1/*-
2 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
3 * Copyright (c) 2008-2009, Lawrence Stewart <lstewart@freebsd.org>
4 * Copyright (c) 2009-2010, The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed at the Centre for Advanced
8 * Internet Architectures, Swinburne University of Technology, Melbourne,
9 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice unmodified, this list of conditions, and the following
16 *    disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36#include "opt_mac.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/kthread.h>
42#include <sys/lock.h>
43#include <sys/mount.h>
44#include <sys/mutex.h>
45#include <sys/namei.h>
46#include <sys/proc.h>
47#include <sys/vnode.h>
48#include <sys/alq.h>
49#include <sys/malloc.h>
50#include <sys/unistd.h>
51#include <sys/fcntl.h>
52#include <sys/eventhandler.h>
53
54#include <security/mac/mac_framework.h>
55
56/* Async. Logging Queue */
57struct alq {
58	char	*aq_entbuf;		/* Buffer for stored entries */
59	int	aq_entmax;		/* Max entries */
60	int	aq_entlen;		/* Entry length */
61	int	aq_freebytes;		/* Bytes available in buffer */
62	int	aq_buflen;		/* Total length of our buffer */
63	int	aq_writehead;		/* Location for next write */
64	int	aq_writetail;		/* Flush starts at this location */
65	int	aq_wrapearly;		/* # bytes left blank at end of buf */
66	int	aq_flags;		/* Queue flags */
67	int	aq_waiters;		/* Num threads waiting for resources
68					 * NB: Used as a wait channel so must
69					 * not be first field in the alq struct
70					 */
71	struct	ale	aq_getpost;	/* ALE for use by get/post */
72	struct mtx	aq_mtx;		/* Queue lock */
73	struct vnode	*aq_vp;		/* Open vnode handle */
74	struct ucred	*aq_cred;	/* Credentials of the opening thread */
75	LIST_ENTRY(alq)	aq_act;		/* List of active queues */
76	LIST_ENTRY(alq)	aq_link;	/* List of all queues */
77};
78
79#define	AQ_WANTED	0x0001		/* Wakeup sleeper when io is done */
80#define	AQ_ACTIVE	0x0002		/* on the active list */
81#define	AQ_FLUSHING	0x0004		/* doing IO */
82#define	AQ_SHUTDOWN	0x0008		/* Queue no longer valid */
83#define	AQ_ORDERED	0x0010		/* Queue enforces ordered writes */
84#define	AQ_LEGACY	0x0020		/* Legacy queue (fixed length writes) */
85
86#define	ALQ_LOCK(alq)	mtx_lock_spin(&(alq)->aq_mtx)
87#define	ALQ_UNLOCK(alq)	mtx_unlock_spin(&(alq)->aq_mtx)
88
89#define HAS_PENDING_DATA(alq) ((alq)->aq_freebytes != (alq)->aq_buflen)
90
91static MALLOC_DEFINE(M_ALD, "ALD", "ALD");
92
93/*
94 * The ald_mtx protects the ald_queues list and the ald_active list.
95 */
96static struct mtx ald_mtx;
97static LIST_HEAD(, alq) ald_queues;
98static LIST_HEAD(, alq) ald_active;
99static int ald_shutingdown = 0;
100struct thread *ald_thread;
101static struct proc *ald_proc;
102static eventhandler_tag alq_eventhandler_tag = NULL;
103
104#define	ALD_LOCK()	mtx_lock(&ald_mtx)
105#define	ALD_UNLOCK()	mtx_unlock(&ald_mtx)
106
107/* Daemon functions */
108static int ald_add(struct alq *);
109static int ald_rem(struct alq *);
110static void ald_startup(void *);
111static void ald_daemon(void);
112static void ald_shutdown(void *, int);
113static void ald_activate(struct alq *);
114static void ald_deactivate(struct alq *);
115
116/* Internal queue functions */
117static void alq_shutdown(struct alq *);
118static void alq_destroy(struct alq *);
119static int alq_doio(struct alq *);
120
121
122/*
123 * Add a new queue to the global list.  Fail if we're shutting down.
124 */
125static int
126ald_add(struct alq *alq)
127{
128	int error;
129
130	error = 0;
131
132	ALD_LOCK();
133	if (ald_shutingdown) {
134		error = EBUSY;
135		goto done;
136	}
137	LIST_INSERT_HEAD(&ald_queues, alq, aq_link);
138done:
139	ALD_UNLOCK();
140	return (error);
141}
142
143/*
144 * Remove a queue from the global list unless we're shutting down.  If so,
145 * the ald will take care of cleaning up it's resources.
146 */
147static int
148ald_rem(struct alq *alq)
149{
150	int error;
151
152	error = 0;
153
154	ALD_LOCK();
155	if (ald_shutingdown) {
156		error = EBUSY;
157		goto done;
158	}
159	LIST_REMOVE(alq, aq_link);
160done:
161	ALD_UNLOCK();
162	return (error);
163}
164
165/*
166 * Put a queue on the active list.  This will schedule it for writing.
167 */
168static void
169ald_activate(struct alq *alq)
170{
171	LIST_INSERT_HEAD(&ald_active, alq, aq_act);
172	wakeup(&ald_active);
173}
174
175static void
176ald_deactivate(struct alq *alq)
177{
178	LIST_REMOVE(alq, aq_act);
179	alq->aq_flags &= ~AQ_ACTIVE;
180}
181
182static void
183ald_startup(void *unused)
184{
185	mtx_init(&ald_mtx, "ALDmtx", NULL, MTX_DEF|MTX_QUIET);
186	LIST_INIT(&ald_queues);
187	LIST_INIT(&ald_active);
188}
189
190static void
191ald_daemon(void)
192{
193	int needwakeup;
194	struct alq *alq;
195
196	ald_thread = FIRST_THREAD_IN_PROC(ald_proc);
197
198	alq_eventhandler_tag = EVENTHANDLER_REGISTER(shutdown_pre_sync,
199	    ald_shutdown, NULL, SHUTDOWN_PRI_FIRST);
200
201	ALD_LOCK();
202
203	for (;;) {
204		while ((alq = LIST_FIRST(&ald_active)) == NULL &&
205		    !ald_shutingdown)
206			mtx_sleep(&ald_active, &ald_mtx, PWAIT, "aldslp", 0);
207
208		/* Don't shutdown until all active ALQs are flushed. */
209		if (ald_shutingdown && alq == NULL) {
210			ALD_UNLOCK();
211			break;
212		}
213
214		ALQ_LOCK(alq);
215		ald_deactivate(alq);
216		ALD_UNLOCK();
217		needwakeup = alq_doio(alq);
218		ALQ_UNLOCK(alq);
219		if (needwakeup)
220			wakeup_one(alq);
221		ALD_LOCK();
222	}
223
224	kproc_exit(0);
225}
226
227static void
228ald_shutdown(void *arg, int howto)
229{
230	struct alq *alq;
231
232	ALD_LOCK();
233
234	/* Ensure no new queues can be created. */
235	ald_shutingdown = 1;
236
237	/* Shutdown all ALQs prior to terminating the ald_daemon. */
238	while ((alq = LIST_FIRST(&ald_queues)) != NULL) {
239		LIST_REMOVE(alq, aq_link);
240		ALD_UNLOCK();
241		alq_shutdown(alq);
242		ALD_LOCK();
243	}
244
245	/* At this point, all ALQs are flushed and shutdown. */
246
247	/*
248	 * Wake ald_daemon so that it exits. It won't be able to do
249	 * anything until we mtx_sleep because we hold the ald_mtx.
250	 */
251	wakeup(&ald_active);
252
253	/* Wait for ald_daemon to exit. */
254	mtx_sleep(ald_proc, &ald_mtx, PWAIT, "aldslp", 0);
255
256	ALD_UNLOCK();
257}
258
259static void
260alq_shutdown(struct alq *alq)
261{
262	ALQ_LOCK(alq);
263
264	/* Stop any new writers. */
265	alq->aq_flags |= AQ_SHUTDOWN;
266
267	/*
268	 * If the ALQ isn't active but has unwritten data (possible if
269	 * the ALQ_NOACTIVATE flag has been used), explicitly activate the
270	 * ALQ here so that the pending data gets flushed by the ald_daemon.
271	 */
272	if (!(alq->aq_flags & AQ_ACTIVE) && HAS_PENDING_DATA(alq)) {
273		alq->aq_flags |= AQ_ACTIVE;
274		ALQ_UNLOCK(alq);
275		ALD_LOCK();
276		ald_activate(alq);
277		ALD_UNLOCK();
278		ALQ_LOCK(alq);
279	}
280
281	/* Drain IO */
282	while (alq->aq_flags & AQ_ACTIVE) {
283		alq->aq_flags |= AQ_WANTED;
284		msleep_spin(alq, &alq->aq_mtx, "aldclose", 0);
285	}
286	ALQ_UNLOCK(alq);
287
288	vn_close(alq->aq_vp, FWRITE, alq->aq_cred,
289	    curthread);
290	crfree(alq->aq_cred);
291}
292
293void
294alq_destroy(struct alq *alq)
295{
296	/* Drain all pending IO. */
297	alq_shutdown(alq);
298
299	mtx_destroy(&alq->aq_mtx);
300	free(alq->aq_entbuf, M_ALD);
301	free(alq, M_ALD);
302}
303
304/*
305 * Flush all pending data to disk.  This operation will block.
306 */
307static int
308alq_doio(struct alq *alq)
309{
310	struct thread *td;
311	struct mount *mp;
312	struct vnode *vp;
313	struct uio auio;
314	struct iovec aiov[2];
315	int totlen;
316	int iov;
317	int vfslocked;
318	int wrapearly;
319
320	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
321
322	vp = alq->aq_vp;
323	td = curthread;
324	totlen = 0;
325	iov = 1;
326	wrapearly = alq->aq_wrapearly;
327
328	bzero(&aiov, sizeof(aiov));
329	bzero(&auio, sizeof(auio));
330
331	/* Start the write from the location of our buffer tail pointer. */
332	aiov[0].iov_base = alq->aq_entbuf + alq->aq_writetail;
333
334	if (alq->aq_writetail < alq->aq_writehead) {
335		/* Buffer not wrapped. */
336		totlen = aiov[0].iov_len = alq->aq_writehead - alq->aq_writetail;
337	} else if (alq->aq_writehead == 0) {
338		/* Buffer not wrapped (special case to avoid an empty iov). */
339		totlen = aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
340		    wrapearly;
341	} else {
342		/*
343		 * Buffer wrapped, requires 2 aiov entries:
344		 * - first is from writetail to end of buffer
345		 * - second is from start of buffer to writehead
346		 */
347		aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
348		    wrapearly;
349		iov++;
350		aiov[1].iov_base = alq->aq_entbuf;
351		aiov[1].iov_len =  alq->aq_writehead;
352		totlen = aiov[0].iov_len + aiov[1].iov_len;
353	}
354
355	alq->aq_flags |= AQ_FLUSHING;
356	ALQ_UNLOCK(alq);
357
358	auio.uio_iov = &aiov[0];
359	auio.uio_offset = 0;
360	auio.uio_segflg = UIO_SYSSPACE;
361	auio.uio_rw = UIO_WRITE;
362	auio.uio_iovcnt = iov;
363	auio.uio_resid = totlen;
364	auio.uio_td = td;
365
366	/*
367	 * Do all of the junk required to write now.
368	 */
369	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
370	vn_start_write(vp, &mp, V_WAIT);
371	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
372	/*
373	 * XXX: VOP_WRITE error checks are ignored.
374	 */
375#ifdef MAC
376	if (mac_vnode_check_write(alq->aq_cred, NOCRED, vp) == 0)
377#endif
378		VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, alq->aq_cred);
379	VOP_UNLOCK(vp, 0);
380	vn_finished_write(mp);
381	VFS_UNLOCK_GIANT(vfslocked);
382
383	ALQ_LOCK(alq);
384	alq->aq_flags &= ~AQ_FLUSHING;
385
386	/* Adjust writetail as required, taking into account wrapping. */
387	alq->aq_writetail = (alq->aq_writetail + totlen + wrapearly) %
388	    alq->aq_buflen;
389	alq->aq_freebytes += totlen + wrapearly;
390
391	/*
392	 * If we just flushed part of the buffer which wrapped, reset the
393	 * wrapearly indicator.
394	 */
395	if (wrapearly)
396		alq->aq_wrapearly = 0;
397
398	/*
399	 * If we just flushed the buffer completely, reset indexes to 0 to
400	 * minimise buffer wraps.
401	 * This is also required to ensure alq_getn() can't wedge itself.
402	 */
403	if (!HAS_PENDING_DATA(alq))
404		alq->aq_writehead = alq->aq_writetail = 0;
405
406	KASSERT((alq->aq_writetail >= 0 && alq->aq_writetail < alq->aq_buflen),
407	    ("%s: aq_writetail < 0 || aq_writetail >= aq_buflen", __func__));
408
409	if (alq->aq_flags & AQ_WANTED) {
410		alq->aq_flags &= ~AQ_WANTED;
411		return (1);
412	}
413
414	return(0);
415}
416
417static struct kproc_desc ald_kp = {
418        "ALQ Daemon",
419        ald_daemon,
420        &ald_proc
421};
422
423SYSINIT(aldthread, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, kproc_start, &ald_kp);
424SYSINIT(ald, SI_SUB_LOCK, SI_ORDER_ANY, ald_startup, NULL);
425
426
427/* User visible queue functions */
428
429/*
430 * Create the queue data structure, allocate the buffer, and open the file.
431 */
432
433int
434alq_open_flags(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
435    int size, int flags)
436{
437	struct thread *td;
438	struct nameidata nd;
439	struct alq *alq;
440	int oflags;
441	int error;
442	int vfslocked;
443
444	KASSERT((size > 0), ("%s: size <= 0", __func__));
445
446	*alqp = NULL;
447	td = curthread;
448
449	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, file, td);
450	oflags = FWRITE | O_NOFOLLOW | O_CREAT;
451
452	error = vn_open_cred(&nd, &oflags, cmode, 0, cred, NULL);
453	if (error)
454		return (error);
455
456	vfslocked = NDHASGIANT(&nd);
457	NDFREE(&nd, NDF_ONLY_PNBUF);
458	/* We just unlock so we hold a reference */
459	VOP_UNLOCK(nd.ni_vp, 0);
460	VFS_UNLOCK_GIANT(vfslocked);
461
462	alq = malloc(sizeof(*alq), M_ALD, M_WAITOK|M_ZERO);
463	alq->aq_vp = nd.ni_vp;
464	alq->aq_cred = crhold(cred);
465
466	mtx_init(&alq->aq_mtx, "ALD Queue", NULL, MTX_SPIN|MTX_QUIET);
467
468	alq->aq_buflen = size;
469	alq->aq_entmax = 0;
470	alq->aq_entlen = 0;
471
472	alq->aq_freebytes = alq->aq_buflen;
473	alq->aq_entbuf = malloc(alq->aq_buflen, M_ALD, M_WAITOK|M_ZERO);
474	alq->aq_writehead = alq->aq_writetail = 0;
475	if (flags & ALQ_ORDERED)
476		alq->aq_flags |= AQ_ORDERED;
477
478	if ((error = ald_add(alq)) != 0) {
479		alq_destroy(alq);
480		return (error);
481	}
482
483	*alqp = alq;
484
485	return (0);
486}
487
488int
489alq_open(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
490    int size, int count)
491{
492	int ret;
493
494	KASSERT((count >= 0), ("%s: count < 0", __func__));
495
496	if (count > 0) {
497		if ((ret = alq_open_flags(alqp, file, cred, cmode,
498		    size*count, 0)) == 0) {
499			(*alqp)->aq_flags |= AQ_LEGACY;
500			(*alqp)->aq_entmax = count;
501			(*alqp)->aq_entlen = size;
502		}
503	} else
504		ret = alq_open_flags(alqp, file, cred, cmode, size, 0);
505
506	return (ret);
507}
508
509
510/*
511 * Copy a new entry into the queue.  If the operation would block either
512 * wait or return an error depending on the value of waitok.
513 */
514int
515alq_writen(struct alq *alq, void *data, int len, int flags)
516{
517	int activate, copy, ret;
518	void *waitchan;
519
520	KASSERT((len > 0 && len <= alq->aq_buflen),
521	    ("%s: len <= 0 || len > aq_buflen", __func__));
522
523	activate = ret = 0;
524	copy = len;
525	waitchan = NULL;
526
527	ALQ_LOCK(alq);
528
529	/*
530	 * Fail to perform the write and return EWOULDBLOCK if:
531	 * - The message is larger than our underlying buffer.
532	 * - The ALQ is being shutdown.
533	 * - There is insufficient free space in our underlying buffer
534	 *   to accept the message and the user can't wait for space.
535	 * - There is insufficient free space in our underlying buffer
536	 *   to accept the message and the alq is inactive due to prior
537	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
538	 */
539	if (len > alq->aq_buflen ||
540	    alq->aq_flags & AQ_SHUTDOWN ||
541	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
542	    HAS_PENDING_DATA(alq))) && alq->aq_freebytes < len)) {
543		ALQ_UNLOCK(alq);
544		return (EWOULDBLOCK);
545	}
546
547	/*
548	 * If we want ordered writes and there is already at least one thread
549	 * waiting for resources to become available, sleep until we're woken.
550	 */
551	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
552		KASSERT(!(flags & ALQ_NOWAIT),
553		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
554		alq->aq_waiters++;
555		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqwnord", 0);
556		alq->aq_waiters--;
557	}
558
559	/*
560	 * (ALQ_WAITOK && aq_freebytes < len) or aq_freebytes >= len, either
561	 * enter while loop and sleep until we have enough free bytes (former)
562	 * or skip (latter). If AQ_ORDERED is set, only 1 thread at a time will
563	 * be in this loop. Otherwise, multiple threads may be sleeping here
564	 * competing for ALQ resources.
565	 */
566	while (alq->aq_freebytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
567		KASSERT(!(flags & ALQ_NOWAIT),
568		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
569		alq->aq_flags |= AQ_WANTED;
570		alq->aq_waiters++;
571		if (waitchan)
572			wakeup(waitchan);
573		msleep_spin(alq, &alq->aq_mtx, "alqwnres", 0);
574		alq->aq_waiters--;
575
576		/*
577		 * If we're the first thread to wake after an AQ_WANTED wakeup
578		 * but there isn't enough free space for us, we're going to loop
579		 * and sleep again. If there are other threads waiting in this
580		 * loop, schedule a wakeup so that they can see if the space
581		 * they require is available.
582		 */
583		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
584		    alq->aq_freebytes < len && !(alq->aq_flags & AQ_WANTED))
585			waitchan = alq;
586		else
587			waitchan = NULL;
588	}
589
590	/*
591	 * If there are waiters, we need to signal the waiting threads after we
592	 * complete our work. The alq ptr is used as a wait channel for threads
593	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
594	 * are not allowed to concurrently compete for resources in the above
595	 * while loop, so we use a different wait channel in this case.
596	 */
597	if (alq->aq_waiters > 0) {
598		if (alq->aq_flags & AQ_ORDERED)
599			waitchan = &alq->aq_waiters;
600		else
601			waitchan = alq;
602	} else
603		waitchan = NULL;
604
605	/* Bail if we're shutting down. */
606	if (alq->aq_flags & AQ_SHUTDOWN) {
607		ret = EWOULDBLOCK;
608		goto unlock;
609	}
610
611	/*
612	 * If we need to wrap the buffer to accommodate the write,
613	 * we'll need 2 calls to bcopy.
614	 */
615	if ((alq->aq_buflen - alq->aq_writehead) < len)
616		copy = alq->aq_buflen - alq->aq_writehead;
617
618	/* Copy message (or part thereof if wrap required) to the buffer. */
619	bcopy(data, alq->aq_entbuf + alq->aq_writehead, copy);
620	alq->aq_writehead += copy;
621
622	if (alq->aq_writehead >= alq->aq_buflen) {
623		KASSERT((alq->aq_writehead == alq->aq_buflen),
624		    ("%s: alq->aq_writehead (%d) > alq->aq_buflen (%d)",
625		    __func__,
626		    alq->aq_writehead,
627		    alq->aq_buflen));
628		alq->aq_writehead = 0;
629	}
630
631	if (copy != len) {
632		/*
633		 * Wrap the buffer by copying the remainder of our message
634		 * to the start of the buffer and resetting aq_writehead.
635		 */
636		bcopy(((uint8_t *)data)+copy, alq->aq_entbuf, len - copy);
637		alq->aq_writehead = len - copy;
638	}
639
640	KASSERT((alq->aq_writehead >= 0 && alq->aq_writehead < alq->aq_buflen),
641	    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen", __func__));
642
643	alq->aq_freebytes -= len;
644
645	if (!(alq->aq_flags & AQ_ACTIVE) && !(flags & ALQ_NOACTIVATE)) {
646		alq->aq_flags |= AQ_ACTIVE;
647		activate = 1;
648	}
649
650	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
651
652unlock:
653	ALQ_UNLOCK(alq);
654
655	if (activate) {
656		ALD_LOCK();
657		ald_activate(alq);
658		ALD_UNLOCK();
659	}
660
661	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
662	if (waitchan != NULL)
663		wakeup_one(waitchan);
664
665	return (ret);
666}
667
668int
669alq_write(struct alq *alq, void *data, int flags)
670{
671	/* Should only be called in fixed length message (legacy) mode. */
672	KASSERT((alq->aq_flags & AQ_LEGACY),
673	    ("%s: fixed length write on variable length queue", __func__));
674	return (alq_writen(alq, data, alq->aq_entlen, flags));
675}
676
677/*
678 * Retrieve a pointer for the ALQ to write directly into, avoiding bcopy.
679 */
680struct ale *
681alq_getn(struct alq *alq, int len, int flags)
682{
683	int contigbytes;
684	void *waitchan;
685
686	KASSERT((len > 0 && len <= alq->aq_buflen),
687	    ("%s: len <= 0 || len > alq->aq_buflen", __func__));
688
689	waitchan = NULL;
690
691	ALQ_LOCK(alq);
692
693	/*
694	 * Determine the number of free contiguous bytes.
695	 * We ensure elsewhere that if aq_writehead == aq_writetail because
696	 * the buffer is empty, they will both be set to 0 and therefore
697	 * aq_freebytes == aq_buflen and is fully contiguous.
698	 * If they are equal and the buffer is not empty, aq_freebytes will
699	 * be 0 indicating the buffer is full.
700	 */
701	if (alq->aq_writehead <= alq->aq_writetail)
702		contigbytes = alq->aq_freebytes;
703	else {
704		contigbytes = alq->aq_buflen - alq->aq_writehead;
705
706		if (contigbytes < len) {
707			/*
708			 * Insufficient space at end of buffer to handle a
709			 * contiguous write. Wrap early if there's space at
710			 * the beginning. This will leave a hole at the end
711			 * of the buffer which we will have to skip over when
712			 * flushing the buffer to disk.
713			 */
714			if (alq->aq_writetail >= len || flags & ALQ_WAITOK) {
715				/* Keep track of # bytes left blank. */
716				alq->aq_wrapearly = contigbytes;
717				/* Do the wrap and adjust counters. */
718				contigbytes = alq->aq_freebytes =
719				    alq->aq_writetail;
720				alq->aq_writehead = 0;
721			}
722		}
723	}
724
725	/*
726	 * Return a NULL ALE if:
727	 * - The message is larger than our underlying buffer.
728	 * - The ALQ is being shutdown.
729	 * - There is insufficient free space in our underlying buffer
730	 *   to accept the message and the user can't wait for space.
731	 * - There is insufficient free space in our underlying buffer
732	 *   to accept the message and the alq is inactive due to prior
733	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
734	 */
735	if (len > alq->aq_buflen ||
736	    alq->aq_flags & AQ_SHUTDOWN ||
737	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
738	    HAS_PENDING_DATA(alq))) && contigbytes < len)) {
739		ALQ_UNLOCK(alq);
740		return (NULL);
741	}
742
743	/*
744	 * If we want ordered writes and there is already at least one thread
745	 * waiting for resources to become available, sleep until we're woken.
746	 */
747	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
748		KASSERT(!(flags & ALQ_NOWAIT),
749		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
750		alq->aq_waiters++;
751		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqgnord", 0);
752		alq->aq_waiters--;
753	}
754
755	/*
756	 * (ALQ_WAITOK && contigbytes < len) or contigbytes >= len, either enter
757	 * while loop and sleep until we have enough contiguous free bytes
758	 * (former) or skip (latter). If AQ_ORDERED is set, only 1 thread at a
759	 * time will be in this loop. Otherwise, multiple threads may be
760	 * sleeping here competing for ALQ resources.
761	 */
762	while (contigbytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
763		KASSERT(!(flags & ALQ_NOWAIT),
764		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
765		alq->aq_flags |= AQ_WANTED;
766		alq->aq_waiters++;
767		if (waitchan)
768			wakeup(waitchan);
769		msleep_spin(alq, &alq->aq_mtx, "alqgnres", 0);
770		alq->aq_waiters--;
771
772		if (alq->aq_writehead <= alq->aq_writetail)
773			contigbytes = alq->aq_freebytes;
774		else
775			contigbytes = alq->aq_buflen - alq->aq_writehead;
776
777		/*
778		 * If we're the first thread to wake after an AQ_WANTED wakeup
779		 * but there isn't enough free space for us, we're going to loop
780		 * and sleep again. If there are other threads waiting in this
781		 * loop, schedule a wakeup so that they can see if the space
782		 * they require is available.
783		 */
784		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
785		    contigbytes < len && !(alq->aq_flags & AQ_WANTED))
786			waitchan = alq;
787		else
788			waitchan = NULL;
789	}
790
791	/*
792	 * If there are waiters, we need to signal the waiting threads after we
793	 * complete our work. The alq ptr is used as a wait channel for threads
794	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
795	 * are not allowed to concurrently compete for resources in the above
796	 * while loop, so we use a different wait channel in this case.
797	 */
798	if (alq->aq_waiters > 0) {
799		if (alq->aq_flags & AQ_ORDERED)
800			waitchan = &alq->aq_waiters;
801		else
802			waitchan = alq;
803	} else
804		waitchan = NULL;
805
806	/* Bail if we're shutting down. */
807	if (alq->aq_flags & AQ_SHUTDOWN) {
808		ALQ_UNLOCK(alq);
809		if (waitchan != NULL)
810			wakeup_one(waitchan);
811		return (NULL);
812	}
813
814	/*
815	 * If we are here, we have a contiguous number of bytes >= len
816	 * available in our buffer starting at aq_writehead.
817	 */
818	alq->aq_getpost.ae_data = alq->aq_entbuf + alq->aq_writehead;
819	alq->aq_getpost.ae_bytesused = len;
820
821	return (&alq->aq_getpost);
822}
823
824struct ale *
825alq_get(struct alq *alq, int flags)
826{
827	/* Should only be called in fixed length message (legacy) mode. */
828	KASSERT((alq->aq_flags & AQ_LEGACY),
829	    ("%s: fixed length get on variable length queue", __func__));
830	return (alq_getn(alq, alq->aq_entlen, flags));
831}
832
833void
834alq_post_flags(struct alq *alq, struct ale *ale, int flags)
835{
836	int activate;
837	void *waitchan;
838
839	activate = 0;
840
841	if (ale->ae_bytesused > 0) {
842		if (!(alq->aq_flags & AQ_ACTIVE) &&
843		    !(flags & ALQ_NOACTIVATE)) {
844			alq->aq_flags |= AQ_ACTIVE;
845			activate = 1;
846		}
847
848		alq->aq_writehead += ale->ae_bytesused;
849		alq->aq_freebytes -= ale->ae_bytesused;
850
851		/* Wrap aq_writehead if we filled to the end of the buffer. */
852		if (alq->aq_writehead == alq->aq_buflen)
853			alq->aq_writehead = 0;
854
855		KASSERT((alq->aq_writehead >= 0 &&
856		    alq->aq_writehead < alq->aq_buflen),
857		    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen",
858		    __func__));
859
860		KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
861	}
862
863	/*
864	 * If there are waiters, we need to signal the waiting threads after we
865	 * complete our work. The alq ptr is used as a wait channel for threads
866	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
867	 * are not allowed to concurrently compete for resources in the
868	 * alq_getn() while loop, so we use a different wait channel in this case.
869	 */
870	if (alq->aq_waiters > 0) {
871		if (alq->aq_flags & AQ_ORDERED)
872			waitchan = &alq->aq_waiters;
873		else
874			waitchan = alq;
875	} else
876		waitchan = NULL;
877
878	ALQ_UNLOCK(alq);
879
880	if (activate) {
881		ALD_LOCK();
882		ald_activate(alq);
883		ALD_UNLOCK();
884	}
885
886	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
887	if (waitchan != NULL)
888		wakeup_one(waitchan);
889}
890
891void
892alq_flush(struct alq *alq)
893{
894	int needwakeup = 0;
895
896	ALD_LOCK();
897	ALQ_LOCK(alq);
898
899	/*
900	 * Pull the lever iff there is data to flush and we're
901	 * not already in the middle of a flush operation.
902	 */
903	if (HAS_PENDING_DATA(alq) && !(alq->aq_flags & AQ_FLUSHING)) {
904		if (alq->aq_flags & AQ_ACTIVE)
905			ald_deactivate(alq);
906
907		ALD_UNLOCK();
908		needwakeup = alq_doio(alq);
909	} else
910		ALD_UNLOCK();
911
912	ALQ_UNLOCK(alq);
913
914	if (needwakeup)
915		wakeup_one(alq);
916}
917
918/*
919 * Flush remaining data, close the file and free all resources.
920 */
921void
922alq_close(struct alq *alq)
923{
924	/* Only flush and destroy alq if not already shutting down. */
925	if (ald_rem(alq) == 0)
926		alq_destroy(alq);
927}
928
929static int
930alq_load_handler(module_t mod, int what, void *arg)
931{
932	int ret;
933
934	ret = 0;
935
936	switch (what) {
937	case MOD_LOAD:
938	case MOD_SHUTDOWN:
939		break;
940
941	case MOD_QUIESCE:
942		ALD_LOCK();
943		/* Only allow unload if there are no open queues. */
944		if (LIST_FIRST(&ald_queues) == NULL) {
945			ald_shutingdown = 1;
946			ALD_UNLOCK();
947			EVENTHANDLER_DEREGISTER(shutdown_pre_sync,
948			    alq_eventhandler_tag);
949			ald_shutdown(NULL, 0);
950			mtx_destroy(&ald_mtx);
951		} else {
952			ALD_UNLOCK();
953			ret = EBUSY;
954		}
955		break;
956
957	case MOD_UNLOAD:
958		/* If MOD_QUIESCE failed we must fail here too. */
959		if (ald_shutingdown == 0)
960			ret = EBUSY;
961		break;
962
963	default:
964		ret = EINVAL;
965		break;
966	}
967
968	return (ret);
969}
970
971static moduledata_t alq_mod =
972{
973	"alq",
974	alq_load_handler,
975	NULL
976};
977
978DECLARE_MODULE(alq, alq_mod, SI_SUB_SMP, SI_ORDER_ANY);
979MODULE_VERSION(alq, 1);
980