1/*-
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27/*-
28 * Copyright (c) 1982, 1986, 1989, 1993
29 *	The Regents of the University of California.  All rights reserved.
30 *
31 * This code is derived from software contributed to Berkeley by
32 * Scooter Morris at Genentech Inc.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 4. Neither the name of the University nor the names of its contributors
43 *    may be used to endorse or promote products derived from this software
44 *    without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
59 */
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD$");
63
64#include "opt_debug_lockf.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/hash.h>
69#include <sys/kernel.h>
70#include <sys/limits.h>
71#include <sys/lock.h>
72#include <sys/mount.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/sx.h>
76#include <sys/unistd.h>
77#include <sys/vnode.h>
78#include <sys/malloc.h>
79#include <sys/fcntl.h>
80#include <sys/lockf.h>
81#include <sys/taskqueue.h>
82
83#ifdef LOCKF_DEBUG
84#include <sys/sysctl.h>
85
86#include <ufs/ufs/quota.h>
87#include <ufs/ufs/inode.h>
88
89static int	lockf_debug = 0; /* control debug output */
90SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91#endif
92
93static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
94
95struct owner_edge;
96struct owner_vertex;
97struct owner_vertex_list;
98struct owner_graph;
99
100#define NOLOCKF (struct lockf_entry *)0
101#define SELF	0x1
102#define OTHERS	0x2
103static void	 lf_init(void *);
104static int	 lf_hash_owner(caddr_t, struct flock *, int);
105static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106    int);
107static struct lockf_entry *
108		 lf_alloc_lock(struct lock_owner *);
109static int	 lf_free_lock(struct lockf_entry *);
110static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
111static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
113static void	 lf_free_edge(struct lockf_edge *);
114static struct lockf_edge *
115		 lf_alloc_edge(void);
116static void	 lf_alloc_vertex(struct lockf_entry *);
117static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118static void	 lf_remove_edge(struct lockf_edge *);
119static void	 lf_remove_outgoing(struct lockf_entry *);
120static void	 lf_remove_incoming(struct lockf_entry *);
121static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
122static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
123static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124    int);
125static struct lockf_entry *
126		 lf_getblock(struct lockf *, struct lockf_entry *);
127static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
129static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
131    int all, struct lockf_entry_list *);
132static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133	struct lockf_entry_list*);
134static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135	struct lockf_entry_list*);
136static int	 lf_setlock(struct lockf *, struct lockf_entry *,
137    struct vnode *, void **cookiep);
138static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
139static void	 lf_split(struct lockf *, struct lockf_entry *,
140    struct lockf_entry *, struct lockf_entry_list *);
141#ifdef LOCKF_DEBUG
142static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143    struct owner_vertex_list *path);
144static void	 graph_check(struct owner_graph *g, int checkorder);
145static void	 graph_print_vertices(struct owner_vertex_list *set);
146#endif
147static int	 graph_delta_forward(struct owner_graph *g,
148    struct owner_vertex *x, struct owner_vertex *y,
149    struct owner_vertex_list *delta);
150static int	 graph_delta_backward(struct owner_graph *g,
151    struct owner_vertex *x, struct owner_vertex *y,
152    struct owner_vertex_list *delta);
153static int	 graph_add_indices(int *indices, int n,
154    struct owner_vertex_list *set);
155static int	 graph_assign_indices(struct owner_graph *g, int *indices,
156    int nextunused, struct owner_vertex_list *set);
157static int	 graph_add_edge(struct owner_graph *g,
158    struct owner_vertex *x, struct owner_vertex *y);
159static void	 graph_remove_edge(struct owner_graph *g,
160    struct owner_vertex *x, struct owner_vertex *y);
161static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162    struct lock_owner *lo);
163static void	 graph_free_vertex(struct owner_graph *g,
164    struct owner_vertex *v);
165static struct owner_graph * graph_init(struct owner_graph *g);
166#ifdef LOCKF_DEBUG
167static void	 lf_print(char *, struct lockf_entry *);
168static void	 lf_printlist(char *, struct lockf_entry *);
169static void	 lf_print_owner(struct lock_owner *);
170#endif
171
172/*
173 * This structure is used to keep track of both local and remote lock
174 * owners. The lf_owner field of the struct lockf_entry points back at
175 * the lock owner structure. Each possible lock owner (local proc for
176 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177 * pair for remote locks) is represented by a unique instance of
178 * struct lock_owner.
179 *
180 * If a lock owner has a lock that blocks some other lock or a lock
181 * that is waiting for some other lock, it also has a vertex in the
182 * owner_graph below.
183 *
184 * Locks:
185 * (s)		locked by state->ls_lock
186 * (S)		locked by lf_lock_states_lock
187 * (l)		locked by lf_lock_owners_lock
188 * (g)		locked by lf_owner_graph_lock
189 * (c)		const until freeing
190 */
191#define	LOCK_OWNER_HASH_SIZE	256
192
193struct lock_owner {
194	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195	int	lo_refs;	    /* (l) Number of locks referring to this */
196	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
197	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
198	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
199	int	lo_sysid;	    /* (c) System Id of the lock owner */
200	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
201};
202
203LIST_HEAD(lock_owner_list, lock_owner);
204
205static struct sx		lf_lock_states_lock;
206static struct lockf_list	lf_lock_states; /* (S) */
207static struct sx		lf_lock_owners_lock;
208static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
209
210/*
211 * Structures for deadlock detection.
212 *
213 * We have two types of directed graph, the first is the set of locks,
214 * both active and pending on a vnode. Within this graph, active locks
215 * are terminal nodes in the graph (i.e. have no out-going
216 * edges). Pending locks have out-going edges to each blocking active
217 * lock that prevents the lock from being granted and also to each
218 * older pending lock that would block them if it was active. The
219 * graph for each vnode is naturally acyclic; new edges are only ever
220 * added to or from new nodes (either new pending locks which only add
221 * out-going edges or new active locks which only add in-coming edges)
222 * therefore they cannot create loops in the lock graph.
223 *
224 * The second graph is a global graph of lock owners. Each lock owner
225 * is a vertex in that graph and an edge is added to the graph
226 * whenever an edge is added to a vnode graph, with end points
227 * corresponding to owner of the new pending lock and the owner of the
228 * lock upon which it waits. In order to prevent deadlock, we only add
229 * an edge to this graph if the new edge would not create a cycle.
230 *
231 * The lock owner graph is topologically sorted, i.e. if a node has
232 * any outgoing edges, then it has an order strictly less than any
233 * node to which it has an outgoing edge. We preserve this ordering
234 * (and detect cycles) on edge insertion using Algorithm PK from the
235 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237 * No. 1.7)
238 */
239struct owner_vertex;
240
241struct owner_edge {
242	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
244	int		e_refs;		  /* (g) number of times added */
245	struct owner_vertex *e_from;	  /* (c) out-going from here */
246	struct owner_vertex *e_to;	  /* (c) in-coming to here */
247};
248LIST_HEAD(owner_edge_list, owner_edge);
249
250struct owner_vertex {
251	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
253	int		v_order;	  /* (g) order of vertex in graph */
254	struct owner_edge_list v_outedges;/* (g) list of out-edges */
255	struct owner_edge_list v_inedges; /* (g) list of in-edges */
256	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
257};
258TAILQ_HEAD(owner_vertex_list, owner_vertex);
259
260struct owner_graph {
261	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262	int		g_size;		  /* (g) number of vertices */
263	int		g_space;	  /* (g) space allocated for vertices */
264	int		*g_indexbuf;	  /* (g) workspace for loop detection */
265	uint32_t	g_gen;		  /* (g) increment when re-ordering */
266};
267
268static struct sx		lf_owner_graph_lock;
269static struct owner_graph	lf_owner_graph;
270
271/*
272 * Initialise various structures and locks.
273 */
274static void
275lf_init(void *dummy)
276{
277	int i;
278
279	sx_init(&lf_lock_states_lock, "lock states lock");
280	LIST_INIT(&lf_lock_states);
281
282	sx_init(&lf_lock_owners_lock, "lock owners lock");
283	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284		LIST_INIT(&lf_lock_owners[i]);
285
286	sx_init(&lf_owner_graph_lock, "owner graph lock");
287	graph_init(&lf_owner_graph);
288}
289SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
290
291/*
292 * Generate a hash value for a lock owner.
293 */
294static int
295lf_hash_owner(caddr_t id, struct flock *fl, int flags)
296{
297	uint32_t h;
298
299	if (flags & F_REMOTE) {
300		h = HASHSTEP(0, fl->l_pid);
301		h = HASHSTEP(h, fl->l_sysid);
302	} else if (flags & F_FLOCK) {
303		h = ((uintptr_t) id) >> 7;
304	} else {
305		struct proc *p = (struct proc *) id;
306		h = HASHSTEP(0, p->p_pid);
307		h = HASHSTEP(h, 0);
308	}
309
310	return (h % LOCK_OWNER_HASH_SIZE);
311}
312
313/*
314 * Return true if a lock owner matches the details passed to
315 * lf_advlock.
316 */
317static int
318lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319    int flags)
320{
321	if (flags & F_REMOTE) {
322		return lo->lo_pid == fl->l_pid
323			&& lo->lo_sysid == fl->l_sysid;
324	} else {
325		return lo->lo_id == id;
326	}
327}
328
329static struct lockf_entry *
330lf_alloc_lock(struct lock_owner *lo)
331{
332	struct lockf_entry *lf;
333
334	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
335
336#ifdef LOCKF_DEBUG
337	if (lockf_debug & 4)
338		printf("Allocated lock %p\n", lf);
339#endif
340	if (lo) {
341		sx_xlock(&lf_lock_owners_lock);
342		lo->lo_refs++;
343		sx_xunlock(&lf_lock_owners_lock);
344		lf->lf_owner = lo;
345	}
346
347	return (lf);
348}
349
350static int
351lf_free_lock(struct lockf_entry *lock)
352{
353
354	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
355	if (--lock->lf_refs > 0)
356		return (0);
357	/*
358	 * Adjust the lock_owner reference count and
359	 * reclaim the entry if this is the last lock
360	 * for that owner.
361	 */
362	struct lock_owner *lo = lock->lf_owner;
363	if (lo) {
364		KASSERT(LIST_EMPTY(&lock->lf_outedges),
365		    ("freeing lock with dependancies"));
366		KASSERT(LIST_EMPTY(&lock->lf_inedges),
367		    ("freeing lock with dependants"));
368		sx_xlock(&lf_lock_owners_lock);
369		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
370		lo->lo_refs--;
371		if (lo->lo_refs == 0) {
372#ifdef LOCKF_DEBUG
373			if (lockf_debug & 1)
374				printf("lf_free_lock: freeing lock owner %p\n",
375				    lo);
376#endif
377			if (lo->lo_vertex) {
378				sx_xlock(&lf_owner_graph_lock);
379				graph_free_vertex(&lf_owner_graph,
380				    lo->lo_vertex);
381				sx_xunlock(&lf_owner_graph_lock);
382			}
383			LIST_REMOVE(lo, lo_link);
384			free(lo, M_LOCKF);
385#ifdef LOCKF_DEBUG
386			if (lockf_debug & 4)
387				printf("Freed lock owner %p\n", lo);
388#endif
389		}
390		sx_unlock(&lf_lock_owners_lock);
391	}
392	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
393		vrele(lock->lf_vnode);
394		lock->lf_vnode = NULL;
395	}
396#ifdef LOCKF_DEBUG
397	if (lockf_debug & 4)
398		printf("Freed lock %p\n", lock);
399#endif
400	free(lock, M_LOCKF);
401	return (1);
402}
403
404/*
405 * Advisory record locking support
406 */
407int
408lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
409    u_quad_t size)
410{
411	struct lockf *state, *freestate = NULL;
412	struct flock *fl = ap->a_fl;
413	struct lockf_entry *lock;
414	struct vnode *vp = ap->a_vp;
415	caddr_t id = ap->a_id;
416	int flags = ap->a_flags;
417	int hash;
418	struct lock_owner *lo;
419	off_t start, end, oadd;
420	int error;
421
422	/*
423	 * Handle the F_UNLKSYS case first - no need to mess about
424	 * creating a lock owner for this one.
425	 */
426	if (ap->a_op == F_UNLCKSYS) {
427		lf_clearremotesys(fl->l_sysid);
428		return (0);
429	}
430
431	/*
432	 * Convert the flock structure into a start and end.
433	 */
434	switch (fl->l_whence) {
435
436	case SEEK_SET:
437	case SEEK_CUR:
438		/*
439		 * Caller is responsible for adding any necessary offset
440		 * when SEEK_CUR is used.
441		 */
442		start = fl->l_start;
443		break;
444
445	case SEEK_END:
446		if (size > OFF_MAX ||
447		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
448			return (EOVERFLOW);
449		start = size + fl->l_start;
450		break;
451
452	default:
453		return (EINVAL);
454	}
455	if (start < 0)
456		return (EINVAL);
457	if (fl->l_len < 0) {
458		if (start == 0)
459			return (EINVAL);
460		end = start - 1;
461		start += fl->l_len;
462		if (start < 0)
463			return (EINVAL);
464	} else if (fl->l_len == 0) {
465		end = OFF_MAX;
466	} else {
467		oadd = fl->l_len - 1;
468		if (oadd > OFF_MAX - start)
469			return (EOVERFLOW);
470		end = start + oadd;
471	}
472	/*
473	 * Avoid the common case of unlocking when inode has no locks.
474	 */
475	VI_LOCK(vp);
476	if ((*statep) == NULL) {
477		if (ap->a_op != F_SETLK) {
478			fl->l_type = F_UNLCK;
479			VI_UNLOCK(vp);
480			return (0);
481		}
482	}
483	VI_UNLOCK(vp);
484
485	/*
486	 * Map our arguments to an existing lock owner or create one
487	 * if this is the first time we have seen this owner.
488	 */
489	hash = lf_hash_owner(id, fl, flags);
490	sx_xlock(&lf_lock_owners_lock);
491	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
492		if (lf_owner_matches(lo, id, fl, flags))
493			break;
494	if (!lo) {
495		/*
496		 * We initialise the lock with a reference
497		 * count which matches the new lockf_entry
498		 * structure created below.
499		 */
500		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
501		    M_WAITOK|M_ZERO);
502#ifdef LOCKF_DEBUG
503		if (lockf_debug & 4)
504			printf("Allocated lock owner %p\n", lo);
505#endif
506
507		lo->lo_refs = 1;
508		lo->lo_flags = flags;
509		lo->lo_id = id;
510		if (flags & F_REMOTE) {
511			lo->lo_pid = fl->l_pid;
512			lo->lo_sysid = fl->l_sysid;
513		} else if (flags & F_FLOCK) {
514			lo->lo_pid = -1;
515			lo->lo_sysid = 0;
516		} else {
517			struct proc *p = (struct proc *) id;
518			lo->lo_pid = p->p_pid;
519			lo->lo_sysid = 0;
520		}
521		lo->lo_vertex = NULL;
522
523#ifdef LOCKF_DEBUG
524		if (lockf_debug & 1) {
525			printf("lf_advlockasync: new lock owner %p ", lo);
526			lf_print_owner(lo);
527			printf("\n");
528		}
529#endif
530
531		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
532	} else {
533		/*
534		 * We have seen this lock owner before, increase its
535		 * reference count to account for the new lockf_entry
536		 * structure we create below.
537		 */
538		lo->lo_refs++;
539	}
540	sx_xunlock(&lf_lock_owners_lock);
541
542	/*
543	 * Create the lockf structure. We initialise the lf_owner
544	 * field here instead of in lf_alloc_lock() to avoid paying
545	 * the lf_lock_owners_lock tax twice.
546	 */
547	lock = lf_alloc_lock(NULL);
548	lock->lf_refs = 1;
549	lock->lf_start = start;
550	lock->lf_end = end;
551	lock->lf_owner = lo;
552	lock->lf_vnode = vp;
553	if (flags & F_REMOTE) {
554		/*
555		 * For remote locks, the caller may release its ref to
556		 * the vnode at any time - we have to ref it here to
557		 * prevent it from being recycled unexpectedly.
558		 */
559		vref(vp);
560	}
561
562	/*
563	 * XXX The problem is that VTOI is ufs specific, so it will
564	 * break LOCKF_DEBUG for all other FS's other than UFS because
565	 * it casts the vnode->data ptr to struct inode *.
566	 */
567/*	lock->lf_inode = VTOI(ap->a_vp); */
568	lock->lf_inode = (struct inode *)0;
569	lock->lf_type = fl->l_type;
570	LIST_INIT(&lock->lf_outedges);
571	LIST_INIT(&lock->lf_inedges);
572	lock->lf_async_task = ap->a_task;
573	lock->lf_flags = ap->a_flags;
574
575	/*
576	 * Do the requested operation. First find our state structure
577	 * and create a new one if necessary - the caller's *statep
578	 * variable and the state's ls_threads count is protected by
579	 * the vnode interlock.
580	 */
581	VI_LOCK(vp);
582	if (vp->v_iflag & VI_DOOMED) {
583		VI_UNLOCK(vp);
584		lf_free_lock(lock);
585		return (ENOENT);
586	}
587
588	/*
589	 * Allocate a state structure if necessary.
590	 */
591	state = *statep;
592	if (state == NULL) {
593		struct lockf *ls;
594
595		VI_UNLOCK(vp);
596
597		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
598		sx_init(&ls->ls_lock, "ls_lock");
599		LIST_INIT(&ls->ls_active);
600		LIST_INIT(&ls->ls_pending);
601		ls->ls_threads = 1;
602
603		sx_xlock(&lf_lock_states_lock);
604		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
605		sx_xunlock(&lf_lock_states_lock);
606
607		/*
608		 * Cope if we lost a race with some other thread while
609		 * trying to allocate memory.
610		 */
611		VI_LOCK(vp);
612		if (vp->v_iflag & VI_DOOMED) {
613			VI_UNLOCK(vp);
614			sx_xlock(&lf_lock_states_lock);
615			LIST_REMOVE(ls, ls_link);
616			sx_xunlock(&lf_lock_states_lock);
617			sx_destroy(&ls->ls_lock);
618			free(ls, M_LOCKF);
619			lf_free_lock(lock);
620			return (ENOENT);
621		}
622		if ((*statep) == NULL) {
623			state = *statep = ls;
624			VI_UNLOCK(vp);
625		} else {
626			state = *statep;
627			state->ls_threads++;
628			VI_UNLOCK(vp);
629
630			sx_xlock(&lf_lock_states_lock);
631			LIST_REMOVE(ls, ls_link);
632			sx_xunlock(&lf_lock_states_lock);
633			sx_destroy(&ls->ls_lock);
634			free(ls, M_LOCKF);
635		}
636	} else {
637		state->ls_threads++;
638		VI_UNLOCK(vp);
639	}
640
641	sx_xlock(&state->ls_lock);
642	/*
643	 * Recheck the doomed vnode after state->ls_lock is
644	 * locked. lf_purgelocks() requires that no new threads add
645	 * pending locks when vnode is marked by VI_DOOMED flag.
646	 */
647	VI_LOCK(vp);
648	if (vp->v_iflag & VI_DOOMED) {
649		state->ls_threads--;
650		wakeup(state);
651		VI_UNLOCK(vp);
652		sx_xunlock(&state->ls_lock);
653		lf_free_lock(lock);
654		return (ENOENT);
655	}
656	VI_UNLOCK(vp);
657
658	switch (ap->a_op) {
659	case F_SETLK:
660		error = lf_setlock(state, lock, vp, ap->a_cookiep);
661		break;
662
663	case F_UNLCK:
664		error = lf_clearlock(state, lock);
665		lf_free_lock(lock);
666		break;
667
668	case F_GETLK:
669		error = lf_getlock(state, lock, fl);
670		lf_free_lock(lock);
671		break;
672
673	case F_CANCEL:
674		if (ap->a_cookiep)
675			error = lf_cancel(state, lock, *ap->a_cookiep);
676		else
677			error = EINVAL;
678		lf_free_lock(lock);
679		break;
680
681	default:
682		lf_free_lock(lock);
683		error = EINVAL;
684		break;
685	}
686
687#ifdef INVARIANTS
688	/*
689	 * Check for some can't happen stuff. In this case, the active
690	 * lock list becoming disordered or containing mutually
691	 * blocking locks. We also check the pending list for locks
692	 * which should be active (i.e. have no out-going edges).
693	 */
694	LIST_FOREACH(lock, &state->ls_active, lf_link) {
695		struct lockf_entry *lf;
696		if (LIST_NEXT(lock, lf_link))
697			KASSERT((lock->lf_start
698				<= LIST_NEXT(lock, lf_link)->lf_start),
699			    ("locks disordered"));
700		LIST_FOREACH(lf, &state->ls_active, lf_link) {
701			if (lock == lf)
702				break;
703			KASSERT(!lf_blocks(lock, lf),
704			    ("two conflicting active locks"));
705			if (lock->lf_owner == lf->lf_owner)
706				KASSERT(!lf_overlaps(lock, lf),
707				    ("two overlapping locks from same owner"));
708		}
709	}
710	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
711		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
712		    ("pending lock which should be active"));
713	}
714#endif
715	sx_xunlock(&state->ls_lock);
716
717	/*
718	 * If we have removed the last active lock on the vnode and
719	 * this is the last thread that was in-progress, we can free
720	 * the state structure. We update the caller's pointer inside
721	 * the vnode interlock but call free outside.
722	 *
723	 * XXX alternatively, keep the state structure around until
724	 * the filesystem recycles - requires a callback from the
725	 * filesystem.
726	 */
727	VI_LOCK(vp);
728
729	state->ls_threads--;
730	wakeup(state);
731	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
732		KASSERT(LIST_EMPTY(&state->ls_pending),
733		    ("freeing state with pending locks"));
734		freestate = state;
735		*statep = NULL;
736	}
737
738	VI_UNLOCK(vp);
739
740	if (freestate) {
741		sx_xlock(&lf_lock_states_lock);
742		LIST_REMOVE(freestate, ls_link);
743		sx_xunlock(&lf_lock_states_lock);
744		sx_destroy(&freestate->ls_lock);
745		free(freestate, M_LOCKF);
746	}
747	return (error);
748}
749
750int
751lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
752{
753	struct vop_advlockasync_args a;
754
755	a.a_vp = ap->a_vp;
756	a.a_id = ap->a_id;
757	a.a_op = ap->a_op;
758	a.a_fl = ap->a_fl;
759	a.a_flags = ap->a_flags;
760	a.a_task = NULL;
761	a.a_cookiep = NULL;
762
763	return (lf_advlockasync(&a, statep, size));
764}
765
766void
767lf_purgelocks(struct vnode *vp, struct lockf **statep)
768{
769	struct lockf *state;
770	struct lockf_entry *lock, *nlock;
771
772	/*
773	 * For this to work correctly, the caller must ensure that no
774	 * other threads enter the locking system for this vnode,
775	 * e.g. by checking VI_DOOMED. We wake up any threads that are
776	 * sleeping waiting for locks on this vnode and then free all
777	 * the remaining locks.
778	 */
779	VI_LOCK(vp);
780	KASSERT(vp->v_iflag & VI_DOOMED,
781	    ("lf_purgelocks: vp %p has not vgone yet", vp));
782	state = *statep;
783	if (state) {
784		*statep = NULL;
785		state->ls_threads++;
786		VI_UNLOCK(vp);
787
788		sx_xlock(&state->ls_lock);
789		sx_xlock(&lf_owner_graph_lock);
790		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
791			LIST_REMOVE(lock, lf_link);
792			lf_remove_outgoing(lock);
793			lf_remove_incoming(lock);
794
795			/*
796			 * If its an async lock, we can just free it
797			 * here, otherwise we let the sleeping thread
798			 * free it.
799			 */
800			if (lock->lf_async_task) {
801				lf_free_lock(lock);
802			} else {
803				lock->lf_flags |= F_INTR;
804				wakeup(lock);
805			}
806		}
807		sx_xunlock(&lf_owner_graph_lock);
808		sx_xunlock(&state->ls_lock);
809
810		/*
811		 * Wait for all other threads, sleeping and otherwise
812		 * to leave.
813		 */
814		VI_LOCK(vp);
815		while (state->ls_threads > 1)
816			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
817		VI_UNLOCK(vp);
818
819		/*
820		 * We can just free all the active locks since they
821		 * will have no dependancies (we removed them all
822		 * above). We don't need to bother locking since we
823		 * are the last thread using this state structure.
824		 */
825		KASSERT(LIST_EMPTY(&state->ls_pending),
826		    ("lock pending for %p", state));
827		LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
828			LIST_REMOVE(lock, lf_link);
829			lf_free_lock(lock);
830		}
831		sx_xlock(&lf_lock_states_lock);
832		LIST_REMOVE(state, ls_link);
833		sx_xunlock(&lf_lock_states_lock);
834		sx_destroy(&state->ls_lock);
835		free(state, M_LOCKF);
836	} else {
837		VI_UNLOCK(vp);
838	}
839}
840
841/*
842 * Return non-zero if locks 'x' and 'y' overlap.
843 */
844static int
845lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
846{
847
848	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
849}
850
851/*
852 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
853 */
854static int
855lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
856{
857
858	return x->lf_owner != y->lf_owner
859		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
860		&& lf_overlaps(x, y);
861}
862
863/*
864 * Allocate a lock edge from the free list
865 */
866static struct lockf_edge *
867lf_alloc_edge(void)
868{
869
870	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
871}
872
873/*
874 * Free a lock edge.
875 */
876static void
877lf_free_edge(struct lockf_edge *e)
878{
879
880	free(e, M_LOCKF);
881}
882
883
884/*
885 * Ensure that the lock's owner has a corresponding vertex in the
886 * owner graph.
887 */
888static void
889lf_alloc_vertex(struct lockf_entry *lock)
890{
891	struct owner_graph *g = &lf_owner_graph;
892
893	if (!lock->lf_owner->lo_vertex)
894		lock->lf_owner->lo_vertex =
895			graph_alloc_vertex(g, lock->lf_owner);
896}
897
898/*
899 * Attempt to record an edge from lock x to lock y. Return EDEADLK if
900 * the new edge would cause a cycle in the owner graph.
901 */
902static int
903lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
904{
905	struct owner_graph *g = &lf_owner_graph;
906	struct lockf_edge *e;
907	int error;
908
909#ifdef INVARIANTS
910	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
911		KASSERT(e->le_to != y, ("adding lock edge twice"));
912#endif
913
914	/*
915	 * Make sure the two owners have entries in the owner graph.
916	 */
917	lf_alloc_vertex(x);
918	lf_alloc_vertex(y);
919
920	error = graph_add_edge(g, x->lf_owner->lo_vertex,
921	    y->lf_owner->lo_vertex);
922	if (error)
923		return (error);
924
925	e = lf_alloc_edge();
926	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
927	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
928	e->le_from = x;
929	e->le_to = y;
930
931	return (0);
932}
933
934/*
935 * Remove an edge from the lock graph.
936 */
937static void
938lf_remove_edge(struct lockf_edge *e)
939{
940	struct owner_graph *g = &lf_owner_graph;
941	struct lockf_entry *x = e->le_from;
942	struct lockf_entry *y = e->le_to;
943
944	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
945	LIST_REMOVE(e, le_outlink);
946	LIST_REMOVE(e, le_inlink);
947	e->le_from = NULL;
948	e->le_to = NULL;
949	lf_free_edge(e);
950}
951
952/*
953 * Remove all out-going edges from lock x.
954 */
955static void
956lf_remove_outgoing(struct lockf_entry *x)
957{
958	struct lockf_edge *e;
959
960	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
961		lf_remove_edge(e);
962	}
963}
964
965/*
966 * Remove all in-coming edges from lock x.
967 */
968static void
969lf_remove_incoming(struct lockf_entry *x)
970{
971	struct lockf_edge *e;
972
973	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
974		lf_remove_edge(e);
975	}
976}
977
978/*
979 * Walk the list of locks for the file and create an out-going edge
980 * from lock to each blocking lock.
981 */
982static int
983lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
984{
985	struct lockf_entry *overlap;
986	int error;
987
988	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
989		/*
990		 * We may assume that the active list is sorted by
991		 * lf_start.
992		 */
993		if (overlap->lf_start > lock->lf_end)
994			break;
995		if (!lf_blocks(lock, overlap))
996			continue;
997
998		/*
999		 * We've found a blocking lock. Add the corresponding
1000		 * edge to the graphs and see if it would cause a
1001		 * deadlock.
1002		 */
1003		error = lf_add_edge(lock, overlap);
1004
1005		/*
1006		 * The only error that lf_add_edge returns is EDEADLK.
1007		 * Remove any edges we added and return the error.
1008		 */
1009		if (error) {
1010			lf_remove_outgoing(lock);
1011			return (error);
1012		}
1013	}
1014
1015	/*
1016	 * We also need to add edges to sleeping locks that block
1017	 * us. This ensures that lf_wakeup_lock cannot grant two
1018	 * mutually blocking locks simultaneously and also enforces a
1019	 * 'first come, first served' fairness model. Note that this
1020	 * only happens if we are blocked by at least one active lock
1021	 * due to the call to lf_getblock in lf_setlock below.
1022	 */
1023	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1024		if (!lf_blocks(lock, overlap))
1025			continue;
1026		/*
1027		 * We've found a blocking lock. Add the corresponding
1028		 * edge to the graphs and see if it would cause a
1029		 * deadlock.
1030		 */
1031		error = lf_add_edge(lock, overlap);
1032
1033		/*
1034		 * The only error that lf_add_edge returns is EDEADLK.
1035		 * Remove any edges we added and return the error.
1036		 */
1037		if (error) {
1038			lf_remove_outgoing(lock);
1039			return (error);
1040		}
1041	}
1042
1043	return (0);
1044}
1045
1046/*
1047 * Walk the list of pending locks for the file and create an in-coming
1048 * edge from lock to each blocking lock.
1049 */
1050static int
1051lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1052{
1053	struct lockf_entry *overlap;
1054	int error;
1055
1056	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1057		if (!lf_blocks(lock, overlap))
1058			continue;
1059
1060		/*
1061		 * We've found a blocking lock. Add the corresponding
1062		 * edge to the graphs and see if it would cause a
1063		 * deadlock.
1064		 */
1065		error = lf_add_edge(overlap, lock);
1066
1067		/*
1068		 * The only error that lf_add_edge returns is EDEADLK.
1069		 * Remove any edges we added and return the error.
1070		 */
1071		if (error) {
1072			lf_remove_incoming(lock);
1073			return (error);
1074		}
1075	}
1076	return (0);
1077}
1078
1079/*
1080 * Insert lock into the active list, keeping list entries ordered by
1081 * increasing values of lf_start.
1082 */
1083static void
1084lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1085{
1086	struct lockf_entry *lf, *lfprev;
1087
1088	if (LIST_EMPTY(&state->ls_active)) {
1089		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1090		return;
1091	}
1092
1093	lfprev = NULL;
1094	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1095		if (lf->lf_start > lock->lf_start) {
1096			LIST_INSERT_BEFORE(lf, lock, lf_link);
1097			return;
1098		}
1099		lfprev = lf;
1100	}
1101	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1102}
1103
1104/*
1105 * Wake up a sleeping lock and remove it from the pending list now
1106 * that all its dependancies have been resolved. The caller should
1107 * arrange for the lock to be added to the active list, adjusting any
1108 * existing locks for the same owner as needed.
1109 */
1110static void
1111lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1112{
1113
1114	/*
1115	 * Remove from ls_pending list and wake up the caller
1116	 * or start the async notification, as appropriate.
1117	 */
1118	LIST_REMOVE(wakelock, lf_link);
1119#ifdef LOCKF_DEBUG
1120	if (lockf_debug & 1)
1121		lf_print("lf_wakeup_lock: awakening", wakelock);
1122#endif /* LOCKF_DEBUG */
1123	if (wakelock->lf_async_task) {
1124		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1125	} else {
1126		wakeup(wakelock);
1127	}
1128}
1129
1130/*
1131 * Re-check all dependant locks and remove edges to locks that we no
1132 * longer block. If 'all' is non-zero, the lock has been removed and
1133 * we must remove all the dependancies, otherwise it has simply been
1134 * reduced but remains active. Any pending locks which have been been
1135 * unblocked are added to 'granted'
1136 */
1137static void
1138lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1139	struct lockf_entry_list *granted)
1140{
1141	struct lockf_edge *e, *ne;
1142	struct lockf_entry *deplock;
1143
1144	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1145		deplock = e->le_from;
1146		if (all || !lf_blocks(lock, deplock)) {
1147			sx_xlock(&lf_owner_graph_lock);
1148			lf_remove_edge(e);
1149			sx_xunlock(&lf_owner_graph_lock);
1150			if (LIST_EMPTY(&deplock->lf_outedges)) {
1151				lf_wakeup_lock(state, deplock);
1152				LIST_INSERT_HEAD(granted, deplock, lf_link);
1153			}
1154		}
1155	}
1156}
1157
1158/*
1159 * Set the start of an existing active lock, updating dependancies and
1160 * adding any newly woken locks to 'granted'.
1161 */
1162static void
1163lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1164	struct lockf_entry_list *granted)
1165{
1166
1167	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1168	lock->lf_start = new_start;
1169	LIST_REMOVE(lock, lf_link);
1170	lf_insert_lock(state, lock);
1171	lf_update_dependancies(state, lock, FALSE, granted);
1172}
1173
1174/*
1175 * Set the end of an existing active lock, updating dependancies and
1176 * adding any newly woken locks to 'granted'.
1177 */
1178static void
1179lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1180	struct lockf_entry_list *granted)
1181{
1182
1183	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1184	lock->lf_end = new_end;
1185	lf_update_dependancies(state, lock, FALSE, granted);
1186}
1187
1188/*
1189 * Add a lock to the active list, updating or removing any current
1190 * locks owned by the same owner and processing any pending locks that
1191 * become unblocked as a result. This code is also used for unlock
1192 * since the logic for updating existing locks is identical.
1193 *
1194 * As a result of processing the new lock, we may unblock existing
1195 * pending locks as a result of downgrading/unlocking. We simply
1196 * activate the newly granted locks by looping.
1197 *
1198 * Since the new lock already has its dependancies set up, we always
1199 * add it to the list (unless its an unlock request). This may
1200 * fragment the lock list in some pathological cases but its probably
1201 * not a real problem.
1202 */
1203static void
1204lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1205{
1206	struct lockf_entry *overlap, *lf;
1207	struct lockf_entry_list granted;
1208	int ovcase;
1209
1210	LIST_INIT(&granted);
1211	LIST_INSERT_HEAD(&granted, lock, lf_link);
1212
1213	while (!LIST_EMPTY(&granted)) {
1214		lock = LIST_FIRST(&granted);
1215		LIST_REMOVE(lock, lf_link);
1216
1217		/*
1218		 * Skip over locks owned by other processes.  Handle
1219		 * any locks that overlap and are owned by ourselves.
1220		 */
1221		overlap = LIST_FIRST(&state->ls_active);
1222		for (;;) {
1223			ovcase = lf_findoverlap(&overlap, lock, SELF);
1224
1225#ifdef LOCKF_DEBUG
1226			if (ovcase && (lockf_debug & 2)) {
1227				printf("lf_setlock: overlap %d", ovcase);
1228				lf_print("", overlap);
1229			}
1230#endif
1231			/*
1232			 * Six cases:
1233			 *	0) no overlap
1234			 *	1) overlap == lock
1235			 *	2) overlap contains lock
1236			 *	3) lock contains overlap
1237			 *	4) overlap starts before lock
1238			 *	5) overlap ends after lock
1239			 */
1240			switch (ovcase) {
1241			case 0: /* no overlap */
1242				break;
1243
1244			case 1: /* overlap == lock */
1245				/*
1246				 * We have already setup the
1247				 * dependants for the new lock, taking
1248				 * into account a possible downgrade
1249				 * or unlock. Remove the old lock.
1250				 */
1251				LIST_REMOVE(overlap, lf_link);
1252				lf_update_dependancies(state, overlap, TRUE,
1253					&granted);
1254				lf_free_lock(overlap);
1255				break;
1256
1257			case 2: /* overlap contains lock */
1258				/*
1259				 * Just split the existing lock.
1260				 */
1261				lf_split(state, overlap, lock, &granted);
1262				break;
1263
1264			case 3: /* lock contains overlap */
1265				/*
1266				 * Delete the overlap and advance to
1267				 * the next entry in the list.
1268				 */
1269				lf = LIST_NEXT(overlap, lf_link);
1270				LIST_REMOVE(overlap, lf_link);
1271				lf_update_dependancies(state, overlap, TRUE,
1272					&granted);
1273				lf_free_lock(overlap);
1274				overlap = lf;
1275				continue;
1276
1277			case 4: /* overlap starts before lock */
1278				/*
1279				 * Just update the overlap end and
1280				 * move on.
1281				 */
1282				lf_set_end(state, overlap, lock->lf_start - 1,
1283				    &granted);
1284				overlap = LIST_NEXT(overlap, lf_link);
1285				continue;
1286
1287			case 5: /* overlap ends after lock */
1288				/*
1289				 * Change the start of overlap and
1290				 * re-insert.
1291				 */
1292				lf_set_start(state, overlap, lock->lf_end + 1,
1293				    &granted);
1294				break;
1295			}
1296			break;
1297		}
1298#ifdef LOCKF_DEBUG
1299		if (lockf_debug & 1) {
1300			if (lock->lf_type != F_UNLCK)
1301				lf_print("lf_activate_lock: activated", lock);
1302			else
1303				lf_print("lf_activate_lock: unlocked", lock);
1304			lf_printlist("lf_activate_lock", lock);
1305		}
1306#endif /* LOCKF_DEBUG */
1307		if (lock->lf_type != F_UNLCK)
1308			lf_insert_lock(state, lock);
1309	}
1310}
1311
1312/*
1313 * Cancel a pending lock request, either as a result of a signal or a
1314 * cancel request for an async lock.
1315 */
1316static void
1317lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1318{
1319	struct lockf_entry_list granted;
1320
1321	/*
1322	 * Note it is theoretically possible that cancelling this lock
1323	 * may allow some other pending lock to become
1324	 * active. Consider this case:
1325	 *
1326	 * Owner	Action		Result		Dependancies
1327	 *
1328	 * A:		lock [0..0]	succeeds
1329	 * B:		lock [2..2]	succeeds
1330	 * C:		lock [1..2]	blocked		C->B
1331	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1332	 * A:		unlock [0..0]			C->B,D->C
1333	 * C:		cancel [1..2]
1334	 */
1335
1336	LIST_REMOVE(lock, lf_link);
1337
1338	/*
1339	 * Removing out-going edges is simple.
1340	 */
1341	sx_xlock(&lf_owner_graph_lock);
1342	lf_remove_outgoing(lock);
1343	sx_xunlock(&lf_owner_graph_lock);
1344
1345	/*
1346	 * Removing in-coming edges may allow some other lock to
1347	 * become active - we use lf_update_dependancies to figure
1348	 * this out.
1349	 */
1350	LIST_INIT(&granted);
1351	lf_update_dependancies(state, lock, TRUE, &granted);
1352	lf_free_lock(lock);
1353
1354	/*
1355	 * Feed any newly active locks to lf_activate_lock.
1356	 */
1357	while (!LIST_EMPTY(&granted)) {
1358		lock = LIST_FIRST(&granted);
1359		LIST_REMOVE(lock, lf_link);
1360		lf_activate_lock(state, lock);
1361	}
1362}
1363
1364/*
1365 * Set a byte-range lock.
1366 */
1367static int
1368lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1369    void **cookiep)
1370{
1371	static char lockstr[] = "lockf";
1372	int priority, error;
1373
1374#ifdef LOCKF_DEBUG
1375	if (lockf_debug & 1)
1376		lf_print("lf_setlock", lock);
1377#endif /* LOCKF_DEBUG */
1378
1379	/*
1380	 * Set the priority
1381	 */
1382	priority = PLOCK;
1383	if (lock->lf_type == F_WRLCK)
1384		priority += 4;
1385	if (!(lock->lf_flags & F_NOINTR))
1386		priority |= PCATCH;
1387	/*
1388	 * Scan lock list for this file looking for locks that would block us.
1389	 */
1390	if (lf_getblock(state, lock)) {
1391		/*
1392		 * Free the structure and return if nonblocking.
1393		 */
1394		if ((lock->lf_flags & F_WAIT) == 0
1395		    && lock->lf_async_task == NULL) {
1396			lf_free_lock(lock);
1397			error = EAGAIN;
1398			goto out;
1399		}
1400
1401		/*
1402		 * For flock type locks, we must first remove
1403		 * any shared locks that we hold before we sleep
1404		 * waiting for an exclusive lock.
1405		 */
1406		if ((lock->lf_flags & F_FLOCK) &&
1407		    lock->lf_type == F_WRLCK) {
1408			lock->lf_type = F_UNLCK;
1409			lf_activate_lock(state, lock);
1410			lock->lf_type = F_WRLCK;
1411		}
1412
1413		/*
1414		 * We are blocked. Create edges to each blocking lock,
1415		 * checking for deadlock using the owner graph. For
1416		 * simplicity, we run deadlock detection for all
1417		 * locks, posix and otherwise.
1418		 */
1419		sx_xlock(&lf_owner_graph_lock);
1420		error = lf_add_outgoing(state, lock);
1421		sx_xunlock(&lf_owner_graph_lock);
1422
1423		if (error) {
1424#ifdef LOCKF_DEBUG
1425			if (lockf_debug & 1)
1426				lf_print("lf_setlock: deadlock", lock);
1427#endif
1428			lf_free_lock(lock);
1429			goto out;
1430		}
1431
1432		/*
1433		 * We have added edges to everything that blocks
1434		 * us. Sleep until they all go away.
1435		 */
1436		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1437#ifdef LOCKF_DEBUG
1438		if (lockf_debug & 1) {
1439			struct lockf_edge *e;
1440			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1441				lf_print("lf_setlock: blocking on", e->le_to);
1442				lf_printlist("lf_setlock", e->le_to);
1443			}
1444		}
1445#endif /* LOCKF_DEBUG */
1446
1447		if ((lock->lf_flags & F_WAIT) == 0) {
1448			/*
1449			 * The caller requested async notification -
1450			 * this callback happens when the blocking
1451			 * lock is released, allowing the caller to
1452			 * make another attempt to take the lock.
1453			 */
1454			*cookiep = (void *) lock;
1455			error = EINPROGRESS;
1456			goto out;
1457		}
1458
1459		lock->lf_refs++;
1460		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1461		if (lf_free_lock(lock)) {
1462			error = EINTR;
1463			goto out;
1464		}
1465
1466		/*
1467		 * We may have been awakened by a signal and/or by a
1468		 * debugger continuing us (in which cases we must
1469		 * remove our lock graph edges) and/or by another
1470		 * process releasing a lock (in which case our edges
1471		 * have already been removed and we have been moved to
1472		 * the active list). We may also have been woken by
1473		 * lf_purgelocks which we report to the caller as
1474		 * EINTR. In that case, lf_purgelocks will have
1475		 * removed our lock graph edges.
1476		 *
1477		 * Note that it is possible to receive a signal after
1478		 * we were successfully woken (and moved to the active
1479		 * list) but before we resumed execution. In this
1480		 * case, our lf_outedges list will be clear. We
1481		 * pretend there was no error.
1482		 *
1483		 * Note also, if we have been sleeping long enough, we
1484		 * may now have incoming edges from some newer lock
1485		 * which is waiting behind us in the queue.
1486		 */
1487		if (lock->lf_flags & F_INTR) {
1488			error = EINTR;
1489			lf_free_lock(lock);
1490			goto out;
1491		}
1492		if (LIST_EMPTY(&lock->lf_outedges)) {
1493			error = 0;
1494		} else {
1495			lf_cancel_lock(state, lock);
1496			goto out;
1497		}
1498#ifdef LOCKF_DEBUG
1499		if (lockf_debug & 1) {
1500			lf_print("lf_setlock: granted", lock);
1501		}
1502#endif
1503		goto out;
1504	}
1505	/*
1506	 * It looks like we are going to grant the lock. First add
1507	 * edges from any currently pending lock that the new lock
1508	 * would block.
1509	 */
1510	sx_xlock(&lf_owner_graph_lock);
1511	error = lf_add_incoming(state, lock);
1512	sx_xunlock(&lf_owner_graph_lock);
1513	if (error) {
1514#ifdef LOCKF_DEBUG
1515		if (lockf_debug & 1)
1516			lf_print("lf_setlock: deadlock", lock);
1517#endif
1518		lf_free_lock(lock);
1519		goto out;
1520	}
1521
1522	/*
1523	 * No blocks!!  Add the lock.  Note that we will
1524	 * downgrade or upgrade any overlapping locks this
1525	 * process already owns.
1526	 */
1527	lf_activate_lock(state, lock);
1528	error = 0;
1529out:
1530	return (error);
1531}
1532
1533/*
1534 * Remove a byte-range lock on an inode.
1535 *
1536 * Generally, find the lock (or an overlap to that lock)
1537 * and remove it (or shrink it), then wakeup anyone we can.
1538 */
1539static int
1540lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1541{
1542	struct lockf_entry *overlap;
1543
1544	overlap = LIST_FIRST(&state->ls_active);
1545
1546	if (overlap == NOLOCKF)
1547		return (0);
1548#ifdef LOCKF_DEBUG
1549	if (unlock->lf_type != F_UNLCK)
1550		panic("lf_clearlock: bad type");
1551	if (lockf_debug & 1)
1552		lf_print("lf_clearlock", unlock);
1553#endif /* LOCKF_DEBUG */
1554
1555	lf_activate_lock(state, unlock);
1556
1557	return (0);
1558}
1559
1560/*
1561 * Check whether there is a blocking lock, and if so return its
1562 * details in '*fl'.
1563 */
1564static int
1565lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1566{
1567	struct lockf_entry *block;
1568
1569#ifdef LOCKF_DEBUG
1570	if (lockf_debug & 1)
1571		lf_print("lf_getlock", lock);
1572#endif /* LOCKF_DEBUG */
1573
1574	if ((block = lf_getblock(state, lock))) {
1575		fl->l_type = block->lf_type;
1576		fl->l_whence = SEEK_SET;
1577		fl->l_start = block->lf_start;
1578		if (block->lf_end == OFF_MAX)
1579			fl->l_len = 0;
1580		else
1581			fl->l_len = block->lf_end - block->lf_start + 1;
1582		fl->l_pid = block->lf_owner->lo_pid;
1583		fl->l_sysid = block->lf_owner->lo_sysid;
1584	} else {
1585		fl->l_type = F_UNLCK;
1586	}
1587	return (0);
1588}
1589
1590/*
1591 * Cancel an async lock request.
1592 */
1593static int
1594lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1595{
1596	struct lockf_entry *reallock;
1597
1598	/*
1599	 * We need to match this request with an existing lock
1600	 * request.
1601	 */
1602	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1603		if ((void *) reallock == cookie) {
1604			/*
1605			 * Double-check that this lock looks right
1606			 * (maybe use a rolling ID for the cancel
1607			 * cookie instead?)
1608			 */
1609			if (!(reallock->lf_vnode == lock->lf_vnode
1610				&& reallock->lf_start == lock->lf_start
1611				&& reallock->lf_end == lock->lf_end)) {
1612				return (ENOENT);
1613			}
1614
1615			/*
1616			 * Make sure this lock was async and then just
1617			 * remove it from its wait lists.
1618			 */
1619			if (!reallock->lf_async_task) {
1620				return (ENOENT);
1621			}
1622
1623			/*
1624			 * Note that since any other thread must take
1625			 * state->ls_lock before it can possibly
1626			 * trigger the async callback, we are safe
1627			 * from a race with lf_wakeup_lock, i.e. we
1628			 * can free the lock (actually our caller does
1629			 * this).
1630			 */
1631			lf_cancel_lock(state, reallock);
1632			return (0);
1633		}
1634	}
1635
1636	/*
1637	 * We didn't find a matching lock - not much we can do here.
1638	 */
1639	return (ENOENT);
1640}
1641
1642/*
1643 * Walk the list of locks for an inode and
1644 * return the first blocking lock.
1645 */
1646static struct lockf_entry *
1647lf_getblock(struct lockf *state, struct lockf_entry *lock)
1648{
1649	struct lockf_entry *overlap;
1650
1651	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1652		/*
1653		 * We may assume that the active list is sorted by
1654		 * lf_start.
1655		 */
1656		if (overlap->lf_start > lock->lf_end)
1657			break;
1658		if (!lf_blocks(lock, overlap))
1659			continue;
1660		return (overlap);
1661	}
1662	return (NOLOCKF);
1663}
1664
1665/*
1666 * Walk the list of locks for an inode to find an overlapping lock (if
1667 * any) and return a classification of that overlap.
1668 *
1669 * Arguments:
1670 *	*overlap	The place in the lock list to start looking
1671 *	lock		The lock which is being tested
1672 *	type		Pass 'SELF' to test only locks with the same
1673 *			owner as lock, or 'OTHER' to test only locks
1674 *			with a different owner
1675 *
1676 * Returns one of six values:
1677 *	0) no overlap
1678 *	1) overlap == lock
1679 *	2) overlap contains lock
1680 *	3) lock contains overlap
1681 *	4) overlap starts before lock
1682 *	5) overlap ends after lock
1683 *
1684 * If there is an overlapping lock, '*overlap' is set to point at the
1685 * overlapping lock.
1686 *
1687 * NOTE: this returns only the FIRST overlapping lock.  There
1688 *	 may be more than one.
1689 */
1690static int
1691lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1692{
1693	struct lockf_entry *lf;
1694	off_t start, end;
1695	int res;
1696
1697	if ((*overlap) == NOLOCKF) {
1698		return (0);
1699	}
1700#ifdef LOCKF_DEBUG
1701	if (lockf_debug & 2)
1702		lf_print("lf_findoverlap: looking for overlap in", lock);
1703#endif /* LOCKF_DEBUG */
1704	start = lock->lf_start;
1705	end = lock->lf_end;
1706	res = 0;
1707	while (*overlap) {
1708		lf = *overlap;
1709		if (lf->lf_start > end)
1710			break;
1711		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1712		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1713			*overlap = LIST_NEXT(lf, lf_link);
1714			continue;
1715		}
1716#ifdef LOCKF_DEBUG
1717		if (lockf_debug & 2)
1718			lf_print("\tchecking", lf);
1719#endif /* LOCKF_DEBUG */
1720		/*
1721		 * OK, check for overlap
1722		 *
1723		 * Six cases:
1724		 *	0) no overlap
1725		 *	1) overlap == lock
1726		 *	2) overlap contains lock
1727		 *	3) lock contains overlap
1728		 *	4) overlap starts before lock
1729		 *	5) overlap ends after lock
1730		 */
1731		if (start > lf->lf_end) {
1732			/* Case 0 */
1733#ifdef LOCKF_DEBUG
1734			if (lockf_debug & 2)
1735				printf("no overlap\n");
1736#endif /* LOCKF_DEBUG */
1737			*overlap = LIST_NEXT(lf, lf_link);
1738			continue;
1739		}
1740		if (lf->lf_start == start && lf->lf_end == end) {
1741			/* Case 1 */
1742#ifdef LOCKF_DEBUG
1743			if (lockf_debug & 2)
1744				printf("overlap == lock\n");
1745#endif /* LOCKF_DEBUG */
1746			res = 1;
1747			break;
1748		}
1749		if (lf->lf_start <= start && lf->lf_end >= end) {
1750			/* Case 2 */
1751#ifdef LOCKF_DEBUG
1752			if (lockf_debug & 2)
1753				printf("overlap contains lock\n");
1754#endif /* LOCKF_DEBUG */
1755			res = 2;
1756			break;
1757		}
1758		if (start <= lf->lf_start && end >= lf->lf_end) {
1759			/* Case 3 */
1760#ifdef LOCKF_DEBUG
1761			if (lockf_debug & 2)
1762				printf("lock contains overlap\n");
1763#endif /* LOCKF_DEBUG */
1764			res = 3;
1765			break;
1766		}
1767		if (lf->lf_start < start && lf->lf_end >= start) {
1768			/* Case 4 */
1769#ifdef LOCKF_DEBUG
1770			if (lockf_debug & 2)
1771				printf("overlap starts before lock\n");
1772#endif /* LOCKF_DEBUG */
1773			res = 4;
1774			break;
1775		}
1776		if (lf->lf_start > start && lf->lf_end > end) {
1777			/* Case 5 */
1778#ifdef LOCKF_DEBUG
1779			if (lockf_debug & 2)
1780				printf("overlap ends after lock\n");
1781#endif /* LOCKF_DEBUG */
1782			res = 5;
1783			break;
1784		}
1785		panic("lf_findoverlap: default");
1786	}
1787	return (res);
1788}
1789
1790/*
1791 * Split an the existing 'lock1', based on the extent of the lock
1792 * described by 'lock2'. The existing lock should cover 'lock2'
1793 * entirely.
1794 *
1795 * Any pending locks which have been been unblocked are added to
1796 * 'granted'
1797 */
1798static void
1799lf_split(struct lockf *state, struct lockf_entry *lock1,
1800    struct lockf_entry *lock2, struct lockf_entry_list *granted)
1801{
1802	struct lockf_entry *splitlock;
1803
1804#ifdef LOCKF_DEBUG
1805	if (lockf_debug & 2) {
1806		lf_print("lf_split", lock1);
1807		lf_print("splitting from", lock2);
1808	}
1809#endif /* LOCKF_DEBUG */
1810	/*
1811	 * Check to see if we don't need to split at all.
1812	 */
1813	if (lock1->lf_start == lock2->lf_start) {
1814		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1815		return;
1816	}
1817	if (lock1->lf_end == lock2->lf_end) {
1818		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1819		return;
1820	}
1821	/*
1822	 * Make a new lock consisting of the last part of
1823	 * the encompassing lock.
1824	 */
1825	splitlock = lf_alloc_lock(lock1->lf_owner);
1826	memcpy(splitlock, lock1, sizeof *splitlock);
1827	splitlock->lf_refs = 1;
1828	if (splitlock->lf_flags & F_REMOTE)
1829		vref(splitlock->lf_vnode);
1830
1831	/*
1832	 * This cannot cause a deadlock since any edges we would add
1833	 * to splitlock already exist in lock1. We must be sure to add
1834	 * necessary dependancies to splitlock before we reduce lock1
1835	 * otherwise we may accidentally grant a pending lock that
1836	 * was blocked by the tail end of lock1.
1837	 */
1838	splitlock->lf_start = lock2->lf_end + 1;
1839	LIST_INIT(&splitlock->lf_outedges);
1840	LIST_INIT(&splitlock->lf_inedges);
1841	sx_xlock(&lf_owner_graph_lock);
1842	lf_add_incoming(state, splitlock);
1843	sx_xunlock(&lf_owner_graph_lock);
1844
1845	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1846
1847	/*
1848	 * OK, now link it in
1849	 */
1850	lf_insert_lock(state, splitlock);
1851}
1852
1853struct lockdesc {
1854	STAILQ_ENTRY(lockdesc) link;
1855	struct vnode *vp;
1856	struct flock fl;
1857};
1858STAILQ_HEAD(lockdesclist, lockdesc);
1859
1860int
1861lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1862{
1863	struct lockf *ls;
1864	struct lockf_entry *lf;
1865	struct lockdesc *ldesc;
1866	struct lockdesclist locks;
1867	int error;
1868
1869	/*
1870	 * In order to keep the locking simple, we iterate over the
1871	 * active lock lists to build a list of locks that need
1872	 * releasing. We then call the iterator for each one in turn.
1873	 *
1874	 * We take an extra reference to the vnode for the duration to
1875	 * make sure it doesn't go away before we are finished.
1876	 */
1877	STAILQ_INIT(&locks);
1878	sx_xlock(&lf_lock_states_lock);
1879	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1880		sx_xlock(&ls->ls_lock);
1881		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1882			if (lf->lf_owner->lo_sysid != sysid)
1883				continue;
1884
1885			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1886			    M_WAITOK);
1887			ldesc->vp = lf->lf_vnode;
1888			vref(ldesc->vp);
1889			ldesc->fl.l_start = lf->lf_start;
1890			if (lf->lf_end == OFF_MAX)
1891				ldesc->fl.l_len = 0;
1892			else
1893				ldesc->fl.l_len =
1894					lf->lf_end - lf->lf_start + 1;
1895			ldesc->fl.l_whence = SEEK_SET;
1896			ldesc->fl.l_type = F_UNLCK;
1897			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1898			ldesc->fl.l_sysid = sysid;
1899			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1900		}
1901		sx_xunlock(&ls->ls_lock);
1902	}
1903	sx_xunlock(&lf_lock_states_lock);
1904
1905	/*
1906	 * Call the iterator function for each lock in turn. If the
1907	 * iterator returns an error code, just free the rest of the
1908	 * lockdesc structures.
1909	 */
1910	error = 0;
1911	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1912		STAILQ_REMOVE_HEAD(&locks, link);
1913		if (!error)
1914			error = fn(ldesc->vp, &ldesc->fl, arg);
1915		vrele(ldesc->vp);
1916		free(ldesc, M_LOCKF);
1917	}
1918
1919	return (error);
1920}
1921
1922int
1923lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1924{
1925	struct lockf *ls;
1926	struct lockf_entry *lf;
1927	struct lockdesc *ldesc;
1928	struct lockdesclist locks;
1929	int error;
1930
1931	/*
1932	 * In order to keep the locking simple, we iterate over the
1933	 * active lock lists to build a list of locks that need
1934	 * releasing. We then call the iterator for each one in turn.
1935	 *
1936	 * We take an extra reference to the vnode for the duration to
1937	 * make sure it doesn't go away before we are finished.
1938	 */
1939	STAILQ_INIT(&locks);
1940	VI_LOCK(vp);
1941	ls = vp->v_lockf;
1942	if (!ls) {
1943		VI_UNLOCK(vp);
1944		return (0);
1945	}
1946	ls->ls_threads++;
1947	VI_UNLOCK(vp);
1948
1949	sx_xlock(&ls->ls_lock);
1950	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1951		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1952		    M_WAITOK);
1953		ldesc->vp = lf->lf_vnode;
1954		vref(ldesc->vp);
1955		ldesc->fl.l_start = lf->lf_start;
1956		if (lf->lf_end == OFF_MAX)
1957			ldesc->fl.l_len = 0;
1958		else
1959			ldesc->fl.l_len =
1960				lf->lf_end - lf->lf_start + 1;
1961		ldesc->fl.l_whence = SEEK_SET;
1962		ldesc->fl.l_type = F_UNLCK;
1963		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1964		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1965		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1966	}
1967	sx_xunlock(&ls->ls_lock);
1968	VI_LOCK(vp);
1969	ls->ls_threads--;
1970	wakeup(ls);
1971	VI_UNLOCK(vp);
1972
1973	/*
1974	 * Call the iterator function for each lock in turn. If the
1975	 * iterator returns an error code, just free the rest of the
1976	 * lockdesc structures.
1977	 */
1978	error = 0;
1979	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1980		STAILQ_REMOVE_HEAD(&locks, link);
1981		if (!error)
1982			error = fn(ldesc->vp, &ldesc->fl, arg);
1983		vrele(ldesc->vp);
1984		free(ldesc, M_LOCKF);
1985	}
1986
1987	return (error);
1988}
1989
1990static int
1991lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
1992{
1993
1994	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
1995	return (0);
1996}
1997
1998void
1999lf_clearremotesys(int sysid)
2000{
2001
2002	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2003	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2004}
2005
2006int
2007lf_countlocks(int sysid)
2008{
2009	int i;
2010	struct lock_owner *lo;
2011	int count;
2012
2013	count = 0;
2014	sx_xlock(&lf_lock_owners_lock);
2015	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2016		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2017			if (lo->lo_sysid == sysid)
2018				count += lo->lo_refs;
2019	sx_xunlock(&lf_lock_owners_lock);
2020
2021	return (count);
2022}
2023
2024#ifdef LOCKF_DEBUG
2025
2026/*
2027 * Return non-zero if y is reachable from x using a brute force
2028 * search. If reachable and path is non-null, return the route taken
2029 * in path.
2030 */
2031static int
2032graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2033    struct owner_vertex_list *path)
2034{
2035	struct owner_edge *e;
2036
2037	if (x == y) {
2038		if (path)
2039			TAILQ_INSERT_HEAD(path, x, v_link);
2040		return 1;
2041	}
2042
2043	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2044		if (graph_reaches(e->e_to, y, path)) {
2045			if (path)
2046				TAILQ_INSERT_HEAD(path, x, v_link);
2047			return 1;
2048		}
2049	}
2050	return 0;
2051}
2052
2053/*
2054 * Perform consistency checks on the graph. Make sure the values of
2055 * v_order are correct. If checkorder is non-zero, check no vertex can
2056 * reach any other vertex with a smaller order.
2057 */
2058static void
2059graph_check(struct owner_graph *g, int checkorder)
2060{
2061	int i, j;
2062
2063	for (i = 0; i < g->g_size; i++) {
2064		if (!g->g_vertices[i]->v_owner)
2065			continue;
2066		KASSERT(g->g_vertices[i]->v_order == i,
2067		    ("lock graph vertices disordered"));
2068		if (checkorder) {
2069			for (j = 0; j < i; j++) {
2070				if (!g->g_vertices[j]->v_owner)
2071					continue;
2072				KASSERT(!graph_reaches(g->g_vertices[i],
2073					g->g_vertices[j], NULL),
2074				    ("lock graph vertices disordered"));
2075			}
2076		}
2077	}
2078}
2079
2080static void
2081graph_print_vertices(struct owner_vertex_list *set)
2082{
2083	struct owner_vertex *v;
2084
2085	printf("{ ");
2086	TAILQ_FOREACH(v, set, v_link) {
2087		printf("%d:", v->v_order);
2088		lf_print_owner(v->v_owner);
2089		if (TAILQ_NEXT(v, v_link))
2090			printf(", ");
2091	}
2092	printf(" }\n");
2093}
2094
2095#endif
2096
2097/*
2098 * Calculate the sub-set of vertices v from the affected region [y..x]
2099 * where v is reachable from y. Return -1 if a loop was detected
2100 * (i.e. x is reachable from y, otherwise the number of vertices in
2101 * this subset.
2102 */
2103static int
2104graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2105    struct owner_vertex *y, struct owner_vertex_list *delta)
2106{
2107	uint32_t gen;
2108	struct owner_vertex *v;
2109	struct owner_edge *e;
2110	int n;
2111
2112	/*
2113	 * We start with a set containing just y. Then for each vertex
2114	 * v in the set so far unprocessed, we add each vertex that v
2115	 * has an out-edge to and that is within the affected region
2116	 * [y..x]. If we see the vertex x on our travels, stop
2117	 * immediately.
2118	 */
2119	TAILQ_INIT(delta);
2120	TAILQ_INSERT_TAIL(delta, y, v_link);
2121	v = y;
2122	n = 1;
2123	gen = g->g_gen;
2124	while (v) {
2125		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2126			if (e->e_to == x)
2127				return -1;
2128			if (e->e_to->v_order < x->v_order
2129			    && e->e_to->v_gen != gen) {
2130				e->e_to->v_gen = gen;
2131				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2132				n++;
2133			}
2134		}
2135		v = TAILQ_NEXT(v, v_link);
2136	}
2137
2138	return (n);
2139}
2140
2141/*
2142 * Calculate the sub-set of vertices v from the affected region [y..x]
2143 * where v reaches x. Return the number of vertices in this subset.
2144 */
2145static int
2146graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2147    struct owner_vertex *y, struct owner_vertex_list *delta)
2148{
2149	uint32_t gen;
2150	struct owner_vertex *v;
2151	struct owner_edge *e;
2152	int n;
2153
2154	/*
2155	 * We start with a set containing just x. Then for each vertex
2156	 * v in the set so far unprocessed, we add each vertex that v
2157	 * has an in-edge from and that is within the affected region
2158	 * [y..x].
2159	 */
2160	TAILQ_INIT(delta);
2161	TAILQ_INSERT_TAIL(delta, x, v_link);
2162	v = x;
2163	n = 1;
2164	gen = g->g_gen;
2165	while (v) {
2166		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2167			if (e->e_from->v_order > y->v_order
2168			    && e->e_from->v_gen != gen) {
2169				e->e_from->v_gen = gen;
2170				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2171				n++;
2172			}
2173		}
2174		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2175	}
2176
2177	return (n);
2178}
2179
2180static int
2181graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2182{
2183	struct owner_vertex *v;
2184	int i, j;
2185
2186	TAILQ_FOREACH(v, set, v_link) {
2187		for (i = n;
2188		     i > 0 && indices[i - 1] > v->v_order; i--)
2189			;
2190		for (j = n - 1; j >= i; j--)
2191			indices[j + 1] = indices[j];
2192		indices[i] = v->v_order;
2193		n++;
2194	}
2195
2196	return (n);
2197}
2198
2199static int
2200graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2201    struct owner_vertex_list *set)
2202{
2203	struct owner_vertex *v, *vlowest;
2204
2205	while (!TAILQ_EMPTY(set)) {
2206		vlowest = NULL;
2207		TAILQ_FOREACH(v, set, v_link) {
2208			if (!vlowest || v->v_order < vlowest->v_order)
2209				vlowest = v;
2210		}
2211		TAILQ_REMOVE(set, vlowest, v_link);
2212		vlowest->v_order = indices[nextunused];
2213		g->g_vertices[vlowest->v_order] = vlowest;
2214		nextunused++;
2215	}
2216
2217	return (nextunused);
2218}
2219
2220static int
2221graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2222    struct owner_vertex *y)
2223{
2224	struct owner_edge *e;
2225	struct owner_vertex_list deltaF, deltaB;
2226	int nF, nB, n, vi, i;
2227	int *indices;
2228
2229	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2230
2231	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2232		if (e->e_to == y) {
2233			e->e_refs++;
2234			return (0);
2235		}
2236	}
2237
2238#ifdef LOCKF_DEBUG
2239	if (lockf_debug & 8) {
2240		printf("adding edge %d:", x->v_order);
2241		lf_print_owner(x->v_owner);
2242		printf(" -> %d:", y->v_order);
2243		lf_print_owner(y->v_owner);
2244		printf("\n");
2245	}
2246#endif
2247	if (y->v_order < x->v_order) {
2248		/*
2249		 * The new edge violates the order. First find the set
2250		 * of affected vertices reachable from y (deltaF) and
2251		 * the set of affect vertices affected that reach x
2252		 * (deltaB), using the graph generation number to
2253		 * detect whether we have visited a given vertex
2254		 * already. We re-order the graph so that each vertex
2255		 * in deltaB appears before each vertex in deltaF.
2256		 *
2257		 * If x is a member of deltaF, then the new edge would
2258		 * create a cycle. Otherwise, we may assume that
2259		 * deltaF and deltaB are disjoint.
2260		 */
2261		g->g_gen++;
2262		if (g->g_gen == 0) {
2263			/*
2264			 * Generation wrap.
2265			 */
2266			for (vi = 0; vi < g->g_size; vi++) {
2267				g->g_vertices[vi]->v_gen = 0;
2268			}
2269			g->g_gen++;
2270		}
2271		nF = graph_delta_forward(g, x, y, &deltaF);
2272		if (nF < 0) {
2273#ifdef LOCKF_DEBUG
2274			if (lockf_debug & 8) {
2275				struct owner_vertex_list path;
2276				printf("deadlock: ");
2277				TAILQ_INIT(&path);
2278				graph_reaches(y, x, &path);
2279				graph_print_vertices(&path);
2280			}
2281#endif
2282			return (EDEADLK);
2283		}
2284
2285#ifdef LOCKF_DEBUG
2286		if (lockf_debug & 8) {
2287			printf("re-ordering graph vertices\n");
2288			printf("deltaF = ");
2289			graph_print_vertices(&deltaF);
2290		}
2291#endif
2292
2293		nB = graph_delta_backward(g, x, y, &deltaB);
2294
2295#ifdef LOCKF_DEBUG
2296		if (lockf_debug & 8) {
2297			printf("deltaB = ");
2298			graph_print_vertices(&deltaB);
2299		}
2300#endif
2301
2302		/*
2303		 * We first build a set of vertex indices (vertex
2304		 * order values) that we may use, then we re-assign
2305		 * orders first to those vertices in deltaB, then to
2306		 * deltaF. Note that the contents of deltaF and deltaB
2307		 * may be partially disordered - we perform an
2308		 * insertion sort while building our index set.
2309		 */
2310		indices = g->g_indexbuf;
2311		n = graph_add_indices(indices, 0, &deltaF);
2312		graph_add_indices(indices, n, &deltaB);
2313
2314		/*
2315		 * We must also be sure to maintain the relative
2316		 * ordering of deltaF and deltaB when re-assigning
2317		 * vertices. We do this by iteratively removing the
2318		 * lowest ordered element from the set and assigning
2319		 * it the next value from our new ordering.
2320		 */
2321		i = graph_assign_indices(g, indices, 0, &deltaB);
2322		graph_assign_indices(g, indices, i, &deltaF);
2323
2324#ifdef LOCKF_DEBUG
2325		if (lockf_debug & 8) {
2326			struct owner_vertex_list set;
2327			TAILQ_INIT(&set);
2328			for (i = 0; i < nB + nF; i++)
2329				TAILQ_INSERT_TAIL(&set,
2330				    g->g_vertices[indices[i]], v_link);
2331			printf("new ordering = ");
2332			graph_print_vertices(&set);
2333		}
2334#endif
2335	}
2336
2337	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2338
2339#ifdef LOCKF_DEBUG
2340	if (lockf_debug & 8) {
2341		graph_check(g, TRUE);
2342	}
2343#endif
2344
2345	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2346
2347	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2348	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2349	e->e_refs = 1;
2350	e->e_from = x;
2351	e->e_to = y;
2352
2353	return (0);
2354}
2355
2356/*
2357 * Remove an edge x->y from the graph.
2358 */
2359static void
2360graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2361    struct owner_vertex *y)
2362{
2363	struct owner_edge *e;
2364
2365	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2366
2367	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2368		if (e->e_to == y)
2369			break;
2370	}
2371	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2372
2373	e->e_refs--;
2374	if (e->e_refs == 0) {
2375#ifdef LOCKF_DEBUG
2376		if (lockf_debug & 8) {
2377			printf("removing edge %d:", x->v_order);
2378			lf_print_owner(x->v_owner);
2379			printf(" -> %d:", y->v_order);
2380			lf_print_owner(y->v_owner);
2381			printf("\n");
2382		}
2383#endif
2384		LIST_REMOVE(e, e_outlink);
2385		LIST_REMOVE(e, e_inlink);
2386		free(e, M_LOCKF);
2387	}
2388}
2389
2390/*
2391 * Allocate a vertex from the free list. Return ENOMEM if there are
2392 * none.
2393 */
2394static struct owner_vertex *
2395graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2396{
2397	struct owner_vertex *v;
2398
2399	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2400
2401	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2402	if (g->g_size == g->g_space) {
2403		g->g_vertices = realloc(g->g_vertices,
2404		    2 * g->g_space * sizeof(struct owner_vertex *),
2405		    M_LOCKF, M_WAITOK);
2406		free(g->g_indexbuf, M_LOCKF);
2407		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2408		    M_LOCKF, M_WAITOK);
2409		g->g_space = 2 * g->g_space;
2410	}
2411	v->v_order = g->g_size;
2412	v->v_gen = g->g_gen;
2413	g->g_vertices[g->g_size] = v;
2414	g->g_size++;
2415
2416	LIST_INIT(&v->v_outedges);
2417	LIST_INIT(&v->v_inedges);
2418	v->v_owner = lo;
2419
2420	return (v);
2421}
2422
2423static void
2424graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2425{
2426	struct owner_vertex *w;
2427	int i;
2428
2429	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2430
2431	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2432	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2433
2434	/*
2435	 * Remove from the graph's array and close up the gap,
2436	 * renumbering the other vertices.
2437	 */
2438	for (i = v->v_order + 1; i < g->g_size; i++) {
2439		w = g->g_vertices[i];
2440		w->v_order--;
2441		g->g_vertices[i - 1] = w;
2442	}
2443	g->g_size--;
2444
2445	free(v, M_LOCKF);
2446}
2447
2448static struct owner_graph *
2449graph_init(struct owner_graph *g)
2450{
2451
2452	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2453	    M_LOCKF, M_WAITOK);
2454	g->g_size = 0;
2455	g->g_space = 10;
2456	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2457	g->g_gen = 0;
2458
2459	return (g);
2460}
2461
2462#ifdef LOCKF_DEBUG
2463/*
2464 * Print description of a lock owner
2465 */
2466static void
2467lf_print_owner(struct lock_owner *lo)
2468{
2469
2470	if (lo->lo_flags & F_REMOTE) {
2471		printf("remote pid %d, system %d",
2472		    lo->lo_pid, lo->lo_sysid);
2473	} else if (lo->lo_flags & F_FLOCK) {
2474		printf("file %p", lo->lo_id);
2475	} else {
2476		printf("local pid %d", lo->lo_pid);
2477	}
2478}
2479
2480/*
2481 * Print out a lock.
2482 */
2483static void
2484lf_print(char *tag, struct lockf_entry *lock)
2485{
2486
2487	printf("%s: lock %p for ", tag, (void *)lock);
2488	lf_print_owner(lock->lf_owner);
2489	if (lock->lf_inode != (struct inode *)0)
2490		printf(" in ino %ju on dev <%s>,",
2491		    (uintmax_t)lock->lf_inode->i_number,
2492		    devtoname(lock->lf_inode->i_dev));
2493	printf(" %s, start %jd, end ",
2494	    lock->lf_type == F_RDLCK ? "shared" :
2495	    lock->lf_type == F_WRLCK ? "exclusive" :
2496	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2497	    (intmax_t)lock->lf_start);
2498	if (lock->lf_end == OFF_MAX)
2499		printf("EOF");
2500	else
2501		printf("%jd", (intmax_t)lock->lf_end);
2502	if (!LIST_EMPTY(&lock->lf_outedges))
2503		printf(" block %p\n",
2504		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2505	else
2506		printf("\n");
2507}
2508
2509static void
2510lf_printlist(char *tag, struct lockf_entry *lock)
2511{
2512	struct lockf_entry *lf, *blk;
2513	struct lockf_edge *e;
2514
2515	if (lock->lf_inode == (struct inode *)0)
2516		return;
2517
2518	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2519	    tag, (uintmax_t)lock->lf_inode->i_number,
2520	    devtoname(lock->lf_inode->i_dev));
2521	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2522		printf("\tlock %p for ",(void *)lf);
2523		lf_print_owner(lock->lf_owner);
2524		printf(", %s, start %jd, end %jd",
2525		    lf->lf_type == F_RDLCK ? "shared" :
2526		    lf->lf_type == F_WRLCK ? "exclusive" :
2527		    lf->lf_type == F_UNLCK ? "unlock" :
2528		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2529		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2530			blk = e->le_to;
2531			printf("\n\t\tlock request %p for ", (void *)blk);
2532			lf_print_owner(blk->lf_owner);
2533			printf(", %s, start %jd, end %jd",
2534			    blk->lf_type == F_RDLCK ? "shared" :
2535			    blk->lf_type == F_WRLCK ? "exclusive" :
2536			    blk->lf_type == F_UNLCK ? "unlock" :
2537			    "unknown", (intmax_t)blk->lf_start,
2538			    (intmax_t)blk->lf_end);
2539			if (!LIST_EMPTY(&blk->lf_inedges))
2540				panic("lf_printlist: bad list");
2541		}
2542		printf("\n");
2543	}
2544}
2545#endif /* LOCKF_DEBUG */
2546