1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD$");
39
40#include "opt_kdtrace.h"
41#include "opt_ktrace.h"
42#include "opt_kstack_pages.h"
43#include "opt_procdesc.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/sysproto.h>
48#include <sys/eventhandler.h>
49#include <sys/fcntl.h>
50#include <sys/filedesc.h>
51#include <sys/jail.h>
52#include <sys/kernel.h>
53#include <sys/kthread.h>
54#include <sys/sysctl.h>
55#include <sys/lock.h>
56#include <sys/malloc.h>
57#include <sys/mutex.h>
58#include <sys/priv.h>
59#include <sys/proc.h>
60#include <sys/procdesc.h>
61#include <sys/pioctl.h>
62#include <sys/racct.h>
63#include <sys/resourcevar.h>
64#include <sys/sched.h>
65#include <sys/syscall.h>
66#include <sys/vmmeter.h>
67#include <sys/vnode.h>
68#include <sys/acct.h>
69#include <sys/ktr.h>
70#include <sys/ktrace.h>
71#include <sys/unistd.h>
72#include <sys/sdt.h>
73#include <sys/sx.h>
74#include <sys/sysent.h>
75#include <sys/signalvar.h>
76
77#include <security/audit/audit.h>
78#include <security/mac/mac_framework.h>
79
80#include <vm/vm.h>
81#include <vm/pmap.h>
82#include <vm/vm_map.h>
83#include <vm/vm_extern.h>
84#include <vm/uma.h>
85
86#ifdef KDTRACE_HOOKS
87#include <sys/dtrace_bsd.h>
88dtrace_fork_func_t	dtrace_fasttrap_fork;
89#endif
90
91SDT_PROVIDER_DECLARE(proc);
92SDT_PROBE_DEFINE3(proc, kernel, , create, "struct proc *",
93    "struct proc *", "int");
94
95#ifndef _SYS_SYSPROTO_H_
96struct fork_args {
97	int     dummy;
98};
99#endif
100
101/* ARGSUSED */
102int
103sys_fork(struct thread *td, struct fork_args *uap)
104{
105	int error;
106	struct proc *p2;
107
108	error = fork1(td, RFFDG | RFPROC, 0, &p2, NULL, 0);
109	if (error == 0) {
110		td->td_retval[0] = p2->p_pid;
111		td->td_retval[1] = 0;
112	}
113	return (error);
114}
115
116/* ARGUSED */
117int
118sys_pdfork(td, uap)
119	struct thread *td;
120	struct pdfork_args *uap;
121{
122#ifdef PROCDESC
123	int error, fd;
124	struct proc *p2;
125
126	/*
127	 * It is necessary to return fd by reference because 0 is a valid file
128	 * descriptor number, and the child needs to be able to distinguish
129	 * itself from the parent using the return value.
130	 */
131	error = fork1(td, RFFDG | RFPROC | RFPROCDESC, 0, &p2,
132	    &fd, uap->flags);
133	if (error == 0) {
134		td->td_retval[0] = p2->p_pid;
135		td->td_retval[1] = 0;
136		error = copyout(&fd, uap->fdp, sizeof(fd));
137	}
138	return (error);
139#else
140	return (ENOSYS);
141#endif
142}
143
144/* ARGSUSED */
145int
146sys_vfork(struct thread *td, struct vfork_args *uap)
147{
148	int error, flags;
149	struct proc *p2;
150
151#ifdef XEN
152	flags = RFFDG | RFPROC; /* validate that this is still an issue */
153#else
154	flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
155#endif
156	error = fork1(td, flags, 0, &p2, NULL, 0);
157	if (error == 0) {
158		td->td_retval[0] = p2->p_pid;
159		td->td_retval[1] = 0;
160	}
161	return (error);
162}
163
164int
165sys_rfork(struct thread *td, struct rfork_args *uap)
166{
167	struct proc *p2;
168	int error;
169
170	/* Don't allow kernel-only flags. */
171	if ((uap->flags & RFKERNELONLY) != 0)
172		return (EINVAL);
173
174	AUDIT_ARG_FFLAGS(uap->flags);
175	error = fork1(td, uap->flags, 0, &p2, NULL, 0);
176	if (error == 0) {
177		td->td_retval[0] = p2 ? p2->p_pid : 0;
178		td->td_retval[1] = 0;
179	}
180	return (error);
181}
182
183int	nprocs = 1;		/* process 0 */
184int	lastpid = 0;
185SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
186    "Last used PID");
187
188/*
189 * Random component to lastpid generation.  We mix in a random factor to make
190 * it a little harder to predict.  We sanity check the modulus value to avoid
191 * doing it in critical paths.  Don't let it be too small or we pointlessly
192 * waste randomness entropy, and don't let it be impossibly large.  Using a
193 * modulus that is too big causes a LOT more process table scans and slows
194 * down fork processing as the pidchecked caching is defeated.
195 */
196static int randompid = 0;
197
198static int
199sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
200{
201	int error, pid;
202
203	error = sysctl_wire_old_buffer(req, sizeof(int));
204	if (error != 0)
205		return(error);
206	sx_xlock(&allproc_lock);
207	pid = randompid;
208	error = sysctl_handle_int(oidp, &pid, 0, req);
209	if (error == 0 && req->newptr != NULL) {
210		if (pid < 0 || pid > pid_max - 100)	/* out of range */
211			pid = pid_max - 100;
212		else if (pid < 2)			/* NOP */
213			pid = 0;
214		else if (pid < 100)			/* Make it reasonable */
215			pid = 100;
216		randompid = pid;
217	}
218	sx_xunlock(&allproc_lock);
219	return (error);
220}
221
222SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
223    0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
224
225static int
226fork_findpid(int flags)
227{
228	struct proc *p;
229	int trypid;
230	static int pidchecked = 0;
231
232	/*
233	 * Requires allproc_lock in order to iterate over the list
234	 * of processes, and proctree_lock to access p_pgrp.
235	 */
236	sx_assert(&allproc_lock, SX_LOCKED);
237	sx_assert(&proctree_lock, SX_LOCKED);
238
239	/*
240	 * Find an unused process ID.  We remember a range of unused IDs
241	 * ready to use (from lastpid+1 through pidchecked-1).
242	 *
243	 * If RFHIGHPID is set (used during system boot), do not allocate
244	 * low-numbered pids.
245	 */
246	trypid = lastpid + 1;
247	if (flags & RFHIGHPID) {
248		if (trypid < 10)
249			trypid = 10;
250	} else {
251		if (randompid)
252			trypid += arc4random() % randompid;
253	}
254retry:
255	/*
256	 * If the process ID prototype has wrapped around,
257	 * restart somewhat above 0, as the low-numbered procs
258	 * tend to include daemons that don't exit.
259	 */
260	if (trypid >= pid_max) {
261		trypid = trypid % pid_max;
262		if (trypid < 100)
263			trypid += 100;
264		pidchecked = 0;
265	}
266	if (trypid >= pidchecked) {
267		int doingzomb = 0;
268
269		pidchecked = PID_MAX;
270		/*
271		 * Scan the active and zombie procs to check whether this pid
272		 * is in use.  Remember the lowest pid that's greater
273		 * than trypid, so we can avoid checking for a while.
274		 */
275		p = LIST_FIRST(&allproc);
276again:
277		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
278			while (p->p_pid == trypid ||
279			    (p->p_pgrp != NULL &&
280			    (p->p_pgrp->pg_id == trypid ||
281			    (p->p_session != NULL &&
282			    p->p_session->s_sid == trypid)))) {
283				trypid++;
284				if (trypid >= pidchecked)
285					goto retry;
286			}
287			if (p->p_pid > trypid && pidchecked > p->p_pid)
288				pidchecked = p->p_pid;
289			if (p->p_pgrp != NULL) {
290				if (p->p_pgrp->pg_id > trypid &&
291				    pidchecked > p->p_pgrp->pg_id)
292					pidchecked = p->p_pgrp->pg_id;
293				if (p->p_session != NULL &&
294				    p->p_session->s_sid > trypid &&
295				    pidchecked > p->p_session->s_sid)
296					pidchecked = p->p_session->s_sid;
297			}
298		}
299		if (!doingzomb) {
300			doingzomb = 1;
301			p = LIST_FIRST(&zombproc);
302			goto again;
303		}
304	}
305
306	/*
307	 * RFHIGHPID does not mess with the lastpid counter during boot.
308	 */
309	if (flags & RFHIGHPID)
310		pidchecked = 0;
311	else
312		lastpid = trypid;
313
314	return (trypid);
315}
316
317static int
318fork_norfproc(struct thread *td, int flags)
319{
320	int error;
321	struct proc *p1;
322
323	KASSERT((flags & RFPROC) == 0,
324	    ("fork_norfproc called with RFPROC set"));
325	p1 = td->td_proc;
326
327	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
328	    (flags & (RFCFDG | RFFDG))) {
329		PROC_LOCK(p1);
330		if (thread_single(SINGLE_BOUNDARY)) {
331			PROC_UNLOCK(p1);
332			return (ERESTART);
333		}
334		PROC_UNLOCK(p1);
335	}
336
337	error = vm_forkproc(td, NULL, NULL, NULL, flags);
338	if (error)
339		goto fail;
340
341	/*
342	 * Close all file descriptors.
343	 */
344	if (flags & RFCFDG) {
345		struct filedesc *fdtmp;
346		fdtmp = fdinit(td->td_proc->p_fd);
347		fdfree(td);
348		p1->p_fd = fdtmp;
349	}
350
351	/*
352	 * Unshare file descriptors (from parent).
353	 */
354	if (flags & RFFDG)
355		fdunshare(p1, td);
356
357fail:
358	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
359	    (flags & (RFCFDG | RFFDG))) {
360		PROC_LOCK(p1);
361		thread_single_end();
362		PROC_UNLOCK(p1);
363	}
364	return (error);
365}
366
367static void
368do_fork(struct thread *td, int flags, struct proc *p2, struct thread *td2,
369    struct vmspace *vm2, int pdflags)
370{
371	struct proc *p1, *pptr;
372	int p2_held, trypid;
373	struct filedesc *fd;
374	struct filedesc_to_leader *fdtol;
375	struct sigacts *newsigacts;
376
377	sx_assert(&proctree_lock, SX_SLOCKED);
378	sx_assert(&allproc_lock, SX_XLOCKED);
379
380	p2_held = 0;
381	p1 = td->td_proc;
382
383	/*
384	 * Increment the nprocs resource before blocking can occur.  There
385	 * are hard-limits as to the number of processes that can run.
386	 */
387	nprocs++;
388
389	trypid = fork_findpid(flags);
390
391	sx_sunlock(&proctree_lock);
392
393	p2->p_state = PRS_NEW;		/* protect against others */
394	p2->p_pid = trypid;
395	AUDIT_ARG_PID(p2->p_pid);
396	LIST_INSERT_HEAD(&allproc, p2, p_list);
397	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
398	tidhash_add(td2);
399	PROC_LOCK(p2);
400	PROC_LOCK(p1);
401
402	sx_xunlock(&allproc_lock);
403
404	bcopy(&p1->p_startcopy, &p2->p_startcopy,
405	    __rangeof(struct proc, p_startcopy, p_endcopy));
406	pargs_hold(p2->p_args);
407	PROC_UNLOCK(p1);
408
409	bzero(&p2->p_startzero,
410	    __rangeof(struct proc, p_startzero, p_endzero));
411
412	p2->p_ucred = crhold(td->td_ucred);
413
414	/* Tell the prison that we exist. */
415	prison_proc_hold(p2->p_ucred->cr_prison);
416
417	PROC_UNLOCK(p2);
418
419	/*
420	 * Malloc things while we don't hold any locks.
421	 */
422	if (flags & RFSIGSHARE)
423		newsigacts = NULL;
424	else
425		newsigacts = sigacts_alloc();
426
427	/*
428	 * Copy filedesc.
429	 */
430	if (flags & RFCFDG) {
431		fd = fdinit(p1->p_fd);
432		fdtol = NULL;
433	} else if (flags & RFFDG) {
434		fd = fdcopy(p1->p_fd);
435		fdtol = NULL;
436	} else {
437		fd = fdshare(p1->p_fd);
438		if (p1->p_fdtol == NULL)
439			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
440			    p1->p_leader);
441		if ((flags & RFTHREAD) != 0) {
442			/*
443			 * Shared file descriptor table, and shared
444			 * process leaders.
445			 */
446			fdtol = p1->p_fdtol;
447			FILEDESC_XLOCK(p1->p_fd);
448			fdtol->fdl_refcount++;
449			FILEDESC_XUNLOCK(p1->p_fd);
450		} else {
451			/*
452			 * Shared file descriptor table, and different
453			 * process leaders.
454			 */
455			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
456			    p1->p_fd, p2);
457		}
458	}
459	/*
460	 * Make a proc table entry for the new process.
461	 * Start by zeroing the section of proc that is zero-initialized,
462	 * then copy the section that is copied directly from the parent.
463	 */
464
465	PROC_LOCK(p2);
466	PROC_LOCK(p1);
467
468	bzero(&td2->td_startzero,
469	    __rangeof(struct thread, td_startzero, td_endzero));
470
471	bcopy(&td->td_startcopy, &td2->td_startcopy,
472	    __rangeof(struct thread, td_startcopy, td_endcopy));
473
474	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
475	td2->td_sigstk = td->td_sigstk;
476	td2->td_sigmask = td->td_sigmask;
477	td2->td_flags = TDF_INMEM;
478	td2->td_lend_user_pri = PRI_MAX;
479
480#ifdef VIMAGE
481	td2->td_vnet = NULL;
482	td2->td_vnet_lpush = NULL;
483#endif
484
485	/*
486	 * Allow the scheduler to initialize the child.
487	 */
488	thread_lock(td);
489	sched_fork(td, td2);
490	thread_unlock(td);
491
492	/*
493	 * Duplicate sub-structures as needed.
494	 * Increase reference counts on shared objects.
495	 */
496	p2->p_flag = P_INMEM;
497	p2->p_flag2 = 0;
498	p2->p_swtick = ticks;
499	if (p1->p_flag & P_PROFIL)
500		startprofclock(p2);
501	td2->td_ucred = crhold(p2->p_ucred);
502
503	if (flags & RFSIGSHARE) {
504		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
505	} else {
506		sigacts_copy(newsigacts, p1->p_sigacts);
507		p2->p_sigacts = newsigacts;
508	}
509
510	if (flags & RFTSIGZMB)
511	        p2->p_sigparent = RFTSIGNUM(flags);
512	else if (flags & RFLINUXTHPN)
513	        p2->p_sigparent = SIGUSR1;
514	else
515	        p2->p_sigparent = SIGCHLD;
516
517	p2->p_textvp = p1->p_textvp;
518	p2->p_fd = fd;
519	p2->p_fdtol = fdtol;
520
521	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
522		p2->p_flag |= P_PROTECTED;
523		p2->p_flag2 |= P2_INHERIT_PROTECTED;
524	}
525
526	/*
527	 * p_limit is copy-on-write.  Bump its refcount.
528	 */
529	lim_fork(p1, p2);
530
531	pstats_fork(p1->p_stats, p2->p_stats);
532
533	PROC_UNLOCK(p1);
534	PROC_UNLOCK(p2);
535
536	/* Bump references to the text vnode (for procfs). */
537	if (p2->p_textvp)
538		vref(p2->p_textvp);
539
540	/*
541	 * Set up linkage for kernel based threading.
542	 */
543	if ((flags & RFTHREAD) != 0) {
544		mtx_lock(&ppeers_lock);
545		p2->p_peers = p1->p_peers;
546		p1->p_peers = p2;
547		p2->p_leader = p1->p_leader;
548		mtx_unlock(&ppeers_lock);
549		PROC_LOCK(p1->p_leader);
550		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
551			PROC_UNLOCK(p1->p_leader);
552			/*
553			 * The task leader is exiting, so process p1 is
554			 * going to be killed shortly.  Since p1 obviously
555			 * isn't dead yet, we know that the leader is either
556			 * sending SIGKILL's to all the processes in this
557			 * task or is sleeping waiting for all the peers to
558			 * exit.  We let p1 complete the fork, but we need
559			 * to go ahead and kill the new process p2 since
560			 * the task leader may not get a chance to send
561			 * SIGKILL to it.  We leave it on the list so that
562			 * the task leader will wait for this new process
563			 * to commit suicide.
564			 */
565			PROC_LOCK(p2);
566			kern_psignal(p2, SIGKILL);
567			PROC_UNLOCK(p2);
568		} else
569			PROC_UNLOCK(p1->p_leader);
570	} else {
571		p2->p_peers = NULL;
572		p2->p_leader = p2;
573	}
574
575	sx_xlock(&proctree_lock);
576	PGRP_LOCK(p1->p_pgrp);
577	PROC_LOCK(p2);
578	PROC_LOCK(p1);
579
580	/*
581	 * Preserve some more flags in subprocess.  P_PROFIL has already
582	 * been preserved.
583	 */
584	p2->p_flag |= p1->p_flag & P_SUGID;
585	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
586	SESS_LOCK(p1->p_session);
587	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
588		p2->p_flag |= P_CONTROLT;
589	SESS_UNLOCK(p1->p_session);
590	if (flags & RFPPWAIT)
591		p2->p_flag |= P_PPWAIT;
592
593	p2->p_pgrp = p1->p_pgrp;
594	LIST_INSERT_AFTER(p1, p2, p_pglist);
595	PGRP_UNLOCK(p1->p_pgrp);
596	LIST_INIT(&p2->p_children);
597	LIST_INIT(&p2->p_orphans);
598
599	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
600
601	/*
602	 * If PF_FORK is set, the child process inherits the
603	 * procfs ioctl flags from its parent.
604	 */
605	if (p1->p_pfsflags & PF_FORK) {
606		p2->p_stops = p1->p_stops;
607		p2->p_pfsflags = p1->p_pfsflags;
608	}
609
610	/*
611	 * This begins the section where we must prevent the parent
612	 * from being swapped.
613	 */
614	_PHOLD(p1);
615	PROC_UNLOCK(p1);
616
617	/*
618	 * Attach the new process to its parent.
619	 *
620	 * If RFNOWAIT is set, the newly created process becomes a child
621	 * of init.  This effectively disassociates the child from the
622	 * parent.
623	 */
624	if (flags & RFNOWAIT)
625		pptr = initproc;
626	else
627		pptr = p1;
628	p2->p_pptr = pptr;
629	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
630	sx_xunlock(&proctree_lock);
631
632	/* Inform accounting that we have forked. */
633	p2->p_acflag = AFORK;
634	PROC_UNLOCK(p2);
635
636#ifdef KTRACE
637	ktrprocfork(p1, p2);
638#endif
639
640	/*
641	 * Finish creating the child process.  It will return via a different
642	 * execution path later.  (ie: directly into user mode)
643	 */
644	vm_forkproc(td, p2, td2, vm2, flags);
645
646	if (flags == (RFFDG | RFPROC)) {
647		PCPU_INC(cnt.v_forks);
648		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
649		    p2->p_vmspace->vm_ssize);
650	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
651		PCPU_INC(cnt.v_vforks);
652		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
653		    p2->p_vmspace->vm_ssize);
654	} else if (p1 == &proc0) {
655		PCPU_INC(cnt.v_kthreads);
656		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
657		    p2->p_vmspace->vm_ssize);
658	} else {
659		PCPU_INC(cnt.v_rforks);
660		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
661		    p2->p_vmspace->vm_ssize);
662	}
663
664#ifdef PROCDESC
665	/*
666	 * Associate the process descriptor with the process before anything
667	 * can happen that might cause that process to need the descriptor.
668	 * However, don't do this until after fork(2) can no longer fail.
669	 */
670	if (flags & RFPROCDESC)
671		procdesc_new(p2, pdflags);
672#endif
673
674	/*
675	 * Both processes are set up, now check if any loadable modules want
676	 * to adjust anything.
677	 */
678	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
679
680	/*
681	 * Set the child start time and mark the process as being complete.
682	 */
683	PROC_LOCK(p2);
684	PROC_LOCK(p1);
685	microuptime(&p2->p_stats->p_start);
686	PROC_SLOCK(p2);
687	p2->p_state = PRS_NORMAL;
688	PROC_SUNLOCK(p2);
689
690#ifdef KDTRACE_HOOKS
691	/*
692	 * Tell the DTrace fasttrap provider about the new process so that any
693	 * tracepoints inherited from the parent can be removed. We have to do
694	 * this only after p_state is PRS_NORMAL since the fasttrap module will
695	 * use pfind() later on.
696	 */
697	if ((flags & RFMEM) == 0 && dtrace_fasttrap_fork)
698		dtrace_fasttrap_fork(p1, p2);
699#endif
700	if ((p1->p_flag & (P_TRACED | P_FOLLOWFORK)) == (P_TRACED |
701	    P_FOLLOWFORK)) {
702		/*
703		 * Arrange for debugger to receive the fork event.
704		 *
705		 * We can report PL_FLAG_FORKED regardless of
706		 * P_FOLLOWFORK settings, but it does not make a sense
707		 * for runaway child.
708		 */
709		td->td_dbgflags |= TDB_FORK;
710		td->td_dbg_forked = p2->p_pid;
711		td2->td_dbgflags |= TDB_STOPATFORK;
712		_PHOLD(p2);
713		p2_held = 1;
714	}
715	if (flags & RFPPWAIT) {
716		td->td_pflags |= TDP_RFPPWAIT;
717		td->td_rfppwait_p = p2;
718	}
719	PROC_UNLOCK(p2);
720	if ((flags & RFSTOPPED) == 0) {
721		/*
722		 * If RFSTOPPED not requested, make child runnable and
723		 * add to run queue.
724		 */
725		thread_lock(td2);
726		TD_SET_CAN_RUN(td2);
727		sched_add(td2, SRQ_BORING);
728		thread_unlock(td2);
729	}
730
731	/*
732	 * Now can be swapped.
733	 */
734	_PRELE(p1);
735	PROC_UNLOCK(p1);
736
737	/*
738	 * Tell any interested parties about the new process.
739	 */
740	knote_fork(&p1->p_klist, p2->p_pid);
741	SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
742
743	/*
744	 * Wait until debugger is attached to child.
745	 */
746	PROC_LOCK(p2);
747	while ((td2->td_dbgflags & TDB_STOPATFORK) != 0)
748		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
749	if (p2_held)
750		_PRELE(p2);
751	PROC_UNLOCK(p2);
752}
753
754int
755fork1(struct thread *td, int flags, int pages, struct proc **procp,
756    int *procdescp, int pdflags)
757{
758	struct proc *p1;
759	struct proc *newproc;
760	int ok;
761	struct thread *td2;
762	struct vmspace *vm2;
763	vm_ooffset_t mem_charged;
764	int error;
765	static int curfail;
766	static struct timeval lastfail;
767#ifdef PROCDESC
768	struct file *fp_procdesc = NULL;
769#endif
770
771	/* Check for the undefined or unimplemented flags. */
772	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
773		return (EINVAL);
774
775	/* Signal value requires RFTSIGZMB. */
776	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
777		return (EINVAL);
778
779	/* Can't copy and clear. */
780	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
781		return (EINVAL);
782
783	/* Check the validity of the signal number. */
784	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
785		return (EINVAL);
786
787#ifdef PROCDESC
788	if ((flags & RFPROCDESC) != 0) {
789		/* Can't not create a process yet get a process descriptor. */
790		if ((flags & RFPROC) == 0)
791			return (EINVAL);
792
793		/* Must provide a place to put a procdesc if creating one. */
794		if (procdescp == NULL)
795			return (EINVAL);
796	}
797#endif
798
799	p1 = td->td_proc;
800
801	/*
802	 * Here we don't create a new process, but we divorce
803	 * certain parts of a process from itself.
804	 */
805	if ((flags & RFPROC) == 0) {
806		*procp = NULL;
807		return (fork_norfproc(td, flags));
808	}
809
810#ifdef PROCDESC
811	/*
812	 * If required, create a process descriptor in the parent first; we
813	 * will abandon it if something goes wrong. We don't finit() until
814	 * later.
815	 */
816	if (flags & RFPROCDESC) {
817		error = falloc(td, &fp_procdesc, procdescp, 0);
818		if (error != 0)
819			return (error);
820	}
821#endif
822
823	mem_charged = 0;
824	vm2 = NULL;
825	if (pages == 0)
826		pages = KSTACK_PAGES;
827	/* Allocate new proc. */
828	newproc = uma_zalloc(proc_zone, M_WAITOK);
829	td2 = FIRST_THREAD_IN_PROC(newproc);
830	if (td2 == NULL) {
831		td2 = thread_alloc(pages);
832		if (td2 == NULL) {
833			error = ENOMEM;
834			goto fail1;
835		}
836		proc_linkup(newproc, td2);
837	} else {
838		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
839			if (td2->td_kstack != 0)
840				vm_thread_dispose(td2);
841			if (!thread_alloc_stack(td2, pages)) {
842				error = ENOMEM;
843				goto fail1;
844			}
845		}
846	}
847
848	if ((flags & RFMEM) == 0) {
849		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
850		if (vm2 == NULL) {
851			error = ENOMEM;
852			goto fail1;
853		}
854		if (!swap_reserve(mem_charged)) {
855			/*
856			 * The swap reservation failed. The accounting
857			 * from the entries of the copied vm2 will be
858			 * substracted in vmspace_free(), so force the
859			 * reservation there.
860			 */
861			swap_reserve_force(mem_charged);
862			error = ENOMEM;
863			goto fail1;
864		}
865	} else
866		vm2 = NULL;
867
868	/*
869	 * XXX: This is ugly; when we copy resource usage, we need to bump
870	 *      per-cred resource counters.
871	 */
872	newproc->p_ucred = p1->p_ucred;
873
874	/*
875	 * Initialize resource accounting for the child process.
876	 */
877	error = racct_proc_fork(p1, newproc);
878	if (error != 0) {
879		error = EAGAIN;
880		goto fail1;
881	}
882
883#ifdef MAC
884	mac_proc_init(newproc);
885#endif
886	knlist_init_mtx(&newproc->p_klist, &newproc->p_mtx);
887	STAILQ_INIT(&newproc->p_ktr);
888
889	/* We have to lock the process tree while we look for a pid. */
890	sx_slock(&proctree_lock);
891
892	/*
893	 * Although process entries are dynamically created, we still keep
894	 * a global limit on the maximum number we will create.  Don't allow
895	 * a nonprivileged user to use the last ten processes; don't let root
896	 * exceed the limit. The variable nprocs is the current number of
897	 * processes, maxproc is the limit.
898	 */
899	sx_xlock(&allproc_lock);
900	if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred,
901	    PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) {
902		error = EAGAIN;
903		goto fail;
904	}
905
906	/*
907	 * Increment the count of procs running with this uid. Don't allow
908	 * a nonprivileged user to exceed their current limit.
909	 *
910	 * XXXRW: Can we avoid privilege here if it's not needed?
911	 */
912	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
913	if (error == 0)
914		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
915	else {
916		PROC_LOCK(p1);
917		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
918		    lim_cur(p1, RLIMIT_NPROC));
919		PROC_UNLOCK(p1);
920	}
921	if (ok) {
922		do_fork(td, flags, newproc, td2, vm2, pdflags);
923
924		/*
925		 * Return child proc pointer to parent.
926		 */
927		*procp = newproc;
928#ifdef PROCDESC
929		if (flags & RFPROCDESC)
930			procdesc_finit(newproc->p_procdesc, fp_procdesc);
931#endif
932		racct_proc_fork_done(newproc);
933		return (0);
934	}
935
936	error = EAGAIN;
937fail:
938	sx_sunlock(&proctree_lock);
939	if (ppsratecheck(&lastfail, &curfail, 1))
940		printf("maxproc limit exceeded by uid %u (pid %d); see tuning(7) and login.conf(5)\n",
941		    td->td_ucred->cr_ruid, p1->p_pid);
942	sx_xunlock(&allproc_lock);
943#ifdef MAC
944	mac_proc_destroy(newproc);
945#endif
946	racct_proc_exit(newproc);
947fail1:
948	if (vm2 != NULL)
949		vmspace_free(vm2);
950	uma_zfree(proc_zone, newproc);
951#ifdef PROCDESC
952	if (((flags & RFPROCDESC) != 0) && (fp_procdesc != NULL))
953		fdrop(fp_procdesc, td);
954#endif
955	pause("fork", hz / 2);
956	return (error);
957}
958
959/*
960 * Handle the return of a child process from fork1().  This function
961 * is called from the MD fork_trampoline() entry point.
962 */
963void
964fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
965    struct trapframe *frame)
966{
967	struct proc *p;
968	struct thread *td;
969	struct thread *dtd;
970
971	td = curthread;
972	p = td->td_proc;
973	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
974
975	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
976		td, td->td_sched, p->p_pid, td->td_name);
977
978	sched_fork_exit(td);
979	/*
980	* Processes normally resume in mi_switch() after being
981	* cpu_switch()'ed to, but when children start up they arrive here
982	* instead, so we must do much the same things as mi_switch() would.
983	*/
984	if ((dtd = PCPU_GET(deadthread))) {
985		PCPU_SET(deadthread, NULL);
986		thread_stash(dtd);
987	}
988	thread_unlock(td);
989
990	/*
991	 * cpu_set_fork_handler intercepts this function call to
992	 * have this call a non-return function to stay in kernel mode.
993	 * initproc has its own fork handler, but it does return.
994	 */
995	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
996	callout(arg, frame);
997
998	/*
999	 * Check if a kernel thread misbehaved and returned from its main
1000	 * function.
1001	 */
1002	if (p->p_flag & P_KTHREAD) {
1003		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1004		    td->td_name, p->p_pid);
1005		kproc_exit(0);
1006	}
1007	mtx_assert(&Giant, MA_NOTOWNED);
1008
1009	if (p->p_sysent->sv_schedtail != NULL)
1010		(p->p_sysent->sv_schedtail)(td);
1011}
1012
1013/*
1014 * Simplified back end of syscall(), used when returning from fork()
1015 * directly into user mode.  Giant is not held on entry, and must not
1016 * be held on return.  This function is passed in to fork_exit() as the
1017 * first parameter and is called when returning to a new userland process.
1018 */
1019void
1020fork_return(struct thread *td, struct trapframe *frame)
1021{
1022	struct proc *p, *dbg;
1023
1024	if (td->td_dbgflags & TDB_STOPATFORK) {
1025		p = td->td_proc;
1026		sx_xlock(&proctree_lock);
1027		PROC_LOCK(p);
1028		if ((p->p_pptr->p_flag & (P_TRACED | P_FOLLOWFORK)) ==
1029		    (P_TRACED | P_FOLLOWFORK)) {
1030			/*
1031			 * If debugger still wants auto-attach for the
1032			 * parent's children, do it now.
1033			 */
1034			dbg = p->p_pptr->p_pptr;
1035			p->p_flag |= P_TRACED;
1036			p->p_oppid = p->p_pptr->p_pid;
1037			proc_reparent(p, dbg);
1038			sx_xunlock(&proctree_lock);
1039			td->td_dbgflags |= TDB_CHILD;
1040			ptracestop(td, SIGSTOP);
1041			td->td_dbgflags &= ~TDB_CHILD;
1042		} else {
1043			/*
1044			 * ... otherwise clear the request.
1045			 */
1046			sx_xunlock(&proctree_lock);
1047			td->td_dbgflags &= ~TDB_STOPATFORK;
1048			cv_broadcast(&p->p_dbgwait);
1049		}
1050		PROC_UNLOCK(p);
1051	}
1052
1053	userret(td, frame);
1054
1055#ifdef KTRACE
1056	if (KTRPOINT(td, KTR_SYSRET))
1057		ktrsysret(SYS_fork, 0, 0);
1058#endif
1059	mtx_assert(&Giant, MA_NOTOWNED);
1060}
1061