kern_malloc.c revision 254083
1/*-
2 * Copyright (c) 1987, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2005-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36 * based on memory types.  Back end is implemented using the UMA(9) zone
37 * allocator.  A set of fixed-size buckets are used for smaller allocations,
38 * and a special UMA allocation interface is used for larger allocations.
39 * Callers declare memory types, and statistics are maintained independently
40 * for each memory type.  Statistics are maintained per-CPU for performance
41 * reasons.  See malloc(9) and comments in malloc.h for a detailed
42 * description.
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD: stable/9/sys/kern/kern_malloc.c 254083 2013-08-08 05:35:58Z kib $");
47
48#include "opt_ddb.h"
49#include "opt_kdtrace.h"
50#include "opt_vm.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/kdb.h>
55#include <sys/kernel.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mbuf.h>
59#include <sys/mutex.h>
60#include <sys/vmmeter.h>
61#include <sys/proc.h>
62#include <sys/sbuf.h>
63#include <sys/sysctl.h>
64#include <sys/time.h>
65
66#include <vm/vm.h>
67#include <vm/pmap.h>
68#include <vm/vm_param.h>
69#include <vm/vm_kern.h>
70#include <vm/vm_extern.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/uma.h>
74#include <vm/uma_int.h>
75#include <vm/uma_dbg.h>
76
77#ifdef DEBUG_MEMGUARD
78#include <vm/memguard.h>
79#endif
80#ifdef DEBUG_REDZONE
81#include <vm/redzone.h>
82#endif
83
84#if defined(INVARIANTS) && defined(__i386__)
85#include <machine/cpu.h>
86#endif
87
88#include <ddb/ddb.h>
89
90#ifdef KDTRACE_HOOKS
91#include <sys/dtrace_bsd.h>
92
93dtrace_malloc_probe_func_t	dtrace_malloc_probe;
94#endif
95
96/*
97 * When realloc() is called, if the new size is sufficiently smaller than
98 * the old size, realloc() will allocate a new, smaller block to avoid
99 * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
100 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
101 */
102#ifndef REALLOC_FRACTION
103#define	REALLOC_FRACTION	1	/* new block if <= half the size */
104#endif
105
106/*
107 * Centrally define some common malloc types.
108 */
109MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
110MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
111MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
112
113MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
114MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
115
116static void kmeminit(void *);
117SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL);
118
119static struct malloc_type *kmemstatistics;
120static vm_offset_t kmembase;
121static vm_offset_t kmemlimit;
122static int kmemcount;
123
124#define KMEM_ZSHIFT	4
125#define KMEM_ZBASE	16
126#define KMEM_ZMASK	(KMEM_ZBASE - 1)
127
128#define KMEM_ZMAX	PAGE_SIZE
129#define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
130static uint8_t kmemsize[KMEM_ZSIZE + 1];
131
132#ifndef MALLOC_DEBUG_MAXZONES
133#define	MALLOC_DEBUG_MAXZONES	1
134#endif
135static int numzones = MALLOC_DEBUG_MAXZONES;
136
137/*
138 * Small malloc(9) memory allocations are allocated from a set of UMA buckets
139 * of various sizes.
140 *
141 * XXX: The comment here used to read "These won't be powers of two for
142 * long."  It's possible that a significant amount of wasted memory could be
143 * recovered by tuning the sizes of these buckets.
144 */
145struct {
146	int kz_size;
147	char *kz_name;
148	uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
149} kmemzones[] = {
150	{16, "16", },
151	{32, "32", },
152	{64, "64", },
153	{128, "128", },
154	{256, "256", },
155	{512, "512", },
156	{1024, "1024", },
157	{2048, "2048", },
158	{4096, "4096", },
159#if PAGE_SIZE > 4096
160	{8192, "8192", },
161#if PAGE_SIZE > 8192
162	{16384, "16384", },
163#if PAGE_SIZE > 16384
164	{32768, "32768", },
165#if PAGE_SIZE > 32768
166	{65536, "65536", },
167#if PAGE_SIZE > 65536
168#error	"Unsupported PAGE_SIZE"
169#endif	/* 65536 */
170#endif	/* 32768 */
171#endif	/* 16384 */
172#endif	/* 8192 */
173#endif	/* 4096 */
174	{0, NULL},
175};
176
177/*
178 * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
179 * types are described by a data structure passed by the declaring code, but
180 * the malloc(9) implementation has its own data structure describing the
181 * type and statistics.  This permits the malloc(9)-internal data structures
182 * to be modified without breaking binary-compiled kernel modules that
183 * declare malloc types.
184 */
185static uma_zone_t mt_zone;
186
187u_long vm_kmem_size;
188SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
189    "Size of kernel memory");
190
191static u_long vm_kmem_size_min;
192SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
193    "Minimum size of kernel memory");
194
195static u_long vm_kmem_size_max;
196SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
197    "Maximum size of kernel memory");
198
199static u_int vm_kmem_size_scale;
200SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
201    "Scale factor for kernel memory size");
202
203static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
204SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
205    CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
206    sysctl_kmem_map_size, "LU", "Current kmem_map allocation size");
207
208static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
209SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
210    CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
211    sysctl_kmem_map_free, "LU", "Largest contiguous free range in kmem_map");
212
213/*
214 * The malloc_mtx protects the kmemstatistics linked list.
215 */
216struct mtx malloc_mtx;
217
218#ifdef MALLOC_PROFILE
219uint64_t krequests[KMEM_ZSIZE + 1];
220
221static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
222#endif
223
224static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
225
226/*
227 * time_uptime of the last malloc(9) failure (induced or real).
228 */
229static time_t t_malloc_fail;
230
231#if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
232static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
233    "Kernel malloc debugging options");
234#endif
235
236/*
237 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
238 * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
239 */
240#ifdef MALLOC_MAKE_FAILURES
241static int malloc_failure_rate;
242static int malloc_nowait_count;
243static int malloc_failure_count;
244SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
245    &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
246TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
247SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
248    &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
249#endif
250
251static int
252sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
253{
254	u_long size;
255
256	size = kmem_map->size;
257	return (sysctl_handle_long(oidp, &size, 0, req));
258}
259
260static int
261sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
262{
263	u_long size;
264
265	vm_map_lock_read(kmem_map);
266	size = kmem_map->root != NULL ? kmem_map->root->max_free :
267	    kmem_map->max_offset - kmem_map->min_offset;
268	vm_map_unlock_read(kmem_map);
269	return (sysctl_handle_long(oidp, &size, 0, req));
270}
271
272/*
273 * malloc(9) uma zone separation -- sub-page buffer overruns in one
274 * malloc type will affect only a subset of other malloc types.
275 */
276#if MALLOC_DEBUG_MAXZONES > 1
277static void
278tunable_set_numzones(void)
279{
280
281	TUNABLE_INT_FETCH("debug.malloc.numzones",
282	    &numzones);
283
284	/* Sanity check the number of malloc uma zones. */
285	if (numzones <= 0)
286		numzones = 1;
287	if (numzones > MALLOC_DEBUG_MAXZONES)
288		numzones = MALLOC_DEBUG_MAXZONES;
289}
290SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
291SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN,
292    &numzones, 0, "Number of malloc uma subzones");
293
294/*
295 * Any number that changes regularly is an okay choice for the
296 * offset.  Build numbers are pretty good of you have them.
297 */
298static u_int zone_offset = __FreeBSD_version;
299TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
300SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
301    &zone_offset, 0, "Separate malloc types by examining the "
302    "Nth character in the malloc type short description.");
303
304static u_int
305mtp_get_subzone(const char *desc)
306{
307	size_t len;
308	u_int val;
309
310	if (desc == NULL || (len = strlen(desc)) == 0)
311		return (0);
312	val = desc[zone_offset % len];
313	return (val % numzones);
314}
315#elif MALLOC_DEBUG_MAXZONES == 0
316#error "MALLOC_DEBUG_MAXZONES must be positive."
317#else
318static inline u_int
319mtp_get_subzone(const char *desc)
320{
321
322	return (0);
323}
324#endif /* MALLOC_DEBUG_MAXZONES > 1 */
325
326int
327malloc_last_fail(void)
328{
329
330	return (time_uptime - t_malloc_fail);
331}
332
333/*
334 * An allocation has succeeded -- update malloc type statistics for the
335 * amount of bucket size.  Occurs within a critical section so that the
336 * thread isn't preempted and doesn't migrate while updating per-PCU
337 * statistics.
338 */
339static void
340malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
341    int zindx)
342{
343	struct malloc_type_internal *mtip;
344	struct malloc_type_stats *mtsp;
345
346	critical_enter();
347	mtip = mtp->ks_handle;
348	mtsp = &mtip->mti_stats[curcpu];
349	if (size > 0) {
350		mtsp->mts_memalloced += size;
351		mtsp->mts_numallocs++;
352	}
353	if (zindx != -1)
354		mtsp->mts_size |= 1 << zindx;
355
356#ifdef KDTRACE_HOOKS
357	if (dtrace_malloc_probe != NULL) {
358		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
359		if (probe_id != 0)
360			(dtrace_malloc_probe)(probe_id,
361			    (uintptr_t) mtp, (uintptr_t) mtip,
362			    (uintptr_t) mtsp, size, zindx);
363	}
364#endif
365
366	critical_exit();
367}
368
369void
370malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
371{
372
373	if (size > 0)
374		malloc_type_zone_allocated(mtp, size, -1);
375}
376
377/*
378 * A free operation has occurred -- update malloc type statistics for the
379 * amount of the bucket size.  Occurs within a critical section so that the
380 * thread isn't preempted and doesn't migrate while updating per-CPU
381 * statistics.
382 */
383void
384malloc_type_freed(struct malloc_type *mtp, unsigned long size)
385{
386	struct malloc_type_internal *mtip;
387	struct malloc_type_stats *mtsp;
388
389	critical_enter();
390	mtip = mtp->ks_handle;
391	mtsp = &mtip->mti_stats[curcpu];
392	mtsp->mts_memfreed += size;
393	mtsp->mts_numfrees++;
394
395#ifdef KDTRACE_HOOKS
396	if (dtrace_malloc_probe != NULL) {
397		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
398		if (probe_id != 0)
399			(dtrace_malloc_probe)(probe_id,
400			    (uintptr_t) mtp, (uintptr_t) mtip,
401			    (uintptr_t) mtsp, size, 0);
402	}
403#endif
404
405	critical_exit();
406}
407
408/*
409 *	malloc:
410 *
411 *	Allocate a block of memory.
412 *
413 *	If M_NOWAIT is set, this routine will not block and return NULL if
414 *	the allocation fails.
415 */
416void *
417malloc(unsigned long size, struct malloc_type *mtp, int flags)
418{
419	int indx;
420	struct malloc_type_internal *mtip;
421	caddr_t va;
422	uma_zone_t zone;
423#if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
424	unsigned long osize = size;
425#endif
426
427#ifdef INVARIANTS
428	KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
429	/*
430	 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
431	 */
432	indx = flags & (M_WAITOK | M_NOWAIT);
433	if (indx != M_NOWAIT && indx != M_WAITOK) {
434		static	struct timeval lasterr;
435		static	int curerr, once;
436		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
437			printf("Bad malloc flags: %x\n", indx);
438			kdb_backtrace();
439			flags |= M_WAITOK;
440			once++;
441		}
442	}
443#endif
444#ifdef MALLOC_MAKE_FAILURES
445	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
446		atomic_add_int(&malloc_nowait_count, 1);
447		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
448			atomic_add_int(&malloc_failure_count, 1);
449			t_malloc_fail = time_uptime;
450			return (NULL);
451		}
452	}
453#endif
454	if (flags & M_WAITOK)
455		KASSERT(curthread->td_intr_nesting_level == 0,
456		   ("malloc(M_WAITOK) in interrupt context"));
457
458#ifdef DEBUG_MEMGUARD
459	if (memguard_cmp(mtp, size)) {
460		va = memguard_alloc(size, flags);
461		if (va != NULL)
462			return (va);
463		/* This is unfortunate but should not be fatal. */
464	}
465#endif
466
467#ifdef DEBUG_REDZONE
468	size = redzone_size_ntor(size);
469#endif
470
471	if (size <= KMEM_ZMAX) {
472		mtip = mtp->ks_handle;
473		if (size & KMEM_ZMASK)
474			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
475		indx = kmemsize[size >> KMEM_ZSHIFT];
476		KASSERT(mtip->mti_zone < numzones,
477		    ("mti_zone %u out of range %d",
478		    mtip->mti_zone, numzones));
479		zone = kmemzones[indx].kz_zone[mtip->mti_zone];
480#ifdef MALLOC_PROFILE
481		krequests[size >> KMEM_ZSHIFT]++;
482#endif
483		va = uma_zalloc(zone, flags);
484		if (va != NULL)
485			size = zone->uz_size;
486		malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
487	} else {
488		size = roundup(size, PAGE_SIZE);
489		zone = NULL;
490		va = uma_large_malloc(size, flags);
491		malloc_type_allocated(mtp, va == NULL ? 0 : size);
492	}
493	if (flags & M_WAITOK)
494		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
495	else if (va == NULL)
496		t_malloc_fail = time_uptime;
497#ifdef DIAGNOSTIC
498	if (va != NULL && !(flags & M_ZERO)) {
499		memset(va, 0x70, osize);
500	}
501#endif
502#ifdef DEBUG_REDZONE
503	if (va != NULL)
504		va = redzone_setup(va, osize);
505#endif
506	return ((void *) va);
507}
508
509/*
510 *	free:
511 *
512 *	Free a block of memory allocated by malloc.
513 *
514 *	This routine may not block.
515 */
516void
517free(void *addr, struct malloc_type *mtp)
518{
519	uma_slab_t slab;
520	u_long size;
521
522	KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
523
524	/* free(NULL, ...) does nothing */
525	if (addr == NULL)
526		return;
527
528#ifdef DEBUG_MEMGUARD
529	if (is_memguard_addr(addr)) {
530		memguard_free(addr);
531		return;
532	}
533#endif
534
535#ifdef DEBUG_REDZONE
536	redzone_check(addr);
537	addr = redzone_addr_ntor(addr);
538#endif
539
540	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
541
542	if (slab == NULL)
543		panic("free: address %p(%p) has not been allocated.\n",
544		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
545
546
547	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
548#ifdef INVARIANTS
549		struct malloc_type **mtpp = addr;
550#endif
551		size = slab->us_keg->uk_size;
552#ifdef INVARIANTS
553		/*
554		 * Cache a pointer to the malloc_type that most recently freed
555		 * this memory here.  This way we know who is most likely to
556		 * have stepped on it later.
557		 *
558		 * This code assumes that size is a multiple of 8 bytes for
559		 * 64 bit machines
560		 */
561		mtpp = (struct malloc_type **)
562		    ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
563		mtpp += (size - sizeof(struct malloc_type *)) /
564		    sizeof(struct malloc_type *);
565		*mtpp = mtp;
566#endif
567		uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
568	} else {
569		size = slab->us_size;
570		uma_large_free(slab);
571	}
572	malloc_type_freed(mtp, size);
573}
574
575/*
576 *	realloc: change the size of a memory block
577 */
578void *
579realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
580{
581	uma_slab_t slab;
582	unsigned long alloc;
583	void *newaddr;
584
585	KASSERT(mtp->ks_magic == M_MAGIC,
586	    ("realloc: bad malloc type magic"));
587
588	/* realloc(NULL, ...) is equivalent to malloc(...) */
589	if (addr == NULL)
590		return (malloc(size, mtp, flags));
591
592	/*
593	 * XXX: Should report free of old memory and alloc of new memory to
594	 * per-CPU stats.
595	 */
596
597#ifdef DEBUG_MEMGUARD
598	if (is_memguard_addr(addr))
599		return (memguard_realloc(addr, size, mtp, flags));
600#endif
601
602#ifdef DEBUG_REDZONE
603	slab = NULL;
604	alloc = redzone_get_size(addr);
605#else
606	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
607
608	/* Sanity check */
609	KASSERT(slab != NULL,
610	    ("realloc: address %p out of range", (void *)addr));
611
612	/* Get the size of the original block */
613	if (!(slab->us_flags & UMA_SLAB_MALLOC))
614		alloc = slab->us_keg->uk_size;
615	else
616		alloc = slab->us_size;
617
618	/* Reuse the original block if appropriate */
619	if (size <= alloc
620	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
621		return (addr);
622#endif /* !DEBUG_REDZONE */
623
624	/* Allocate a new, bigger (or smaller) block */
625	if ((newaddr = malloc(size, mtp, flags)) == NULL)
626		return (NULL);
627
628	/* Copy over original contents */
629	bcopy(addr, newaddr, min(size, alloc));
630	free(addr, mtp);
631	return (newaddr);
632}
633
634/*
635 *	reallocf: same as realloc() but free memory on failure.
636 */
637void *
638reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
639{
640	void *mem;
641
642	if ((mem = realloc(addr, size, mtp, flags)) == NULL)
643		free(addr, mtp);
644	return (mem);
645}
646
647/*
648 * Initialize the kernel memory allocator
649 */
650/* ARGSUSED*/
651static void
652kmeminit(void *dummy)
653{
654	uint8_t indx;
655	u_long mem_size, tmp;
656	int i;
657
658	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
659
660	/*
661	 * Try to auto-tune the kernel memory size, so that it is
662	 * more applicable for a wider range of machine sizes.  The
663	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
664	 * available.
665	 *
666	 * Note that the kmem_map is also used by the zone allocator,
667	 * so make sure that there is enough space.
668	 */
669	vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE;
670	mem_size = cnt.v_page_count;
671
672#if defined(VM_KMEM_SIZE_SCALE)
673	vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
674#endif
675	TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
676	if (vm_kmem_size_scale > 0 &&
677	    (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE))
678		vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
679
680#if defined(VM_KMEM_SIZE_MIN)
681	vm_kmem_size_min = VM_KMEM_SIZE_MIN;
682#endif
683	TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min);
684	if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) {
685		vm_kmem_size = vm_kmem_size_min;
686	}
687
688#if defined(VM_KMEM_SIZE_MAX)
689	vm_kmem_size_max = VM_KMEM_SIZE_MAX;
690#endif
691	TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
692	if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
693		vm_kmem_size = vm_kmem_size_max;
694
695	/* Allow final override from the kernel environment */
696	TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size);
697
698	/*
699	 * Limit kmem virtual size to twice the physical memory.
700	 * This allows for kmem map sparseness, but limits the size
701	 * to something sane.  Be careful to not overflow the 32bit
702	 * ints while doing the check or the adjustment.
703	 */
704	if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
705		vm_kmem_size = 2 * mem_size * PAGE_SIZE;
706
707#ifdef DEBUG_MEMGUARD
708	tmp = memguard_fudge(vm_kmem_size, kernel_map);
709#else
710	tmp = vm_kmem_size;
711#endif
712	kmem_map = kmem_suballoc(kernel_map, &kmembase, &kmemlimit,
713	    tmp, TRUE);
714	kmem_map->system_map = 1;
715
716#ifdef DEBUG_MEMGUARD
717	/*
718	 * Initialize MemGuard if support compiled in.  MemGuard is a
719	 * replacement allocator used for detecting tamper-after-free
720	 * scenarios as they occur.  It is only used for debugging.
721	 */
722	memguard_init(kmem_map);
723#endif
724
725	uma_startup2();
726
727	mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
728#ifdef INVARIANTS
729	    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
730#else
731	    NULL, NULL, NULL, NULL,
732#endif
733	    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
734	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
735		int size = kmemzones[indx].kz_size;
736		char *name = kmemzones[indx].kz_name;
737		int subzone;
738
739		for (subzone = 0; subzone < numzones; subzone++) {
740			kmemzones[indx].kz_zone[subzone] =
741			    uma_zcreate(name, size,
742#ifdef INVARIANTS
743			    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
744#else
745			    NULL, NULL, NULL, NULL,
746#endif
747			    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
748		}
749		for (;i <= size; i+= KMEM_ZBASE)
750			kmemsize[i >> KMEM_ZSHIFT] = indx;
751
752	}
753}
754
755void
756malloc_init(void *data)
757{
758	struct malloc_type_internal *mtip;
759	struct malloc_type *mtp;
760
761	KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
762
763	mtp = data;
764	if (mtp->ks_magic != M_MAGIC)
765		panic("malloc_init: bad malloc type magic");
766
767	mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
768	mtp->ks_handle = mtip;
769	mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
770
771	mtx_lock(&malloc_mtx);
772	mtp->ks_next = kmemstatistics;
773	kmemstatistics = mtp;
774	kmemcount++;
775	mtx_unlock(&malloc_mtx);
776}
777
778void
779malloc_uninit(void *data)
780{
781	struct malloc_type_internal *mtip;
782	struct malloc_type_stats *mtsp;
783	struct malloc_type *mtp, *temp;
784	uma_slab_t slab;
785	long temp_allocs, temp_bytes;
786	int i;
787
788	mtp = data;
789	KASSERT(mtp->ks_magic == M_MAGIC,
790	    ("malloc_uninit: bad malloc type magic"));
791	KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
792
793	mtx_lock(&malloc_mtx);
794	mtip = mtp->ks_handle;
795	mtp->ks_handle = NULL;
796	if (mtp != kmemstatistics) {
797		for (temp = kmemstatistics; temp != NULL;
798		    temp = temp->ks_next) {
799			if (temp->ks_next == mtp) {
800				temp->ks_next = mtp->ks_next;
801				break;
802			}
803		}
804		KASSERT(temp,
805		    ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
806	} else
807		kmemstatistics = mtp->ks_next;
808	kmemcount--;
809	mtx_unlock(&malloc_mtx);
810
811	/*
812	 * Look for memory leaks.
813	 */
814	temp_allocs = temp_bytes = 0;
815	for (i = 0; i < MAXCPU; i++) {
816		mtsp = &mtip->mti_stats[i];
817		temp_allocs += mtsp->mts_numallocs;
818		temp_allocs -= mtsp->mts_numfrees;
819		temp_bytes += mtsp->mts_memalloced;
820		temp_bytes -= mtsp->mts_memfreed;
821	}
822	if (temp_allocs > 0 || temp_bytes > 0) {
823		printf("Warning: memory type %s leaked memory on destroy "
824		    "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
825		    temp_allocs, temp_bytes);
826	}
827
828	slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
829	uma_zfree_arg(mt_zone, mtip, slab);
830}
831
832struct malloc_type *
833malloc_desc2type(const char *desc)
834{
835	struct malloc_type *mtp;
836
837	mtx_assert(&malloc_mtx, MA_OWNED);
838	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
839		if (strcmp(mtp->ks_shortdesc, desc) == 0)
840			return (mtp);
841	}
842	return (NULL);
843}
844
845static int
846sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
847{
848	struct malloc_type_stream_header mtsh;
849	struct malloc_type_internal *mtip;
850	struct malloc_type_header mth;
851	struct malloc_type *mtp;
852	int error, i;
853	struct sbuf sbuf;
854
855	error = sysctl_wire_old_buffer(req, 0);
856	if (error != 0)
857		return (error);
858	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
859	mtx_lock(&malloc_mtx);
860
861	/*
862	 * Insert stream header.
863	 */
864	bzero(&mtsh, sizeof(mtsh));
865	mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
866	mtsh.mtsh_maxcpus = MAXCPU;
867	mtsh.mtsh_count = kmemcount;
868	(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
869
870	/*
871	 * Insert alternating sequence of type headers and type statistics.
872	 */
873	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
874		mtip = (struct malloc_type_internal *)mtp->ks_handle;
875
876		/*
877		 * Insert type header.
878		 */
879		bzero(&mth, sizeof(mth));
880		strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
881		(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
882
883		/*
884		 * Insert type statistics for each CPU.
885		 */
886		for (i = 0; i < MAXCPU; i++) {
887			(void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
888			    sizeof(mtip->mti_stats[i]));
889		}
890	}
891	mtx_unlock(&malloc_mtx);
892	error = sbuf_finish(&sbuf);
893	sbuf_delete(&sbuf);
894	return (error);
895}
896
897SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
898    0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
899    "Return malloc types");
900
901SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
902    "Count of kernel malloc types");
903
904void
905malloc_type_list(malloc_type_list_func_t *func, void *arg)
906{
907	struct malloc_type *mtp, **bufmtp;
908	int count, i;
909	size_t buflen;
910
911	mtx_lock(&malloc_mtx);
912restart:
913	mtx_assert(&malloc_mtx, MA_OWNED);
914	count = kmemcount;
915	mtx_unlock(&malloc_mtx);
916
917	buflen = sizeof(struct malloc_type *) * count;
918	bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
919
920	mtx_lock(&malloc_mtx);
921
922	if (count < kmemcount) {
923		free(bufmtp, M_TEMP);
924		goto restart;
925	}
926
927	for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
928		bufmtp[i] = mtp;
929
930	mtx_unlock(&malloc_mtx);
931
932	for (i = 0; i < count; i++)
933		(func)(bufmtp[i], arg);
934
935	free(bufmtp, M_TEMP);
936}
937
938#ifdef DDB
939DB_SHOW_COMMAND(malloc, db_show_malloc)
940{
941	struct malloc_type_internal *mtip;
942	struct malloc_type *mtp;
943	uint64_t allocs, frees;
944	uint64_t alloced, freed;
945	int i;
946
947	db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
948	    "Requests");
949	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
950		mtip = (struct malloc_type_internal *)mtp->ks_handle;
951		allocs = 0;
952		frees = 0;
953		alloced = 0;
954		freed = 0;
955		for (i = 0; i < MAXCPU; i++) {
956			allocs += mtip->mti_stats[i].mts_numallocs;
957			frees += mtip->mti_stats[i].mts_numfrees;
958			alloced += mtip->mti_stats[i].mts_memalloced;
959			freed += mtip->mti_stats[i].mts_memfreed;
960		}
961		db_printf("%18s %12ju %12juK %12ju\n",
962		    mtp->ks_shortdesc, allocs - frees,
963		    (alloced - freed + 1023) / 1024, allocs);
964		if (db_pager_quit)
965			break;
966	}
967}
968
969#if MALLOC_DEBUG_MAXZONES > 1
970DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
971{
972	struct malloc_type_internal *mtip;
973	struct malloc_type *mtp;
974	u_int subzone;
975
976	if (!have_addr) {
977		db_printf("Usage: show multizone_matches <malloc type/addr>\n");
978		return;
979	}
980	mtp = (void *)addr;
981	if (mtp->ks_magic != M_MAGIC) {
982		db_printf("Magic %lx does not match expected %x\n",
983		    mtp->ks_magic, M_MAGIC);
984		return;
985	}
986
987	mtip = mtp->ks_handle;
988	subzone = mtip->mti_zone;
989
990	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
991		mtip = mtp->ks_handle;
992		if (mtip->mti_zone != subzone)
993			continue;
994		db_printf("%s\n", mtp->ks_shortdesc);
995		if (db_pager_quit)
996			break;
997	}
998}
999#endif /* MALLOC_DEBUG_MAXZONES > 1 */
1000#endif /* DDB */
1001
1002#ifdef MALLOC_PROFILE
1003
1004static int
1005sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1006{
1007	struct sbuf sbuf;
1008	uint64_t count;
1009	uint64_t waste;
1010	uint64_t mem;
1011	int error;
1012	int rsize;
1013	int size;
1014	int i;
1015
1016	waste = 0;
1017	mem = 0;
1018
1019	error = sysctl_wire_old_buffer(req, 0);
1020	if (error != 0)
1021		return (error);
1022	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1023	sbuf_printf(&sbuf,
1024	    "\n  Size                    Requests  Real Size\n");
1025	for (i = 0; i < KMEM_ZSIZE; i++) {
1026		size = i << KMEM_ZSHIFT;
1027		rsize = kmemzones[kmemsize[i]].kz_size;
1028		count = (long long unsigned)krequests[i];
1029
1030		sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1031		    (unsigned long long)count, rsize);
1032
1033		if ((rsize * count) > (size * count))
1034			waste += (rsize * count) - (size * count);
1035		mem += (rsize * count);
1036	}
1037	sbuf_printf(&sbuf,
1038	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1039	    (unsigned long long)mem, (unsigned long long)waste);
1040	error = sbuf_finish(&sbuf);
1041	sbuf_delete(&sbuf);
1042	return (error);
1043}
1044
1045SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1046    NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1047#endif /* MALLOC_PROFILE */
1048