1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD$");
45
46#include "opt_isa.h"
47#include "opt_npx.h"
48#include "opt_reset.h"
49#include "opt_cpu.h"
50#include "opt_xbox.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/bio.h>
55#include <sys/buf.h>
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/lock.h>
59#include <sys/malloc.h>
60#include <sys/mbuf.h>
61#include <sys/mutex.h>
62#include <sys/pioctl.h>
63#include <sys/proc.h>
64#include <sys/sysent.h>
65#include <sys/sf_buf.h>
66#include <sys/smp.h>
67#include <sys/sched.h>
68#include <sys/sysctl.h>
69#include <sys/unistd.h>
70#include <sys/vnode.h>
71#include <sys/vmmeter.h>
72
73#include <machine/cpu.h>
74#include <machine/cputypes.h>
75#include <machine/md_var.h>
76#include <machine/pcb.h>
77#include <machine/pcb_ext.h>
78#include <machine/smp.h>
79#include <machine/vm86.h>
80
81#ifdef CPU_ELAN
82#include <machine/elan_mmcr.h>
83#endif
84
85#include <vm/vm.h>
86#include <vm/vm_extern.h>
87#include <vm/vm_kern.h>
88#include <vm/vm_page.h>
89#include <vm/vm_map.h>
90#include <vm/vm_param.h>
91
92#ifdef XEN
93#include <xen/hypervisor.h>
94#endif
95#ifdef PC98
96#include <pc98/cbus/cbus.h>
97#else
98#include <x86/isa/isa.h>
99#endif
100
101#ifdef XBOX
102#include <machine/xbox.h>
103#endif
104
105#ifndef NSFBUFS
106#define	NSFBUFS		(512 + maxusers * 16)
107#endif
108
109CTASSERT((struct thread **)OFFSETOF_CURTHREAD ==
110    &((struct pcpu *)NULL)->pc_curthread);
111CTASSERT((struct pcb **)OFFSETOF_CURPCB == &((struct pcpu *)NULL)->pc_curpcb);
112
113static void	cpu_reset_real(void);
114#ifdef SMP
115static void	cpu_reset_proxy(void);
116static u_int	cpu_reset_proxyid;
117static volatile u_int	cpu_reset_proxy_active;
118#endif
119static void	sf_buf_init(void *arg);
120SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
121
122LIST_HEAD(sf_head, sf_buf);
123
124/*
125 * A hash table of active sendfile(2) buffers
126 */
127static struct sf_head *sf_buf_active;
128static u_long sf_buf_hashmask;
129
130#define	SF_BUF_HASH(m)	(((m) - vm_page_array) & sf_buf_hashmask)
131
132static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
133static u_int	sf_buf_alloc_want;
134
135/*
136 * A lock used to synchronize access to the hash table and free list
137 */
138static struct mtx sf_buf_lock;
139
140extern int	_ucodesel, _udatasel;
141
142/*
143 * Finish a fork operation, with process p2 nearly set up.
144 * Copy and update the pcb, set up the stack so that the child
145 * ready to run and return to user mode.
146 */
147void
148cpu_fork(td1, p2, td2, flags)
149	register struct thread *td1;
150	register struct proc *p2;
151	struct thread *td2;
152	int flags;
153{
154	register struct proc *p1;
155	struct pcb *pcb2;
156	struct mdproc *mdp2;
157
158	p1 = td1->td_proc;
159	if ((flags & RFPROC) == 0) {
160		if ((flags & RFMEM) == 0) {
161			/* unshare user LDT */
162			struct mdproc *mdp1 = &p1->p_md;
163			struct proc_ldt *pldt, *pldt1;
164
165			mtx_lock_spin(&dt_lock);
166			if ((pldt1 = mdp1->md_ldt) != NULL &&
167			    pldt1->ldt_refcnt > 1) {
168				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
169				if (pldt == NULL)
170					panic("could not copy LDT");
171				mdp1->md_ldt = pldt;
172				set_user_ldt(mdp1);
173				user_ldt_deref(pldt1);
174			} else
175				mtx_unlock_spin(&dt_lock);
176		}
177		return;
178	}
179
180	/* Ensure that td1's pcb is up to date. */
181	if (td1 == curthread)
182		td1->td_pcb->pcb_gs = rgs();
183#ifdef DEV_NPX
184	critical_enter();
185	if (PCPU_GET(fpcurthread) == td1)
186		npxsave(td1->td_pcb->pcb_save);
187	critical_exit();
188#endif
189
190	/* Point the pcb to the top of the stack */
191	pcb2 = (struct pcb *)(td2->td_kstack +
192	    td2->td_kstack_pages * PAGE_SIZE) - 1;
193	td2->td_pcb = pcb2;
194
195	/* Copy td1's pcb */
196	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
197
198	/* Properly initialize pcb_save */
199	pcb2->pcb_save = &pcb2->pcb_user_save;
200
201	/* Point mdproc and then copy over td1's contents */
202	mdp2 = &p2->p_md;
203	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
204
205	/*
206	 * Create a new fresh stack for the new process.
207	 * Copy the trap frame for the return to user mode as if from a
208	 * syscall.  This copies most of the user mode register values.
209	 * The -16 is so we can expand the trapframe if we go to vm86.
210	 */
211	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
212	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
213
214	td2->td_frame->tf_eax = 0;		/* Child returns zero */
215	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
216	td2->td_frame->tf_edx = 1;
217
218	/*
219	 * If the parent process has the trap bit set (i.e. a debugger had
220	 * single stepped the process to the system call), we need to clear
221	 * the trap flag from the new frame unless the debugger had set PF_FORK
222	 * on the parent.  Otherwise, the child will receive a (likely
223	 * unexpected) SIGTRAP when it executes the first instruction after
224	 * returning  to userland.
225	 */
226	if ((p1->p_pfsflags & PF_FORK) == 0)
227		td2->td_frame->tf_eflags &= ~PSL_T;
228
229	/*
230	 * Set registers for trampoline to user mode.  Leave space for the
231	 * return address on stack.  These are the kernel mode register values.
232	 */
233#ifdef PAE
234	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
235#else
236	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
237#endif
238	pcb2->pcb_edi = 0;
239	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
240	pcb2->pcb_ebp = 0;
241	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
242	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
243	pcb2->pcb_eip = (int)fork_trampoline;
244	pcb2->pcb_psl = PSL_KERNEL;		/* ints disabled */
245	/*-
246	 * pcb2->pcb_dr*:	cloned above.
247	 * pcb2->pcb_savefpu:	cloned above.
248	 * pcb2->pcb_flags:	cloned above.
249	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
250	 * pcb2->pcb_gs:	cloned above.
251	 * pcb2->pcb_ext:	cleared below.
252	 */
253
254	/*
255	 * XXX don't copy the i/o pages.  this should probably be fixed.
256	 */
257	pcb2->pcb_ext = 0;
258
259	/* Copy the LDT, if necessary. */
260	mtx_lock_spin(&dt_lock);
261	if (mdp2->md_ldt != NULL) {
262		if (flags & RFMEM) {
263			mdp2->md_ldt->ldt_refcnt++;
264		} else {
265			mdp2->md_ldt = user_ldt_alloc(mdp2,
266			    mdp2->md_ldt->ldt_len);
267			if (mdp2->md_ldt == NULL)
268				panic("could not copy LDT");
269		}
270	}
271	mtx_unlock_spin(&dt_lock);
272
273	/* Setup to release spin count in fork_exit(). */
274	td2->td_md.md_spinlock_count = 1;
275	/*
276	 * XXX XEN need to check on PSL_USER is handled
277	 */
278	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
279	/*
280	 * Now, cpu_switch() can schedule the new process.
281	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
282	 * containing the return address when exiting cpu_switch.
283	 * This will normally be to fork_trampoline(), which will have
284	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
285	 * will set up a stack to call fork_return(p, frame); to complete
286	 * the return to user-mode.
287	 */
288}
289
290/*
291 * Intercept the return address from a freshly forked process that has NOT
292 * been scheduled yet.
293 *
294 * This is needed to make kernel threads stay in kernel mode.
295 */
296void
297cpu_set_fork_handler(td, func, arg)
298	struct thread *td;
299	void (*func)(void *);
300	void *arg;
301{
302	/*
303	 * Note that the trap frame follows the args, so the function
304	 * is really called like this:  func(arg, frame);
305	 */
306	td->td_pcb->pcb_esi = (int) func;	/* function */
307	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
308}
309
310void
311cpu_exit(struct thread *td)
312{
313
314	/*
315	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
316	 * and %gs before we free it in case they refer to an LDT entry.
317	 */
318	mtx_lock_spin(&dt_lock);
319	if (td->td_proc->p_md.md_ldt) {
320		td->td_pcb->pcb_gs = _udatasel;
321		load_gs(_udatasel);
322		user_ldt_free(td);
323	} else
324		mtx_unlock_spin(&dt_lock);
325}
326
327void
328cpu_thread_exit(struct thread *td)
329{
330
331#ifdef DEV_NPX
332	critical_enter();
333	if (td == PCPU_GET(fpcurthread))
334		npxdrop();
335	critical_exit();
336#endif
337
338	/* Disable any hardware breakpoints. */
339	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
340		reset_dbregs();
341		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
342	}
343}
344
345void
346cpu_thread_clean(struct thread *td)
347{
348	struct pcb *pcb;
349
350	pcb = td->td_pcb;
351	if (pcb->pcb_ext != NULL) {
352		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
353		/*
354		 * XXX do we need to move the TSS off the allocated pages
355		 * before freeing them?  (not done here)
356		 */
357		kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ext,
358		    ctob(IOPAGES + 1));
359		pcb->pcb_ext = NULL;
360	}
361}
362
363void
364cpu_thread_swapin(struct thread *td)
365{
366}
367
368void
369cpu_thread_swapout(struct thread *td)
370{
371}
372
373void
374cpu_thread_alloc(struct thread *td)
375{
376
377	td->td_pcb = (struct pcb *)(td->td_kstack +
378	    td->td_kstack_pages * PAGE_SIZE) - 1;
379	td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1;
380	td->td_pcb->pcb_ext = NULL;
381	td->td_pcb->pcb_save = &td->td_pcb->pcb_user_save;
382}
383
384void
385cpu_thread_free(struct thread *td)
386{
387
388	cpu_thread_clean(td);
389}
390
391void
392cpu_set_syscall_retval(struct thread *td, int error)
393{
394
395	switch (error) {
396	case 0:
397		td->td_frame->tf_eax = td->td_retval[0];
398		td->td_frame->tf_edx = td->td_retval[1];
399		td->td_frame->tf_eflags &= ~PSL_C;
400		break;
401
402	case ERESTART:
403		/*
404		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
405		 * 0x80 is 2 bytes. We saved this in tf_err.
406		 */
407		td->td_frame->tf_eip -= td->td_frame->tf_err;
408		break;
409
410	case EJUSTRETURN:
411		break;
412
413	default:
414		if (td->td_proc->p_sysent->sv_errsize) {
415			if (error >= td->td_proc->p_sysent->sv_errsize)
416				error = -1;	/* XXX */
417			else
418				error = td->td_proc->p_sysent->sv_errtbl[error];
419		}
420		td->td_frame->tf_eax = error;
421		td->td_frame->tf_eflags |= PSL_C;
422		break;
423	}
424}
425
426/*
427 * Initialize machine state (pcb and trap frame) for a new thread about to
428 * upcall. Put enough state in the new thread's PCB to get it to go back
429 * userret(), where we can intercept it again to set the return (upcall)
430 * Address and stack, along with those from upcals that are from other sources
431 * such as those generated in thread_userret() itself.
432 */
433void
434cpu_set_upcall(struct thread *td, struct thread *td0)
435{
436	struct pcb *pcb2;
437
438	/* Point the pcb to the top of the stack. */
439	pcb2 = td->td_pcb;
440
441	/*
442	 * Copy the upcall pcb.  This loads kernel regs.
443	 * Those not loaded individually below get their default
444	 * values here.
445	 */
446	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
447	pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
448	    PCB_KERNNPX);
449	pcb2->pcb_save = &pcb2->pcb_user_save;
450
451	/*
452	 * Create a new fresh stack for the new thread.
453	 */
454	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
455
456	/* If the current thread has the trap bit set (i.e. a debugger had
457	 * single stepped the process to the system call), we need to clear
458	 * the trap flag from the new frame. Otherwise, the new thread will
459	 * receive a (likely unexpected) SIGTRAP when it executes the first
460	 * instruction after returning to userland.
461	 */
462	td->td_frame->tf_eflags &= ~PSL_T;
463
464	/*
465	 * Set registers for trampoline to user mode.  Leave space for the
466	 * return address on stack.  These are the kernel mode register values.
467	 */
468	pcb2->pcb_edi = 0;
469	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
470	pcb2->pcb_ebp = 0;
471	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
472	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
473	pcb2->pcb_eip = (int)fork_trampoline;
474	pcb2->pcb_psl &= ~(PSL_I);	/* interrupts must be disabled */
475	pcb2->pcb_gs = rgs();
476	/*
477	 * If we didn't copy the pcb, we'd need to do the following registers:
478	 * pcb2->pcb_cr3:	cloned above.
479	 * pcb2->pcb_dr*:	cloned above.
480	 * pcb2->pcb_savefpu:	cloned above.
481	 * pcb2->pcb_flags:	cloned above.
482	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
483	 * pcb2->pcb_gs:	cloned above.
484	 * pcb2->pcb_ext:	cleared below.
485	 */
486	pcb2->pcb_ext = NULL;
487
488	/* Setup to release spin count in fork_exit(). */
489	td->td_md.md_spinlock_count = 1;
490	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
491}
492
493/*
494 * Set that machine state for performing an upcall that has to
495 * be done in thread_userret() so that those upcalls generated
496 * in thread_userret() itself can be done as well.
497 */
498void
499cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
500	stack_t *stack)
501{
502
503	/*
504	 * Do any extra cleaning that needs to be done.
505	 * The thread may have optional components
506	 * that are not present in a fresh thread.
507	 * This may be a recycled thread so make it look
508	 * as though it's newly allocated.
509	 */
510	cpu_thread_clean(td);
511
512	/*
513	 * Set the trap frame to point at the beginning of the uts
514	 * function.
515	 */
516	td->td_frame->tf_ebp = 0;
517	td->td_frame->tf_esp =
518	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
519	td->td_frame->tf_eip = (int)entry;
520
521	/*
522	 * Pass the address of the mailbox for this kse to the uts
523	 * function as a parameter on the stack.
524	 */
525	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
526	    (int)arg);
527}
528
529int
530cpu_set_user_tls(struct thread *td, void *tls_base)
531{
532	struct segment_descriptor sd;
533	uint32_t base;
534
535	/*
536	 * Construct a descriptor and store it in the pcb for
537	 * the next context switch.  Also store it in the gdt
538	 * so that the load of tf_fs into %fs will activate it
539	 * at return to userland.
540	 */
541	base = (uint32_t)tls_base;
542	sd.sd_lobase = base & 0xffffff;
543	sd.sd_hibase = (base >> 24) & 0xff;
544	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
545	sd.sd_hilimit = 0xf;
546	sd.sd_type  = SDT_MEMRWA;
547	sd.sd_dpl   = SEL_UPL;
548	sd.sd_p     = 1;
549	sd.sd_xx    = 0;
550	sd.sd_def32 = 1;
551	sd.sd_gran  = 1;
552	critical_enter();
553	/* set %gs */
554	td->td_pcb->pcb_gsd = sd;
555	if (td == curthread) {
556		PCPU_GET(fsgs_gdt)[1] = sd;
557		load_gs(GSEL(GUGS_SEL, SEL_UPL));
558	}
559	critical_exit();
560	return (0);
561}
562
563/*
564 * Convert kernel VA to physical address
565 */
566vm_paddr_t
567kvtop(void *addr)
568{
569	vm_paddr_t pa;
570
571	pa = pmap_kextract((vm_offset_t)addr);
572	if (pa == 0)
573		panic("kvtop: zero page frame");
574	return (pa);
575}
576
577#ifdef SMP
578static void
579cpu_reset_proxy()
580{
581	cpuset_t tcrp;
582
583	cpu_reset_proxy_active = 1;
584	while (cpu_reset_proxy_active == 1)
585		;	/* Wait for other cpu to see that we've started */
586	CPU_SETOF(cpu_reset_proxyid, &tcrp);
587	stop_cpus(tcrp);
588	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
589	DELAY(1000000);
590	cpu_reset_real();
591}
592#endif
593
594void
595cpu_reset()
596{
597#ifdef XBOX
598	if (arch_i386_is_xbox) {
599		/* Kick the PIC16L, it can reboot the box */
600		pic16l_reboot();
601		for (;;);
602	}
603#endif
604
605#ifdef SMP
606	cpuset_t map;
607	u_int cnt;
608
609	if (smp_active) {
610		map = all_cpus;
611		CPU_CLR(PCPU_GET(cpuid), &map);
612		CPU_NAND(&map, &stopped_cpus);
613		if (!CPU_EMPTY(&map)) {
614			printf("cpu_reset: Stopping other CPUs\n");
615			stop_cpus(map);
616		}
617
618		if (PCPU_GET(cpuid) != 0) {
619			cpu_reset_proxyid = PCPU_GET(cpuid);
620			cpustop_restartfunc = cpu_reset_proxy;
621			cpu_reset_proxy_active = 0;
622			printf("cpu_reset: Restarting BSP\n");
623
624			/* Restart CPU #0. */
625			/* XXX: restart_cpus(1 << 0); */
626			CPU_SETOF(0, &started_cpus);
627			wmb();
628
629			cnt = 0;
630			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
631				cnt++;	/* Wait for BSP to announce restart */
632			if (cpu_reset_proxy_active == 0)
633				printf("cpu_reset: Failed to restart BSP\n");
634			enable_intr();
635			cpu_reset_proxy_active = 2;
636
637			while (1);
638			/* NOTREACHED */
639		}
640
641		DELAY(1000000);
642	}
643#endif
644	cpu_reset_real();
645	/* NOTREACHED */
646}
647
648static void
649cpu_reset_real()
650{
651	struct region_descriptor null_idt;
652#ifndef PC98
653	int b;
654#endif
655
656	disable_intr();
657#ifdef XEN
658	if (smp_processor_id() == 0)
659		HYPERVISOR_shutdown(SHUTDOWN_reboot);
660	else
661		HYPERVISOR_shutdown(SHUTDOWN_poweroff);
662#endif
663#ifdef CPU_ELAN
664	if (elan_mmcr != NULL)
665		elan_mmcr->RESCFG = 1;
666#endif
667
668	if (cpu == CPU_GEODE1100) {
669		/* Attempt Geode's own reset */
670		outl(0xcf8, 0x80009044ul);
671		outl(0xcfc, 0xf);
672	}
673
674#ifdef PC98
675	/*
676	 * Attempt to do a CPU reset via CPU reset port.
677	 */
678	if ((inb(0x35) & 0xa0) != 0xa0) {
679		outb(0x37, 0x0f);		/* SHUT0 = 0. */
680		outb(0x37, 0x0b);		/* SHUT1 = 0. */
681	}
682	outb(0xf0, 0x00);		/* Reset. */
683#else
684#if !defined(BROKEN_KEYBOARD_RESET)
685	/*
686	 * Attempt to do a CPU reset via the keyboard controller,
687	 * do not turn off GateA20, as any machine that fails
688	 * to do the reset here would then end up in no man's land.
689	 */
690	outb(IO_KBD + 4, 0xFE);
691	DELAY(500000);	/* wait 0.5 sec to see if that did it */
692#endif
693
694	/*
695	 * Attempt to force a reset via the Reset Control register at
696	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
697	 * transitions from 0 to 1.  Bit 1 selects the type of reset
698	 * to attempt: 0 selects a "soft" reset, and 1 selects a
699	 * "hard" reset.  We try a "hard" reset.  The first write sets
700	 * bit 1 to select a "hard" reset and clears bit 2.  The
701	 * second write forces a 0 -> 1 transition in bit 2 to trigger
702	 * a reset.
703	 */
704	outb(0xcf9, 0x2);
705	outb(0xcf9, 0x6);
706	DELAY(500000);  /* wait 0.5 sec to see if that did it */
707
708	/*
709	 * Attempt to force a reset via the Fast A20 and Init register
710	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
711	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
712	 * preserve bit 1 while setting bit 0.  We also must clear bit
713	 * 0 before setting it if it isn't already clear.
714	 */
715	b = inb(0x92);
716	if (b != 0xff) {
717		if ((b & 0x1) != 0)
718			outb(0x92, b & 0xfe);
719		outb(0x92, b | 0x1);
720		DELAY(500000);  /* wait 0.5 sec to see if that did it */
721	}
722#endif /* PC98 */
723
724	printf("No known reset method worked, attempting CPU shutdown\n");
725	DELAY(1000000); /* wait 1 sec for printf to complete */
726
727	/* Wipe the IDT. */
728	null_idt.rd_limit = 0;
729	null_idt.rd_base = 0;
730	lidt(&null_idt);
731
732	/* "good night, sweet prince .... <THUNK!>" */
733	breakpoint();
734
735	/* NOTREACHED */
736	while(1);
737}
738
739/*
740 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
741 */
742static void
743sf_buf_init(void *arg)
744{
745	struct sf_buf *sf_bufs;
746	vm_offset_t sf_base;
747	int i;
748
749	nsfbufs = NSFBUFS;
750	TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
751
752	sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
753	TAILQ_INIT(&sf_buf_freelist);
754	sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE);
755	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
756	    M_NOWAIT | M_ZERO);
757	for (i = 0; i < nsfbufs; i++) {
758		sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
759		TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
760	}
761	sf_buf_alloc_want = 0;
762	mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
763}
764
765/*
766 * Invalidate the cache lines that may belong to the page, if
767 * (possibly old) mapping of the page by sf buffer exists.  Returns
768 * TRUE when mapping was found and cache invalidated.
769 */
770boolean_t
771sf_buf_invalidate_cache(vm_page_t m)
772{
773	struct sf_head *hash_list;
774	struct sf_buf *sf;
775	boolean_t ret;
776
777	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
778	ret = FALSE;
779	mtx_lock(&sf_buf_lock);
780	LIST_FOREACH(sf, hash_list, list_entry) {
781		if (sf->m == m) {
782			/*
783			 * Use pmap_qenter to update the pte for
784			 * existing mapping, in particular, the PAT
785			 * settings are recalculated.
786			 */
787			pmap_qenter(sf->kva, &m, 1);
788			pmap_invalidate_cache_range(sf->kva, sf->kva +
789			    PAGE_SIZE);
790			ret = TRUE;
791			break;
792		}
793	}
794	mtx_unlock(&sf_buf_lock);
795	return (ret);
796}
797
798/*
799 * Get an sf_buf from the freelist.  May block if none are available.
800 */
801struct sf_buf *
802sf_buf_alloc(struct vm_page *m, int flags)
803{
804	pt_entry_t opte, *ptep;
805	struct sf_head *hash_list;
806	struct sf_buf *sf;
807#ifdef SMP
808	cpuset_t other_cpus;
809	u_int cpuid;
810#endif
811	int error;
812
813	KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0,
814	    ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned"));
815	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
816	mtx_lock(&sf_buf_lock);
817	LIST_FOREACH(sf, hash_list, list_entry) {
818		if (sf->m == m) {
819			sf->ref_count++;
820			if (sf->ref_count == 1) {
821				TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
822				nsfbufsused++;
823				nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
824			}
825#ifdef SMP
826			goto shootdown;
827#else
828			goto done;
829#endif
830		}
831	}
832	while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
833		if (flags & SFB_NOWAIT)
834			goto done;
835		sf_buf_alloc_want++;
836		mbstat.sf_allocwait++;
837		error = msleep(&sf_buf_freelist, &sf_buf_lock,
838		    (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
839		sf_buf_alloc_want--;
840
841		/*
842		 * If we got a signal, don't risk going back to sleep.
843		 */
844		if (error)
845			goto done;
846	}
847	TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
848	if (sf->m != NULL)
849		LIST_REMOVE(sf, list_entry);
850	LIST_INSERT_HEAD(hash_list, sf, list_entry);
851	sf->ref_count = 1;
852	sf->m = m;
853	nsfbufsused++;
854	nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
855
856	/*
857	 * Update the sf_buf's virtual-to-physical mapping, flushing the
858	 * virtual address from the TLB.  Since the reference count for
859	 * the sf_buf's old mapping was zero, that mapping is not
860	 * currently in use.  Consequently, there is no need to exchange
861	 * the old and new PTEs atomically, even under PAE.
862	 */
863	ptep = vtopte(sf->kva);
864	opte = *ptep;
865#ifdef XEN
866       PT_SET_MA(sf->kva, xpmap_ptom(VM_PAGE_TO_PHYS(m)) | pgeflag
867	   | PG_RW | PG_V | pmap_cache_bits(m->md.pat_mode, 0));
868#else
869	*ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V |
870	    pmap_cache_bits(m->md.pat_mode, 0);
871#endif
872
873	/*
874	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
875	 * virtual-to-physical mapping was not used, then any processor
876	 * that has invalidated the sf_buf's virtual address from its TLB
877	 * since the last used mapping need not invalidate again.
878	 */
879#ifdef SMP
880	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
881		CPU_ZERO(&sf->cpumask);
882shootdown:
883	sched_pin();
884	cpuid = PCPU_GET(cpuid);
885	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
886		CPU_SET(cpuid, &sf->cpumask);
887		invlpg(sf->kva);
888	}
889	if ((flags & SFB_CPUPRIVATE) == 0) {
890		other_cpus = all_cpus;
891		CPU_CLR(cpuid, &other_cpus);
892		CPU_NAND(&other_cpus, &sf->cpumask);
893		if (!CPU_EMPTY(&other_cpus)) {
894			CPU_OR(&sf->cpumask, &other_cpus);
895			smp_masked_invlpg(other_cpus, sf->kva);
896		}
897	}
898	sched_unpin();
899#else
900	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
901		pmap_invalidate_page(kernel_pmap, sf->kva);
902#endif
903done:
904	mtx_unlock(&sf_buf_lock);
905	return (sf);
906}
907
908/*
909 * Remove a reference from the given sf_buf, adding it to the free
910 * list when its reference count reaches zero.  A freed sf_buf still,
911 * however, retains its virtual-to-physical mapping until it is
912 * recycled or reactivated by sf_buf_alloc(9).
913 */
914void
915sf_buf_free(struct sf_buf *sf)
916{
917
918	mtx_lock(&sf_buf_lock);
919	sf->ref_count--;
920	if (sf->ref_count == 0) {
921		TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
922		nsfbufsused--;
923#ifdef XEN
924/*
925 * Xen doesn't like having dangling R/W mappings
926 */
927		pmap_qremove(sf->kva, 1);
928		sf->m = NULL;
929		LIST_REMOVE(sf, list_entry);
930#endif
931		if (sf_buf_alloc_want > 0)
932			wakeup(&sf_buf_freelist);
933	}
934	mtx_unlock(&sf_buf_lock);
935}
936
937/*
938 * Software interrupt handler for queued VM system processing.
939 */
940void
941swi_vm(void *dummy)
942{
943	if (busdma_swi_pending != 0)
944		busdma_swi();
945}
946
947/*
948 * Tell whether this address is in some physical memory region.
949 * Currently used by the kernel coredump code in order to avoid
950 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
951 * or other unpredictable behaviour.
952 */
953
954int
955is_physical_memory(vm_paddr_t addr)
956{
957
958#ifdef DEV_ISA
959	/* The ISA ``memory hole''. */
960	if (addr >= 0xa0000 && addr < 0x100000)
961		return 0;
962#endif
963
964	/*
965	 * stuff other tests for known memory-mapped devices (PCI?)
966	 * here
967	 */
968
969	return 1;
970}
971