xfs_inode.c revision 153323
1/*
2 * Copyright (c) 2000-2003 Silicon Graphics, Inc.  All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like.  Any license provided herein, whether implied or
15 * otherwise, applies only to this software file.  Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA  94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
32
33#include "xfs.h"
34#include "xfs_macros.h"
35#include "xfs_types.h"
36#include "xfs_inum.h"
37#include "xfs_log.h"
38#include "xfs_trans.h"
39#include "xfs_trans_priv.h"
40#include "xfs_sb.h"
41#include "xfs_ag.h"
42#include "xfs_dir.h"
43#include "xfs_dir2.h"
44#include "xfs_dmapi.h"
45#include "xfs_mount.h"
46#include "xfs_alloc_btree.h"
47#include "xfs_bmap_btree.h"
48#include "xfs_ialloc_btree.h"
49#include "xfs_btree.h"
50#include "xfs_imap.h"
51#include "xfs_alloc.h"
52#include "xfs_ialloc.h"
53#include "xfs_attr_sf.h"
54#include "xfs_dir_sf.h"
55#include "xfs_dir2_sf.h"
56#include "xfs_dinode.h"
57#include "xfs_inode_item.h"
58#include "xfs_inode.h"
59#include "xfs_bmap.h"
60#include "xfs_buf_item.h"
61#include "xfs_rw.h"
62#include "xfs_error.h"
63#include "xfs_bit.h"
64#include "xfs_utils.h"
65#include "xfs_dir2_trace.h"
66#include "xfs_quota.h"
67#include "xfs_mac.h"
68#include "xfs_acl.h"
69
70
71kmem_zone_t *xfs_ifork_zone;
72kmem_zone_t *xfs_inode_zone;
73kmem_zone_t *xfs_chashlist_zone;
74
75/*
76 * Used in xfs_itruncate().  This is the maximum number of extents
77 * freed from a file in a single transaction.
78 */
79#define	XFS_ITRUNC_MAX_EXTENTS	2
80
81STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
82STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
83STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
84STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
85
86
87#ifdef DEBUG
88/*
89 * Make sure that the extents in the given memory buffer
90 * are valid.
91 */
92STATIC void
93xfs_validate_extents(
94	xfs_bmbt_rec_t		*ep,
95	int			nrecs,
96	int			disk,
97	xfs_exntfmt_t		fmt)
98{
99	xfs_bmbt_irec_t		irec;
100	xfs_bmbt_rec_t		rec;
101	int			i;
102
103	for (i = 0; i < nrecs; i++) {
104		rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
105		rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
106		if (disk)
107			xfs_bmbt_disk_get_all(&rec, &irec);
108		else
109			xfs_bmbt_get_all(&rec, &irec);
110		if (fmt == XFS_EXTFMT_NOSTATE)
111			ASSERT(irec.br_state == XFS_EXT_NORM);
112		ep++;
113	}
114}
115#else /* DEBUG */
116#define xfs_validate_extents(ep, nrecs, disk, fmt)
117#endif /* DEBUG */
118
119/*
120 * Check that none of the inode's in the buffer have a next
121 * unlinked field of 0.
122 */
123#if defined(DEBUG)
124void
125xfs_inobp_check(
126	xfs_mount_t	*mp,
127	xfs_buf_t	*bp)
128{
129	int		i;
130	int		j;
131	xfs_dinode_t	*dip;
132
133	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
134
135	for (i = 0; i < j; i++) {
136		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
137					i * mp->m_sb.sb_inodesize);
138		if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT))  {
139			xfs_fs_cmn_err(CE_ALERT, mp,
140				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
141				bp);
142			ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT));
143		}
144	}
145}
146#endif
147
148/*
149 * This routine is called to map an inode number within a file
150 * system to the buffer containing the on-disk version of the
151 * inode.  It returns a pointer to the buffer containing the
152 * on-disk inode in the bpp parameter, and in the dip parameter
153 * it returns a pointer to the on-disk inode within that buffer.
154 *
155 * If a non-zero error is returned, then the contents of bpp and
156 * dipp are undefined.
157 *
158 * Use xfs_imap() to determine the size and location of the
159 * buffer to read from disk.
160 */
161int
162xfs_inotobp(
163	xfs_mount_t	*mp,
164	xfs_trans_t	*tp,
165	xfs_ino_t	ino,
166	xfs_dinode_t	**dipp,
167	xfs_buf_t	**bpp,
168	int		*offset)
169{
170	int		di_ok;
171	xfs_imap_t	imap;
172	xfs_buf_t	*bp;
173	int		error;
174	xfs_dinode_t	*dip;
175
176	/*
177	 * Call the space managment code to find the location of the
178	 * inode on disk.
179	 */
180	imap.im_blkno = 0;
181	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
182	if (error != 0) {
183		cmn_err(CE_WARN,
184	"xfs_inotobp: xfs_imap()  returned an "
185	"error %d on %s.  Returning error.", error, mp->m_fsname);
186		return error;
187	}
188
189	/*
190	 * If the inode number maps to a block outside the bounds of the
191	 * file system then return NULL rather than calling read_buf
192	 * and panicing when we get an error from the driver.
193	 */
194	if ((imap.im_blkno + imap.im_len) >
195	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
196		cmn_err(CE_WARN,
197	"xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
198	"of the file system %s.  Returning EINVAL.",
199			imap.im_blkno, imap.im_len,mp->m_fsname);
200		return XFS_ERROR(EINVAL);
201	}
202
203	/*
204	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
205	 * default to just a read_buf() call.
206	 */
207	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
208				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
209
210	if (error) {
211		cmn_err(CE_WARN,
212	"xfs_inotobp: xfs_trans_read_buf()  returned an "
213	"error %d on %s.  Returning error.", error, mp->m_fsname);
214		return error;
215	}
216	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
217	di_ok =
218		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
219		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
220	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
221			XFS_RANDOM_ITOBP_INOTOBP))) {
222		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
223		xfs_trans_brelse(tp, bp);
224		cmn_err(CE_WARN,
225	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
226	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
227		return XFS_ERROR(EFSCORRUPTED);
228	}
229
230	xfs_inobp_check(mp, bp);
231
232	/*
233	 * Set *dipp to point to the on-disk inode in the buffer.
234	 */
235	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
236	*bpp = bp;
237	*offset = imap.im_boffset;
238	return 0;
239}
240
241
242/*
243 * This routine is called to map an inode to the buffer containing
244 * the on-disk version of the inode.  It returns a pointer to the
245 * buffer containing the on-disk inode in the bpp parameter, and in
246 * the dip parameter it returns a pointer to the on-disk inode within
247 * that buffer.
248 *
249 * If a non-zero error is returned, then the contents of bpp and
250 * dipp are undefined.
251 *
252 * If the inode is new and has not yet been initialized, use xfs_imap()
253 * to determine the size and location of the buffer to read from disk.
254 * If the inode has already been mapped to its buffer and read in once,
255 * then use the mapping information stored in the inode rather than
256 * calling xfs_imap().  This allows us to avoid the overhead of looking
257 * at the inode btree for small block file systems (see xfs_dilocate()).
258 * We can tell whether the inode has been mapped in before by comparing
259 * its disk block address to 0.  Only uninitialized inodes will have
260 * 0 for the disk block address.
261 */
262int
263xfs_itobp(
264	xfs_mount_t	*mp,
265	xfs_trans_t	*tp,
266	xfs_inode_t	*ip,
267	xfs_dinode_t	**dipp,
268	xfs_buf_t	**bpp,
269	xfs_daddr_t	bno)
270{
271	xfs_buf_t	*bp;
272	int		error;
273	xfs_imap_t	imap;
274#ifdef __KERNEL__
275	int		i;
276	int		ni;
277#endif
278
279	if (ip->i_blkno == (xfs_daddr_t)0) {
280		/*
281		 * Call the space management code to find the location of the
282		 * inode on disk.
283		 */
284		imap.im_blkno = bno;
285		error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
286		if (error != 0) {
287			return error;
288		}
289
290		/*
291		 * If the inode number maps to a block outside the bounds
292		 * of the file system then return NULL rather than calling
293		 * read_buf and panicing when we get an error from the
294		 * driver.
295		 */
296		if ((imap.im_blkno + imap.im_len) >
297		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
298#ifdef DEBUG
299			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
300					"(imap.im_blkno (0x%llx) "
301					"+ imap.im_len (0x%llx)) > "
302					" XFS_FSB_TO_BB(mp, "
303					"mp->m_sb.sb_dblocks) (0x%llx)",
304					(unsigned long long) imap.im_blkno,
305					(unsigned long long) imap.im_len,
306					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
307#endif /* DEBUG */
308			return XFS_ERROR(EINVAL);
309		}
310
311		/*
312		 * Fill in the fields in the inode that will be used to
313		 * map the inode to its buffer from now on.
314		 */
315		ip->i_blkno = imap.im_blkno;
316		ip->i_len = imap.im_len;
317		ip->i_boffset = imap.im_boffset;
318	} else {
319		/*
320		 * We've already mapped the inode once, so just use the
321		 * mapping that we saved the first time.
322		 */
323		imap.im_blkno = ip->i_blkno;
324		imap.im_len = ip->i_len;
325		imap.im_boffset = ip->i_boffset;
326	}
327	ASSERT(bno == 0 || bno == imap.im_blkno);
328
329	/*
330	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
331	 * default to just a read_buf() call.
332	 */
333	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
334				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
335
336	if (error) {
337#ifdef DEBUG
338		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
339				"xfs_trans_read_buf() returned error %d, "
340				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
341				error, (unsigned long long) imap.im_blkno,
342				(unsigned long long) imap.im_len);
343#endif /* DEBUG */
344		return error;
345	}
346#ifdef __KERNEL__
347	/*
348	 * Validate the magic number and version of every inode in the buffer
349	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
350	 */
351#ifdef DEBUG
352	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
353#else
354	ni = 1;
355#endif
356	for (i = 0; i < ni; i++) {
357		int		di_ok;
358		xfs_dinode_t	*dip;
359
360		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
361					(i << mp->m_sb.sb_inodelog));
362		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
363			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
364		if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
365				 XFS_RANDOM_ITOBP_INOTOBP))) {
366#ifdef DEBUG
367			prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
368				mp->m_ddev_targp,
369				(unsigned long long)imap.im_blkno, i,
370				INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
371#endif
372			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
373					     mp, dip);
374			xfs_trans_brelse(tp, bp);
375			return XFS_ERROR(EFSCORRUPTED);
376		}
377	}
378#endif	/* __KERNEL__ */
379
380	xfs_inobp_check(mp, bp);
381
382	/*
383	 * Mark the buffer as an inode buffer now that it looks good
384	 */
385	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
386
387	/*
388	 * Set *dipp to point to the on-disk inode in the buffer.
389	 */
390	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
391	*bpp = bp;
392	return 0;
393}
394
395/*
396 * Move inode type and inode format specific information from the
397 * on-disk inode to the in-core inode.  For fifos, devs, and sockets
398 * this means set if_rdev to the proper value.  For files, directories,
399 * and symlinks this means to bring in the in-line data or extent
400 * pointers.  For a file in B-tree format, only the root is immediately
401 * brought in-core.  The rest will be in-lined in if_extents when it
402 * is first referenced (see xfs_iread_extents()).
403 */
404STATIC int
405xfs_iformat(
406	xfs_inode_t		*ip,
407	xfs_dinode_t		*dip)
408{
409	xfs_attr_shortform_t	*atp;
410	int			size;
411	int			error;
412	xfs_fsize_t             di_size;
413	ip->i_df.if_ext_max =
414		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
415	error = 0;
416
417	if (unlikely(
418	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
419		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
420	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
421		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
422			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
423			"  Unmount and run xfs_repair.",
424			(unsigned long long)ip->i_ino,
425			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
426			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
427			(unsigned long long)
428			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
429		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
430				     ip->i_mount, dip);
431		return XFS_ERROR(EFSCORRUPTED);
432	}
433
434	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
435		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
436			"corrupt dinode %Lu, forkoff = 0x%x."
437			"  Unmount and run xfs_repair.",
438			(unsigned long long)ip->i_ino,
439			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
440		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
441				     ip->i_mount, dip);
442		return XFS_ERROR(EFSCORRUPTED);
443	}
444
445	switch (ip->i_d.di_mode & S_IFMT) {
446	case S_IFIFO:
447	case S_IFCHR:
448	case S_IFBLK:
449	case S_IFSOCK:
450		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
451			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
452					      ip->i_mount, dip);
453			return XFS_ERROR(EFSCORRUPTED);
454		}
455		ip->i_d.di_size = 0;
456		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
457		break;
458
459	case S_IFREG:
460	case S_IFLNK:
461	case S_IFDIR:
462		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
463		case XFS_DINODE_FMT_LOCAL:
464			/*
465			 * no local regular files yet
466			 */
467			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
468				xfs_fs_cmn_err(CE_WARN, ip->i_mount,
469					"corrupt inode (local format for regular file) %Lu.  Unmount and run xfs_repair.",
470					(unsigned long long) ip->i_ino);
471				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
472						     XFS_ERRLEVEL_LOW,
473						     ip->i_mount, dip);
474				return XFS_ERROR(EFSCORRUPTED);
475			}
476
477			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
478			if (unlikely(di_size >
479			    XFS_DFORK_DSIZE_ARCH(dip, ip->i_mount, ARCH_CONVERT))) {
480				xfs_fs_cmn_err(CE_WARN, ip->i_mount,
481					"corrupt inode %Lu (bad size %Ld for local inode).  Unmount and run xfs_repair.",
482					(unsigned long long) ip->i_ino,
483					(long long) di_size);
484				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
485						     XFS_ERRLEVEL_LOW,
486						     ip->i_mount, dip);
487				return XFS_ERROR(EFSCORRUPTED);
488			}
489
490			size = (int)di_size;
491			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
492			break;
493		case XFS_DINODE_FMT_EXTENTS:
494			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
495			break;
496		case XFS_DINODE_FMT_BTREE:
497			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
498			break;
499		default:
500			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
501					 ip->i_mount);
502			return XFS_ERROR(EFSCORRUPTED);
503		}
504		break;
505
506	default:
507		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
508		return XFS_ERROR(EFSCORRUPTED);
509	}
510	if (error) {
511		return error;
512	}
513	if (!XFS_DFORK_Q_ARCH(dip, ARCH_CONVERT))
514		return 0;
515	ASSERT(ip->i_afp == NULL);
516	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
517	ip->i_afp->if_ext_max =
518		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
519	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
520	case XFS_DINODE_FMT_LOCAL:
521		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR_ARCH(dip, ARCH_CONVERT);
522		size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
523		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
524		break;
525	case XFS_DINODE_FMT_EXTENTS:
526		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
527		break;
528	case XFS_DINODE_FMT_BTREE:
529		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
530		break;
531	default:
532		error = XFS_ERROR(EFSCORRUPTED);
533		break;
534	}
535	if (error) {
536		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
537		ip->i_afp = NULL;
538		xfs_idestroy_fork(ip, XFS_DATA_FORK);
539	}
540	return error;
541}
542
543/*
544 * The file is in-lined in the on-disk inode.
545 * If it fits into if_inline_data, then copy
546 * it there, otherwise allocate a buffer for it
547 * and copy the data there.  Either way, set
548 * if_data to point at the data.
549 * If we allocate a buffer for the data, make
550 * sure that its size is a multiple of 4 and
551 * record the real size in i_real_bytes.
552 */
553STATIC int
554xfs_iformat_local(
555	xfs_inode_t	*ip,
556	xfs_dinode_t	*dip,
557	int		whichfork,
558	int		size)
559{
560	xfs_ifork_t	*ifp;
561	int		real_size;
562
563	/*
564	 * If the size is unreasonable, then something
565	 * is wrong and we just bail out rather than crash in
566	 * kmem_alloc() or memcpy() below.
567	 */
568	if (unlikely(size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) {
569		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
570			"corrupt inode %Lu (bad size %d for local fork, size = %d).  Unmount and run xfs_repair.",
571			(unsigned long long) ip->i_ino, size,
572			XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT));
573		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
574				     ip->i_mount, dip);
575		return XFS_ERROR(EFSCORRUPTED);
576	}
577	ifp = XFS_IFORK_PTR(ip, whichfork);
578	real_size = 0;
579	if (size == 0)
580		ifp->if_u1.if_data = NULL;
581	else if (size <= sizeof(ifp->if_u2.if_inline_data))
582		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
583	else {
584		real_size = roundup(size, 4);
585		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
586	}
587	ifp->if_bytes = size;
588	ifp->if_real_bytes = real_size;
589	if (size)
590		memcpy(ifp->if_u1.if_data,
591			XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT), size);
592	ifp->if_flags &= ~XFS_IFEXTENTS;
593	ifp->if_flags |= XFS_IFINLINE;
594	return 0;
595}
596
597/*
598 * The file consists of a set of extents all
599 * of which fit into the on-disk inode.
600 * If there are few enough extents to fit into
601 * the if_inline_ext, then copy them there.
602 * Otherwise allocate a buffer for them and copy
603 * them into it.  Either way, set if_extents
604 * to point at the extents.
605 */
606STATIC int
607xfs_iformat_extents(
608	xfs_inode_t	*ip,
609	xfs_dinode_t	*dip,
610	int		whichfork)
611{
612	xfs_bmbt_rec_t	*ep, *dp;
613	xfs_ifork_t	*ifp;
614	int		nex;
615	int		real_size;
616	int		size;
617	int		i;
618
619	ifp = XFS_IFORK_PTR(ip, whichfork);
620	nex = XFS_DFORK_NEXTENTS_ARCH(dip, whichfork, ARCH_CONVERT);
621	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
622
623	/*
624	 * If the number of extents is unreasonable, then something
625	 * is wrong and we just bail out rather than crash in
626	 * kmem_alloc() or memcpy() below.
627	 */
628	if (unlikely(size < 0 || size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) {
629		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
630			"corrupt inode %Lu ((a)extents = %d).  Unmount and run xfs_repair.",
631			(unsigned long long) ip->i_ino, nex);
632		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
633				     ip->i_mount, dip);
634		return XFS_ERROR(EFSCORRUPTED);
635	}
636
637	real_size = 0;
638	if (nex == 0)
639		ifp->if_u1.if_extents = NULL;
640	else if (nex <= XFS_INLINE_EXTS)
641		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
642	else {
643		ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
644		ASSERT(ifp->if_u1.if_extents != NULL);
645		real_size = size;
646	}
647	ifp->if_bytes = size;
648	ifp->if_real_bytes = real_size;
649	if (size) {
650		dp = (xfs_bmbt_rec_t *)
651			XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
652		xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
653		ep = ifp->if_u1.if_extents;
654		for (i = 0; i < nex; i++, ep++, dp++) {
655			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
656								ARCH_CONVERT);
657			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
658								ARCH_CONVERT);
659		}
660		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
661			whichfork);
662		if (whichfork != XFS_DATA_FORK ||
663			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
664				if (unlikely(xfs_check_nostate_extents(
665				    ifp->if_u1.if_extents, nex))) {
666					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
667							 XFS_ERRLEVEL_LOW,
668							 ip->i_mount);
669					return XFS_ERROR(EFSCORRUPTED);
670				}
671	}
672	ifp->if_flags |= XFS_IFEXTENTS;
673	return 0;
674}
675
676/*
677 * The file has too many extents to fit into
678 * the inode, so they are in B-tree format.
679 * Allocate a buffer for the root of the B-tree
680 * and copy the root into it.  The i_extents
681 * field will remain NULL until all of the
682 * extents are read in (when they are needed).
683 */
684STATIC int
685xfs_iformat_btree(
686	xfs_inode_t		*ip,
687	xfs_dinode_t		*dip,
688	int			whichfork)
689{
690	xfs_bmdr_block_t	*dfp;
691	xfs_ifork_t		*ifp;
692	/* REFERENCED */
693	int			nrecs;
694	int			size;
695
696	ifp = XFS_IFORK_PTR(ip, whichfork);
697	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
698	size = XFS_BMAP_BROOT_SPACE(dfp);
699	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
700
701	/*
702	 * blow out if -- fork has less extents than can fit in
703	 * fork (fork shouldn't be a btree format), root btree
704	 * block has more records than can fit into the fork,
705	 * or the number of extents is greater than the number of
706	 * blocks.
707	 */
708	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
709	    || XFS_BMDR_SPACE_CALC(nrecs) >
710			XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT)
711	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
712		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
713			"corrupt inode %Lu (btree).  Unmount and run xfs_repair.",
714			(unsigned long long) ip->i_ino);
715		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
716				 ip->i_mount);
717		return XFS_ERROR(EFSCORRUPTED);
718	}
719
720	ifp->if_broot_bytes = size;
721	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
722	ASSERT(ifp->if_broot != NULL);
723	/*
724	 * Copy and convert from the on-disk structure
725	 * to the in-memory structure.
726	 */
727	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT),
728		ifp->if_broot, size);
729	ifp->if_flags &= ~XFS_IFEXTENTS;
730	ifp->if_flags |= XFS_IFBROOT;
731
732	return 0;
733}
734
735/*
736 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
737 * and native format
738 *
739 * buf  = on-disk representation
740 * dip  = native representation
741 * dir  = direction - +ve -> disk to native
742 *                    -ve -> native to disk
743 * arch = on-disk architecture
744 */
745void
746xfs_xlate_dinode_core(
747	xfs_caddr_t		buf,
748	xfs_dinode_core_t	*dip,
749	int			dir,
750	xfs_arch_t		arch)
751{
752	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf;
753	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip;
754
755	ASSERT(dir);
756	if (arch == ARCH_NOCONVERT) {
757		if (dir > 0) {
758			memcpy((xfs_caddr_t)mem_core, (xfs_caddr_t)buf_core,
759				sizeof(xfs_dinode_core_t));
760		} else {
761			memcpy((xfs_caddr_t)buf_core, (xfs_caddr_t)mem_core,
762				sizeof(xfs_dinode_core_t));
763		}
764		return;
765	}
766
767	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
768	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
769	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch);
770	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
771	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
772	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
773	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
774	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
775	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
776
777	if (dir > 0) {
778		memcpy(mem_core->di_pad, buf_core->di_pad,
779			sizeof(buf_core->di_pad));
780	} else {
781		memcpy(buf_core->di_pad, mem_core->di_pad,
782			sizeof(buf_core->di_pad));
783	}
784
785	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
786
787	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
788			dir, arch);
789	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
790			dir, arch);
791	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
792			dir, arch);
793	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
794			dir, arch);
795	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
796			dir, arch);
797	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
798			dir, arch);
799	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
800	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
801	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
802	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
803	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
804	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
805	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
806	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
807	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
808	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
809	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
810}
811
812/*
813 * Given a mount structure and an inode number, return a pointer
814 * to a newly allocated in-core inode coresponding to the given
815 * inode number.
816 *
817 * Initialize the inode's attributes and extent pointers if it
818 * already has them (it will not if the inode has no links).
819 */
820int
821xfs_iread(
822	xfs_mount_t	*mp,
823	xfs_trans_t	*tp,
824	xfs_ino_t	ino,
825	xfs_inode_t	**ipp,
826	xfs_daddr_t	bno)
827{
828	xfs_buf_t	*bp;
829	xfs_dinode_t	*dip;
830	xfs_inode_t	*ip;
831	int		error;
832
833	ASSERT(xfs_inode_zone != NULL);
834
835	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
836	ip->i_ino = ino;
837	ip->i_mount = mp;
838
839	/*
840	 * Get pointer's to the on-disk inode and the buffer containing it.
841	 * If the inode number refers to a block outside the file system
842	 * then xfs_itobp() will return NULL.  In this case we should
843	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
844	 * know that this is a new incore inode.
845	 */
846	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
847
848	if (error != 0) {
849		kmem_zone_free(xfs_inode_zone, ip);
850		return error;
851	}
852
853	/*
854	 * Initialize inode's trace buffers.
855	 * Do this before xfs_iformat in case it adds entries.
856	 */
857#ifdef XFS_BMAP_TRACE
858	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
859#endif
860#ifdef XFS_BMBT_TRACE
861	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
862#endif
863#ifdef XFS_RW_TRACE
864	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
865#endif
866#ifdef XFS_ILOCK_TRACE
867	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
868#endif
869#ifdef XFS_DIR2_TRACE
870	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
871#endif
872
873	/*
874	 * If we got something that isn't an inode it means someone
875	 * (nfs or dmi) has a stale handle.
876	 */
877	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
878		kmem_zone_free(xfs_inode_zone, ip);
879		xfs_trans_brelse(tp, bp);
880#ifdef DEBUG
881		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
882				"dip->di_core.di_magic (0x%x) != "
883				"XFS_DINODE_MAGIC (0x%x)",
884				INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
885				XFS_DINODE_MAGIC);
886#endif /* DEBUG */
887		return XFS_ERROR(EINVAL);
888	}
889
890	/*
891	 * If the on-disk inode is already linked to a directory
892	 * entry, copy all of the inode into the in-core inode.
893	 * xfs_iformat() handles copying in the inode format
894	 * specific information.
895	 * Otherwise, just get the truly permanent information.
896	 */
897	if (!INT_ISZERO(dip->di_core.di_mode, ARCH_CONVERT)) {
898		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
899		     &(ip->i_d), 1, ARCH_CONVERT);
900		error = xfs_iformat(ip, dip);
901		if (error)  {
902			kmem_zone_free(xfs_inode_zone, ip);
903			xfs_trans_brelse(tp, bp);
904#ifdef DEBUG
905			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
906					"xfs_iformat() returned error %d",
907					error);
908#endif /* DEBUG */
909			return error;
910		}
911	} else {
912		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
913		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
914		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
915		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
916		/*
917		 * Make sure to pull in the mode here as well in
918		 * case the inode is released without being used.
919		 * This ensures that xfs_inactive() will see that
920		 * the inode is already free and not try to mess
921		 * with the uninitialized part of it.
922		 */
923		ip->i_d.di_mode = 0;
924		/*
925		 * Initialize the per-fork minima and maxima for a new
926		 * inode here.  xfs_iformat will do it for old inodes.
927		 */
928		ip->i_df.if_ext_max =
929			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
930	}
931
932	/* XXXKAN: initialize i_reclaim */
933	bzero(&ip->i_reclaim, sizeof(&ip->i_reclaim));
934
935	/*
936	 * The inode format changed when we moved the link count and
937	 * made it 32 bits long.  If this is an old format inode,
938	 * convert it in memory to look like a new one.  If it gets
939	 * flushed to disk we will convert back before flushing or
940	 * logging it.  We zero out the new projid field and the old link
941	 * count field.  We'll handle clearing the pad field (the remains
942	 * of the old uuid field) when we actually convert the inode to
943	 * the new format. We don't change the version number so that we
944	 * can distinguish this from a real new format inode.
945	 */
946	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
947		ip->i_d.di_nlink = ip->i_d.di_onlink;
948		ip->i_d.di_onlink = 0;
949		ip->i_d.di_projid = 0;
950	}
951
952	ip->i_delayed_blks = 0;
953
954	/*
955	 * Mark the buffer containing the inode as something to keep
956	 * around for a while.  This helps to keep recently accessed
957	 * meta-data in-core longer.
958	 */
959	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
960
961	/*
962	 * Use xfs_trans_brelse() to release the buffer containing the
963	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
964	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
965	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
966	 * will only release the buffer if it is not dirty within the
967	 * transaction.  It will be OK to release the buffer in this case,
968	 * because inodes on disk are never destroyed and we will be
969	 * locking the new in-core inode before putting it in the hash
970	 * table where other processes can find it.  Thus we don't have
971	 * to worry about the inode being changed just because we released
972	 * the buffer.
973	 */
974	xfs_trans_brelse(tp, bp);
975	*ipp = ip;
976	return 0;
977}
978
979/*
980 * Read in extents from a btree-format inode.
981 * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
982 */
983int
984xfs_iread_extents(
985	xfs_trans_t	*tp,
986	xfs_inode_t	*ip,
987	int		whichfork)
988{
989	int		error;
990	xfs_ifork_t	*ifp;
991	size_t		size;
992
993	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
994		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
995				 ip->i_mount);
996		return XFS_ERROR(EFSCORRUPTED);
997	}
998	size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
999	ifp = XFS_IFORK_PTR(ip, whichfork);
1000	/*
1001	 * We know that the size is valid (it's checked in iformat_btree)
1002	 */
1003	ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1004	ASSERT(ifp->if_u1.if_extents != NULL);
1005	ifp->if_lastex = NULLEXTNUM;
1006	ifp->if_bytes = ifp->if_real_bytes = (int)size;
1007	ifp->if_flags |= XFS_IFEXTENTS;
1008	error = xfs_bmap_read_extents(tp, ip, whichfork);
1009	if (error) {
1010		kmem_free(ifp->if_u1.if_extents, size);
1011		ifp->if_u1.if_extents = NULL;
1012		ifp->if_bytes = ifp->if_real_bytes = 0;
1013		ifp->if_flags &= ~XFS_IFEXTENTS;
1014		return error;
1015	}
1016	xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1017		XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1018	return 0;
1019}
1020
1021/*
1022 * Allocate an inode on disk and return a copy of its in-core version.
1023 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1024 * appropriately within the inode.  The uid and gid for the inode are
1025 * set according to the contents of the given cred structure.
1026 *
1027 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1028 * has a free inode available, call xfs_iget()
1029 * to obtain the in-core version of the allocated inode.  Finally,
1030 * fill in the inode and log its initial contents.  In this case,
1031 * ialloc_context would be set to NULL and call_again set to false.
1032 *
1033 * If xfs_dialloc() does not have an available inode,
1034 * it will replenish its supply by doing an allocation. Since we can
1035 * only do one allocation within a transaction without deadlocks, we
1036 * must commit the current transaction before returning the inode itself.
1037 * In this case, therefore, we will set call_again to true and return.
1038 * The caller should then commit the current transaction, start a new
1039 * transaction, and call xfs_ialloc() again to actually get the inode.
1040 *
1041 * To ensure that some other process does not grab the inode that
1042 * was allocated during the first call to xfs_ialloc(), this routine
1043 * also returns the [locked] bp pointing to the head of the freelist
1044 * as ialloc_context.  The caller should hold this buffer across
1045 * the commit and pass it back into this routine on the second call.
1046 */
1047int
1048xfs_ialloc(
1049	xfs_trans_t	*tp,
1050	xfs_inode_t	*pip,
1051	mode_t		mode,
1052	nlink_t		nlink,
1053	xfs_dev_t	rdev,
1054	cred_t		*cr,
1055	xfs_prid_t	prid,
1056	int		okalloc,
1057	xfs_buf_t	**ialloc_context,
1058	boolean_t	*call_again,
1059	xfs_inode_t	**ipp)
1060{
1061	xfs_ino_t	ino;
1062	xfs_inode_t	*ip;
1063	xfs_vnode_t	*vp;
1064	uint		flags;
1065	int		error;
1066
1067	/*
1068	 * Call the space management code to pick
1069	 * the on-disk inode to be allocated.
1070	 */
1071	ASSERT(pip != NULL);
1072	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1073			    ialloc_context, call_again, &ino);
1074	if (error != 0) {
1075		return error;
1076	}
1077	if (*call_again || ino == NULLFSINO) {
1078		*ipp = NULL;
1079		return 0;
1080	}
1081	ASSERT(*ialloc_context == NULL);
1082
1083	/*
1084	 * Get the in-core inode with the lock held exclusively.
1085	 * This is because we're setting fields here we need
1086	 * to prevent others from looking at until we're done.
1087	 */
1088	error = xfs_trans_iget(tp->t_mountp, tp, ino, XFS_ILOCK_EXCL, &ip);
1089	if (error != 0) {
1090		return error;
1091	}
1092	ASSERT(ip != NULL);
1093	vp = XFS_ITOV(ip);
1094	ASSERT(vp != NULL);
1095	vp->v_type = IFTOVT(mode);
1096	ip->i_d.di_mode = (__uint16_t)mode;
1097	ip->i_d.di_onlink = 0;
1098	ip->i_d.di_nlink = nlink;
1099	ASSERT(ip->i_d.di_nlink == nlink);
1100	ip->i_d.di_uid = curthread->td_ucred->cr_uid;
1101	ip->i_d.di_gid = curthread->td_ucred->cr_groups[0];
1102	ip->i_d.di_projid = prid;
1103	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1104
1105	/*
1106	 * If the superblock version is up to where we support new format
1107	 * inodes and this is currently an old format inode, then change
1108	 * the inode version number now.  This way we only do the conversion
1109	 * here rather than here and in the flush/logging code.
1110	 */
1111	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1112	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1113		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1114		/*
1115		 * We've already zeroed the old link count, the projid field,
1116		 * and the pad field.
1117		 */
1118	}
1119
1120	/*
1121	 * Project ids won't be stored on disk if we are using a version 1 inode.
1122	 */
1123	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1124		xfs_bump_ino_vers2(tp, ip);
1125
1126	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1127		ip->i_d.di_gid = pip->i_d.di_gid;
1128		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1129			ip->i_d.di_mode |= S_ISGID;
1130		}
1131	}
1132
1133	/*
1134	 * If the group ID of the new file does not match the effective group
1135	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1136	 * (and only if the irix_sgid_inherit compatibility variable is set).
1137	 */
1138	if ((irix_sgid_inherit) &&
1139	    (ip->i_d.di_mode & S_ISGID) &&
1140	    (!groupmember((gid_t)ip->i_d.di_gid, curthread->td_ucred))) {
1141		ip->i_d.di_mode &= ~S_ISGID;
1142	}
1143
1144	ip->i_d.di_size = 0;
1145	ip->i_d.di_nextents = 0;
1146	ASSERT(ip->i_d.di_nblocks == 0);
1147	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1148	/*
1149	 * di_gen will have been taken care of in xfs_iread.
1150	 */
1151	ip->i_d.di_extsize = 0;
1152	ip->i_d.di_dmevmask = 0;
1153	ip->i_d.di_dmstate = 0;
1154	ip->i_d.di_flags = 0;
1155	flags = XFS_ILOG_CORE;
1156	switch (mode & S_IFMT) {
1157	case S_IFIFO:
1158	case S_IFCHR:
1159	case S_IFBLK:
1160	case S_IFSOCK:
1161		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1162		ip->i_df.if_u2.if_rdev = rdev;
1163		ip->i_df.if_flags = 0;
1164		flags |= XFS_ILOG_DEV;
1165		break;
1166	case S_IFREG:
1167	case S_IFDIR:
1168		if (pip->i_d.di_flags &
1169		    (XFS_DIFLAG_NOATIME|XFS_DIFLAG_NODUMP|XFS_DIFLAG_SYNC)) {
1170			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1171			    xfs_inherit_noatime)
1172				ip->i_d.di_flags |= XFS_DIFLAG_NOATIME;
1173			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1174			    xfs_inherit_nodump)
1175				ip->i_d.di_flags |= XFS_DIFLAG_NODUMP;
1176			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1177			    xfs_inherit_sync)
1178				ip->i_d.di_flags |= XFS_DIFLAG_SYNC;
1179		}
1180	case S_IFLNK:
1181		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1182		ip->i_df.if_flags = XFS_IFEXTENTS;
1183		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1184		ip->i_df.if_u1.if_extents = NULL;
1185		break;
1186	default:
1187		ASSERT(0);
1188	}
1189	/*
1190	 * Attribute fork settings for new inode.
1191	 */
1192	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1193	ip->i_d.di_anextents = 0;
1194
1195	/*
1196	 * Log the new values stuffed into the inode.
1197	 */
1198	xfs_trans_log_inode(tp, ip, flags);
1199
1200	/* now that we have a v_type we can set Linux inode ops (& unlock) */
1201	XVFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1202
1203	*ipp = ip;
1204	return 0;
1205}
1206
1207/*
1208 * Check to make sure that there are no blocks allocated to the
1209 * file beyond the size of the file.  We don't check this for
1210 * files with fixed size extents or real time extents, but we
1211 * at least do it for regular files.
1212 */
1213#ifdef DEBUG
1214void
1215xfs_isize_check(
1216	xfs_mount_t	*mp,
1217	xfs_inode_t	*ip,
1218	xfs_fsize_t	isize)
1219{
1220	xfs_fileoff_t	map_first;
1221	int		nimaps;
1222	xfs_bmbt_irec_t	imaps[2];
1223
1224	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1225		return;
1226
1227	if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
1228		return;
1229
1230	nimaps = 2;
1231	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1232	/*
1233	 * The filesystem could be shutting down, so bmapi may return
1234	 * an error.
1235	 */
1236	if (xfs_bmapi(NULL, ip, map_first,
1237			 (XFS_B_TO_FSB(mp,
1238				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1239			  map_first),
1240			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1241			 NULL))
1242	    return;
1243	ASSERT(nimaps == 1);
1244	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1245}
1246#endif	/* DEBUG */
1247
1248/*
1249 * Calculate the last possible buffered byte in a file.  This must
1250 * include data that was buffered beyond the EOF by the write code.
1251 * This also needs to deal with overflowing the xfs_fsize_t type
1252 * which can happen for sizes near the limit.
1253 *
1254 * We also need to take into account any blocks beyond the EOF.  It
1255 * may be the case that they were buffered by a write which failed.
1256 * In that case the pages will still be in memory, but the inode size
1257 * will never have been updated.
1258 */
1259xfs_fsize_t
1260xfs_file_last_byte(
1261	xfs_inode_t	*ip)
1262{
1263	xfs_mount_t	*mp;
1264	xfs_fsize_t	last_byte;
1265	xfs_fileoff_t	last_block;
1266	xfs_fileoff_t	size_last_block;
1267	int		error;
1268
1269	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1270
1271	mp = ip->i_mount;
1272	/*
1273	 * Only check for blocks beyond the EOF if the extents have
1274	 * been read in.  This eliminates the need for the inode lock,
1275	 * and it also saves us from looking when it really isn't
1276	 * necessary.
1277	 */
1278	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1279		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1280			XFS_DATA_FORK);
1281		if (error) {
1282			last_block = 0;
1283		}
1284	} else {
1285		last_block = 0;
1286	}
1287	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1288	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1289
1290	last_byte = XFS_FSB_TO_B(mp, last_block);
1291	if (last_byte < 0) {
1292		return XFS_MAXIOFFSET(mp);
1293	}
1294	last_byte += (1 << mp->m_writeio_log);
1295	if (last_byte < 0) {
1296		return XFS_MAXIOFFSET(mp);
1297	}
1298	return last_byte;
1299}
1300
1301#if defined(XFS_RW_TRACE)
1302STATIC void
1303xfs_itrunc_trace(
1304	int		tag,
1305	xfs_inode_t	*ip,
1306	int		flag,
1307	xfs_fsize_t	new_size,
1308	xfs_off_t	toss_start,
1309	xfs_off_t	toss_finish)
1310{
1311	if (ip->i_rwtrace == NULL) {
1312		return;
1313	}
1314
1315	ktrace_enter(ip->i_rwtrace,
1316		     (void*)((long)tag),
1317		     (void*)ip,
1318		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1319		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1320		     (void*)((long)flag),
1321		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1322		     (void*)(unsigned long)(new_size & 0xffffffff),
1323		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1324		     (void*)(unsigned long)(toss_start & 0xffffffff),
1325		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1326		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1327		     (void*)(unsigned long)current_cpu(),
1328		     (void*)0,
1329		     (void*)0,
1330		     (void*)0,
1331		     (void*)0);
1332}
1333#else
1334#define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1335#endif
1336
1337/*
1338 * Start the truncation of the file to new_size.  The new size
1339 * must be smaller than the current size.  This routine will
1340 * clear the buffer and page caches of file data in the removed
1341 * range, and xfs_itruncate_finish() will remove the underlying
1342 * disk blocks.
1343 *
1344 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1345 * must NOT have the inode lock held at all.  This is because we're
1346 * calling into the buffer/page cache code and we can't hold the
1347 * inode lock when we do so.
1348 *
1349 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1350 * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1351 * in the case that the caller is locking things out of order and
1352 * may not be able to call xfs_itruncate_finish() with the inode lock
1353 * held without dropping the I/O lock.  If the caller must drop the
1354 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1355 * must be called again with all the same restrictions as the initial
1356 * call.
1357 */
1358void
1359xfs_itruncate_start(
1360	xfs_inode_t	*ip,
1361	uint		flags,
1362	xfs_fsize_t	new_size)
1363{
1364	xfs_fsize_t	last_byte;
1365	xfs_off_t	toss_start;
1366	xfs_mount_t	*mp;
1367	xfs_vnode_t	*vp;
1368
1369	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1370	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1371	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1372	       (flags == XFS_ITRUNC_MAYBE));
1373
1374	mp = ip->i_mount;
1375	vp = XFS_ITOV(ip);
1376	/*
1377	 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1378	 * overlapping the region being removed.  We have to use
1379	 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1380	 * caller may not be able to finish the truncate without
1381	 * dropping the inode's I/O lock.  Make sure
1382	 * to catch any pages brought in by buffers overlapping
1383	 * the EOF by searching out beyond the isize by our
1384	 * block size. We round new_size up to a block boundary
1385	 * so that we don't toss things on the same block as
1386	 * new_size but before it.
1387	 *
1388	 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1389	 * call remapf() over the same region if the file is mapped.
1390	 * This frees up mapped file references to the pages in the
1391	 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1392	 * that we get the latest mapped changes flushed out.
1393	 */
1394	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1395	toss_start = XFS_FSB_TO_B(mp, toss_start);
1396	if (toss_start < 0) {
1397		/*
1398		 * The place to start tossing is beyond our maximum
1399		 * file size, so there is no way that the data extended
1400		 * out there.
1401		 */
1402		return;
1403	}
1404	last_byte = xfs_file_last_byte(ip);
1405	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1406			 last_byte);
1407	if (last_byte > toss_start) {
1408		if (flags & XFS_ITRUNC_DEFINITE) {
1409			XVOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1410		} else {
1411			XVOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1412		}
1413	}
1414
1415#ifdef DEBUG
1416	if (new_size == 0) {
1417		ASSERT(VN_CACHED(vp) == 0);
1418	}
1419#endif
1420}
1421
1422/*
1423 * Shrink the file to the given new_size.  The new
1424 * size must be smaller than the current size.
1425 * This will free up the underlying blocks
1426 * in the removed range after a call to xfs_itruncate_start()
1427 * or xfs_atruncate_start().
1428 *
1429 * The transaction passed to this routine must have made
1430 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1431 * This routine may commit the given transaction and
1432 * start new ones, so make sure everything involved in
1433 * the transaction is tidy before calling here.
1434 * Some transaction will be returned to the caller to be
1435 * committed.  The incoming transaction must already include
1436 * the inode, and both inode locks must be held exclusively.
1437 * The inode must also be "held" within the transaction.  On
1438 * return the inode will be "held" within the returned transaction.
1439 * This routine does NOT require any disk space to be reserved
1440 * for it within the transaction.
1441 *
1442 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1443 * and it indicates the fork which is to be truncated.  For the
1444 * attribute fork we only support truncation to size 0.
1445 *
1446 * We use the sync parameter to indicate whether or not the first
1447 * transaction we perform might have to be synchronous.  For the attr fork,
1448 * it needs to be so if the unlink of the inode is not yet known to be
1449 * permanent in the log.  This keeps us from freeing and reusing the
1450 * blocks of the attribute fork before the unlink of the inode becomes
1451 * permanent.
1452 *
1453 * For the data fork, we normally have to run synchronously if we're
1454 * being called out of the inactive path or we're being called
1455 * out of the create path where we're truncating an existing file.
1456 * Either way, the truncate needs to be sync so blocks don't reappear
1457 * in the file with altered data in case of a crash.  wsync filesystems
1458 * can run the first case async because anything that shrinks the inode
1459 * has to run sync so by the time we're called here from inactive, the
1460 * inode size is permanently set to 0.
1461 *
1462 * Calls from the truncate path always need to be sync unless we're
1463 * in a wsync filesystem and the file has already been unlinked.
1464 *
1465 * The caller is responsible for correctly setting the sync parameter.
1466 * It gets too hard for us to guess here which path we're being called
1467 * out of just based on inode state.
1468 */
1469int
1470xfs_itruncate_finish(
1471	xfs_trans_t	**tp,
1472	xfs_inode_t	*ip,
1473	xfs_fsize_t	new_size,
1474	int		fork,
1475	int		sync)
1476{
1477	xfs_fsblock_t	first_block;
1478	xfs_fileoff_t	first_unmap_block;
1479	xfs_fileoff_t	last_block;
1480	xfs_filblks_t	unmap_len=0;
1481	xfs_mount_t	*mp;
1482	xfs_trans_t	*ntp;
1483	int		done;
1484	int		committed;
1485	xfs_bmap_free_t	free_list;
1486	int		error;
1487
1488	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1489	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1490	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1491	ASSERT(*tp != NULL);
1492	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1493	ASSERT(ip->i_transp == *tp);
1494	ASSERT(ip->i_itemp != NULL);
1495	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1496
1497
1498	ntp = *tp;
1499	mp = (ntp)->t_mountp;
1500	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1501
1502	/*
1503	 * We only support truncating the entire attribute fork.
1504	 */
1505	if (fork == XFS_ATTR_FORK) {
1506		new_size = 0LL;
1507	}
1508	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1509	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1510	/*
1511	 * The first thing we do is set the size to new_size permanently
1512	 * on disk.  This way we don't have to worry about anyone ever
1513	 * being able to look at the data being freed even in the face
1514	 * of a crash.  What we're getting around here is the case where
1515	 * we free a block, it is allocated to another file, it is written
1516	 * to, and then we crash.  If the new data gets written to the
1517	 * file but the log buffers containing the free and reallocation
1518	 * don't, then we'd end up with garbage in the blocks being freed.
1519	 * As long as we make the new_size permanent before actually
1520	 * freeing any blocks it doesn't matter if they get writtten to.
1521	 *
1522	 * The callers must signal into us whether or not the size
1523	 * setting here must be synchronous.  There are a few cases
1524	 * where it doesn't have to be synchronous.  Those cases
1525	 * occur if the file is unlinked and we know the unlink is
1526	 * permanent or if the blocks being truncated are guaranteed
1527	 * to be beyond the inode eof (regardless of the link count)
1528	 * and the eof value is permanent.  Both of these cases occur
1529	 * only on wsync-mounted filesystems.  In those cases, we're
1530	 * guaranteed that no user will ever see the data in the blocks
1531	 * that are being truncated so the truncate can run async.
1532	 * In the free beyond eof case, the file may wind up with
1533	 * more blocks allocated to it than it needs if we crash
1534	 * and that won't get fixed until the next time the file
1535	 * is re-opened and closed but that's ok as that shouldn't
1536	 * be too many blocks.
1537	 *
1538	 * However, we can't just make all wsync xactions run async
1539	 * because there's one call out of the create path that needs
1540	 * to run sync where it's truncating an existing file to size
1541	 * 0 whose size is > 0.
1542	 *
1543	 * It's probably possible to come up with a test in this
1544	 * routine that would correctly distinguish all the above
1545	 * cases from the values of the function parameters and the
1546	 * inode state but for sanity's sake, I've decided to let the
1547	 * layers above just tell us.  It's simpler to correctly figure
1548	 * out in the layer above exactly under what conditions we
1549	 * can run async and I think it's easier for others read and
1550	 * follow the logic in case something has to be changed.
1551	 * cscope is your friend -- rcc.
1552	 *
1553	 * The attribute fork is much simpler.
1554	 *
1555	 * For the attribute fork we allow the caller to tell us whether
1556	 * the unlink of the inode that led to this call is yet permanent
1557	 * in the on disk log.  If it is not and we will be freeing extents
1558	 * in this inode then we make the first transaction synchronous
1559	 * to make sure that the unlink is permanent by the time we free
1560	 * the blocks.
1561	 */
1562	if (fork == XFS_DATA_FORK) {
1563		if (ip->i_d.di_nextents > 0) {
1564			ip->i_d.di_size = new_size;
1565			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1566		}
1567	} else if (sync) {
1568		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1569		if (ip->i_d.di_anextents > 0)
1570			xfs_trans_set_sync(ntp);
1571	}
1572	ASSERT(fork == XFS_DATA_FORK ||
1573		(fork == XFS_ATTR_FORK &&
1574			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1575			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1576
1577	/*
1578	 * Since it is possible for space to become allocated beyond
1579	 * the end of the file (in a crash where the space is allocated
1580	 * but the inode size is not yet updated), simply remove any
1581	 * blocks which show up between the new EOF and the maximum
1582	 * possible file size.  If the first block to be removed is
1583	 * beyond the maximum file size (ie it is the same as last_block),
1584	 * then there is nothing to do.
1585	 */
1586	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1587	ASSERT(first_unmap_block <= last_block);
1588	done = 0;
1589	if (last_block == first_unmap_block) {
1590		done = 1;
1591	} else {
1592		unmap_len = last_block - first_unmap_block + 1;
1593	}
1594	while (!done) {
1595		/*
1596		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1597		 * will tell us whether it freed the entire range or
1598		 * not.  If this is a synchronous mount (wsync),
1599		 * then we can tell bunmapi to keep all the
1600		 * transactions asynchronous since the unlink
1601		 * transaction that made this inode inactive has
1602		 * already hit the disk.  There's no danger of
1603		 * the freed blocks being reused, there being a
1604		 * crash, and the reused blocks suddenly reappearing
1605		 * in this file with garbage in them once recovery
1606		 * runs.
1607		 */
1608		XFS_BMAP_INIT(&free_list, &first_block);
1609		error = xfs_bunmapi(ntp, ip, first_unmap_block,
1610				    unmap_len,
1611				    XFS_BMAPI_AFLAG(fork) |
1612				      (sync ? 0 : XFS_BMAPI_ASYNC),
1613				    XFS_ITRUNC_MAX_EXTENTS,
1614				    &first_block, &free_list, &done);
1615		if (error) {
1616			/*
1617			 * If the bunmapi call encounters an error,
1618			 * return to the caller where the transaction
1619			 * can be properly aborted.  We just need to
1620			 * make sure we're not holding any resources
1621			 * that we were not when we came in.
1622			 */
1623			xfs_bmap_cancel(&free_list);
1624			return error;
1625		}
1626
1627		/*
1628		 * Duplicate the transaction that has the permanent
1629		 * reservation and commit the old transaction.
1630		 */
1631		error = xfs_bmap_finish(tp, &free_list, first_block,
1632					&committed);
1633		ntp = *tp;
1634		if (error) {
1635			/*
1636			 * If the bmap finish call encounters an error,
1637			 * return to the caller where the transaction
1638			 * can be properly aborted.  We just need to
1639			 * make sure we're not holding any resources
1640			 * that we were not when we came in.
1641			 *
1642			 * Aborting from this point might lose some
1643			 * blocks in the file system, but oh well.
1644			 */
1645			xfs_bmap_cancel(&free_list);
1646			if (committed) {
1647				/*
1648				 * If the passed in transaction committed
1649				 * in xfs_bmap_finish(), then we want to
1650				 * add the inode to this one before returning.
1651				 * This keeps things simple for the higher
1652				 * level code, because it always knows that
1653				 * the inode is locked and held in the
1654				 * transaction that returns to it whether
1655				 * errors occur or not.  We don't mark the
1656				 * inode dirty so that this transaction can
1657				 * be easily aborted if possible.
1658				 */
1659				xfs_trans_ijoin(ntp, ip,
1660					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1661				xfs_trans_ihold(ntp, ip);
1662			}
1663			return error;
1664		}
1665
1666		if (committed) {
1667			/*
1668			 * The first xact was committed,
1669			 * so add the inode to the new one.
1670			 * Mark it dirty so it will be logged
1671			 * and moved forward in the log as
1672			 * part of every commit.
1673			 */
1674			xfs_trans_ijoin(ntp, ip,
1675					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1676			xfs_trans_ihold(ntp, ip);
1677			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1678		}
1679		ntp = xfs_trans_dup(ntp);
1680		(void) xfs_trans_commit(*tp, 0, NULL);
1681		*tp = ntp;
1682		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1683					  XFS_TRANS_PERM_LOG_RES,
1684					  XFS_ITRUNCATE_LOG_COUNT);
1685		/*
1686		 * Add the inode being truncated to the next chained
1687		 * transaction.
1688		 */
1689		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1690		xfs_trans_ihold(ntp, ip);
1691		if (error)
1692			return (error);
1693	}
1694	/*
1695	 * Only update the size in the case of the data fork, but
1696	 * always re-log the inode so that our permanent transaction
1697	 * can keep on rolling it forward in the log.
1698	 */
1699	if (fork == XFS_DATA_FORK) {
1700		xfs_isize_check(mp, ip, new_size);
1701		ip->i_d.di_size = new_size;
1702	}
1703	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1704	ASSERT((new_size != 0) ||
1705	       (fork == XFS_ATTR_FORK) ||
1706	       (ip->i_delayed_blks == 0));
1707	ASSERT((new_size != 0) ||
1708	       (fork == XFS_ATTR_FORK) ||
1709	       (ip->i_d.di_nextents == 0));
1710	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1711	return 0;
1712}
1713
1714
1715/*
1716 * xfs_igrow_start
1717 *
1718 * Do the first part of growing a file: zero any data in the last
1719 * block that is beyond the old EOF.  We need to do this before
1720 * the inode is joined to the transaction to modify the i_size.
1721 * That way we can drop the inode lock and call into the buffer
1722 * cache to get the buffer mapping the EOF.
1723 */
1724int
1725xfs_igrow_start(
1726	xfs_inode_t	*ip,
1727	xfs_fsize_t	new_size,
1728	cred_t		*credp)
1729{
1730	xfs_fsize_t	isize;
1731	int		error;
1732
1733	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1734	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1735	ASSERT(new_size > ip->i_d.di_size);
1736
1737	error = 0;
1738	isize = ip->i_d.di_size;
1739	/*
1740	 * Zero any pages that may have been created by
1741	 * xfs_write_file() beyond the end of the file
1742	 * and any blocks between the old and new file sizes.
1743	 */
1744	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
1745				new_size);
1746	return error;
1747}
1748
1749/*
1750 * xfs_igrow_finish
1751 *
1752 * This routine is called to extend the size of a file.
1753 * The inode must have both the iolock and the ilock locked
1754 * for update and it must be a part of the current transaction.
1755 * The xfs_igrow_start() function must have been called previously.
1756 * If the change_flag is not zero, the inode change timestamp will
1757 * be updated.
1758 */
1759void
1760xfs_igrow_finish(
1761	xfs_trans_t	*tp,
1762	xfs_inode_t	*ip,
1763	xfs_fsize_t	new_size,
1764	int		change_flag)
1765{
1766	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1767	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1768	ASSERT(ip->i_transp == tp);
1769	ASSERT(new_size > ip->i_d.di_size);
1770
1771	/*
1772	 * Update the file size.  Update the inode change timestamp
1773	 * if change_flag set.
1774	 */
1775	ip->i_d.di_size = new_size;
1776	if (change_flag)
1777		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1778	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1779
1780}
1781
1782
1783/*
1784 * This is called when the inode's link count goes to 0.
1785 * We place the on-disk inode on a list in the AGI.  It
1786 * will be pulled from this list when the inode is freed.
1787 */
1788int
1789xfs_iunlink(
1790	xfs_trans_t	*tp,
1791	xfs_inode_t	*ip)
1792{
1793	xfs_mount_t	*mp;
1794	xfs_agi_t	*agi;
1795	xfs_dinode_t	*dip;
1796	xfs_buf_t	*agibp;
1797	xfs_buf_t	*ibp;
1798	xfs_agnumber_t	agno;
1799	xfs_daddr_t	agdaddr;
1800	xfs_agino_t	agino;
1801	short		bucket_index;
1802	int		offset;
1803	int		error;
1804	int		agi_ok;
1805
1806	ASSERT(ip->i_d.di_nlink == 0);
1807	ASSERT(ip->i_d.di_mode != 0);
1808	ASSERT(ip->i_transp == tp);
1809
1810	mp = tp->t_mountp;
1811
1812	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1813	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1814
1815	/*
1816	 * Get the agi buffer first.  It ensures lock ordering
1817	 * on the list.
1818	 */
1819	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1820				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1821	if (error) {
1822		return error;
1823	}
1824	/*
1825	 * Validate the magic number of the agi block.
1826	 */
1827	agi = XFS_BUF_TO_AGI(agibp);
1828	agi_ok =
1829		INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1830		XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1831	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1832			XFS_RANDOM_IUNLINK))) {
1833		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1834		xfs_trans_brelse(tp, agibp);
1835		return XFS_ERROR(EFSCORRUPTED);
1836	}
1837	/*
1838	 * Get the index into the agi hash table for the
1839	 * list this inode will go on.
1840	 */
1841	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1842	ASSERT(agino != 0);
1843	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1844	ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT));
1845	ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
1846
1847	if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
1848		/*
1849		 * There is already another inode in the bucket we need
1850		 * to add ourselves to.  Add us at the front of the list.
1851		 * Here we put the head pointer into our next pointer,
1852		 * and then we fall through to point the head at us.
1853		 */
1854		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1855		if (error) {
1856			return error;
1857		}
1858		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1859		ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT));
1860		/* both on-disk, don't endian flip twice */
1861		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1862		offset = ip->i_boffset +
1863			offsetof(xfs_dinode_t, di_next_unlinked);
1864		xfs_trans_inode_buf(tp, ibp);
1865		xfs_trans_log_buf(tp, ibp, offset,
1866				  (offset + sizeof(xfs_agino_t) - 1));
1867		xfs_inobp_check(mp, ibp);
1868	}
1869
1870	/*
1871	 * Point the bucket head pointer at the inode being inserted.
1872	 */
1873	ASSERT(agino != 0);
1874	INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
1875	offset = offsetof(xfs_agi_t, agi_unlinked) +
1876		(sizeof(xfs_agino_t) * bucket_index);
1877	xfs_trans_log_buf(tp, agibp, offset,
1878			  (offset + sizeof(xfs_agino_t) - 1));
1879	return 0;
1880}
1881
1882/*
1883 * Pull the on-disk inode from the AGI unlinked list.
1884 */
1885STATIC int
1886xfs_iunlink_remove(
1887	xfs_trans_t	*tp,
1888	xfs_inode_t	*ip)
1889{
1890	xfs_ino_t	next_ino;
1891	xfs_mount_t	*mp;
1892	xfs_agi_t	*agi;
1893	xfs_dinode_t	*dip;
1894	xfs_buf_t	*agibp;
1895	xfs_buf_t	*ibp;
1896	xfs_agnumber_t	agno;
1897	xfs_daddr_t	agdaddr;
1898	xfs_agino_t	agino;
1899	xfs_agino_t	next_agino;
1900	xfs_buf_t	*last_ibp;
1901	xfs_dinode_t	*last_dip;
1902	short		bucket_index;
1903	int		offset, last_offset;
1904	int		error;
1905	int		agi_ok;
1906
1907	/*
1908	 * First pull the on-disk inode from the AGI unlinked list.
1909	 */
1910	mp = tp->t_mountp;
1911
1912	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1913	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1914
1915	/*
1916	 * Get the agi buffer first.  It ensures lock ordering
1917	 * on the list.
1918	 */
1919	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1920				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1921	if (error) {
1922		cmn_err(CE_WARN,
1923			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
1924			error, mp->m_fsname);
1925		return error;
1926	}
1927	/*
1928	 * Validate the magic number of the agi block.
1929	 */
1930	agi = XFS_BUF_TO_AGI(agibp);
1931	agi_ok =
1932		INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1933		XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1934	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1935			XFS_RANDOM_IUNLINK_REMOVE))) {
1936		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1937				     mp, agi);
1938		xfs_trans_brelse(tp, agibp);
1939		cmn_err(CE_WARN,
1940			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
1941			 mp->m_fsname);
1942		return XFS_ERROR(EFSCORRUPTED);
1943	}
1944	/*
1945	 * Get the index into the agi hash table for the
1946	 * list this inode will go on.
1947	 */
1948	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1949	ASSERT(agino != 0);
1950	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1951	ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
1952	ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT));
1953
1954	if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
1955		/*
1956		 * We're at the head of the list.  Get the inode's
1957		 * on-disk buffer to see if there is anyone after us
1958		 * on the list.  Only modify our next pointer if it
1959		 * is not already NULLAGINO.  This saves us the overhead
1960		 * of dealing with the buffer when there is no need to
1961		 * change it.
1962		 */
1963		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1964		if (error) {
1965			cmn_err(CE_WARN,
1966				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1967				error, mp->m_fsname);
1968			return error;
1969		}
1970		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
1971		ASSERT(next_agino != 0);
1972		if (next_agino != NULLAGINO) {
1973			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
1974			offset = ip->i_boffset +
1975				offsetof(xfs_dinode_t, di_next_unlinked);
1976			xfs_trans_inode_buf(tp, ibp);
1977			xfs_trans_log_buf(tp, ibp, offset,
1978					  (offset + sizeof(xfs_agino_t) - 1));
1979			xfs_inobp_check(mp, ibp);
1980		} else {
1981			xfs_trans_brelse(tp, ibp);
1982		}
1983		/*
1984		 * Point the bucket head pointer at the next inode.
1985		 */
1986		ASSERT(next_agino != 0);
1987		ASSERT(next_agino != agino);
1988		INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
1989		offset = offsetof(xfs_agi_t, agi_unlinked) +
1990			(sizeof(xfs_agino_t) * bucket_index);
1991		xfs_trans_log_buf(tp, agibp, offset,
1992				  (offset + sizeof(xfs_agino_t) - 1));
1993	} else {
1994		/*
1995		 * We need to search the list for the inode being freed.
1996		 */
1997		next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
1998		last_ibp = NULL;
1999		while (next_agino != agino) {
2000			/*
2001			 * If the last inode wasn't the one pointing to
2002			 * us, then release its buffer since we're not
2003			 * going to do anything with it.
2004			 */
2005			if (last_ibp != NULL) {
2006				xfs_trans_brelse(tp, last_ibp);
2007			}
2008			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2009			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2010					    &last_ibp, &last_offset);
2011			if (error) {
2012				cmn_err(CE_WARN,
2013			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2014					error, mp->m_fsname);
2015				return error;
2016			}
2017			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2018			ASSERT(next_agino != NULLAGINO);
2019			ASSERT(next_agino != 0);
2020		}
2021		/*
2022		 * Now last_ibp points to the buffer previous to us on
2023		 * the unlinked list.  Pull us from the list.
2024		 */
2025		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2026		if (error) {
2027			cmn_err(CE_WARN,
2028				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2029				error, mp->m_fsname);
2030			return error;
2031		}
2032		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2033		ASSERT(next_agino != 0);
2034		ASSERT(next_agino != agino);
2035		if (next_agino != NULLAGINO) {
2036			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2037			offset = ip->i_boffset +
2038				offsetof(xfs_dinode_t, di_next_unlinked);
2039			xfs_trans_inode_buf(tp, ibp);
2040			xfs_trans_log_buf(tp, ibp, offset,
2041					  (offset + sizeof(xfs_agino_t) - 1));
2042			xfs_inobp_check(mp, ibp);
2043		} else {
2044			xfs_trans_brelse(tp, ibp);
2045		}
2046		/*
2047		 * Point the previous inode on the list to the next inode.
2048		 */
2049		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2050		ASSERT(next_agino != 0);
2051		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2052		xfs_trans_inode_buf(tp, last_ibp);
2053		xfs_trans_log_buf(tp, last_ibp, offset,
2054				  (offset + sizeof(xfs_agino_t) - 1));
2055		xfs_inobp_check(mp, last_ibp);
2056	}
2057	return 0;
2058}
2059
2060static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2061{
2062	return (((ip->i_itemp == NULL) ||
2063		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2064		(ip->i_update_core == 0));
2065}
2066
2067STATIC void
2068xfs_ifree_cluster(
2069	xfs_inode_t	*free_ip,
2070	xfs_trans_t	*tp,
2071	xfs_ino_t	inum)
2072{
2073	xfs_mount_t		*mp = free_ip->i_mount;
2074	int			blks_per_cluster;
2075	int			nbufs;
2076	int			ninodes;
2077	int			i, j, found, pre_flushed;
2078	xfs_daddr_t		blkno;
2079	xfs_buf_t		*bp;
2080	xfs_ihash_t		*ih;
2081	xfs_inode_t		*ip, **ip_found;
2082	xfs_inode_log_item_t	*iip;
2083	xfs_log_item_t		*lip;
2084	SPLDECL(s);
2085
2086	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2087		blks_per_cluster = 1;
2088		ninodes = mp->m_sb.sb_inopblock;
2089		nbufs = XFS_IALLOC_BLOCKS(mp);
2090	} else {
2091		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2092					mp->m_sb.sb_blocksize;
2093		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2094		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2095	}
2096
2097	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2098
2099	for (j = 0; j < nbufs; j++, inum += ninodes) {
2100		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2101					 XFS_INO_TO_AGBNO(mp, inum));
2102
2103
2104		/*
2105		 * Look for each inode in memory and attempt to lock it,
2106		 * we can be racing with flush and tail pushing here.
2107		 * any inode we get the locks on, add to an array of
2108		 * inode items to process later.
2109		 *
2110		 * The get the buffer lock, we could beat a flush
2111		 * or tail pushing thread to the lock here, in which
2112		 * case they will go looking for the inode buffer
2113		 * and fail, we need some other form of interlock
2114		 * here.
2115		 */
2116		found = 0;
2117		for (i = 0; i < ninodes; i++) {
2118			ih = XFS_IHASH(mp, inum + i);
2119			read_lock(&ih->ih_lock);
2120			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2121				if (ip->i_ino == inum + i)
2122					break;
2123			}
2124
2125			/* Inode not in memory or we found it already,
2126			 * nothing to do
2127			 */
2128			if (!ip || (ip->i_flags & XFS_ISTALE)) {
2129				read_unlock(&ih->ih_lock);
2130				continue;
2131			}
2132
2133			if (xfs_inode_clean(ip)) {
2134				read_unlock(&ih->ih_lock);
2135				continue;
2136			}
2137
2138			/* If we can get the locks then add it to the
2139			 * list, otherwise by the time we get the bp lock
2140			 * below it will already be attached to the
2141			 * inode buffer.
2142			 */
2143
2144			/* This inode will already be locked - by us, lets
2145			 * keep it that way.
2146			 */
2147
2148			if (ip == free_ip) {
2149				if (xfs_iflock_nowait(ip)) {
2150					ip->i_flags |= XFS_ISTALE;
2151
2152					if (xfs_inode_clean(ip)) {
2153						xfs_ifunlock(ip);
2154					} else {
2155						ip_found[found++] = ip;
2156					}
2157				}
2158				read_unlock(&ih->ih_lock);
2159				continue;
2160			}
2161
2162			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2163				if (xfs_iflock_nowait(ip)) {
2164					ip->i_flags |= XFS_ISTALE;
2165
2166					if (xfs_inode_clean(ip)) {
2167						xfs_ifunlock(ip);
2168						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2169					} else {
2170						ip_found[found++] = ip;
2171					}
2172				} else {
2173					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2174				}
2175			}
2176
2177			read_unlock(&ih->ih_lock);
2178		}
2179
2180		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2181					mp->m_bsize * blks_per_cluster,
2182					XFS_BUF_LOCK);
2183
2184		pre_flushed = 0;
2185		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2186		while (lip) {
2187			if (lip->li_type == XFS_LI_INODE) {
2188				iip = (xfs_inode_log_item_t *)lip;
2189				ASSERT(iip->ili_logged == 1);
2190				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2191				AIL_LOCK(mp,s);
2192				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2193				AIL_UNLOCK(mp, s);
2194				iip->ili_inode->i_flags |= XFS_ISTALE;
2195				pre_flushed++;
2196			}
2197			lip = lip->li_bio_list;
2198		}
2199
2200		for (i = 0; i < found; i++) {
2201			ip = ip_found[i];
2202			iip = ip->i_itemp;
2203
2204			if (!iip) {
2205				ip->i_update_core = 0;
2206				xfs_ifunlock(ip);
2207				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2208				continue;
2209			}
2210
2211			iip->ili_last_fields = iip->ili_format.ilf_fields;
2212			iip->ili_format.ilf_fields = 0;
2213			iip->ili_logged = 1;
2214			AIL_LOCK(mp,s);
2215			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2216			AIL_UNLOCK(mp, s);
2217
2218			xfs_buf_attach_iodone(bp,
2219				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2220				xfs_istale_done, (xfs_log_item_t *)iip);
2221			if (ip != free_ip) {
2222				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2223			}
2224		}
2225
2226		if (found || pre_flushed)
2227			xfs_trans_stale_inode_buf(tp, bp);
2228		xfs_trans_binval(tp, bp);
2229	}
2230
2231	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2232}
2233
2234/*
2235 * This is called to return an inode to the inode free list.
2236 * The inode should already be truncated to 0 length and have
2237 * no pages associated with it.  This routine also assumes that
2238 * the inode is already a part of the transaction.
2239 *
2240 * The on-disk copy of the inode will have been added to the list
2241 * of unlinked inodes in the AGI. We need to remove the inode from
2242 * that list atomically with respect to freeing it here.
2243 */
2244int
2245xfs_ifree(
2246	xfs_trans_t	*tp,
2247	xfs_inode_t	*ip,
2248	xfs_bmap_free_t	*flist)
2249{
2250	int			error;
2251	int			delete;
2252	xfs_ino_t		first_ino;
2253
2254	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2255	ASSERT(ip->i_transp == tp);
2256	ASSERT(ip->i_d.di_nlink == 0);
2257	ASSERT(ip->i_d.di_nextents == 0);
2258	ASSERT(ip->i_d.di_anextents == 0);
2259	ASSERT((ip->i_d.di_size == 0) ||
2260	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2261	ASSERT(ip->i_d.di_nblocks == 0);
2262
2263	/*
2264	 * Pull the on-disk inode from the AGI unlinked list.
2265	 */
2266	error = xfs_iunlink_remove(tp, ip);
2267	if (error != 0) {
2268		return error;
2269	}
2270
2271	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2272	if (error != 0) {
2273		return error;
2274	}
2275	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2276	ip->i_d.di_flags = 0;
2277	ip->i_d.di_dmevmask = 0;
2278	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2279	ip->i_df.if_ext_max =
2280		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2281	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2282	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2283	/*
2284	 * Bump the generation count so no one will be confused
2285	 * by reincarnations of this inode.
2286	 */
2287	ip->i_d.di_gen++;
2288	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2289
2290	if (delete) {
2291		xfs_ifree_cluster(ip, tp, first_ino);
2292	}
2293
2294	return 0;
2295}
2296
2297/*
2298 * Reallocate the space for if_broot based on the number of records
2299 * being added or deleted as indicated in rec_diff.  Move the records
2300 * and pointers in if_broot to fit the new size.  When shrinking this
2301 * will eliminate holes between the records and pointers created by
2302 * the caller.  When growing this will create holes to be filled in
2303 * by the caller.
2304 *
2305 * The caller must not request to add more records than would fit in
2306 * the on-disk inode root.  If the if_broot is currently NULL, then
2307 * if we adding records one will be allocated.  The caller must also
2308 * not request that the number of records go below zero, although
2309 * it can go to zero.
2310 *
2311 * ip -- the inode whose if_broot area is changing
2312 * ext_diff -- the change in the number of records, positive or negative,
2313 *	 requested for the if_broot array.
2314 */
2315void
2316xfs_iroot_realloc(
2317	xfs_inode_t		*ip,
2318	int			rec_diff,
2319	int			whichfork)
2320{
2321	int			cur_max;
2322	xfs_ifork_t		*ifp;
2323	xfs_bmbt_block_t	*new_broot;
2324	int			new_max;
2325	size_t			new_size;
2326	char			*np;
2327	char			*op;
2328
2329	/*
2330	 * Handle the degenerate case quietly.
2331	 */
2332	if (rec_diff == 0) {
2333		return;
2334	}
2335
2336	ifp = XFS_IFORK_PTR(ip, whichfork);
2337	if (rec_diff > 0) {
2338		/*
2339		 * If there wasn't any memory allocated before, just
2340		 * allocate it now and get out.
2341		 */
2342		if (ifp->if_broot_bytes == 0) {
2343			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2344			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2345								     KM_SLEEP);
2346			ifp->if_broot_bytes = (int)new_size;
2347			return;
2348		}
2349
2350		/*
2351		 * If there is already an existing if_broot, then we need
2352		 * to realloc() it and shift the pointers to their new
2353		 * location.  The records don't change location because
2354		 * they are kept butted up against the btree block header.
2355		 */
2356		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2357		new_max = cur_max + rec_diff;
2358		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2359		ifp->if_broot = (xfs_bmbt_block_t *)
2360		  kmem_realloc(ifp->if_broot,
2361				new_size,
2362				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2363				KM_SLEEP);
2364		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2365						      ifp->if_broot_bytes);
2366		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2367						      (int)new_size);
2368		ifp->if_broot_bytes = (int)new_size;
2369		ASSERT(ifp->if_broot_bytes <=
2370			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2371		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2372		return;
2373	}
2374
2375	/*
2376	 * rec_diff is less than 0.  In this case, we are shrinking the
2377	 * if_broot buffer.  It must already exist.  If we go to zero
2378	 * records, just get rid of the root and clear the status bit.
2379	 */
2380	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2381	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2382	new_max = cur_max + rec_diff;
2383	ASSERT(new_max >= 0);
2384	if (new_max > 0)
2385		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2386	else
2387		new_size = 0;
2388	if (new_size > 0) {
2389		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2390		/*
2391		 * First copy over the btree block header.
2392		 */
2393		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2394	} else {
2395		new_broot = NULL;
2396		ifp->if_flags &= ~XFS_IFBROOT;
2397	}
2398
2399	/*
2400	 * Only copy the records and pointers if there are any.
2401	 */
2402	if (new_max > 0) {
2403		/*
2404		 * First copy the records.
2405		 */
2406		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2407						     ifp->if_broot_bytes);
2408		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2409						     (int)new_size);
2410		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2411
2412		/*
2413		 * Then copy the pointers.
2414		 */
2415		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2416						     ifp->if_broot_bytes);
2417		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2418						     (int)new_size);
2419		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2420	}
2421	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2422	ifp->if_broot = new_broot;
2423	ifp->if_broot_bytes = (int)new_size;
2424	ASSERT(ifp->if_broot_bytes <=
2425		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2426	return;
2427}
2428
2429
2430/*
2431 * This is called when the amount of space needed for if_extents
2432 * is increased or decreased.  The change in size is indicated by
2433 * the number of extents that need to be added or deleted in the
2434 * ext_diff parameter.
2435 *
2436 * If the amount of space needed has decreased below the size of the
2437 * inline buffer, then switch to using the inline buffer.  Otherwise,
2438 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2439 * to what is needed.
2440 *
2441 * ip -- the inode whose if_extents area is changing
2442 * ext_diff -- the change in the number of extents, positive or negative,
2443 *	 requested for the if_extents array.
2444 */
2445void
2446xfs_iext_realloc(
2447	xfs_inode_t	*ip,
2448	int		ext_diff,
2449	int		whichfork)
2450{
2451	int		byte_diff;
2452	xfs_ifork_t	*ifp;
2453	int		new_size;
2454	uint		rnew_size;
2455
2456	if (ext_diff == 0) {
2457		return;
2458	}
2459
2460	ifp = XFS_IFORK_PTR(ip, whichfork);
2461	byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2462	new_size = (int)ifp->if_bytes + byte_diff;
2463	ASSERT(new_size >= 0);
2464
2465	if (new_size == 0) {
2466		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2467			ASSERT(ifp->if_real_bytes != 0);
2468			kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2469		}
2470		ifp->if_u1.if_extents = NULL;
2471		rnew_size = 0;
2472	} else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2473		/*
2474		 * If the valid extents can fit in if_inline_ext,
2475		 * copy them from the malloc'd vector and free it.
2476		 */
2477		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2478			/*
2479			 * For now, empty files are format EXTENTS,
2480			 * so the if_extents pointer is null.
2481			 */
2482			if (ifp->if_u1.if_extents) {
2483				memcpy(ifp->if_u2.if_inline_ext,
2484					ifp->if_u1.if_extents, new_size);
2485				kmem_free(ifp->if_u1.if_extents,
2486					  ifp->if_real_bytes);
2487			}
2488			ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2489		}
2490		rnew_size = 0;
2491	} else {
2492		rnew_size = new_size;
2493		if ((rnew_size & (rnew_size - 1)) != 0)
2494			rnew_size = xfs_iroundup(rnew_size);
2495		/*
2496		 * Stuck with malloc/realloc.
2497		 */
2498		if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2499			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2500				kmem_alloc(rnew_size, KM_SLEEP);
2501			memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2502			      sizeof(ifp->if_u2.if_inline_ext));
2503		} else if (rnew_size != ifp->if_real_bytes) {
2504			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2505			  kmem_realloc(ifp->if_u1.if_extents,
2506					rnew_size,
2507					ifp->if_real_bytes,
2508					KM_NOFS);
2509		}
2510	}
2511	ifp->if_real_bytes = rnew_size;
2512	ifp->if_bytes = new_size;
2513}
2514
2515
2516/*
2517 * This is called when the amount of space needed for if_data
2518 * is increased or decreased.  The change in size is indicated by
2519 * the number of bytes that need to be added or deleted in the
2520 * byte_diff parameter.
2521 *
2522 * If the amount of space needed has decreased below the size of the
2523 * inline buffer, then switch to using the inline buffer.  Otherwise,
2524 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2525 * to what is needed.
2526 *
2527 * ip -- the inode whose if_data area is changing
2528 * byte_diff -- the change in the number of bytes, positive or negative,
2529 *	 requested for the if_data array.
2530 */
2531void
2532xfs_idata_realloc(
2533	xfs_inode_t	*ip,
2534	int		byte_diff,
2535	int		whichfork)
2536{
2537	xfs_ifork_t	*ifp;
2538	int		new_size;
2539	int		real_size;
2540
2541	if (byte_diff == 0) {
2542		return;
2543	}
2544
2545	ifp = XFS_IFORK_PTR(ip, whichfork);
2546	new_size = (int)ifp->if_bytes + byte_diff;
2547	ASSERT(new_size >= 0);
2548
2549	if (new_size == 0) {
2550		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2551			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2552		}
2553		ifp->if_u1.if_data = NULL;
2554		real_size = 0;
2555	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2556		/*
2557		 * If the valid extents/data can fit in if_inline_ext/data,
2558		 * copy them from the malloc'd vector and free it.
2559		 */
2560		if (ifp->if_u1.if_data == NULL) {
2561			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2562		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2563			ASSERT(ifp->if_real_bytes != 0);
2564			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2565			      new_size);
2566			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2567			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2568		}
2569		real_size = 0;
2570	} else {
2571		/*
2572		 * Stuck with malloc/realloc.
2573		 * For inline data, the underlying buffer must be
2574		 * a multiple of 4 bytes in size so that it can be
2575		 * logged and stay on word boundaries.  We enforce
2576		 * that here.
2577		 */
2578		real_size = roundup(new_size, 4);
2579		if (ifp->if_u1.if_data == NULL) {
2580			ASSERT(ifp->if_real_bytes == 0);
2581			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2582		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2583			/*
2584			 * Only do the realloc if the underlying size
2585			 * is really changing.
2586			 */
2587			if (ifp->if_real_bytes != real_size) {
2588				ifp->if_u1.if_data =
2589					kmem_realloc(ifp->if_u1.if_data,
2590							real_size,
2591							ifp->if_real_bytes,
2592							KM_SLEEP);
2593			}
2594		} else {
2595			ASSERT(ifp->if_real_bytes == 0);
2596			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2597			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2598				ifp->if_bytes);
2599		}
2600	}
2601	ifp->if_real_bytes = real_size;
2602	ifp->if_bytes = new_size;
2603	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2604}
2605
2606
2607
2608
2609/*
2610 * Map inode to disk block and offset.
2611 *
2612 * mp -- the mount point structure for the current file system
2613 * tp -- the current transaction
2614 * ino -- the inode number of the inode to be located
2615 * imap -- this structure is filled in with the information necessary
2616 *	 to retrieve the given inode from disk
2617 * flags -- flags to pass to xfs_dilocate indicating whether or not
2618 *	 lookups in the inode btree were OK or not
2619 */
2620int
2621xfs_imap(
2622	xfs_mount_t	*mp,
2623	xfs_trans_t	*tp,
2624	xfs_ino_t	ino,
2625	xfs_imap_t	*imap,
2626	uint		flags)
2627{
2628	xfs_fsblock_t	fsbno;
2629	int		len;
2630	int		off;
2631	int		error;
2632
2633	fsbno = imap->im_blkno ?
2634		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2635	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2636	if (error != 0) {
2637		return error;
2638	}
2639	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2640	imap->im_len = XFS_FSB_TO_BB(mp, len);
2641	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2642	imap->im_ioffset = (ushort)off;
2643	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2644	return 0;
2645}
2646
2647void
2648xfs_idestroy_fork(
2649	xfs_inode_t	*ip,
2650	int		whichfork)
2651{
2652	xfs_ifork_t	*ifp;
2653
2654	ifp = XFS_IFORK_PTR(ip, whichfork);
2655	if (ifp->if_broot != NULL) {
2656		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2657		ifp->if_broot = NULL;
2658	}
2659
2660	/*
2661	 * If the format is local, then we can't have an extents
2662	 * array so just look for an inline data array.  If we're
2663	 * not local then we may or may not have an extents list,
2664	 * so check and free it up if we do.
2665	 */
2666	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2667		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2668		    (ifp->if_u1.if_data != NULL)) {
2669			ASSERT(ifp->if_real_bytes != 0);
2670			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2671			ifp->if_u1.if_data = NULL;
2672			ifp->if_real_bytes = 0;
2673		}
2674	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2675		   (ifp->if_u1.if_extents != NULL) &&
2676		   (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2677		ASSERT(ifp->if_real_bytes != 0);
2678		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2679		ifp->if_u1.if_extents = NULL;
2680		ifp->if_real_bytes = 0;
2681	}
2682	ASSERT(ifp->if_u1.if_extents == NULL ||
2683	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2684	ASSERT(ifp->if_real_bytes == 0);
2685	if (whichfork == XFS_ATTR_FORK) {
2686		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2687		ip->i_afp = NULL;
2688	}
2689}
2690
2691/*
2692 * This is called free all the memory associated with an inode.
2693 * It must free the inode itself and any buffers allocated for
2694 * if_extents/if_data and if_broot.  It must also free the lock
2695 * associated with the inode.
2696 */
2697void
2698xfs_idestroy(
2699	xfs_inode_t	*ip)
2700{
2701
2702	switch (ip->i_d.di_mode & S_IFMT) {
2703	case S_IFREG:
2704	case S_IFDIR:
2705	case S_IFLNK:
2706		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2707		break;
2708	}
2709	if (ip->i_afp)
2710		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2711	mrfree(&ip->i_lock);
2712	mrfree(&ip->i_iolock);
2713	freesema(&ip->i_flock);
2714#ifdef XFS_BMAP_TRACE
2715	ktrace_free(ip->i_xtrace);
2716#endif
2717#ifdef XFS_BMBT_TRACE
2718	ktrace_free(ip->i_btrace);
2719#endif
2720#ifdef XFS_RW_TRACE
2721	ktrace_free(ip->i_rwtrace);
2722#endif
2723#ifdef XFS_ILOCK_TRACE
2724	ktrace_free(ip->i_lock_trace);
2725#endif
2726#ifdef XFS_DIR2_TRACE
2727	ktrace_free(ip->i_dir_trace);
2728#endif
2729	if (ip->i_itemp) {
2730		/* XXXdpd should be able to assert this but shutdown
2731		 * is leaving the AIL behind. */
2732		ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2733		       XFS_FORCED_SHUTDOWN(ip->i_mount));
2734		xfs_inode_item_destroy(ip);
2735	}
2736	kmem_zone_free(xfs_inode_zone, ip);
2737}
2738
2739
2740/*
2741 * Increment the pin count of the given buffer.
2742 * This value is protected by ipinlock spinlock in the mount structure.
2743 */
2744void
2745xfs_ipin(
2746	xfs_inode_t	*ip)
2747{
2748	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2749
2750	atomic_inc(&ip->i_pincount);
2751}
2752
2753/*
2754 * Decrement the pin count of the given inode, and wake up
2755 * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2756 * inode must have been previoulsy pinned with a call to xfs_ipin().
2757 */
2758void
2759xfs_iunpin(
2760	xfs_inode_t	*ip)
2761{
2762	ASSERT(atomic_read(&ip->i_pincount) > 0);
2763
2764	if (atomic_dec_and_test(&ip->i_pincount)) {
2765#if XXXKAN
2766		/*
2767		 * Should I mark FreeBSD vnode as dirty here?
2768		 */
2769		printf("%s:%d: Should I mark FreeBSD vnode as dirty here?\n",
2770		    __FILE__, __LINE__);
2771		xfs_vnode_t	*vp = XFS_ITOV_NULL(ip);
2772
2773		/* make sync come back and flush this inode */
2774		if (vp) {
2775			struct inode	*inode = LINVFS_GET_IP(vp);
2776
2777			if (!(inode->i_state & I_NEW))
2778				mark_inode_dirty_sync(inode);
2779		}
2780#endif
2781
2782		wakeup(&ip->i_ipin_wait);
2783	}
2784}
2785
2786/*
2787 * This is called to wait for the given inode to be unpinned.
2788 * It will sleep until this happens.  The caller must have the
2789 * inode locked in at least shared mode so that the buffer cannot
2790 * be subsequently pinned once someone is waiting for it to be
2791 * unpinned.
2792 */
2793STATIC void
2794xfs_iunpin_wait(
2795	xfs_inode_t	*ip)
2796{
2797	xfs_inode_log_item_t	*iip;
2798	xfs_lsn_t	lsn;
2799
2800	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2801
2802	if (atomic_read(&ip->i_pincount) == 0) {
2803		return;
2804	}
2805
2806	iip = ip->i_itemp;
2807	if (iip && iip->ili_last_lsn) {
2808		lsn = iip->ili_last_lsn;
2809	} else {
2810		lsn = (xfs_lsn_t)0;
2811	}
2812
2813	/*
2814	 * Give the log a push so we don't wait here too long.
2815	 */
2816	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2817
2818	/*
2819	 * XXXKAN: xfs_iunpin is not locking inode
2820	 * at all?
2821	 */
2822	while(atomic_read(&ip->i_pincount) != 0)
2823		tsleep(&ip->i_ipin_wait, PRIBIO, "iunpin", 0);
2824}
2825
2826
2827/*
2828 * xfs_iextents_copy()
2829 *
2830 * This is called to copy the REAL extents (as opposed to the delayed
2831 * allocation extents) from the inode into the given buffer.  It
2832 * returns the number of bytes copied into the buffer.
2833 *
2834 * If there are no delayed allocation extents, then we can just
2835 * memcpy() the extents into the buffer.  Otherwise, we need to
2836 * examine each extent in turn and skip those which are delayed.
2837 */
2838int
2839xfs_iextents_copy(
2840	xfs_inode_t		*ip,
2841	xfs_bmbt_rec_t		*buffer,
2842	int			whichfork)
2843{
2844	int			copied;
2845	xfs_bmbt_rec_t		*dest_ep;
2846	xfs_bmbt_rec_t		*ep;
2847#ifdef XFS_BMAP_TRACE
2848	static char		fname[] = "xfs_iextents_copy";
2849#endif
2850	int			i;
2851	xfs_ifork_t		*ifp;
2852	int			nrecs;
2853	xfs_fsblock_t		start_block;
2854
2855	ifp = XFS_IFORK_PTR(ip, whichfork);
2856	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2857	ASSERT(ifp->if_bytes > 0);
2858
2859	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2860	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2861	ASSERT(nrecs > 0);
2862
2863	/*
2864	 * There are some delayed allocation extents in the
2865	 * inode, so copy the extents one at a time and skip
2866	 * the delayed ones.  There must be at least one
2867	 * non-delayed extent.
2868	 */
2869	ep = ifp->if_u1.if_extents;
2870	dest_ep = buffer;
2871	copied = 0;
2872	for (i = 0; i < nrecs; i++) {
2873		start_block = xfs_bmbt_get_startblock(ep);
2874		if (ISNULLSTARTBLOCK(start_block)) {
2875			/*
2876			 * It's a delayed allocation extent, so skip it.
2877			 */
2878			ep++;
2879			continue;
2880		}
2881
2882		/* Translate to on disk format */
2883		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2884			      (__uint64_t*)&dest_ep->l0);
2885		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2886			      (__uint64_t*)&dest_ep->l1);
2887		dest_ep++;
2888		ep++;
2889		copied++;
2890	}
2891	ASSERT(copied != 0);
2892	xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2893
2894	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2895}
2896
2897/*
2898 * Each of the following cases stores data into the same region
2899 * of the on-disk inode, so only one of them can be valid at
2900 * any given time. While it is possible to have conflicting formats
2901 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2902 * in EXTENTS format, this can only happen when the fork has
2903 * changed formats after being modified but before being flushed.
2904 * In these cases, the format always takes precedence, because the
2905 * format indicates the current state of the fork.
2906 */
2907/*ARGSUSED*/
2908STATIC int
2909xfs_iflush_fork(
2910	xfs_inode_t		*ip,
2911	xfs_dinode_t		*dip,
2912	xfs_inode_log_item_t	*iip,
2913	int			whichfork,
2914	xfs_buf_t		*bp)
2915{
2916	char			*cp;
2917	xfs_ifork_t		*ifp;
2918	xfs_mount_t		*mp;
2919#ifdef XFS_TRANS_DEBUG
2920	int			first;
2921#endif
2922	static const short	brootflag[2] =
2923		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2924	static const short	dataflag[2] =
2925		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2926	static const short	extflag[2] =
2927		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2928
2929	if (iip == NULL)
2930		return 0;
2931	ifp = XFS_IFORK_PTR(ip, whichfork);
2932	/*
2933	 * This can happen if we gave up in iformat in an error path,
2934	 * for the attribute fork.
2935	 */
2936	if (ifp == NULL) {
2937		ASSERT(whichfork == XFS_ATTR_FORK);
2938		return 0;
2939	}
2940	cp = XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
2941	mp = ip->i_mount;
2942	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2943	case XFS_DINODE_FMT_LOCAL:
2944		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2945		    (ifp->if_bytes > 0)) {
2946			ASSERT(ifp->if_u1.if_data != NULL);
2947			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2948			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2949		}
2950		if (whichfork == XFS_DATA_FORK) {
2951			if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2952				XFS_ERROR_REPORT("xfs_iflush_fork",
2953						 XFS_ERRLEVEL_LOW, mp);
2954				return XFS_ERROR(EFSCORRUPTED);
2955			}
2956		}
2957		break;
2958
2959	case XFS_DINODE_FMT_EXTENTS:
2960		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2961		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2962		ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
2963		ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
2964		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2965		    (ifp->if_bytes > 0)) {
2966			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2967			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2968				whichfork);
2969		}
2970		break;
2971
2972	case XFS_DINODE_FMT_BTREE:
2973		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2974		    (ifp->if_broot_bytes > 0)) {
2975			ASSERT(ifp->if_broot != NULL);
2976			ASSERT(ifp->if_broot_bytes <=
2977			       (XFS_IFORK_SIZE(ip, whichfork) +
2978				XFS_BROOT_SIZE_ADJ));
2979			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2980				(xfs_bmdr_block_t *)cp,
2981				XFS_DFORK_SIZE_ARCH(dip, mp, whichfork, ARCH_CONVERT));
2982		}
2983		break;
2984
2985	case XFS_DINODE_FMT_DEV:
2986		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2987			ASSERT(whichfork == XFS_DATA_FORK);
2988			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2989		}
2990		break;
2991
2992	case XFS_DINODE_FMT_UUID:
2993		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2994			ASSERT(whichfork == XFS_DATA_FORK);
2995			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2996				sizeof(uuid_t));
2997		}
2998		break;
2999
3000	default:
3001		ASSERT(0);
3002		break;
3003	}
3004
3005	return 0;
3006}
3007
3008/*
3009 * xfs_iflush() will write a modified inode's changes out to the
3010 * inode's on disk home.  The caller must have the inode lock held
3011 * in at least shared mode and the inode flush semaphore must be
3012 * held as well.  The inode lock will still be held upon return from
3013 * the call and the caller is free to unlock it.
3014 * The inode flush lock will be unlocked when the inode reaches the disk.
3015 * The flags indicate how the inode's buffer should be written out.
3016 */
3017int
3018xfs_iflush(
3019	xfs_inode_t		*ip,
3020	uint			flags)
3021{
3022	xfs_inode_log_item_t	*iip;
3023	xfs_buf_t		*bp;
3024	xfs_dinode_t		*dip;
3025	xfs_mount_t		*mp;
3026	int			error;
3027	/* REFERENCED */
3028	xfs_chash_t		*ch;
3029	xfs_inode_t		*iq;
3030	int			clcount;	/* count of inodes clustered */
3031	int			bufwasdelwri;
3032	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3033	SPLDECL(s);
3034
3035	XFS_STATS_INC(xs_iflush_count);
3036
3037	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3038	ASSERT(valusema(&ip->i_flock) <= 0);
3039	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3040	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3041
3042	iip = ip->i_itemp;
3043	mp = ip->i_mount;
3044
3045	/*
3046	 * If the inode isn't dirty, then just release the inode
3047	 * flush lock and do nothing.
3048	 */
3049	if ((ip->i_update_core == 0) &&
3050	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3051		ASSERT((iip != NULL) ?
3052			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3053		xfs_ifunlock(ip);
3054		return 0;
3055	}
3056
3057	/*
3058	 * We can't flush the inode until it is unpinned, so
3059	 * wait for it.  We know noone new can pin it, because
3060	 * we are holding the inode lock shared and you need
3061	 * to hold it exclusively to pin the inode.
3062	 */
3063	xfs_iunpin_wait(ip);
3064
3065	/*
3066	 * This may have been unpinned because the filesystem is shutting
3067	 * down forcibly. If that's the case we must not write this inode
3068	 * to disk, because the log record didn't make it to disk!
3069	 */
3070	if (XFS_FORCED_SHUTDOWN(mp)) {
3071		ip->i_update_core = 0;
3072		if (iip)
3073			iip->ili_format.ilf_fields = 0;
3074		xfs_ifunlock(ip);
3075		return XFS_ERROR(EIO);
3076	}
3077
3078	/*
3079	 * Get the buffer containing the on-disk inode.
3080	 */
3081	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3082	if (error != 0) {
3083		xfs_ifunlock(ip);
3084		return error;
3085	}
3086
3087	/*
3088	 * Decide how buffer will be flushed out.  This is done before
3089	 * the call to xfs_iflush_int because this field is zeroed by it.
3090	 */
3091	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3092		/*
3093		 * Flush out the inode buffer according to the directions
3094		 * of the caller.  In the cases where the caller has given
3095		 * us a choice choose the non-delwri case.  This is because
3096		 * the inode is in the AIL and we need to get it out soon.
3097		 */
3098		switch (flags) {
3099		case XFS_IFLUSH_SYNC:
3100		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3101			flags = 0;
3102			break;
3103		case XFS_IFLUSH_ASYNC:
3104		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3105			flags = INT_ASYNC;
3106			break;
3107		case XFS_IFLUSH_DELWRI:
3108			flags = INT_DELWRI;
3109			break;
3110		default:
3111			ASSERT(0);
3112			flags = 0;
3113			break;
3114		}
3115	} else {
3116		switch (flags) {
3117		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3118		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3119		case XFS_IFLUSH_DELWRI:
3120			flags = INT_DELWRI;
3121			break;
3122		case XFS_IFLUSH_ASYNC:
3123			flags = INT_ASYNC;
3124			break;
3125		case XFS_IFLUSH_SYNC:
3126			flags = 0;
3127			break;
3128		default:
3129			ASSERT(0);
3130			flags = 0;
3131			break;
3132		}
3133	}
3134
3135	/*
3136	 * First flush out the inode that xfs_iflush was called with.
3137	 */
3138	error = xfs_iflush_int(ip, bp);
3139	if (error) {
3140		goto corrupt_out;
3141	}
3142
3143	/*
3144	 * inode clustering:
3145	 * see if other inodes can be gathered into this write
3146	 */
3147
3148	ip->i_chash->chl_buf = bp;
3149
3150	ch = XFS_CHASH(mp, ip->i_blkno);
3151	s = mutex_spinlock(&ch->ch_lock);
3152
3153	clcount = 0;
3154	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3155		/*
3156		 * Do an un-protected check to see if the inode is dirty and
3157		 * is a candidate for flushing.  These checks will be repeated
3158		 * later after the appropriate locks are acquired.
3159		 */
3160		iip = iq->i_itemp;
3161		if ((iq->i_update_core == 0) &&
3162		    ((iip == NULL) ||
3163		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3164		      xfs_ipincount(iq) == 0) {
3165			continue;
3166		}
3167
3168		/*
3169		 * Try to get locks.  If any are unavailable,
3170		 * then this inode cannot be flushed and is skipped.
3171		 */
3172
3173		/* get inode locks (just i_lock) */
3174		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3175			/* get inode flush lock */
3176			if (xfs_iflock_nowait(iq)) {
3177				/* check if pinned */
3178				if (xfs_ipincount(iq) == 0) {
3179					/* arriving here means that
3180					 * this inode can be flushed.
3181					 * first re-check that it's
3182					 * dirty
3183					 */
3184					iip = iq->i_itemp;
3185					if ((iq->i_update_core != 0)||
3186					    ((iip != NULL) &&
3187					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3188						clcount++;
3189						error = xfs_iflush_int(iq, bp);
3190						if (error) {
3191							xfs_iunlock(iq,
3192								    XFS_ILOCK_SHARED);
3193							goto cluster_corrupt_out;
3194						}
3195					} else {
3196						xfs_ifunlock(iq);
3197					}
3198				} else {
3199					xfs_ifunlock(iq);
3200				}
3201			}
3202			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3203		}
3204	}
3205	mutex_spinunlock(&ch->ch_lock, s);
3206
3207	if (clcount) {
3208		XFS_STATS_INC(xs_icluster_flushcnt);
3209		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3210	}
3211
3212	/*
3213	 * If the buffer is pinned then push on the log so we won't
3214	 * get stuck waiting in the write for too long.
3215	 */
3216	if (XFS_BUF_ISPINNED(bp)){
3217		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3218	}
3219
3220	if (flags & INT_DELWRI) {
3221		xfs_bdwrite(mp, bp);
3222	} else if (flags & INT_ASYNC) {
3223		xfs_bawrite(mp, bp);
3224	} else {
3225		error = xfs_bwrite(mp, bp);
3226	}
3227	return error;
3228
3229corrupt_out:
3230	xfs_buf_relse(bp);
3231	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3232	xfs_iflush_abort(ip);
3233	/*
3234	 * Unlocks the flush lock
3235	 */
3236	return XFS_ERROR(EFSCORRUPTED);
3237
3238cluster_corrupt_out:
3239	/* Corruption detected in the clustering loop.  Invalidate the
3240	 * inode buffer and shut down the filesystem.
3241	 */
3242	mutex_spinunlock(&ch->ch_lock, s);
3243
3244	/*
3245	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3246	 * brelse can handle it with no problems.  If not, shut down the
3247	 * filesystem before releasing the buffer.
3248	 */
3249	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3250		xfs_buf_relse(bp);
3251	}
3252
3253	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3254
3255	if(!bufwasdelwri)  {
3256		/*
3257		 * Just like incore_relse: if we have b_iodone functions,
3258		 * mark the buffer as an error and call them.  Otherwise
3259		 * mark it as stale and brelse.
3260		 */
3261		if (XFS_BUF_IODONE_FUNC(bp)) {
3262			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3263			XFS_BUF_UNDONE(bp);
3264			XFS_BUF_STALE(bp);
3265			XFS_BUF_SHUT(bp);
3266			XFS_BUF_ERROR(bp,EIO);
3267			xfs_biodone(bp);
3268		} else {
3269			XFS_BUF_STALE(bp);
3270			xfs_buf_relse(bp);
3271		}
3272	}
3273
3274	xfs_iflush_abort(iq);
3275	/*
3276	 * Unlocks the flush lock
3277	 */
3278	return XFS_ERROR(EFSCORRUPTED);
3279}
3280
3281
3282STATIC int
3283xfs_iflush_int(
3284	xfs_inode_t		*ip,
3285	xfs_buf_t		*bp)
3286{
3287	xfs_inode_log_item_t	*iip;
3288	xfs_dinode_t		*dip;
3289	xfs_mount_t		*mp;
3290#ifdef XFS_TRANS_DEBUG
3291	int			first;
3292#endif
3293	SPLDECL(s);
3294
3295	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3296	ASSERT(valusema(&ip->i_flock) <= 0);
3297	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3298	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3299
3300	iip = ip->i_itemp;
3301	mp = ip->i_mount;
3302
3303
3304	/*
3305	 * If the inode isn't dirty, then just release the inode
3306	 * flush lock and do nothing.
3307	 */
3308	if ((ip->i_update_core == 0) &&
3309	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3310		xfs_ifunlock(ip);
3311		return 0;
3312	}
3313
3314	/* set *dip = inode's place in the buffer */
3315	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3316
3317	/*
3318	 * Clear i_update_core before copying out the data.
3319	 * This is for coordination with our timestamp updates
3320	 * that don't hold the inode lock. They will always
3321	 * update the timestamps BEFORE setting i_update_core,
3322	 * so if we clear i_update_core after they set it we
3323	 * are guaranteed to see their updates to the timestamps.
3324	 * I believe that this depends on strongly ordered memory
3325	 * semantics, but we have that.  We use the SYNCHRONIZE
3326	 * macro to make sure that the compiler does not reorder
3327	 * the i_update_core access below the data copy below.
3328	 */
3329	ip->i_update_core = 0;
3330	SYNCHRONIZE();
3331
3332	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3333			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3334		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3335		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3336			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3337		goto corrupt_out;
3338	}
3339	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3340				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3341		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3342			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3343			ip->i_ino, ip, ip->i_d.di_magic);
3344		goto corrupt_out;
3345	}
3346	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3347		if (XFS_TEST_ERROR(
3348		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3349		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3350		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3351			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3352				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3353				ip->i_ino, ip);
3354			goto corrupt_out;
3355		}
3356	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3357		if (XFS_TEST_ERROR(
3358		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3359		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3360		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3361		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3362			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3363				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3364				ip->i_ino, ip);
3365			goto corrupt_out;
3366		}
3367	}
3368	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3369				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3370				XFS_RANDOM_IFLUSH_5)) {
3371		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3372			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3373			ip->i_ino,
3374			ip->i_d.di_nextents + ip->i_d.di_anextents,
3375			ip->i_d.di_nblocks,
3376			ip);
3377		goto corrupt_out;
3378	}
3379	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3380				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3381		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3382			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3383			ip->i_ino, ip->i_d.di_forkoff, ip);
3384		goto corrupt_out;
3385	}
3386	/*
3387	 * bump the flush iteration count, used to detect flushes which
3388	 * postdate a log record during recovery.
3389	 */
3390
3391	ip->i_d.di_flushiter++;
3392
3393	/*
3394	 * Copy the dirty parts of the inode into the on-disk
3395	 * inode.  We always copy out the core of the inode,
3396	 * because if the inode is dirty at all the core must
3397	 * be.
3398	 */
3399	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d),
3400		-1, ARCH_CONVERT);
3401
3402	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3403	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3404		ip->i_d.di_flushiter = 0;
3405
3406	/*
3407	 * If this is really an old format inode and the superblock version
3408	 * has not been updated to support only new format inodes, then
3409	 * convert back to the old inode format.  If the superblock version
3410	 * has been updated, then make the conversion permanent.
3411	 */
3412	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3413	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3414	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3415		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3416			/*
3417			 * Convert it back.
3418			 */
3419			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3420			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3421		} else {
3422			/*
3423			 * The superblock version has already been bumped,
3424			 * so just make the conversion to the new inode
3425			 * format permanent.
3426			 */
3427			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3428			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3429			ip->i_d.di_onlink = 0;
3430			INT_ZERO(dip->di_core.di_onlink, ARCH_CONVERT);
3431			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3432			memset(&(dip->di_core.di_pad[0]), 0,
3433			      sizeof(dip->di_core.di_pad));
3434			ASSERT(ip->i_d.di_projid == 0);
3435		}
3436	}
3437
3438	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3439		goto corrupt_out;
3440	}
3441
3442	if (XFS_IFORK_Q(ip)) {
3443		/*
3444		 * The only error from xfs_iflush_fork is on the data fork.
3445		 */
3446		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3447	}
3448	xfs_inobp_check(mp, bp);
3449
3450	/*
3451	 * We've recorded everything logged in the inode, so we'd
3452	 * like to clear the ilf_fields bits so we don't log and
3453	 * flush things unnecessarily.  However, we can't stop
3454	 * logging all this information until the data we've copied
3455	 * into the disk buffer is written to disk.  If we did we might
3456	 * overwrite the copy of the inode in the log with all the
3457	 * data after re-logging only part of it, and in the face of
3458	 * a crash we wouldn't have all the data we need to recover.
3459	 *
3460	 * What we do is move the bits to the ili_last_fields field.
3461	 * When logging the inode, these bits are moved back to the
3462	 * ilf_fields field.  In the xfs_iflush_done() routine we
3463	 * clear ili_last_fields, since we know that the information
3464	 * those bits represent is permanently on disk.  As long as
3465	 * the flush completes before the inode is logged again, then
3466	 * both ilf_fields and ili_last_fields will be cleared.
3467	 *
3468	 * We can play with the ilf_fields bits here, because the inode
3469	 * lock must be held exclusively in order to set bits there
3470	 * and the flush lock protects the ili_last_fields bits.
3471	 * Set ili_logged so the flush done
3472	 * routine can tell whether or not to look in the AIL.
3473	 * Also, store the current LSN of the inode so that we can tell
3474	 * whether the item has moved in the AIL from xfs_iflush_done().
3475	 * In order to read the lsn we need the AIL lock, because
3476	 * it is a 64 bit value that cannot be read atomically.
3477	 */
3478	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3479		iip->ili_last_fields = iip->ili_format.ilf_fields;
3480		iip->ili_format.ilf_fields = 0;
3481		iip->ili_logged = 1;
3482
3483		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3484		AIL_LOCK(mp,s);
3485		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3486		AIL_UNLOCK(mp, s);
3487
3488		/*
3489		 * Attach the function xfs_iflush_done to the inode's
3490		 * buffer.  This will remove the inode from the AIL
3491		 * and unlock the inode's flush lock when the inode is
3492		 * completely written to disk.
3493		 */
3494		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3495				      xfs_iflush_done, (xfs_log_item_t *)iip);
3496
3497		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3498		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3499	} else {
3500		/*
3501		 * We're flushing an inode which is not in the AIL and has
3502		 * not been logged but has i_update_core set.  For this
3503		 * case we can use a B_DELWRI flush and immediately drop
3504		 * the inode flush lock because we can avoid the whole
3505		 * AIL state thing.  It's OK to drop the flush lock now,
3506		 * because we've already locked the buffer and to do anything
3507		 * you really need both.
3508		 */
3509		if (iip != NULL) {
3510			ASSERT(iip->ili_logged == 0);
3511			ASSERT(iip->ili_last_fields == 0);
3512			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3513		}
3514		xfs_ifunlock(ip);
3515	}
3516
3517	return 0;
3518
3519corrupt_out:
3520	return XFS_ERROR(EFSCORRUPTED);
3521}
3522
3523/*
3524 * Flush all inactive inodes in mp.  Return true if no user references
3525 * were found, false otherwise.
3526 */
3527int
3528xfs_iflush_all(
3529	xfs_mount_t	*mp,
3530	int		flag)
3531{
3532	int		busy;
3533	int		done;
3534	int		purged;
3535	xfs_inode_t	*ip;
3536	vmap_t		vmap;
3537	xfs_vnode_t	*vp;
3538
3539	busy = done = 0;
3540	while (!done) {
3541		purged = 0;
3542		XFS_MOUNT_ILOCK(mp);
3543		ip = mp->m_inodes;
3544		if (ip == NULL) {
3545			break;
3546		}
3547		do {
3548			/* Make sure we skip markers inserted by sync */
3549			if (ip->i_mount == NULL) {
3550				ip = ip->i_mnext;
3551				continue;
3552			}
3553
3554			/*
3555			 * It's up to our caller to purge the root
3556			 * and quota vnodes later.
3557			 */
3558			vp = XFS_ITOV_NULL(ip);
3559
3560			if (!vp) {
3561				XFS_MOUNT_IUNLOCK(mp);
3562				xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3563				purged = 1;
3564				break;
3565			}
3566
3567			if (vn_count(vp) != 0) {
3568				if (vn_count(vp) == 1 &&
3569				    (ip == mp->m_rootip ||
3570				     (mp->m_quotainfo &&
3571				      (ip->i_ino == mp->m_sb.sb_uquotino ||
3572				       ip->i_ino == mp->m_sb.sb_gquotino)))) {
3573
3574					ip = ip->i_mnext;
3575					continue;
3576				}
3577				if (!(flag & XFS_FLUSH_ALL)) {
3578					busy = 1;
3579					done = 1;
3580					break;
3581				}
3582				/*
3583				 * Ignore busy inodes but continue flushing
3584				 * others.
3585				 */
3586				ip = ip->i_mnext;
3587				continue;
3588			}
3589			/*
3590			 * Sample vp mapping while holding mp locked on MP
3591			 * systems, so we don't purge a reclaimed or
3592			 * nonexistent vnode.  We break from the loop
3593			 * since we know that we modify
3594			 * it by pulling ourselves from it in xfs_reclaim()
3595			 * called via vn_purge() below.  Set ip to the next
3596			 * entry in the list anyway so we'll know below
3597			 * whether we reached the end or not.
3598			 */
3599			VMAP(vp, vmap);
3600			XFS_MOUNT_IUNLOCK(mp);
3601
3602			vn_purge(vp, &vmap);
3603
3604			purged = 1;
3605			break;
3606		} while (ip != mp->m_inodes);
3607		/*
3608		 * We need to distinguish between when we exit the loop
3609		 * after a purge and when we simply hit the end of the
3610		 * list.  We can't use the (ip == mp->m_inodes) test,
3611		 * because when we purge an inode at the start of the list
3612		 * the next inode on the list becomes mp->m_inodes.  That
3613		 * would cause such a test to bail out early.  The purged
3614		 * variable tells us how we got out of the loop.
3615		 */
3616		if (!purged) {
3617			done = 1;
3618		}
3619	}
3620	XFS_MOUNT_IUNLOCK(mp);
3621	return !busy;
3622}
3623
3624
3625/*
3626 * xfs_iaccess: check accessibility of inode for mode.
3627 */
3628int
3629xfs_iaccess(
3630	xfs_inode_t	*ip,
3631	mode_t		mode,
3632	cred_t		*cr)
3633{
3634	xfs_vnode_t	*vp;
3635	int		error;
3636	mode_t		imode;
3637
3638	vp = XFS_ITOV(ip);
3639	imode = (ip->i_d.di_mode & MODEMASK) | VTTOIF(vp->v_type);
3640
3641	if (mode & S_IWUSR) {
3642		xfs_mount_t	*mp = ip->i_mount;
3643
3644		if ((XVFSTOMNT(XFS_MTOVFS(mp))->mnt_flag & MNT_RDONLY) &&
3645		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3646			return XFS_ERROR(EROFS);
3647
3648#if XXXKAN
3649		if (IS_IMMUTABLE(inode))
3650			return XFS_ERROR(EACCES);
3651#endif
3652	}
3653
3654	/*
3655	 * If there's an Access Control List it's used instead of
3656	 * the mode bits.
3657	 */
3658	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3659		return error ? XFS_ERROR(error) : 0;
3660
3661
3662	error = vaccess(vp->v_type, imode, ip->i_d.di_uid, ip->i_d.di_gid,
3663	    mode, cr, NULL);
3664
3665	return (error);
3666}
3667
3668/*
3669 * xfs_iroundup: round up argument to next power of two
3670 */
3671uint
3672xfs_iroundup(
3673	uint	v)
3674{
3675	int i;
3676	uint m;
3677
3678	if ((v & (v - 1)) == 0)
3679		return v;
3680	ASSERT((v & 0x80000000) == 0);
3681	if ((v & (v + 1)) == 0)
3682		return v + 1;
3683	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3684		if (v & m)
3685			continue;
3686		v |= m;
3687		if ((v & (v + 1)) == 0)
3688			return v + 1;
3689	}
3690	ASSERT(0);
3691	return( 0 );
3692}
3693
3694/*
3695 * Change the requested timestamp in the given inode.
3696 * We don't lock across timestamp updates, and we don't log them but
3697 * we do record the fact that there is dirty information in core.
3698 *
3699 * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
3700 *		with XFS_ICHGTIME_ACC to be sure that access time
3701 *		update will take.  Calling first with XFS_ICHGTIME_ACC
3702 *		and then XFS_ICHGTIME_MOD may fail to modify the access
3703 *		timestamp if the filesystem is mounted noacctm.
3704 */
3705void
3706xfs_ichgtime(xfs_inode_t *ip,
3707	     int flags)
3708{
3709	timespec_t	tv;
3710	xfs_vnode_t	*vp = XFS_ITOV(ip);
3711	/*
3712	 * We're not supposed to change timestamps in readonly-mounted
3713	 * filesystems.  Throw it away if anyone asks us.
3714	 */
3715	if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
3716		return;
3717
3718	/*
3719	 * Don't update access timestamps on reads if mounted "noatime"
3720	 * Throw it away if anyone asks us.
3721	 */
3722	if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME ||
3723	    (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)) &&
3724	    ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
3725			== XFS_ICHGTIME_ACC))
3726		return;
3727
3728	nanotime(&tv);
3729	if (flags & XFS_ICHGTIME_MOD) {
3730		VN_MTIMESET(vp, &tv);
3731		ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
3732	}
3733	if (flags & XFS_ICHGTIME_ACC) {
3734		VN_ATIMESET(vp, &tv);
3735		ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
3736	}
3737	if (flags & XFS_ICHGTIME_CHG) {
3738		VN_CTIMESET(vp, &tv);
3739		ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
3740	}
3741
3742	/*
3743	 * We update the i_update_core field _after_ changing
3744	 * the timestamps in order to coordinate properly with
3745	 * xfs_iflush() so that we don't lose timestamp updates.
3746	 * This keeps us from having to hold the inode lock
3747	 * while doing this.  We use the SYNCHRONIZE macro to
3748	 * ensure that the compiler does not reorder the update
3749	 * of i_update_core above the timestamp updates above.
3750	 */
3751	SYNCHRONIZE();
3752	ip->i_update_core = 1;
3753#if XXXKAN
3754	if (!(inode->i_state & I_LOCK))
3755		mark_inode_dirty_sync(inode);
3756
3757	printf("xfs_ichgtime mark vnode dirty\n");
3758#endif
3759}
3760
3761#ifdef XFS_ILOCK_TRACE
3762ktrace_t	*xfs_ilock_trace_buf;
3763
3764void
3765xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3766{
3767	ktrace_enter(ip->i_lock_trace,
3768		     (void *)ip,
3769		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3770		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3771		     (void *)ra,		/* caller of ilock */
3772		     (void *)(unsigned long)current_cpu(),
3773		     (void *)(unsigned long)current_pid(),
3774		     0,0,0,0,0,0,0,0,0,0);
3775}
3776#endif
3777