kern_malloc.c revision 117391
1/*
2 * Copyright (c) 1987, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD: head/sys/kern/kern_malloc.c 117391 2003-07-11 00:01:03Z silby $");
38
39#include "opt_vm.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/mutex.h>
48#include <sys/vmmeter.h>
49#include <sys/proc.h>
50#include <sys/sysctl.h>
51#include <sys/time.h>
52
53#include <vm/vm.h>
54#include <vm/pmap.h>
55#include <vm/vm_param.h>
56#include <vm/vm_kern.h>
57#include <vm/vm_extern.h>
58#include <vm/vm_map.h>
59#include <vm/vm_page.h>
60#include <vm/uma.h>
61#include <vm/uma_int.h>
62#include <vm/uma_dbg.h>
63
64#if defined(INVARIANTS) && defined(__i386__)
65#include <machine/cpu.h>
66#endif
67
68/*
69 * When realloc() is called, if the new size is sufficiently smaller than
70 * the old size, realloc() will allocate a new, smaller block to avoid
71 * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
72 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
73 */
74#ifndef REALLOC_FRACTION
75#define	REALLOC_FRACTION	1	/* new block if <= half the size */
76#endif
77
78MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
79MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
80MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
81
82MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
83MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
84
85static void kmeminit(void *);
86SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
87
88static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
89
90static struct malloc_type *kmemstatistics;
91static char *kmembase;
92static char *kmemlimit;
93
94#define KMEM_ZSHIFT	4
95#define KMEM_ZBASE	16
96#define KMEM_ZMASK	(KMEM_ZBASE - 1)
97
98#define KMEM_ZMAX	65536
99#define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
100static u_int8_t kmemsize[KMEM_ZSIZE + 1];
101
102/* These won't be powers of two for long */
103struct {
104	int kz_size;
105	char *kz_name;
106	uma_zone_t kz_zone;
107} kmemzones[] = {
108	{16, "16", NULL},
109	{32, "32", NULL},
110	{64, "64", NULL},
111	{128, "128", NULL},
112	{256, "256", NULL},
113	{512, "512", NULL},
114	{1024, "1024", NULL},
115	{2048, "2048", NULL},
116	{4096, "4096", NULL},
117	{8192, "8192", NULL},
118	{16384, "16384", NULL},
119	{32768, "32768", NULL},
120	{65536, "65536", NULL},
121	{0, NULL},
122};
123
124u_int vm_kmem_size;
125
126/*
127 * The malloc_mtx protects the kmemstatistics linked list.
128 */
129
130struct mtx malloc_mtx;
131
132#ifdef MALLOC_PROFILE
133uint64_t krequests[KMEM_ZSIZE + 1];
134
135static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
136#endif
137
138static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS);
139
140/* time_uptime of last malloc(9) failure */
141static time_t t_malloc_fail;
142
143#ifdef MALLOC_MAKE_FAILURES
144/*
145 * Causes malloc failures every (n) mallocs with M_NOWAIT.  If set to 0,
146 * doesn't cause failures.
147 */
148SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
149    "Kernel malloc debugging options");
150
151static int malloc_failure_rate;
152static int malloc_nowait_count;
153static int malloc_failure_count;
154SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
155    &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
156TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
157SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
158    &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
159#endif
160
161int
162malloc_last_fail(void)
163{
164
165	return (time_uptime - t_malloc_fail);
166}
167
168/*
169 *	malloc:
170 *
171 *	Allocate a block of memory.
172 *
173 *	If M_NOWAIT is set, this routine will not block and return NULL if
174 *	the allocation fails.
175 */
176void *
177malloc(size, type, flags)
178	unsigned long size;
179	struct malloc_type *type;
180	int flags;
181{
182	int indx;
183	caddr_t va;
184	uma_zone_t zone;
185#ifdef DIAGNOSTIC
186	unsigned long osize = size;
187#endif
188	register struct malloc_type *ksp = type;
189
190#ifdef INVARIANTS
191	/*
192	 * To make sure that WAITOK or NOWAIT is set, but not more than
193	 * one, and check against the API botches that are common.
194	 */
195	indx = flags & (M_WAITOK | M_NOWAIT | M_DONTWAIT | M_TRYWAIT);
196	if (indx != M_NOWAIT && indx != M_WAITOK) {
197		static	struct timeval lasterr;
198		static	int curerr, once;
199		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
200			printf("Bad malloc flags: %x\n", indx);
201			backtrace();
202			flags |= M_WAITOK;
203			once++;
204		}
205	}
206#endif
207#if 0
208	if (size == 0)
209		Debugger("zero size malloc");
210#endif
211#ifdef MALLOC_MAKE_FAILURES
212	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
213		atomic_add_int(&malloc_nowait_count, 1);
214		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
215			atomic_add_int(&malloc_failure_count, 1);
216			t_malloc_fail = time_uptime;
217			return (NULL);
218		}
219	}
220#endif
221	if (flags & M_WAITOK)
222		KASSERT(curthread->td_intr_nesting_level == 0,
223		   ("malloc(M_WAITOK) in interrupt context"));
224	if (size <= KMEM_ZMAX) {
225		if (size & KMEM_ZMASK)
226			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
227		indx = kmemsize[size >> KMEM_ZSHIFT];
228		zone = kmemzones[indx].kz_zone;
229#ifdef MALLOC_PROFILE
230		krequests[size >> KMEM_ZSHIFT]++;
231#endif
232		va = uma_zalloc(zone, flags);
233		mtx_lock(&ksp->ks_mtx);
234		if (va == NULL)
235			goto out;
236
237		ksp->ks_size |= 1 << indx;
238		size = zone->uz_size;
239	} else {
240		size = roundup(size, PAGE_SIZE);
241		zone = NULL;
242		va = uma_large_malloc(size, flags);
243		mtx_lock(&ksp->ks_mtx);
244		if (va == NULL)
245			goto out;
246	}
247	ksp->ks_memuse += size;
248	ksp->ks_inuse++;
249out:
250	ksp->ks_calls++;
251	if (ksp->ks_memuse > ksp->ks_maxused)
252		ksp->ks_maxused = ksp->ks_memuse;
253
254	mtx_unlock(&ksp->ks_mtx);
255	if (flags & M_WAITOK)
256		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
257	else if (va == NULL)
258		t_malloc_fail = time_uptime;
259#ifdef DIAGNOSTIC
260	if (va != NULL && !(flags & M_ZERO)) {
261		memset(va, 0x70, osize);
262	}
263#endif
264	return ((void *) va);
265}
266
267/*
268 *	free:
269 *
270 *	Free a block of memory allocated by malloc.
271 *
272 *	This routine may not block.
273 */
274void
275free(addr, type)
276	void *addr;
277	struct malloc_type *type;
278{
279	register struct malloc_type *ksp = type;
280	uma_slab_t slab;
281	u_long size;
282
283	/* free(NULL, ...) does nothing */
284	if (addr == NULL)
285		return;
286
287	KASSERT(ksp->ks_memuse > 0,
288		("malloc(9)/free(9) confusion.\n%s",
289		 "Probably freeing with wrong type, but maybe not here."));
290	size = 0;
291
292	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
293
294	if (slab == NULL)
295		panic("free: address %p(%p) has not been allocated.\n",
296		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
297
298
299	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
300#ifdef INVARIANTS
301		struct malloc_type **mtp = addr;
302#endif
303		size = slab->us_zone->uz_size;
304#ifdef INVARIANTS
305		/*
306		 * Cache a pointer to the malloc_type that most recently freed
307		 * this memory here.  This way we know who is most likely to
308		 * have stepped on it later.
309		 *
310		 * This code assumes that size is a multiple of 8 bytes for
311		 * 64 bit machines
312		 */
313		mtp = (struct malloc_type **)
314		    ((unsigned long)mtp & ~UMA_ALIGN_PTR);
315		mtp += (size - sizeof(struct malloc_type *)) /
316		    sizeof(struct malloc_type *);
317		*mtp = type;
318#endif
319		uma_zfree_arg(slab->us_zone, addr, slab);
320	} else {
321		size = slab->us_size;
322		uma_large_free(slab);
323	}
324	mtx_lock(&ksp->ks_mtx);
325	KASSERT(size <= ksp->ks_memuse,
326		("malloc(9)/free(9) confusion.\n%s",
327		 "Probably freeing with wrong type, but maybe not here."));
328	ksp->ks_memuse -= size;
329	ksp->ks_inuse--;
330	mtx_unlock(&ksp->ks_mtx);
331}
332
333/*
334 *	realloc: change the size of a memory block
335 */
336void *
337realloc(addr, size, type, flags)
338	void *addr;
339	unsigned long size;
340	struct malloc_type *type;
341	int flags;
342{
343	uma_slab_t slab;
344	unsigned long alloc;
345	void *newaddr;
346
347	/* realloc(NULL, ...) is equivalent to malloc(...) */
348	if (addr == NULL)
349		return (malloc(size, type, flags));
350
351	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
352
353	/* Sanity check */
354	KASSERT(slab != NULL,
355	    ("realloc: address %p out of range", (void *)addr));
356
357	/* Get the size of the original block */
358	if (slab->us_zone)
359		alloc = slab->us_zone->uz_size;
360	else
361		alloc = slab->us_size;
362
363	/* Reuse the original block if appropriate */
364	if (size <= alloc
365	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
366		return (addr);
367
368	/* Allocate a new, bigger (or smaller) block */
369	if ((newaddr = malloc(size, type, flags)) == NULL)
370		return (NULL);
371
372	/* Copy over original contents */
373	bcopy(addr, newaddr, min(size, alloc));
374	free(addr, type);
375	return (newaddr);
376}
377
378/*
379 *	reallocf: same as realloc() but free memory on failure.
380 */
381void *
382reallocf(addr, size, type, flags)
383	void *addr;
384	unsigned long size;
385	struct malloc_type *type;
386	int flags;
387{
388	void *mem;
389
390	if ((mem = realloc(addr, size, type, flags)) == NULL)
391		free(addr, type);
392	return (mem);
393}
394
395/*
396 * Initialize the kernel memory allocator
397 */
398/* ARGSUSED*/
399static void
400kmeminit(dummy)
401	void *dummy;
402{
403	u_int8_t indx;
404	u_long npg;
405	u_long mem_size;
406	int i;
407
408	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
409
410	/*
411	 * Try to auto-tune the kernel memory size, so that it is
412	 * more applicable for a wider range of machine sizes.
413	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
414	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
415	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
416	 * available, and on an X86 with a total KVA space of 256MB,
417	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
418	 *
419	 * Note that the kmem_map is also used by the zone allocator,
420	 * so make sure that there is enough space.
421	 */
422	vm_kmem_size = VM_KMEM_SIZE;
423	mem_size = cnt.v_page_count;
424
425#if defined(VM_KMEM_SIZE_SCALE)
426	if ((mem_size / VM_KMEM_SIZE_SCALE) > (vm_kmem_size / PAGE_SIZE))
427		vm_kmem_size = (mem_size / VM_KMEM_SIZE_SCALE) * PAGE_SIZE;
428#endif
429
430#if defined(VM_KMEM_SIZE_MAX)
431	if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
432		vm_kmem_size = VM_KMEM_SIZE_MAX;
433#endif
434
435	/* Allow final override from the kernel environment */
436	TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size);
437
438	/*
439	 * Limit kmem virtual size to twice the physical memory.
440	 * This allows for kmem map sparseness, but limits the size
441	 * to something sane. Be careful to not overflow the 32bit
442	 * ints while doing the check.
443	 */
444	if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count)
445		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
446
447	/*
448	 * Tune settings based on the kernel map's size at this time.
449	 */
450	init_param3(vm_kmem_size / PAGE_SIZE);
451
452	/*
453	 * In mbuf_init(), we set up submaps for mbufs and clusters, in which
454	 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES),
455	 * respectively. Mathematically, this means that what we do here may
456	 * amount to slightly more address space than we need for the submaps,
457	 * but it never hurts to have an extra page in kmem_map.
458	 */
459	npg = (nmbufs*MSIZE + nmbclusters*MCLBYTES + vm_kmem_size) / PAGE_SIZE;
460
461	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
462		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
463	kmem_map->system_map = 1;
464
465	uma_startup2();
466
467	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
468		int size = kmemzones[indx].kz_size;
469		char *name = kmemzones[indx].kz_name;
470
471		kmemzones[indx].kz_zone = uma_zcreate(name, size,
472#ifdef INVARIANTS
473		    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
474#else
475		    NULL, NULL, NULL, NULL,
476#endif
477		    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
478
479		for (;i <= size; i+= KMEM_ZBASE)
480			kmemsize[i >> KMEM_ZSHIFT] = indx;
481
482	}
483}
484
485void
486malloc_init(data)
487	void *data;
488{
489	struct malloc_type *type = (struct malloc_type *)data;
490
491	mtx_lock(&malloc_mtx);
492	if (type->ks_magic != M_MAGIC)
493		panic("malloc type lacks magic");
494
495	if (cnt.v_page_count == 0)
496		panic("malloc_init not allowed before vm init");
497
498	if (type->ks_next != NULL)
499		return;
500
501	type->ks_next = kmemstatistics;
502	kmemstatistics = type;
503	mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF);
504	mtx_unlock(&malloc_mtx);
505}
506
507void
508malloc_uninit(data)
509	void *data;
510{
511	struct malloc_type *type = (struct malloc_type *)data;
512	struct malloc_type *t;
513
514	mtx_lock(&malloc_mtx);
515	mtx_lock(&type->ks_mtx);
516	if (type->ks_magic != M_MAGIC)
517		panic("malloc type lacks magic");
518
519	if (cnt.v_page_count == 0)
520		panic("malloc_uninit not allowed before vm init");
521
522	if (type == kmemstatistics)
523		kmemstatistics = type->ks_next;
524	else {
525		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
526			if (t->ks_next == type) {
527				t->ks_next = type->ks_next;
528				break;
529			}
530		}
531	}
532	type->ks_next = NULL;
533	mtx_destroy(&type->ks_mtx);
534	mtx_unlock(&malloc_mtx);
535}
536
537static int
538sysctl_kern_malloc(SYSCTL_HANDLER_ARGS)
539{
540	struct malloc_type *type;
541	int linesize = 128;
542	int curline;
543	int bufsize;
544	int first;
545	int error;
546	char *buf;
547	char *p;
548	int cnt;
549	int len;
550	int i;
551
552	cnt = 0;
553
554	mtx_lock(&malloc_mtx);
555	for (type = kmemstatistics; type != NULL; type = type->ks_next)
556		cnt++;
557
558	mtx_unlock(&malloc_mtx);
559	bufsize = linesize * (cnt + 1);
560	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
561	mtx_lock(&malloc_mtx);
562
563	len = snprintf(p, linesize,
564	    "\n        Type  InUse MemUse HighUse Requests  Size(s)\n");
565	p += len;
566
567	for (type = kmemstatistics; cnt != 0 && type != NULL;
568	    type = type->ks_next, cnt--) {
569		if (type->ks_calls == 0)
570			continue;
571
572		curline = linesize - 2;	/* Leave room for the \n */
573		len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu",
574			type->ks_shortdesc,
575			type->ks_inuse,
576			(type->ks_memuse + 1023) / 1024,
577			(type->ks_maxused + 1023) / 1024,
578			(long long unsigned)type->ks_calls);
579		curline -= len;
580		p += len;
581
582		first = 1;
583		for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1;
584		    i++) {
585			if (type->ks_size & (1 << i)) {
586				if (first)
587					len = snprintf(p, curline, "  ");
588				else
589					len = snprintf(p, curline, ",");
590				curline -= len;
591				p += len;
592
593				len = snprintf(p, curline,
594				    "%s", kmemzones[i].kz_name);
595				curline -= len;
596				p += len;
597
598				first = 0;
599			}
600		}
601
602		len = snprintf(p, 2, "\n");
603		p += len;
604	}
605
606	mtx_unlock(&malloc_mtx);
607	error = SYSCTL_OUT(req, buf, p - buf);
608
609	free(buf, M_TEMP);
610	return (error);
611}
612
613SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD,
614    NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats");
615
616#ifdef MALLOC_PROFILE
617
618static int
619sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
620{
621	int linesize = 64;
622	uint64_t count;
623	uint64_t waste;
624	uint64_t mem;
625	int bufsize;
626	int error;
627	char *buf;
628	int rsize;
629	int size;
630	char *p;
631	int len;
632	int i;
633
634	bufsize = linesize * (KMEM_ZSIZE + 1);
635	bufsize += 128; 	/* For the stats line */
636	bufsize += 128; 	/* For the banner line */
637	waste = 0;
638	mem = 0;
639
640	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
641	len = snprintf(p, bufsize,
642	    "\n  Size                    Requests  Real Size\n");
643	bufsize -= len;
644	p += len;
645
646	for (i = 0; i < KMEM_ZSIZE; i++) {
647		size = i << KMEM_ZSHIFT;
648		rsize = kmemzones[kmemsize[i]].kz_size;
649		count = (long long unsigned)krequests[i];
650
651		len = snprintf(p, bufsize, "%6d%28llu%11d\n",
652		    size, (unsigned long long)count, rsize);
653		bufsize -= len;
654		p += len;
655
656		if ((rsize * count) > (size * count))
657			waste += (rsize * count) - (size * count);
658		mem += (rsize * count);
659	}
660
661	len = snprintf(p, bufsize,
662	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
663	    (unsigned long long)mem, (unsigned long long)waste);
664	p += len;
665
666	error = SYSCTL_OUT(req, buf, p - buf);
667
668	free(buf, M_TEMP);
669	return (error);
670}
671
672SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
673    NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
674#endif /* MALLOC_PROFILE */
675