*
84 * Normally the first word of the structure is used to hold the list
85 * pointer for free objects. However, when running with diagnostics,
86 * we use the third and fourth fields, so as to catch modifications
87 * in the most commonly trashed first two words.
88 */
89struct freelist {
90	long	spare0;
91	struct malloc_type *type;
92	long	spare1;
93	caddr_t	next;
94};
95#else /* !DIAGNOSTIC */
96struct freelist {
97	caddr_t	next;
98};
99#endif /* DIAGNOSTIC */
100
101/*
102 * Allocate a block of memory
103 */
104void *
105malloc(size, type, flags)
106	unsigned long size;
107	struct malloc_type *type;
108	int flags;
109{
110	register struct kmembuckets *kbp;
111	register struct kmemusage *kup;
112	register struct freelist *freep;
113	long indx, npg, allocsize;
114	int s;
115	caddr_t va, cp, savedlist;
116#ifdef DIAGNOSTIC
117	long *end, *lp;
118	int copysize;
119	char *savedtype;
120#endif
121	register struct malloc_type *ksp = type;
122
123	if (!type->ks_next)
124		malloc_init(type);
125
126	indx = BUCKETINDX(size);
127	kbp = &bucket[indx];
128	s = splhigh();
129	while (ksp->ks_memuse >= ksp->ks_limit) {
130		if (flags & M_NOWAIT) {
131			splx(s);
132			return ((void *) NULL);
133		}
134		if (ksp->ks_limblocks < 65535)
135			ksp->ks_limblocks++;
136		tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
137	}
138	ksp->ks_size |= 1 << indx;
139#ifdef DIAGNOSTIC
140	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
141#endif
142	if (kbp->kb_next == NULL) {
143		kbp->kb_last = NULL;
144		if (size > MAXALLOCSAVE)
145			allocsize = roundup(size, PAGE_SIZE);
146		else
147			allocsize = 1 << indx;
148		npg = btoc(allocsize);
149		va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
150		if (va == NULL) {
151			splx(s);
152			return ((void *) NULL);
153		}
154		kbp->kb_total += kbp->kb_elmpercl;
155		kup = btokup(va);
156		kup->ku_indx = indx;
157		if (allocsize > MAXALLOCSAVE) {
158			if (npg > 65535)
159				panic("malloc: allocation too large");
160			kup->ku_pagecnt = npg;
161			ksp->ks_memuse += allocsize;
162			goto out;
163		}
164		kup->ku_freecnt = kbp->kb_elmpercl;
165		kbp->kb_totalfree += kbp->kb_elmpercl;
166		/*
167		 * Just in case we blocked while allocating memory,
168		 * and someone else also allocated memory for this
169		 * bucket, don't assume the list is still empty.
170		 */
171		savedlist = kbp->kb_next;
172		kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
173		for (;;) {
174			freep = (struct freelist *)cp;
175#ifdef DIAGNOSTIC
176			/*
177			 * Copy in known text to detect modification
178			 * after freeing.
179			 */
180			end = (long *)&cp[copysize];
181			for (lp = (long *)cp; lp < end; lp++)
182				*lp = WEIRD_ADDR;
183			freep->type = M_FREE;
184#endif /* DIAGNOSTIC */
185			if (cp <= va)
186				break;
187			cp -= allocsize;
188			freep->next = cp;
189		}
190		freep->next = savedlist;
191		if (kbp->kb_last == NULL)
192			kbp->kb_last = (caddr_t)freep;
193	}
194	va = kbp->kb_next;
195	kbp->kb_next = ((struct freelist *)va)->next;
196#ifdef DIAGNOSTIC
197	freep = (struct freelist *)va;
198	savedtype = (char *) type->ks_shortdesc;
199#if BYTE_ORDER == BIG_ENDIAN
200	freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
201#endif
202#if BYTE_ORDER == LITTLE_ENDIAN
203	freep->type = (struct malloc_type *)WEIRD_ADDR;
204#endif
205	if (((long)(&freep->next)) & 0x2)
206		freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
207	else
208		freep->next = (caddr_t)WEIRD_ADDR;
209	end = (long *)&va[copysize];
210	for (lp = (long *)va; lp < end; lp++) {
211		if (*lp == WEIRD_ADDR)
212			continue;
213		printf("%s %d of object %p size %ld %s %s (0x%lx != 0x%x)\n",
214			"Data modified on freelist: word", lp - (long *)va,
215			va, size, "previous type", savedtype, *lp, WEIRD_ADDR);
216		break;
217	}
218	freep->spare0 = 0;
219#endif /* DIAGNOSTIC */
220	kup = btokup(va);
221	if (kup->ku_indx != indx)
222		panic("malloc: wrong bucket");
223	if (kup->ku_freecnt == 0)
224		panic("malloc: lost data");
225	kup->ku_freecnt--;
226	kbp->kb_totalfree--;
227	ksp->ks_memuse += 1 << indx;
228out:
229	kbp->kb_calls++;
230	ksp->ks_inuse++;
231	ksp->ks_calls++;
232	if (ksp->ks_memuse > ksp->ks_maxused)
233		ksp->ks_maxused = ksp->ks_memuse;
234	splx(s);
235	return ((void *) va);
236}
237
238/*
239 * Free a block of memory allocated by malloc.
240 */
241void
242free(addr, type)
243	void *addr;
244	struct malloc_type *type;
245{
246	register struct kmembuckets *kbp;
247	register struct kmemusage *kup;
248	register struct freelist *freep;
249	long size;
250	int s;
251#ifdef DIAGNOSTIC
252	struct freelist *fp;
253	long *end, *lp, alloc, copysize;
254#endif
255	register struct malloc_type *ksp = type;
256
257	if (!type->ks_next)
258		panic("freeing with unknown type (%s)", type->ks_shortdesc);
259
260#ifdef DIAGNOSTIC
261	if ((char *)addr < kmembase || (char *)addr >= kmemlimit) {
262		panic("free: address 0x%x out of range", addr);
263	}
264#endif
265	kup = btokup(addr);
266	size = 1 << kup->ku_indx;
267	kbp = &bucket[kup->ku_indx];
268	s = splhigh();
269#ifdef DIAGNOSTIC
270	/*
271	 * Check for returns of data that do not point to the
272	 * beginning of the allocation.
273	 */
274	if (size > PAGE_SIZE)
275		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
276	else
277		alloc = addrmask[kup->ku_indx];
278	if (((u_long)addr & alloc) != 0)
279		panic("free: unaligned addr 0x%x, size %d, type %s, mask %d",
280			addr, size, type->ks_shortdesc, alloc);
281#endif /* DIAGNOSTIC */
282	if (size > MAXALLOCSAVE) {
283		kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
284		size = kup->ku_pagecnt << PAGE_SHIFT;
285		ksp->ks_memuse -= size;
286		kup->ku_indx = 0;
287		kup->ku_pagecnt = 0;
288		if (ksp->ks_memuse + size >= ksp->ks_limit &&
289		    ksp->ks_memuse < ksp->ks_limit)
290			wakeup((caddr_t)ksp);
291		ksp->ks_inuse--;
292		kbp->kb_total -= 1;
293		splx(s);
294		return;
295	}
296	freep = (struct freelist *)addr;
297#ifdef DIAGNOSTIC
298	/*
299	 * Check for multiple frees. Use a quick check to see if
300	 * it looks free before laboriously searching the freelist.
301	 */
302	if (freep->spare0 == WEIRD_ADDR) {
303		fp = (struct freelist *)kbp->kb_next;
304		while (fp) {
305			if (fp->spare0 != WEIRD_ADDR) {
306				printf("trashed free item %p\n", fp);
307				panic("free: free item modified");
308			} else if (addr == (caddr_t)fp) {
309				printf("multiple freed item %p\n", addr);
310				panic("free: multiple free");
311			}
312			fp = (struct freelist *)fp->next;
313		}
314	}
315	/*
316	 * Copy in known text to detect modification after freeing
317	 * and to make it look free. Also, save the type being freed
318	 * so we can list likely culprit if modification is detected
319	 * when the object is reallocated.
320	 */
321	copysize = size < MAX_COPY ? size : MAX_COPY;
322	end = (long *)&((caddr_t)addr)[copysize];
323	for (lp = (long *)addr; lp < end; lp++)
324		*lp = WEIRD_ADDR;
325	freep->type = type;
326#endif /* DIAGNOSTIC */
327	kup->ku_freecnt++;
328	if (kup->ku_freecnt >= kbp->kb_elmpercl)
329		if (kup->ku_freecnt > kbp->kb_elmpercl)
330			panic("free: multiple frees");
331		else if (kbp->kb_totalfree > kbp->kb_highwat)
332			kbp->kb_couldfree++;
333	kbp->kb_totalfree++;
334	ksp->ks_memuse -= size;
335	if (ksp->ks_memuse + size >= ksp->ks_limit &&
336	    ksp->ks_memuse < ksp->ks_limit)
337		wakeup((caddr_t)ksp);
338	ksp->ks_inuse--;
339#ifdef OLD_MALLOC_MEMORY_POLICY
340	if (kbp->kb_next == NULL)
341		kbp->kb_next = addr;
342	else
343		((struct freelist *)kbp->kb_last)->next = addr;
344	freep->next = NULL;
345	kbp->kb_last = addr;
346#else
347	/*
348	 * Return memory to the head of the queue for quick reuse.  This
349	 * can improve performance by improving the probability of the
350	 * item being in the cache when it is reused.
351	 */
352	if (kbp->kb_next == NULL) {
353		kbp->kb_next = addr;
354		kbp->kb_last = addr;
355		freep->next = NULL;
356	} else {
357		freep->next = kbp->kb_next;
358		kbp->kb_next = addr;
359	}
360#endif
361	splx(s);
362}
363
364/*
365 * Initialize the kernel memory allocator
366 */
367/* ARGSUSED*/
368static void
369kmeminit(dummy)
370	void *dummy;
371{
372	register long indx;
373	int npg;
374
375#if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
376#error "kmeminit: MAXALLOCSAVE not power of 2"
377#endif
378#if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
379#error "kmeminit: MAXALLOCSAVE too big"
380#endif
381#if	(MAXALLOCSAVE < PAGE_SIZE)
382#error "kmeminit: MAXALLOCSAVE too small"
383#endif
384	npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + VM_KMEM_SIZE)
385		/ PAGE_SIZE;
386
387	kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
388		(vm_size_t)(npg * sizeof(struct kmemusage)));
389	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
390		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
391	kmem_map->system_map = 1;
392	for (indx = 0; indx < MINBUCKET + 16; indx++) {
393		if (1 << indx >= PAGE_SIZE)
394			bucket[indx].kb_elmpercl = 1;
395		else
396			bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
397		bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
398	}
399}
400
401static void
402malloc_init(type)
403	struct malloc_type *type;
404{
405	int npg;
406
407	if (type->ks_magic != M_MAGIC)
408		panic("malloc type lacks magic");
409
410	if (cnt.v_page_count == 0)
411		panic("malloc_init not allowed before vm init");
412
413	/*
414	 * Limit maximum memory for each type to 60% of malloc area size or
415	 * 60% of physical memory, whichever is smaller.
416	 */
417	npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + VM_KMEM_SIZE)
418		/ PAGE_SIZE;
419
420	type->ks_limit = min(cnt.v_page_count * PAGE_SIZE,
421		(npg * PAGE_SIZE - nmbclusters * MCLBYTES
422		 - nmbufs * MSIZE)) * 6 / 10;
423	type->ks_next = kmemstatistics;
424	kmemstatistics = type;
425}
426