1/*-
2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3 * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
4 * Copyright (c) 2009 Apple, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include "opt_ktrace.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/capability.h>
37#include <sys/kernel.h>
38#include <sys/lock.h>
39#include <sys/mutex.h>
40#include <sys/proc.h>
41#include <sys/malloc.h>
42#include <sys/unistd.h>
43#include <sys/file.h>
44#include <sys/filedesc.h>
45#include <sys/filio.h>
46#include <sys/fcntl.h>
47#include <sys/kthread.h>
48#include <sys/selinfo.h>
49#include <sys/queue.h>
50#include <sys/event.h>
51#include <sys/eventvar.h>
52#include <sys/poll.h>
53#include <sys/protosw.h>
54#include <sys/sigio.h>
55#include <sys/signalvar.h>
56#include <sys/socket.h>
57#include <sys/socketvar.h>
58#include <sys/stat.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/syscallsubr.h>
62#include <sys/taskqueue.h>
63#include <sys/uio.h>
64#ifdef KTRACE
65#include <sys/ktrace.h>
66#endif
67
68#include <vm/uma.h>
69
70static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
71
72/*
73 * This lock is used if multiple kq locks are required.  This possibly
74 * should be made into a per proc lock.
75 */
76static struct mtx	kq_global;
77MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
78#define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
79	if (!haslck)				\
80		mtx_lock(lck);			\
81	haslck = 1;				\
82} while (0)
83#define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
84	if (haslck)				\
85		mtx_unlock(lck);			\
86	haslck = 0;				\
87} while (0)
88
89TASKQUEUE_DEFINE_THREAD(kqueue);
90
91static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
92static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
93static int	kqueue_register(struct kqueue *kq, struct kevent *kev,
94		    struct thread *td, int waitok);
95static int	kqueue_acquire(struct file *fp, struct kqueue **kqp);
96static void	kqueue_release(struct kqueue *kq, int locked);
97static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
98		    uintptr_t ident, int waitok);
99static void	kqueue_task(void *arg, int pending);
100static int	kqueue_scan(struct kqueue *kq, int maxevents,
101		    struct kevent_copyops *k_ops,
102		    const struct timespec *timeout,
103		    struct kevent *keva, struct thread *td);
104static void 	kqueue_wakeup(struct kqueue *kq);
105static struct filterops *kqueue_fo_find(int filt);
106static void	kqueue_fo_release(int filt);
107
108static fo_rdwr_t	kqueue_read;
109static fo_rdwr_t	kqueue_write;
110static fo_truncate_t	kqueue_truncate;
111static fo_ioctl_t	kqueue_ioctl;
112static fo_poll_t	kqueue_poll;
113static fo_kqfilter_t	kqueue_kqfilter;
114static fo_stat_t	kqueue_stat;
115static fo_close_t	kqueue_close;
116
117static struct fileops kqueueops = {
118	.fo_read = kqueue_read,
119	.fo_write = kqueue_write,
120	.fo_truncate = kqueue_truncate,
121	.fo_ioctl = kqueue_ioctl,
122	.fo_poll = kqueue_poll,
123	.fo_kqfilter = kqueue_kqfilter,
124	.fo_stat = kqueue_stat,
125	.fo_close = kqueue_close,
126	.fo_chmod = invfo_chmod,
127	.fo_chown = invfo_chown,
128};
129
130static int 	knote_attach(struct knote *kn, struct kqueue *kq);
131static void 	knote_drop(struct knote *kn, struct thread *td);
132static void 	knote_enqueue(struct knote *kn);
133static void 	knote_dequeue(struct knote *kn);
134static void 	knote_init(void);
135static struct 	knote *knote_alloc(int waitok);
136static void 	knote_free(struct knote *kn);
137
138static void	filt_kqdetach(struct knote *kn);
139static int	filt_kqueue(struct knote *kn, long hint);
140static int	filt_procattach(struct knote *kn);
141static void	filt_procdetach(struct knote *kn);
142static int	filt_proc(struct knote *kn, long hint);
143static int	filt_fileattach(struct knote *kn);
144static void	filt_timerexpire(void *knx);
145static int	filt_timerattach(struct knote *kn);
146static void	filt_timerdetach(struct knote *kn);
147static int	filt_timer(struct knote *kn, long hint);
148static int	filt_userattach(struct knote *kn);
149static void	filt_userdetach(struct knote *kn);
150static int	filt_user(struct knote *kn, long hint);
151static void	filt_usertouch(struct knote *kn, struct kevent *kev,
152		    u_long type);
153
154static struct filterops file_filtops = {
155	.f_isfd = 1,
156	.f_attach = filt_fileattach,
157};
158static struct filterops kqread_filtops = {
159	.f_isfd = 1,
160	.f_detach = filt_kqdetach,
161	.f_event = filt_kqueue,
162};
163/* XXX - move to kern_proc.c?  */
164static struct filterops proc_filtops = {
165	.f_isfd = 0,
166	.f_attach = filt_procattach,
167	.f_detach = filt_procdetach,
168	.f_event = filt_proc,
169};
170static struct filterops timer_filtops = {
171	.f_isfd = 0,
172	.f_attach = filt_timerattach,
173	.f_detach = filt_timerdetach,
174	.f_event = filt_timer,
175};
176static struct filterops user_filtops = {
177	.f_attach = filt_userattach,
178	.f_detach = filt_userdetach,
179	.f_event = filt_user,
180	.f_touch = filt_usertouch,
181};
182
183static uma_zone_t	knote_zone;
184static int 		kq_ncallouts = 0;
185static int 		kq_calloutmax = (4 * 1024);
186SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
187    &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
188
189/* XXX - ensure not KN_INFLUX?? */
190#define KNOTE_ACTIVATE(kn, islock) do { 				\
191	if ((islock))							\
192		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
193	else								\
194		KQ_LOCK((kn)->kn_kq);					\
195	(kn)->kn_status |= KN_ACTIVE;					\
196	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
197		knote_enqueue((kn));					\
198	if (!(islock))							\
199		KQ_UNLOCK((kn)->kn_kq);					\
200} while(0)
201#define KQ_LOCK(kq) do {						\
202	mtx_lock(&(kq)->kq_lock);					\
203} while (0)
204#define KQ_FLUX_WAKEUP(kq) do {						\
205	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
206		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
207		wakeup((kq));						\
208	}								\
209} while (0)
210#define KQ_UNLOCK_FLUX(kq) do {						\
211	KQ_FLUX_WAKEUP(kq);						\
212	mtx_unlock(&(kq)->kq_lock);					\
213} while (0)
214#define KQ_UNLOCK(kq) do {						\
215	mtx_unlock(&(kq)->kq_lock);					\
216} while (0)
217#define KQ_OWNED(kq) do {						\
218	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
219} while (0)
220#define KQ_NOTOWNED(kq) do {						\
221	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
222} while (0)
223#define KN_LIST_LOCK(kn) do {						\
224	if (kn->kn_knlist != NULL)					\
225		kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);	\
226} while (0)
227#define KN_LIST_UNLOCK(kn) do {						\
228	if (kn->kn_knlist != NULL) 					\
229		kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);	\
230} while (0)
231#define	KNL_ASSERT_LOCK(knl, islocked) do {				\
232	if (islocked)							\
233		KNL_ASSERT_LOCKED(knl);				\
234	else								\
235		KNL_ASSERT_UNLOCKED(knl);				\
236} while (0)
237#ifdef INVARIANTS
238#define	KNL_ASSERT_LOCKED(knl) do {					\
239	knl->kl_assert_locked((knl)->kl_lockarg);			\
240} while (0)
241#define	KNL_ASSERT_UNLOCKED(knl) do {					\
242	knl->kl_assert_unlocked((knl)->kl_lockarg);			\
243} while (0)
244#else /* !INVARIANTS */
245#define	KNL_ASSERT_LOCKED(knl) do {} while(0)
246#define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
247#endif /* INVARIANTS */
248
249#define	KN_HASHSIZE		64		/* XXX should be tunable */
250#define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
251
252static int
253filt_nullattach(struct knote *kn)
254{
255
256	return (ENXIO);
257};
258
259struct filterops null_filtops = {
260	.f_isfd = 0,
261	.f_attach = filt_nullattach,
262};
263
264/* XXX - make SYSINIT to add these, and move into respective modules. */
265extern struct filterops sig_filtops;
266extern struct filterops fs_filtops;
267
268/*
269 * Table for for all system-defined filters.
270 */
271static struct mtx	filterops_lock;
272MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
273	MTX_DEF);
274static struct {
275	struct filterops *for_fop;
276	int for_refcnt;
277} sysfilt_ops[EVFILT_SYSCOUNT] = {
278	{ &file_filtops },			/* EVFILT_READ */
279	{ &file_filtops },			/* EVFILT_WRITE */
280	{ &null_filtops },			/* EVFILT_AIO */
281	{ &file_filtops },			/* EVFILT_VNODE */
282	{ &proc_filtops },			/* EVFILT_PROC */
283	{ &sig_filtops },			/* EVFILT_SIGNAL */
284	{ &timer_filtops },			/* EVFILT_TIMER */
285	{ &null_filtops },			/* former EVFILT_NETDEV */
286	{ &fs_filtops },			/* EVFILT_FS */
287	{ &null_filtops },			/* EVFILT_LIO */
288	{ &user_filtops },			/* EVFILT_USER */
289};
290
291/*
292 * Simple redirection for all cdevsw style objects to call their fo_kqfilter
293 * method.
294 */
295static int
296filt_fileattach(struct knote *kn)
297{
298
299	return (fo_kqfilter(kn->kn_fp, kn));
300}
301
302/*ARGSUSED*/
303static int
304kqueue_kqfilter(struct file *fp, struct knote *kn)
305{
306	struct kqueue *kq = kn->kn_fp->f_data;
307
308	if (kn->kn_filter != EVFILT_READ)
309		return (EINVAL);
310
311	kn->kn_status |= KN_KQUEUE;
312	kn->kn_fop = &kqread_filtops;
313	knlist_add(&kq->kq_sel.si_note, kn, 0);
314
315	return (0);
316}
317
318static void
319filt_kqdetach(struct knote *kn)
320{
321	struct kqueue *kq = kn->kn_fp->f_data;
322
323	knlist_remove(&kq->kq_sel.si_note, kn, 0);
324}
325
326/*ARGSUSED*/
327static int
328filt_kqueue(struct knote *kn, long hint)
329{
330	struct kqueue *kq = kn->kn_fp->f_data;
331
332	kn->kn_data = kq->kq_count;
333	return (kn->kn_data > 0);
334}
335
336/* XXX - move to kern_proc.c?  */
337static int
338filt_procattach(struct knote *kn)
339{
340	struct proc *p;
341	int immediate;
342	int error;
343
344	immediate = 0;
345	p = pfind(kn->kn_id);
346	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
347		p = zpfind(kn->kn_id);
348		immediate = 1;
349	} else if (p != NULL && (p->p_flag & P_WEXIT)) {
350		immediate = 1;
351	}
352
353	if (p == NULL)
354		return (ESRCH);
355	if ((error = p_cansee(curthread, p))) {
356		PROC_UNLOCK(p);
357		return (error);
358	}
359
360	kn->kn_ptr.p_proc = p;
361	kn->kn_flags |= EV_CLEAR;		/* automatically set */
362
363	/*
364	 * internal flag indicating registration done by kernel
365	 */
366	if (kn->kn_flags & EV_FLAG1) {
367		kn->kn_data = kn->kn_sdata;		/* ppid */
368		kn->kn_fflags = NOTE_CHILD;
369		kn->kn_flags &= ~EV_FLAG1;
370	}
371
372	if (immediate == 0)
373		knlist_add(&p->p_klist, kn, 1);
374
375	/*
376	 * Immediately activate any exit notes if the target process is a
377	 * zombie.  This is necessary to handle the case where the target
378	 * process, e.g. a child, dies before the kevent is registered.
379	 */
380	if (immediate && filt_proc(kn, NOTE_EXIT))
381		KNOTE_ACTIVATE(kn, 0);
382
383	PROC_UNLOCK(p);
384
385	return (0);
386}
387
388/*
389 * The knote may be attached to a different process, which may exit,
390 * leaving nothing for the knote to be attached to.  So when the process
391 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
392 * it will be deleted when read out.  However, as part of the knote deletion,
393 * this routine is called, so a check is needed to avoid actually performing
394 * a detach, because the original process does not exist any more.
395 */
396/* XXX - move to kern_proc.c?  */
397static void
398filt_procdetach(struct knote *kn)
399{
400	struct proc *p;
401
402	p = kn->kn_ptr.p_proc;
403	knlist_remove(&p->p_klist, kn, 0);
404	kn->kn_ptr.p_proc = NULL;
405}
406
407/* XXX - move to kern_proc.c?  */
408static int
409filt_proc(struct knote *kn, long hint)
410{
411	struct proc *p = kn->kn_ptr.p_proc;
412	u_int event;
413
414	/*
415	 * mask off extra data
416	 */
417	event = (u_int)hint & NOTE_PCTRLMASK;
418
419	/*
420	 * if the user is interested in this event, record it.
421	 */
422	if (kn->kn_sfflags & event)
423		kn->kn_fflags |= event;
424
425	/*
426	 * process is gone, so flag the event as finished.
427	 */
428	if (event == NOTE_EXIT) {
429		if (!(kn->kn_status & KN_DETACHED))
430			knlist_remove_inevent(&p->p_klist, kn);
431		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
432		kn->kn_ptr.p_proc = NULL;
433		if (kn->kn_fflags & NOTE_EXIT)
434			kn->kn_data = p->p_xstat;
435		if (kn->kn_fflags == 0)
436			kn->kn_flags |= EV_DROP;
437		return (1);
438	}
439
440	return (kn->kn_fflags != 0);
441}
442
443/*
444 * Called when the process forked. It mostly does the same as the
445 * knote(), activating all knotes registered to be activated when the
446 * process forked. Additionally, for each knote attached to the
447 * parent, check whether user wants to track the new process. If so
448 * attach a new knote to it, and immediately report an event with the
449 * child's pid.
450 */
451void
452knote_fork(struct knlist *list, int pid)
453{
454	struct kqueue *kq;
455	struct knote *kn;
456	struct kevent kev;
457	int error;
458
459	if (list == NULL)
460		return;
461	list->kl_lock(list->kl_lockarg);
462
463	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
464		if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
465			continue;
466		kq = kn->kn_kq;
467		KQ_LOCK(kq);
468		if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
469			KQ_UNLOCK(kq);
470			continue;
471		}
472
473		/*
474		 * The same as knote(), activate the event.
475		 */
476		if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
477			kn->kn_status |= KN_HASKQLOCK;
478			if (kn->kn_fop->f_event(kn, NOTE_FORK))
479				KNOTE_ACTIVATE(kn, 1);
480			kn->kn_status &= ~KN_HASKQLOCK;
481			KQ_UNLOCK(kq);
482			continue;
483		}
484
485		/*
486		 * The NOTE_TRACK case. In addition to the activation
487		 * of the event, we need to register new event to
488		 * track the child. Drop the locks in preparation for
489		 * the call to kqueue_register().
490		 */
491		kn->kn_status |= KN_INFLUX;
492		KQ_UNLOCK(kq);
493		list->kl_unlock(list->kl_lockarg);
494
495		/*
496		 * Activate existing knote and register a knote with
497		 * new process.
498		 */
499		kev.ident = pid;
500		kev.filter = kn->kn_filter;
501		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
502		kev.fflags = kn->kn_sfflags;
503		kev.data = kn->kn_id;		/* parent */
504		kev.udata = kn->kn_kevent.udata;/* preserve udata */
505		error = kqueue_register(kq, &kev, NULL, 0);
506		if (error)
507			kn->kn_fflags |= NOTE_TRACKERR;
508		if (kn->kn_fop->f_event(kn, NOTE_FORK))
509			KNOTE_ACTIVATE(kn, 0);
510		KQ_LOCK(kq);
511		kn->kn_status &= ~KN_INFLUX;
512		KQ_UNLOCK_FLUX(kq);
513		list->kl_lock(list->kl_lockarg);
514	}
515	list->kl_unlock(list->kl_lockarg);
516}
517
518/*
519 * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
520 * interval timer support code.
521 */
522static int
523timertoticks(intptr_t data)
524{
525	struct timeval tv;
526	int tticks;
527
528	tv.tv_sec = data / 1000;
529	tv.tv_usec = (data % 1000) * 1000;
530	tticks = tvtohz(&tv);
531
532	return tticks;
533}
534
535static void
536filt_timerexpire(void *knx)
537{
538	struct knote *kn = knx;
539	struct callout *calloutp;
540
541	kn->kn_data++;
542	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
543
544	/*
545	 * timertoticks() uses tvtohz() which always adds 1 to allow
546	 * for the time until the next clock interrupt being strictly
547	 * less than 1 clock tick.  We don't want that here since we
548	 * want to appear to be in sync with the clock interrupt even
549	 * when we're delayed.
550	 */
551	if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
552		calloutp = (struct callout *)kn->kn_hook;
553		callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata) - 1,
554		    filt_timerexpire, kn);
555	}
556}
557
558/*
559 * data contains amount of time to sleep, in milliseconds
560 */
561static int
562filt_timerattach(struct knote *kn)
563{
564	struct callout *calloutp;
565
566	atomic_add_int(&kq_ncallouts, 1);
567
568	if (kq_ncallouts >= kq_calloutmax) {
569		atomic_add_int(&kq_ncallouts, -1);
570		return (ENOMEM);
571	}
572
573	kn->kn_flags |= EV_CLEAR;		/* automatically set */
574	kn->kn_status &= ~KN_DETACHED;		/* knlist_add usually sets it */
575	calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
576	callout_init(calloutp, CALLOUT_MPSAFE);
577	kn->kn_hook = calloutp;
578	callout_reset_curcpu(calloutp, timertoticks(kn->kn_sdata),
579	    filt_timerexpire, kn);
580
581	return (0);
582}
583
584static void
585filt_timerdetach(struct knote *kn)
586{
587	struct callout *calloutp;
588
589	calloutp = (struct callout *)kn->kn_hook;
590	callout_drain(calloutp);
591	free(calloutp, M_KQUEUE);
592	atomic_add_int(&kq_ncallouts, -1);
593	kn->kn_status |= KN_DETACHED;	/* knlist_remove usually clears it */
594}
595
596static int
597filt_timer(struct knote *kn, long hint)
598{
599
600	return (kn->kn_data != 0);
601}
602
603static int
604filt_userattach(struct knote *kn)
605{
606
607	/*
608	 * EVFILT_USER knotes are not attached to anything in the kernel.
609	 */
610	kn->kn_hook = NULL;
611	if (kn->kn_fflags & NOTE_TRIGGER)
612		kn->kn_hookid = 1;
613	else
614		kn->kn_hookid = 0;
615	return (0);
616}
617
618static void
619filt_userdetach(__unused struct knote *kn)
620{
621
622	/*
623	 * EVFILT_USER knotes are not attached to anything in the kernel.
624	 */
625}
626
627static int
628filt_user(struct knote *kn, __unused long hint)
629{
630
631	return (kn->kn_hookid);
632}
633
634static void
635filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
636{
637	u_int ffctrl;
638
639	switch (type) {
640	case EVENT_REGISTER:
641		if (kev->fflags & NOTE_TRIGGER)
642			kn->kn_hookid = 1;
643
644		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
645		kev->fflags &= NOTE_FFLAGSMASK;
646		switch (ffctrl) {
647		case NOTE_FFNOP:
648			break;
649
650		case NOTE_FFAND:
651			kn->kn_sfflags &= kev->fflags;
652			break;
653
654		case NOTE_FFOR:
655			kn->kn_sfflags |= kev->fflags;
656			break;
657
658		case NOTE_FFCOPY:
659			kn->kn_sfflags = kev->fflags;
660			break;
661
662		default:
663			/* XXX Return error? */
664			break;
665		}
666		kn->kn_sdata = kev->data;
667		if (kev->flags & EV_CLEAR) {
668			kn->kn_hookid = 0;
669			kn->kn_data = 0;
670			kn->kn_fflags = 0;
671		}
672		break;
673
674        case EVENT_PROCESS:
675		*kev = kn->kn_kevent;
676		kev->fflags = kn->kn_sfflags;
677		kev->data = kn->kn_sdata;
678		if (kn->kn_flags & EV_CLEAR) {
679			kn->kn_hookid = 0;
680			kn->kn_data = 0;
681			kn->kn_fflags = 0;
682		}
683		break;
684
685	default:
686		panic("filt_usertouch() - invalid type (%ld)", type);
687		break;
688	}
689}
690
691int
692sys_kqueue(struct thread *td, struct kqueue_args *uap)
693{
694	struct filedesc *fdp;
695	struct kqueue *kq;
696	struct file *fp;
697	int fd, error;
698
699	fdp = td->td_proc->p_fd;
700	error = falloc(td, &fp, &fd, 0);
701	if (error)
702		goto done2;
703
704	/* An extra reference on `nfp' has been held for us by falloc(). */
705	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
706	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
707	TAILQ_INIT(&kq->kq_head);
708	kq->kq_fdp = fdp;
709	knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
710	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
711
712	FILEDESC_XLOCK(fdp);
713	TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
714	FILEDESC_XUNLOCK(fdp);
715
716	finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
717	fdrop(fp, td);
718
719	td->td_retval[0] = fd;
720done2:
721	return (error);
722}
723
724#ifndef _SYS_SYSPROTO_H_
725struct kevent_args {
726	int	fd;
727	const struct kevent *changelist;
728	int	nchanges;
729	struct	kevent *eventlist;
730	int	nevents;
731	const struct timespec *timeout;
732};
733#endif
734int
735sys_kevent(struct thread *td, struct kevent_args *uap)
736{
737	struct timespec ts, *tsp;
738	struct kevent_copyops k_ops = { uap,
739					kevent_copyout,
740					kevent_copyin};
741	int error;
742#ifdef KTRACE
743	struct uio ktruio;
744	struct iovec ktriov;
745	struct uio *ktruioin = NULL;
746	struct uio *ktruioout = NULL;
747#endif
748
749	if (uap->timeout != NULL) {
750		error = copyin(uap->timeout, &ts, sizeof(ts));
751		if (error)
752			return (error);
753		tsp = &ts;
754	} else
755		tsp = NULL;
756
757#ifdef KTRACE
758	if (KTRPOINT(td, KTR_GENIO)) {
759		ktriov.iov_base = uap->changelist;
760		ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
761		ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
762		    .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
763		    .uio_td = td };
764		ktruioin = cloneuio(&ktruio);
765		ktriov.iov_base = uap->eventlist;
766		ktriov.iov_len = uap->nevents * sizeof(struct kevent);
767		ktruioout = cloneuio(&ktruio);
768	}
769#endif
770
771	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
772	    &k_ops, tsp);
773
774#ifdef KTRACE
775	if (ktruioin != NULL) {
776		ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
777		ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
778		ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
779		ktrgenio(uap->fd, UIO_READ, ktruioout, error);
780	}
781#endif
782
783	return (error);
784}
785
786/*
787 * Copy 'count' items into the destination list pointed to by uap->eventlist.
788 */
789static int
790kevent_copyout(void *arg, struct kevent *kevp, int count)
791{
792	struct kevent_args *uap;
793	int error;
794
795	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
796	uap = (struct kevent_args *)arg;
797
798	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
799	if (error == 0)
800		uap->eventlist += count;
801	return (error);
802}
803
804/*
805 * Copy 'count' items from the list pointed to by uap->changelist.
806 */
807static int
808kevent_copyin(void *arg, struct kevent *kevp, int count)
809{
810	struct kevent_args *uap;
811	int error;
812
813	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
814	uap = (struct kevent_args *)arg;
815
816	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
817	if (error == 0)
818		uap->changelist += count;
819	return (error);
820}
821
822int
823kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
824    struct kevent_copyops *k_ops, const struct timespec *timeout)
825{
826	struct kevent keva[KQ_NEVENTS];
827	struct kevent *kevp, *changes;
828	struct kqueue *kq;
829	struct file *fp;
830	int i, n, nerrors, error;
831
832	if ((error = fget(td, fd, CAP_POST_EVENT, &fp)) != 0)
833		return (error);
834	if ((error = kqueue_acquire(fp, &kq)) != 0)
835		goto done_norel;
836
837	nerrors = 0;
838
839	while (nchanges > 0) {
840		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
841		error = k_ops->k_copyin(k_ops->arg, keva, n);
842		if (error)
843			goto done;
844		changes = keva;
845		for (i = 0; i < n; i++) {
846			kevp = &changes[i];
847			if (!kevp->filter)
848				continue;
849			kevp->flags &= ~EV_SYSFLAGS;
850			error = kqueue_register(kq, kevp, td, 1);
851			if (error || (kevp->flags & EV_RECEIPT)) {
852				if (nevents != 0) {
853					kevp->flags = EV_ERROR;
854					kevp->data = error;
855					(void) k_ops->k_copyout(k_ops->arg,
856					    kevp, 1);
857					nevents--;
858					nerrors++;
859				} else {
860					goto done;
861				}
862			}
863		}
864		nchanges -= n;
865	}
866	if (nerrors) {
867		td->td_retval[0] = nerrors;
868		error = 0;
869		goto done;
870	}
871
872	error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
873done:
874	kqueue_release(kq, 0);
875done_norel:
876	fdrop(fp, td);
877	return (error);
878}
879
880int
881kqueue_add_filteropts(int filt, struct filterops *filtops)
882{
883	int error;
884
885	error = 0;
886	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
887		printf(
888"trying to add a filterop that is out of range: %d is beyond %d\n",
889		    ~filt, EVFILT_SYSCOUNT);
890		return EINVAL;
891	}
892	mtx_lock(&filterops_lock);
893	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
894	    sysfilt_ops[~filt].for_fop != NULL)
895		error = EEXIST;
896	else {
897		sysfilt_ops[~filt].for_fop = filtops;
898		sysfilt_ops[~filt].for_refcnt = 0;
899	}
900	mtx_unlock(&filterops_lock);
901
902	return (error);
903}
904
905int
906kqueue_del_filteropts(int filt)
907{
908	int error;
909
910	error = 0;
911	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
912		return EINVAL;
913
914	mtx_lock(&filterops_lock);
915	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
916	    sysfilt_ops[~filt].for_fop == NULL)
917		error = EINVAL;
918	else if (sysfilt_ops[~filt].for_refcnt != 0)
919		error = EBUSY;
920	else {
921		sysfilt_ops[~filt].for_fop = &null_filtops;
922		sysfilt_ops[~filt].for_refcnt = 0;
923	}
924	mtx_unlock(&filterops_lock);
925
926	return error;
927}
928
929static struct filterops *
930kqueue_fo_find(int filt)
931{
932
933	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
934		return NULL;
935
936	mtx_lock(&filterops_lock);
937	sysfilt_ops[~filt].for_refcnt++;
938	if (sysfilt_ops[~filt].for_fop == NULL)
939		sysfilt_ops[~filt].for_fop = &null_filtops;
940	mtx_unlock(&filterops_lock);
941
942	return sysfilt_ops[~filt].for_fop;
943}
944
945static void
946kqueue_fo_release(int filt)
947{
948
949	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
950		return;
951
952	mtx_lock(&filterops_lock);
953	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
954	    ("filter object refcount not valid on release"));
955	sysfilt_ops[~filt].for_refcnt--;
956	mtx_unlock(&filterops_lock);
957}
958
959/*
960 * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
961 * influence if memory allocation should wait.  Make sure it is 0 if you
962 * hold any mutexes.
963 */
964static int
965kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
966{
967	struct filterops *fops;
968	struct file *fp;
969	struct knote *kn, *tkn;
970	int error, filt, event;
971	int haskqglobal, filedesc_unlock;
972
973	fp = NULL;
974	kn = NULL;
975	error = 0;
976	haskqglobal = 0;
977	filedesc_unlock = 0;
978
979	filt = kev->filter;
980	fops = kqueue_fo_find(filt);
981	if (fops == NULL)
982		return EINVAL;
983
984	tkn = knote_alloc(waitok);		/* prevent waiting with locks */
985
986findkn:
987	if (fops->f_isfd) {
988		KASSERT(td != NULL, ("td is NULL"));
989		error = fget(td, kev->ident, CAP_POLL_EVENT, &fp);
990		if (error)
991			goto done;
992
993		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
994		    kev->ident, 0) != 0) {
995			/* try again */
996			fdrop(fp, td);
997			fp = NULL;
998			error = kqueue_expand(kq, fops, kev->ident, waitok);
999			if (error)
1000				goto done;
1001			goto findkn;
1002		}
1003
1004		if (fp->f_type == DTYPE_KQUEUE) {
1005			/*
1006			 * if we add some inteligence about what we are doing,
1007			 * we should be able to support events on ourselves.
1008			 * We need to know when we are doing this to prevent
1009			 * getting both the knlist lock and the kq lock since
1010			 * they are the same thing.
1011			 */
1012			if (fp->f_data == kq) {
1013				error = EINVAL;
1014				goto done;
1015			}
1016
1017			/*
1018			 * Pre-lock the filedesc before the global
1019			 * lock mutex, see the comment in
1020			 * kqueue_close().
1021			 */
1022			FILEDESC_XLOCK(td->td_proc->p_fd);
1023			filedesc_unlock = 1;
1024			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1025		}
1026
1027		KQ_LOCK(kq);
1028		if (kev->ident < kq->kq_knlistsize) {
1029			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1030				if (kev->filter == kn->kn_filter)
1031					break;
1032		}
1033	} else {
1034		if ((kev->flags & EV_ADD) == EV_ADD)
1035			kqueue_expand(kq, fops, kev->ident, waitok);
1036
1037		KQ_LOCK(kq);
1038		if (kq->kq_knhashmask != 0) {
1039			struct klist *list;
1040
1041			list = &kq->kq_knhash[
1042			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1043			SLIST_FOREACH(kn, list, kn_link)
1044				if (kev->ident == kn->kn_id &&
1045				    kev->filter == kn->kn_filter)
1046					break;
1047		}
1048	}
1049
1050	/* knote is in the process of changing, wait for it to stablize. */
1051	if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1052		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1053		if (filedesc_unlock) {
1054			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1055			filedesc_unlock = 0;
1056		}
1057		kq->kq_state |= KQ_FLUXWAIT;
1058		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1059		if (fp != NULL) {
1060			fdrop(fp, td);
1061			fp = NULL;
1062		}
1063		goto findkn;
1064	}
1065
1066	/*
1067	 * kn now contains the matching knote, or NULL if no match
1068	 */
1069	if (kn == NULL) {
1070		if (kev->flags & EV_ADD) {
1071			kn = tkn;
1072			tkn = NULL;
1073			if (kn == NULL) {
1074				KQ_UNLOCK(kq);
1075				error = ENOMEM;
1076				goto done;
1077			}
1078			kn->kn_fp = fp;
1079			kn->kn_kq = kq;
1080			kn->kn_fop = fops;
1081			/*
1082			 * apply reference counts to knote structure, and
1083			 * do not release it at the end of this routine.
1084			 */
1085			fops = NULL;
1086			fp = NULL;
1087
1088			kn->kn_sfflags = kev->fflags;
1089			kn->kn_sdata = kev->data;
1090			kev->fflags = 0;
1091			kev->data = 0;
1092			kn->kn_kevent = *kev;
1093			kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1094			    EV_ENABLE | EV_DISABLE);
1095			kn->kn_status = KN_INFLUX|KN_DETACHED;
1096
1097			error = knote_attach(kn, kq);
1098			KQ_UNLOCK(kq);
1099			if (error != 0) {
1100				tkn = kn;
1101				goto done;
1102			}
1103
1104			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1105				knote_drop(kn, td);
1106				goto done;
1107			}
1108			KN_LIST_LOCK(kn);
1109			goto done_ev_add;
1110		} else {
1111			/* No matching knote and the EV_ADD flag is not set. */
1112			KQ_UNLOCK(kq);
1113			error = ENOENT;
1114			goto done;
1115		}
1116	}
1117
1118	if (kev->flags & EV_DELETE) {
1119		kn->kn_status |= KN_INFLUX;
1120		KQ_UNLOCK(kq);
1121		if (!(kn->kn_status & KN_DETACHED))
1122			kn->kn_fop->f_detach(kn);
1123		knote_drop(kn, td);
1124		goto done;
1125	}
1126
1127	/*
1128	 * The user may change some filter values after the initial EV_ADD,
1129	 * but doing so will not reset any filter which has already been
1130	 * triggered.
1131	 */
1132	kn->kn_status |= KN_INFLUX | KN_SCAN;
1133	KQ_UNLOCK(kq);
1134	KN_LIST_LOCK(kn);
1135	kn->kn_kevent.udata = kev->udata;
1136	if (!fops->f_isfd && fops->f_touch != NULL) {
1137		fops->f_touch(kn, kev, EVENT_REGISTER);
1138	} else {
1139		kn->kn_sfflags = kev->fflags;
1140		kn->kn_sdata = kev->data;
1141	}
1142
1143	/*
1144	 * We can get here with kn->kn_knlist == NULL.  This can happen when
1145	 * the initial attach event decides that the event is "completed"
1146	 * already.  i.e. filt_procattach is called on a zombie process.  It
1147	 * will call filt_proc which will remove it from the list, and NULL
1148	 * kn_knlist.
1149	 */
1150done_ev_add:
1151	event = kn->kn_fop->f_event(kn, 0);
1152	KQ_LOCK(kq);
1153	if (event)
1154		KNOTE_ACTIVATE(kn, 1);
1155	kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
1156	KN_LIST_UNLOCK(kn);
1157
1158	if ((kev->flags & EV_DISABLE) &&
1159	    ((kn->kn_status & KN_DISABLED) == 0)) {
1160		kn->kn_status |= KN_DISABLED;
1161	}
1162
1163	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1164		kn->kn_status &= ~KN_DISABLED;
1165		if ((kn->kn_status & KN_ACTIVE) &&
1166		    ((kn->kn_status & KN_QUEUED) == 0))
1167			knote_enqueue(kn);
1168	}
1169	KQ_UNLOCK_FLUX(kq);
1170
1171done:
1172	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1173	if (filedesc_unlock)
1174		FILEDESC_XUNLOCK(td->td_proc->p_fd);
1175	if (fp != NULL)
1176		fdrop(fp, td);
1177	if (tkn != NULL)
1178		knote_free(tkn);
1179	if (fops != NULL)
1180		kqueue_fo_release(filt);
1181	return (error);
1182}
1183
1184static int
1185kqueue_acquire(struct file *fp, struct kqueue **kqp)
1186{
1187	int error;
1188	struct kqueue *kq;
1189
1190	error = 0;
1191
1192	kq = fp->f_data;
1193	if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1194		return (EBADF);
1195	*kqp = kq;
1196	KQ_LOCK(kq);
1197	if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1198		KQ_UNLOCK(kq);
1199		return (EBADF);
1200	}
1201	kq->kq_refcnt++;
1202	KQ_UNLOCK(kq);
1203
1204	return error;
1205}
1206
1207static void
1208kqueue_release(struct kqueue *kq, int locked)
1209{
1210	if (locked)
1211		KQ_OWNED(kq);
1212	else
1213		KQ_LOCK(kq);
1214	kq->kq_refcnt--;
1215	if (kq->kq_refcnt == 1)
1216		wakeup(&kq->kq_refcnt);
1217	if (!locked)
1218		KQ_UNLOCK(kq);
1219}
1220
1221static void
1222kqueue_schedtask(struct kqueue *kq)
1223{
1224
1225	KQ_OWNED(kq);
1226	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1227	    ("scheduling kqueue task while draining"));
1228
1229	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1230		taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
1231		kq->kq_state |= KQ_TASKSCHED;
1232	}
1233}
1234
1235/*
1236 * Expand the kq to make sure we have storage for fops/ident pair.
1237 *
1238 * Return 0 on success (or no work necessary), return errno on failure.
1239 *
1240 * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1241 * If kqueue_register is called from a non-fd context, there usually/should
1242 * be no locks held.
1243 */
1244static int
1245kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1246	int waitok)
1247{
1248	struct klist *list, *tmp_knhash, *to_free;
1249	u_long tmp_knhashmask;
1250	int size;
1251	int fd;
1252	int mflag = waitok ? M_WAITOK : M_NOWAIT;
1253
1254	KQ_NOTOWNED(kq);
1255
1256	to_free = NULL;
1257	if (fops->f_isfd) {
1258		fd = ident;
1259		if (kq->kq_knlistsize <= fd) {
1260			size = kq->kq_knlistsize;
1261			while (size <= fd)
1262				size += KQEXTENT;
1263			list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1264			if (list == NULL)
1265				return ENOMEM;
1266			KQ_LOCK(kq);
1267			if (kq->kq_knlistsize > fd) {
1268				to_free = list;
1269				list = NULL;
1270			} else {
1271				if (kq->kq_knlist != NULL) {
1272					bcopy(kq->kq_knlist, list,
1273					    kq->kq_knlistsize * sizeof(*list));
1274					to_free = kq->kq_knlist;
1275					kq->kq_knlist = NULL;
1276				}
1277				bzero((caddr_t)list +
1278				    kq->kq_knlistsize * sizeof(*list),
1279				    (size - kq->kq_knlistsize) * sizeof(*list));
1280				kq->kq_knlistsize = size;
1281				kq->kq_knlist = list;
1282			}
1283			KQ_UNLOCK(kq);
1284		}
1285	} else {
1286		if (kq->kq_knhashmask == 0) {
1287			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1288			    &tmp_knhashmask);
1289			if (tmp_knhash == NULL)
1290				return ENOMEM;
1291			KQ_LOCK(kq);
1292			if (kq->kq_knhashmask == 0) {
1293				kq->kq_knhash = tmp_knhash;
1294				kq->kq_knhashmask = tmp_knhashmask;
1295			} else {
1296				to_free = tmp_knhash;
1297			}
1298			KQ_UNLOCK(kq);
1299		}
1300	}
1301	free(to_free, M_KQUEUE);
1302
1303	KQ_NOTOWNED(kq);
1304	return 0;
1305}
1306
1307static void
1308kqueue_task(void *arg, int pending)
1309{
1310	struct kqueue *kq;
1311	int haskqglobal;
1312
1313	haskqglobal = 0;
1314	kq = arg;
1315
1316	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1317	KQ_LOCK(kq);
1318
1319	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1320
1321	kq->kq_state &= ~KQ_TASKSCHED;
1322	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1323		wakeup(&kq->kq_state);
1324	}
1325	KQ_UNLOCK(kq);
1326	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1327}
1328
1329/*
1330 * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1331 * We treat KN_MARKER knotes as if they are INFLUX.
1332 */
1333static int
1334kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1335    const struct timespec *tsp, struct kevent *keva, struct thread *td)
1336{
1337	struct kevent *kevp;
1338	struct timeval atv, rtv, ttv;
1339	struct knote *kn, *marker;
1340	int count, timeout, nkev, error, influx;
1341	int haskqglobal, touch;
1342
1343	count = maxevents;
1344	nkev = 0;
1345	error = 0;
1346	haskqglobal = 0;
1347
1348	if (maxevents == 0)
1349		goto done_nl;
1350
1351	if (tsp != NULL) {
1352		TIMESPEC_TO_TIMEVAL(&atv, tsp);
1353		if (itimerfix(&atv)) {
1354			error = EINVAL;
1355			goto done_nl;
1356		}
1357		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1358			timeout = -1;
1359		else
1360			timeout = atv.tv_sec > 24 * 60 * 60 ?
1361			    24 * 60 * 60 * hz : tvtohz(&atv);
1362		getmicrouptime(&rtv);
1363		timevaladd(&atv, &rtv);
1364	} else {
1365		atv.tv_sec = 0;
1366		atv.tv_usec = 0;
1367		timeout = 0;
1368	}
1369	marker = knote_alloc(1);
1370	if (marker == NULL) {
1371		error = ENOMEM;
1372		goto done_nl;
1373	}
1374	marker->kn_status = KN_MARKER;
1375	KQ_LOCK(kq);
1376	goto start;
1377
1378retry:
1379	if (atv.tv_sec || atv.tv_usec) {
1380		getmicrouptime(&rtv);
1381		if (timevalcmp(&rtv, &atv, >=))
1382			goto done;
1383		ttv = atv;
1384		timevalsub(&ttv, &rtv);
1385		timeout = ttv.tv_sec > 24 * 60 * 60 ?
1386			24 * 60 * 60 * hz : tvtohz(&ttv);
1387	}
1388
1389start:
1390	kevp = keva;
1391	if (kq->kq_count == 0) {
1392		if (timeout < 0) {
1393			error = EWOULDBLOCK;
1394		} else {
1395			kq->kq_state |= KQ_SLEEP;
1396			error = msleep(kq, &kq->kq_lock, PSOCK | PCATCH,
1397			    "kqread", timeout);
1398		}
1399		if (error == 0)
1400			goto retry;
1401		/* don't restart after signals... */
1402		if (error == ERESTART)
1403			error = EINTR;
1404		else if (error == EWOULDBLOCK)
1405			error = 0;
1406		goto done;
1407	}
1408
1409	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1410	influx = 0;
1411	while (count) {
1412		KQ_OWNED(kq);
1413		kn = TAILQ_FIRST(&kq->kq_head);
1414
1415		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1416		    (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1417			if (influx) {
1418				influx = 0;
1419				KQ_FLUX_WAKEUP(kq);
1420			}
1421			kq->kq_state |= KQ_FLUXWAIT;
1422			error = msleep(kq, &kq->kq_lock, PSOCK,
1423			    "kqflxwt", 0);
1424			continue;
1425		}
1426
1427		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1428		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1429			kn->kn_status &= ~KN_QUEUED;
1430			kq->kq_count--;
1431			continue;
1432		}
1433		if (kn == marker) {
1434			KQ_FLUX_WAKEUP(kq);
1435			if (count == maxevents)
1436				goto retry;
1437			goto done;
1438		}
1439		KASSERT((kn->kn_status & KN_INFLUX) == 0,
1440		    ("KN_INFLUX set when not suppose to be"));
1441
1442		if ((kn->kn_flags & EV_DROP) == EV_DROP) {
1443			kn->kn_status &= ~KN_QUEUED;
1444			kn->kn_status |= KN_INFLUX;
1445			kq->kq_count--;
1446			KQ_UNLOCK(kq);
1447			/*
1448			 * We don't need to lock the list since we've marked
1449			 * it _INFLUX.
1450			 */
1451			if (!(kn->kn_status & KN_DETACHED))
1452				kn->kn_fop->f_detach(kn);
1453			knote_drop(kn, td);
1454			KQ_LOCK(kq);
1455			continue;
1456		} else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1457			kn->kn_status &= ~KN_QUEUED;
1458			kn->kn_status |= KN_INFLUX;
1459			kq->kq_count--;
1460			KQ_UNLOCK(kq);
1461			/*
1462			 * We don't need to lock the list since we've marked
1463			 * it _INFLUX.
1464			 */
1465			*kevp = kn->kn_kevent;
1466			if (!(kn->kn_status & KN_DETACHED))
1467				kn->kn_fop->f_detach(kn);
1468			knote_drop(kn, td);
1469			KQ_LOCK(kq);
1470			kn = NULL;
1471		} else {
1472			kn->kn_status |= KN_INFLUX | KN_SCAN;
1473			KQ_UNLOCK(kq);
1474			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1475				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1476			KN_LIST_LOCK(kn);
1477			if (kn->kn_fop->f_event(kn, 0) == 0) {
1478				KQ_LOCK(kq);
1479				KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1480				kn->kn_status &=
1481				    ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX |
1482				    KN_SCAN);
1483				kq->kq_count--;
1484				KN_LIST_UNLOCK(kn);
1485				influx = 1;
1486				continue;
1487			}
1488			touch = (!kn->kn_fop->f_isfd &&
1489			    kn->kn_fop->f_touch != NULL);
1490			if (touch)
1491				kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
1492			else
1493				*kevp = kn->kn_kevent;
1494			KQ_LOCK(kq);
1495			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1496			if (kn->kn_flags & (EV_CLEAR |  EV_DISPATCH)) {
1497				/*
1498				 * Manually clear knotes who weren't
1499				 * 'touch'ed.
1500				 */
1501				if (touch == 0 && kn->kn_flags & EV_CLEAR) {
1502					kn->kn_data = 0;
1503					kn->kn_fflags = 0;
1504				}
1505				if (kn->kn_flags & EV_DISPATCH)
1506					kn->kn_status |= KN_DISABLED;
1507				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1508				kq->kq_count--;
1509			} else
1510				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1511
1512			kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
1513			KN_LIST_UNLOCK(kn);
1514			influx = 1;
1515		}
1516
1517		/* we are returning a copy to the user */
1518		kevp++;
1519		nkev++;
1520		count--;
1521
1522		if (nkev == KQ_NEVENTS) {
1523			influx = 0;
1524			KQ_UNLOCK_FLUX(kq);
1525			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1526			nkev = 0;
1527			kevp = keva;
1528			KQ_LOCK(kq);
1529			if (error)
1530				break;
1531		}
1532	}
1533	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1534done:
1535	KQ_OWNED(kq);
1536	KQ_UNLOCK_FLUX(kq);
1537	knote_free(marker);
1538done_nl:
1539	KQ_NOTOWNED(kq);
1540	if (nkev != 0)
1541		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1542	td->td_retval[0] = maxevents - count;
1543	return (error);
1544}
1545
1546/*
1547 * XXX
1548 * This could be expanded to call kqueue_scan, if desired.
1549 */
1550/*ARGSUSED*/
1551static int
1552kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1553	int flags, struct thread *td)
1554{
1555	return (ENXIO);
1556}
1557
1558/*ARGSUSED*/
1559static int
1560kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1561	 int flags, struct thread *td)
1562{
1563	return (ENXIO);
1564}
1565
1566/*ARGSUSED*/
1567static int
1568kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1569	struct thread *td)
1570{
1571
1572	return (EINVAL);
1573}
1574
1575/*ARGSUSED*/
1576static int
1577kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1578	struct ucred *active_cred, struct thread *td)
1579{
1580	/*
1581	 * Enabling sigio causes two major problems:
1582	 * 1) infinite recursion:
1583	 * Synopsys: kevent is being used to track signals and have FIOASYNC
1584	 * set.  On receipt of a signal this will cause a kqueue to recurse
1585	 * into itself over and over.  Sending the sigio causes the kqueue
1586	 * to become ready, which in turn posts sigio again, forever.
1587	 * Solution: this can be solved by setting a flag in the kqueue that
1588	 * we have a SIGIO in progress.
1589	 * 2) locking problems:
1590	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1591	 * us above the proc and pgrp locks.
1592	 * Solution: Post a signal using an async mechanism, being sure to
1593	 * record a generation count in the delivery so that we do not deliver
1594	 * a signal to the wrong process.
1595	 *
1596	 * Note, these two mechanisms are somewhat mutually exclusive!
1597	 */
1598#if 0
1599	struct kqueue *kq;
1600
1601	kq = fp->f_data;
1602	switch (cmd) {
1603	case FIOASYNC:
1604		if (*(int *)data) {
1605			kq->kq_state |= KQ_ASYNC;
1606		} else {
1607			kq->kq_state &= ~KQ_ASYNC;
1608		}
1609		return (0);
1610
1611	case FIOSETOWN:
1612		return (fsetown(*(int *)data, &kq->kq_sigio));
1613
1614	case FIOGETOWN:
1615		*(int *)data = fgetown(&kq->kq_sigio);
1616		return (0);
1617	}
1618#endif
1619
1620	return (ENOTTY);
1621}
1622
1623/*ARGSUSED*/
1624static int
1625kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
1626	struct thread *td)
1627{
1628	struct kqueue *kq;
1629	int revents = 0;
1630	int error;
1631
1632	if ((error = kqueue_acquire(fp, &kq)))
1633		return POLLERR;
1634
1635	KQ_LOCK(kq);
1636	if (events & (POLLIN | POLLRDNORM)) {
1637		if (kq->kq_count) {
1638			revents |= events & (POLLIN | POLLRDNORM);
1639		} else {
1640			selrecord(td, &kq->kq_sel);
1641			if (SEL_WAITING(&kq->kq_sel))
1642				kq->kq_state |= KQ_SEL;
1643		}
1644	}
1645	kqueue_release(kq, 1);
1646	KQ_UNLOCK(kq);
1647	return (revents);
1648}
1649
1650/*ARGSUSED*/
1651static int
1652kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1653	struct thread *td)
1654{
1655
1656	bzero((void *)st, sizeof *st);
1657	/*
1658	 * We no longer return kq_count because the unlocked value is useless.
1659	 * If you spent all this time getting the count, why not spend your
1660	 * syscall better by calling kevent?
1661	 *
1662	 * XXX - This is needed for libc_r.
1663	 */
1664	st->st_mode = S_IFIFO;
1665	return (0);
1666}
1667
1668/*ARGSUSED*/
1669static int
1670kqueue_close(struct file *fp, struct thread *td)
1671{
1672	struct kqueue *kq = fp->f_data;
1673	struct filedesc *fdp;
1674	struct knote *kn;
1675	int i;
1676	int error;
1677	int filedesc_unlock;
1678
1679	if ((error = kqueue_acquire(fp, &kq)))
1680		return error;
1681
1682	filedesc_unlock = 0;
1683	KQ_LOCK(kq);
1684
1685	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
1686	    ("kqueue already closing"));
1687	kq->kq_state |= KQ_CLOSING;
1688	if (kq->kq_refcnt > 1)
1689		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
1690
1691	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
1692	fdp = kq->kq_fdp;
1693
1694	KASSERT(knlist_empty(&kq->kq_sel.si_note),
1695	    ("kqueue's knlist not empty"));
1696
1697	for (i = 0; i < kq->kq_knlistsize; i++) {
1698		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
1699			if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1700				kq->kq_state |= KQ_FLUXWAIT;
1701				msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
1702				continue;
1703			}
1704			kn->kn_status |= KN_INFLUX;
1705			KQ_UNLOCK(kq);
1706			if (!(kn->kn_status & KN_DETACHED))
1707				kn->kn_fop->f_detach(kn);
1708			knote_drop(kn, td);
1709			KQ_LOCK(kq);
1710		}
1711	}
1712	if (kq->kq_knhashmask != 0) {
1713		for (i = 0; i <= kq->kq_knhashmask; i++) {
1714			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
1715				if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1716					kq->kq_state |= KQ_FLUXWAIT;
1717					msleep(kq, &kq->kq_lock, PSOCK,
1718					       "kqclo2", 0);
1719					continue;
1720				}
1721				kn->kn_status |= KN_INFLUX;
1722				KQ_UNLOCK(kq);
1723				if (!(kn->kn_status & KN_DETACHED))
1724					kn->kn_fop->f_detach(kn);
1725				knote_drop(kn, td);
1726				KQ_LOCK(kq);
1727			}
1728		}
1729	}
1730
1731	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
1732		kq->kq_state |= KQ_TASKDRAIN;
1733		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
1734	}
1735
1736	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1737		selwakeuppri(&kq->kq_sel, PSOCK);
1738		if (!SEL_WAITING(&kq->kq_sel))
1739			kq->kq_state &= ~KQ_SEL;
1740	}
1741
1742	KQ_UNLOCK(kq);
1743
1744	/*
1745	 * We could be called due to the knote_drop() doing fdrop(),
1746	 * called from kqueue_register().  In this case the global
1747	 * lock is owned, and filedesc sx is locked before, to not
1748	 * take the sleepable lock after non-sleepable.
1749	 */
1750	if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
1751		FILEDESC_XLOCK(fdp);
1752		filedesc_unlock = 1;
1753	} else
1754		filedesc_unlock = 0;
1755	TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
1756	if (filedesc_unlock)
1757		FILEDESC_XUNLOCK(fdp);
1758
1759	seldrain(&kq->kq_sel);
1760	knlist_destroy(&kq->kq_sel.si_note);
1761	mtx_destroy(&kq->kq_lock);
1762	kq->kq_fdp = NULL;
1763
1764	if (kq->kq_knhash != NULL)
1765		free(kq->kq_knhash, M_KQUEUE);
1766	if (kq->kq_knlist != NULL)
1767		free(kq->kq_knlist, M_KQUEUE);
1768
1769	funsetown(&kq->kq_sigio);
1770	free(kq, M_KQUEUE);
1771	fp->f_data = NULL;
1772
1773	return (0);
1774}
1775
1776static void
1777kqueue_wakeup(struct kqueue *kq)
1778{
1779	KQ_OWNED(kq);
1780
1781	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
1782		kq->kq_state &= ~KQ_SLEEP;
1783		wakeup(kq);
1784	}
1785	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1786		selwakeuppri(&kq->kq_sel, PSOCK);
1787		if (!SEL_WAITING(&kq->kq_sel))
1788			kq->kq_state &= ~KQ_SEL;
1789	}
1790	if (!knlist_empty(&kq->kq_sel.si_note))
1791		kqueue_schedtask(kq);
1792	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
1793		pgsigio(&kq->kq_sigio, SIGIO, 0);
1794	}
1795}
1796
1797/*
1798 * Walk down a list of knotes, activating them if their event has triggered.
1799 *
1800 * There is a possibility to optimize in the case of one kq watching another.
1801 * Instead of scheduling a task to wake it up, you could pass enough state
1802 * down the chain to make up the parent kqueue.  Make this code functional
1803 * first.
1804 */
1805void
1806knote(struct knlist *list, long hint, int lockflags)
1807{
1808	struct kqueue *kq;
1809	struct knote *kn;
1810	int error;
1811
1812	if (list == NULL)
1813		return;
1814
1815	KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
1816
1817	if ((lockflags & KNF_LISTLOCKED) == 0)
1818		list->kl_lock(list->kl_lockarg);
1819
1820	/*
1821	 * If we unlock the list lock (and set KN_INFLUX), we can eliminate
1822	 * the kqueue scheduling, but this will introduce four
1823	 * lock/unlock's for each knote to test.  If we do, continue to use
1824	 * SLIST_FOREACH, SLIST_FOREACH_SAFE is not safe in our case, it is
1825	 * only safe if you want to remove the current item, which we are
1826	 * not doing.
1827	 */
1828	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
1829		kq = kn->kn_kq;
1830		KQ_LOCK(kq);
1831		if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
1832			/*
1833			 * Do not process the influx notes, except for
1834			 * the influx coming from the kq unlock in the
1835			 * kqueue_scan().  In the later case, we do
1836			 * not interfere with the scan, since the code
1837			 * fragment in kqueue_scan() locks the knlist,
1838			 * and cannot proceed until we finished.
1839			 */
1840			KQ_UNLOCK(kq);
1841		} else if ((lockflags & KNF_NOKQLOCK) != 0) {
1842			kn->kn_status |= KN_INFLUX;
1843			KQ_UNLOCK(kq);
1844			error = kn->kn_fop->f_event(kn, hint);
1845			KQ_LOCK(kq);
1846			kn->kn_status &= ~KN_INFLUX;
1847			if (error)
1848				KNOTE_ACTIVATE(kn, 1);
1849			KQ_UNLOCK_FLUX(kq);
1850		} else {
1851			kn->kn_status |= KN_HASKQLOCK;
1852			if (kn->kn_fop->f_event(kn, hint))
1853				KNOTE_ACTIVATE(kn, 1);
1854			kn->kn_status &= ~KN_HASKQLOCK;
1855			KQ_UNLOCK(kq);
1856		}
1857	}
1858	if ((lockflags & KNF_LISTLOCKED) == 0)
1859		list->kl_unlock(list->kl_lockarg);
1860}
1861
1862/*
1863 * add a knote to a knlist
1864 */
1865void
1866knlist_add(struct knlist *knl, struct knote *kn, int islocked)
1867{
1868	KNL_ASSERT_LOCK(knl, islocked);
1869	KQ_NOTOWNED(kn->kn_kq);
1870	KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
1871	    (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
1872	if (!islocked)
1873		knl->kl_lock(knl->kl_lockarg);
1874	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
1875	if (!islocked)
1876		knl->kl_unlock(knl->kl_lockarg);
1877	KQ_LOCK(kn->kn_kq);
1878	kn->kn_knlist = knl;
1879	kn->kn_status &= ~KN_DETACHED;
1880	KQ_UNLOCK(kn->kn_kq);
1881}
1882
1883static void
1884knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
1885{
1886	KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
1887	KNL_ASSERT_LOCK(knl, knlislocked);
1888	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
1889	if (!kqislocked)
1890		KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
1891    ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
1892	if (!knlislocked)
1893		knl->kl_lock(knl->kl_lockarg);
1894	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
1895	kn->kn_knlist = NULL;
1896	if (!knlislocked)
1897		knl->kl_unlock(knl->kl_lockarg);
1898	if (!kqislocked)
1899		KQ_LOCK(kn->kn_kq);
1900	kn->kn_status |= KN_DETACHED;
1901	if (!kqislocked)
1902		KQ_UNLOCK(kn->kn_kq);
1903}
1904
1905/*
1906 * remove all knotes from a specified klist
1907 */
1908void
1909knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
1910{
1911
1912	knlist_remove_kq(knl, kn, islocked, 0);
1913}
1914
1915/*
1916 * remove knote from a specified klist while in f_event handler.
1917 */
1918void
1919knlist_remove_inevent(struct knlist *knl, struct knote *kn)
1920{
1921
1922	knlist_remove_kq(knl, kn, 1,
1923	    (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
1924}
1925
1926int
1927knlist_empty(struct knlist *knl)
1928{
1929	KNL_ASSERT_LOCKED(knl);
1930	return SLIST_EMPTY(&knl->kl_list);
1931}
1932
1933static struct mtx	knlist_lock;
1934MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
1935	MTX_DEF);
1936static void knlist_mtx_lock(void *arg);
1937static void knlist_mtx_unlock(void *arg);
1938
1939static void
1940knlist_mtx_lock(void *arg)
1941{
1942	mtx_lock((struct mtx *)arg);
1943}
1944
1945static void
1946knlist_mtx_unlock(void *arg)
1947{
1948	mtx_unlock((struct mtx *)arg);
1949}
1950
1951static void
1952knlist_mtx_assert_locked(void *arg)
1953{
1954	mtx_assert((struct mtx *)arg, MA_OWNED);
1955}
1956
1957static void
1958knlist_mtx_assert_unlocked(void *arg)
1959{
1960	mtx_assert((struct mtx *)arg, MA_NOTOWNED);
1961}
1962
1963void
1964knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
1965    void (*kl_unlock)(void *),
1966    void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
1967{
1968
1969	if (lock == NULL)
1970		knl->kl_lockarg = &knlist_lock;
1971	else
1972		knl->kl_lockarg = lock;
1973
1974	if (kl_lock == NULL)
1975		knl->kl_lock = knlist_mtx_lock;
1976	else
1977		knl->kl_lock = kl_lock;
1978	if (kl_unlock == NULL)
1979		knl->kl_unlock = knlist_mtx_unlock;
1980	else
1981		knl->kl_unlock = kl_unlock;
1982	if (kl_assert_locked == NULL)
1983		knl->kl_assert_locked = knlist_mtx_assert_locked;
1984	else
1985		knl->kl_assert_locked = kl_assert_locked;
1986	if (kl_assert_unlocked == NULL)
1987		knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
1988	else
1989		knl->kl_assert_unlocked = kl_assert_unlocked;
1990
1991	SLIST_INIT(&knl->kl_list);
1992}
1993
1994void
1995knlist_init_mtx(struct knlist *knl, struct mtx *lock)
1996{
1997
1998	knlist_init(knl, lock, NULL, NULL, NULL, NULL);
1999}
2000
2001void
2002knlist_destroy(struct knlist *knl)
2003{
2004
2005#ifdef INVARIANTS
2006	/*
2007	 * if we run across this error, we need to find the offending
2008	 * driver and have it call knlist_clear.
2009	 */
2010	if (!SLIST_EMPTY(&knl->kl_list))
2011		printf("WARNING: destroying knlist w/ knotes on it!\n");
2012#endif
2013
2014	knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
2015	SLIST_INIT(&knl->kl_list);
2016}
2017
2018/*
2019 * Even if we are locked, we may need to drop the lock to allow any influx
2020 * knotes time to "settle".
2021 */
2022void
2023knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
2024{
2025	struct knote *kn, *kn2;
2026	struct kqueue *kq;
2027
2028	if (islocked)
2029		KNL_ASSERT_LOCKED(knl);
2030	else {
2031		KNL_ASSERT_UNLOCKED(knl);
2032again:		/* need to reacquire lock since we have dropped it */
2033		knl->kl_lock(knl->kl_lockarg);
2034	}
2035
2036	SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
2037		kq = kn->kn_kq;
2038		KQ_LOCK(kq);
2039		if ((kn->kn_status & KN_INFLUX)) {
2040			KQ_UNLOCK(kq);
2041			continue;
2042		}
2043		knlist_remove_kq(knl, kn, 1, 1);
2044		if (killkn) {
2045			kn->kn_status |= KN_INFLUX | KN_DETACHED;
2046			KQ_UNLOCK(kq);
2047			knote_drop(kn, td);
2048		} else {
2049			/* Make sure cleared knotes disappear soon */
2050			kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2051			KQ_UNLOCK(kq);
2052		}
2053		kq = NULL;
2054	}
2055
2056	if (!SLIST_EMPTY(&knl->kl_list)) {
2057		/* there are still KN_INFLUX remaining */
2058		kn = SLIST_FIRST(&knl->kl_list);
2059		kq = kn->kn_kq;
2060		KQ_LOCK(kq);
2061		KASSERT(kn->kn_status & KN_INFLUX,
2062		    ("knote removed w/o list lock"));
2063		knl->kl_unlock(knl->kl_lockarg);
2064		kq->kq_state |= KQ_FLUXWAIT;
2065		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2066		kq = NULL;
2067		goto again;
2068	}
2069
2070	if (islocked)
2071		KNL_ASSERT_LOCKED(knl);
2072	else {
2073		knl->kl_unlock(knl->kl_lockarg);
2074		KNL_ASSERT_UNLOCKED(knl);
2075	}
2076}
2077
2078/*
2079 * Remove all knotes referencing a specified fd must be called with FILEDESC
2080 * lock.  This prevents a race where a new fd comes along and occupies the
2081 * entry and we attach a knote to the fd.
2082 */
2083void
2084knote_fdclose(struct thread *td, int fd)
2085{
2086	struct filedesc *fdp = td->td_proc->p_fd;
2087	struct kqueue *kq;
2088	struct knote *kn;
2089	int influx;
2090
2091	FILEDESC_XLOCK_ASSERT(fdp);
2092
2093	/*
2094	 * We shouldn't have to worry about new kevents appearing on fd
2095	 * since filedesc is locked.
2096	 */
2097	TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2098		KQ_LOCK(kq);
2099
2100again:
2101		influx = 0;
2102		while (kq->kq_knlistsize > fd &&
2103		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2104			if (kn->kn_status & KN_INFLUX) {
2105				/* someone else might be waiting on our knote */
2106				if (influx)
2107					wakeup(kq);
2108				kq->kq_state |= KQ_FLUXWAIT;
2109				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2110				goto again;
2111			}
2112			kn->kn_status |= KN_INFLUX;
2113			KQ_UNLOCK(kq);
2114			if (!(kn->kn_status & KN_DETACHED))
2115				kn->kn_fop->f_detach(kn);
2116			knote_drop(kn, td);
2117			influx = 1;
2118			KQ_LOCK(kq);
2119		}
2120		KQ_UNLOCK_FLUX(kq);
2121	}
2122}
2123
2124static int
2125knote_attach(struct knote *kn, struct kqueue *kq)
2126{
2127	struct klist *list;
2128
2129	KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
2130	KQ_OWNED(kq);
2131
2132	if (kn->kn_fop->f_isfd) {
2133		if (kn->kn_id >= kq->kq_knlistsize)
2134			return ENOMEM;
2135		list = &kq->kq_knlist[kn->kn_id];
2136	} else {
2137		if (kq->kq_knhash == NULL)
2138			return ENOMEM;
2139		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2140	}
2141
2142	SLIST_INSERT_HEAD(list, kn, kn_link);
2143
2144	return 0;
2145}
2146
2147/*
2148 * knote must already have been detached using the f_detach method.
2149 * no lock need to be held, it is assumed that the KN_INFLUX flag is set
2150 * to prevent other removal.
2151 */
2152static void
2153knote_drop(struct knote *kn, struct thread *td)
2154{
2155	struct kqueue *kq;
2156	struct klist *list;
2157
2158	kq = kn->kn_kq;
2159
2160	KQ_NOTOWNED(kq);
2161	KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
2162	    ("knote_drop called without KN_INFLUX set in kn_status"));
2163
2164	KQ_LOCK(kq);
2165	if (kn->kn_fop->f_isfd)
2166		list = &kq->kq_knlist[kn->kn_id];
2167	else
2168		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2169
2170	if (!SLIST_EMPTY(list))
2171		SLIST_REMOVE(list, kn, knote, kn_link);
2172	if (kn->kn_status & KN_QUEUED)
2173		knote_dequeue(kn);
2174	KQ_UNLOCK_FLUX(kq);
2175
2176	if (kn->kn_fop->f_isfd) {
2177		fdrop(kn->kn_fp, td);
2178		kn->kn_fp = NULL;
2179	}
2180	kqueue_fo_release(kn->kn_kevent.filter);
2181	kn->kn_fop = NULL;
2182	knote_free(kn);
2183}
2184
2185static void
2186knote_enqueue(struct knote *kn)
2187{
2188	struct kqueue *kq = kn->kn_kq;
2189
2190	KQ_OWNED(kn->kn_kq);
2191	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2192
2193	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2194	kn->kn_status |= KN_QUEUED;
2195	kq->kq_count++;
2196	kqueue_wakeup(kq);
2197}
2198
2199static void
2200knote_dequeue(struct knote *kn)
2201{
2202	struct kqueue *kq = kn->kn_kq;
2203
2204	KQ_OWNED(kn->kn_kq);
2205	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2206
2207	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2208	kn->kn_status &= ~KN_QUEUED;
2209	kq->kq_count--;
2210}
2211
2212static void
2213knote_init(void)
2214{
2215
2216	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2217	    NULL, NULL, UMA_ALIGN_PTR, 0);
2218}
2219SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2220
2221static struct knote *
2222knote_alloc(int waitok)
2223{
2224	return ((struct knote *)uma_zalloc(knote_zone,
2225	    (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
2226}
2227
2228static void
2229knote_free(struct knote *kn)
2230{
2231	if (kn != NULL)
2232		uma_zfree(knote_zone, kn);
2233}
2234
2235/*
2236 * Register the kev w/ the kq specified by fd.
2237 */
2238int
2239kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
2240{
2241	struct kqueue *kq;
2242	struct file *fp;
2243	int error;
2244
2245	if ((error = fget(td, fd, CAP_POST_EVENT, &fp)) != 0)
2246		return (error);
2247	if ((error = kqueue_acquire(fp, &kq)) != 0)
2248		goto noacquire;
2249
2250	error = kqueue_register(kq, kev, td, waitok);
2251
2252	kqueue_release(kq, 0);
2253
2254noacquire:
2255	fdrop(fp, td);
2256
2257	return error;
2258}
2259