1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_imap.h"
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
29#include "xfs_dir.h"
30#include "xfs_dir2.h"
31#include "xfs_dmapi.h"
32#include "xfs_mount.h"
33#include "xfs_bmap_btree.h"
34#include "xfs_alloc_btree.h"
35#include "xfs_ialloc_btree.h"
36#include "xfs_dir_sf.h"
37#include "xfs_dir2_sf.h"
38#include "xfs_attr_sf.h"
39#include "xfs_dinode.h"
40#include "xfs_inode.h"
41#include "xfs_buf_item.h"
42#include "xfs_inode_item.h"
43#include "xfs_btree.h"
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
47#include "xfs_rw.h"
48#include "xfs_error.h"
49#include "xfs_utils.h"
50#include "xfs_dir2_trace.h"
51#include "xfs_quota.h"
52#include "xfs_mac.h"
53#include "xfs_acl.h"
54
55
56kmem_zone_t *xfs_ifork_zone;
57kmem_zone_t *xfs_inode_zone;
58kmem_zone_t *xfs_chashlist_zone;
59
60/*
61 * Used in xfs_itruncate().  This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define	XFS_ITRUNC_MAX_EXTENTS	2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
71#ifdef DEBUG
72/*
73 * Make sure that the extents in the given memory buffer
74 * are valid.
75 */
76STATIC void
77xfs_validate_extents(
78	xfs_ifork_t		*ifp,
79	int			nrecs,
80	int			disk,
81	xfs_exntfmt_t		fmt)
82{
83	xfs_bmbt_rec_t		*ep;
84	xfs_bmbt_irec_t		irec;
85	xfs_bmbt_rec_t		rec;
86	int			i;
87
88	for (i = 0; i < nrecs; i++) {
89		ep = xfs_iext_get_ext(ifp, i);
90		rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
91		rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
92		if (disk)
93			xfs_bmbt_disk_get_all(&rec, &irec);
94		else
95			xfs_bmbt_get_all(&rec, &irec);
96		if (fmt == XFS_EXTFMT_NOSTATE)
97			ASSERT(irec.br_state == XFS_EXT_NORM);
98	}
99}
100#else /* DEBUG */
101#define xfs_validate_extents(ifp, nrecs, disk, fmt)
102#endif /* DEBUG */
103
104/*
105 * Check that none of the inode's in the buffer have a next
106 * unlinked field of 0.
107 */
108#if defined(DEBUG)
109void
110xfs_inobp_check(
111	xfs_mount_t	*mp,
112	xfs_buf_t	*bp)
113{
114	int		i;
115	int		j;
116	xfs_dinode_t	*dip;
117
118	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
119
120	for (i = 0; i < j; i++) {
121		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
122					i * mp->m_sb.sb_inodesize);
123		if (!dip->di_next_unlinked)  {
124			xfs_fs_cmn_err(CE_ALERT, mp,
125				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
126				bp);
127			ASSERT(dip->di_next_unlinked);
128		}
129	}
130}
131#endif
132
133/*
134 * This routine is called to map an inode number within a file
135 * system to the buffer containing the on-disk version of the
136 * inode.  It returns a pointer to the buffer containing the
137 * on-disk inode in the bpp parameter, and in the dip parameter
138 * it returns a pointer to the on-disk inode within that buffer.
139 *
140 * If a non-zero error is returned, then the contents of bpp and
141 * dipp are undefined.
142 *
143 * Use xfs_imap() to determine the size and location of the
144 * buffer to read from disk.
145 */
146STATIC int
147xfs_inotobp(
148	xfs_mount_t	*mp,
149	xfs_trans_t	*tp,
150	xfs_ino_t	ino,
151	xfs_dinode_t	**dipp,
152	xfs_buf_t	**bpp,
153	int		*offset)
154{
155	int		di_ok;
156	xfs_imap_t	imap;
157	xfs_buf_t	*bp;
158	int		error;
159	xfs_dinode_t	*dip;
160
161	/*
162	 * Call the space management code to find the location of the
163	 * inode on disk.
164	 */
165	imap.im_blkno = 0;
166	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
167	if (error != 0) {
168		cmn_err(CE_WARN,
169	"xfs_inotobp: xfs_imap()  returned an "
170	"error %d on %s.  Returning error.", error, mp->m_fsname);
171		return error;
172	}
173
174	/*
175	 * If the inode number maps to a block outside the bounds of the
176	 * file system then return NULL rather than calling read_buf
177	 * and panicing when we get an error from the driver.
178	 */
179	if ((imap.im_blkno + imap.im_len) >
180	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
181		cmn_err(CE_WARN,
182	"xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
183	"of the file system %s.  Returning EINVAL.",
184			(unsigned long long)imap.im_blkno,
185			imap.im_len, mp->m_fsname);
186		return XFS_ERROR(EINVAL);
187	}
188
189	/*
190	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
191	 * default to just a read_buf() call.
192	 */
193	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
194				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
195
196	if (error) {
197		cmn_err(CE_WARN,
198	"xfs_inotobp: xfs_trans_read_buf()  returned an "
199	"error %d on %s.  Returning error.", error, mp->m_fsname);
200		return error;
201	}
202	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
203	di_ok =
204		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
205		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
206	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
207			XFS_RANDOM_ITOBP_INOTOBP))) {
208		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
209		xfs_trans_brelse(tp, bp);
210		cmn_err(CE_WARN,
211	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
212	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
213		return XFS_ERROR(EFSCORRUPTED);
214	}
215
216	xfs_inobp_check(mp, bp);
217
218	/*
219	 * Set *dipp to point to the on-disk inode in the buffer.
220	 */
221	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
222	*bpp = bp;
223	*offset = imap.im_boffset;
224	return 0;
225}
226
227
228/*
229 * This routine is called to map an inode to the buffer containing
230 * the on-disk version of the inode.  It returns a pointer to the
231 * buffer containing the on-disk inode in the bpp parameter, and in
232 * the dip parameter it returns a pointer to the on-disk inode within
233 * that buffer.
234 *
235 * If a non-zero error is returned, then the contents of bpp and
236 * dipp are undefined.
237 *
238 * If the inode is new and has not yet been initialized, use xfs_imap()
239 * to determine the size and location of the buffer to read from disk.
240 * If the inode has already been mapped to its buffer and read in once,
241 * then use the mapping information stored in the inode rather than
242 * calling xfs_imap().  This allows us to avoid the overhead of looking
243 * at the inode btree for small block file systems (see xfs_dilocate()).
244 * We can tell whether the inode has been mapped in before by comparing
245 * its disk block address to 0.  Only uninitialized inodes will have
246 * 0 for the disk block address.
247 */
248int
249xfs_itobp(
250	xfs_mount_t	*mp,
251	xfs_trans_t	*tp,
252	xfs_inode_t	*ip,
253	xfs_dinode_t	**dipp,
254	xfs_buf_t	**bpp,
255	xfs_daddr_t	bno,
256	uint		imap_flags)
257{
258	xfs_buf_t	*bp;
259	int		error;
260	xfs_imap_t	imap;
261#ifdef __KERNEL__
262	int		i;
263	int		ni;
264#endif
265
266	if (ip->i_blkno == (xfs_daddr_t)0) {
267		/*
268		 * Call the space management code to find the location of the
269		 * inode on disk.
270		 */
271		imap.im_blkno = bno;
272		if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
273					XFS_IMAP_LOOKUP | imap_flags)))
274			return error;
275
276		/*
277		 * If the inode number maps to a block outside the bounds
278		 * of the file system then return NULL rather than calling
279		 * read_buf and panicing when we get an error from the
280		 * driver.
281		 */
282		if ((imap.im_blkno + imap.im_len) >
283		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
284#ifdef DEBUG
285			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
286					"(imap.im_blkno (0x%llx) "
287					"+ imap.im_len (0x%llx)) > "
288					" XFS_FSB_TO_BB(mp, "
289					"mp->m_sb.sb_dblocks) (0x%llx)",
290					(unsigned long long) imap.im_blkno,
291					(unsigned long long) imap.im_len,
292					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
293#endif /* DEBUG */
294			return XFS_ERROR(EINVAL);
295		}
296
297		/*
298		 * Fill in the fields in the inode that will be used to
299		 * map the inode to its buffer from now on.
300		 */
301		ip->i_blkno = imap.im_blkno;
302		ip->i_len = imap.im_len;
303		ip->i_boffset = imap.im_boffset;
304	} else {
305		/*
306		 * We've already mapped the inode once, so just use the
307		 * mapping that we saved the first time.
308		 */
309		imap.im_blkno = ip->i_blkno;
310		imap.im_len = ip->i_len;
311		imap.im_boffset = ip->i_boffset;
312	}
313	ASSERT(bno == 0 || bno == imap.im_blkno);
314
315	/*
316	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
317	 * default to just a read_buf() call.
318	 */
319	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
320				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
321
322	if (error) {
323#ifdef DEBUG
324		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
325				"xfs_trans_read_buf() returned error %d, "
326				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
327				error, (unsigned long long) imap.im_blkno,
328				(unsigned long long) imap.im_len);
329#endif /* DEBUG */
330		return error;
331	}
332#ifdef __KERNEL__
333	/*
334	 * Validate the magic number and version of every inode in the buffer
335	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
336	 */
337#ifdef DEBUG
338	ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
339		(BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
340#else
341	ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
342#endif
343	for (i = 0; i < ni; i++) {
344		int		di_ok;
345		xfs_dinode_t	*dip;
346
347		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
348					(i << mp->m_sb.sb_inodelog));
349		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
350			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
351		if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
352				 XFS_RANDOM_ITOBP_INOTOBP))) {
353#ifdef DEBUG
354			prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
355				mp->m_ddev_targp,
356				(unsigned long long)imap.im_blkno, i,
357				INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
358#endif
359			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360					     mp, dip);
361			xfs_trans_brelse(tp, bp);
362			return XFS_ERROR(EFSCORRUPTED);
363		}
364	}
365#endif	/* __KERNEL__ */
366
367	xfs_inobp_check(mp, bp);
368
369	/*
370	 * Mark the buffer as an inode buffer now that it looks good
371	 */
372	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
373
374	/*
375	 * Set *dipp to point to the on-disk inode in the buffer.
376	 */
377	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
378	*bpp = bp;
379	return 0;
380}
381
382/*
383 * Move inode type and inode format specific information from the
384 * on-disk inode to the in-core inode.  For fifos, devs, and sockets
385 * this means set if_rdev to the proper value.  For files, directories,
386 * and symlinks this means to bring in the in-line data or extent
387 * pointers.  For a file in B-tree format, only the root is immediately
388 * brought in-core.  The rest will be in-lined in if_extents when it
389 * is first referenced (see xfs_iread_extents()).
390 */
391STATIC int
392xfs_iformat(
393	xfs_inode_t		*ip,
394	xfs_dinode_t		*dip)
395{
396	xfs_attr_shortform_t	*atp;
397	int			size;
398	int			error;
399	xfs_fsize_t             di_size;
400	ip->i_df.if_ext_max =
401		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
402	error = 0;
403
404	if (unlikely(
405	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
406		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
407	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
408		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
409			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
410			(unsigned long long)ip->i_ino,
411			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
412			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
413			(unsigned long long)
414			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
415		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
416				     ip->i_mount, dip);
417		return XFS_ERROR(EFSCORRUPTED);
418	}
419
420	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
421		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
422			"corrupt dinode %Lu, forkoff = 0x%x.",
423			(unsigned long long)ip->i_ino,
424			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
425		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
426				     ip->i_mount, dip);
427		return XFS_ERROR(EFSCORRUPTED);
428	}
429
430	switch (ip->i_d.di_mode & S_IFMT) {
431	case S_IFIFO:
432	case S_IFCHR:
433	case S_IFBLK:
434	case S_IFSOCK:
435		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
436			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
437					      ip->i_mount, dip);
438			return XFS_ERROR(EFSCORRUPTED);
439		}
440		ip->i_d.di_size = 0;
441		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
442		break;
443
444	case S_IFREG:
445	case S_IFLNK:
446	case S_IFDIR:
447		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
448		case XFS_DINODE_FMT_LOCAL:
449			/*
450			 * no local regular files yet
451			 */
452			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
453				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
454					"corrupt inode %Lu "
455					"(local format for regular file).",
456					(unsigned long long) ip->i_ino);
457				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
458						     XFS_ERRLEVEL_LOW,
459						     ip->i_mount, dip);
460				return XFS_ERROR(EFSCORRUPTED);
461			}
462
463			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
464			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
465				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
466					"corrupt inode %Lu "
467					"(bad size %Ld for local inode).",
468					(unsigned long long) ip->i_ino,
469					(long long) di_size);
470				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
471						     XFS_ERRLEVEL_LOW,
472						     ip->i_mount, dip);
473				return XFS_ERROR(EFSCORRUPTED);
474			}
475
476			size = (int)di_size;
477			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
478			break;
479		case XFS_DINODE_FMT_EXTENTS:
480			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
481			break;
482		case XFS_DINODE_FMT_BTREE:
483			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
484			break;
485		default:
486			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
487					 ip->i_mount);
488			return XFS_ERROR(EFSCORRUPTED);
489		}
490		break;
491
492	default:
493		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
494		return XFS_ERROR(EFSCORRUPTED);
495	}
496	if (error) {
497		return error;
498	}
499	if (!XFS_DFORK_Q(dip))
500		return 0;
501	ASSERT(ip->i_afp == NULL);
502	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
503	ip->i_afp->if_ext_max =
504		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
505	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
506	case XFS_DINODE_FMT_LOCAL:
507		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
508		size = be16_to_cpu(atp->hdr.totsize);
509		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
510		break;
511	case XFS_DINODE_FMT_EXTENTS:
512		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
513		break;
514	case XFS_DINODE_FMT_BTREE:
515		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
516		break;
517	default:
518		error = XFS_ERROR(EFSCORRUPTED);
519		break;
520	}
521	if (error) {
522		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
523		ip->i_afp = NULL;
524		xfs_idestroy_fork(ip, XFS_DATA_FORK);
525	}
526	return error;
527}
528
529/*
530 * The file is in-lined in the on-disk inode.
531 * If it fits into if_inline_data, then copy
532 * it there, otherwise allocate a buffer for it
533 * and copy the data there.  Either way, set
534 * if_data to point at the data.
535 * If we allocate a buffer for the data, make
536 * sure that its size is a multiple of 4 and
537 * record the real size in i_real_bytes.
538 */
539STATIC int
540xfs_iformat_local(
541	xfs_inode_t	*ip,
542	xfs_dinode_t	*dip,
543	int		whichfork,
544	int		size)
545{
546	xfs_ifork_t	*ifp;
547	int		real_size;
548
549	/*
550	 * If the size is unreasonable, then something
551	 * is wrong and we just bail out rather than crash in
552	 * kmem_alloc() or memcpy() below.
553	 */
554	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
555		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
556			"corrupt inode %Lu "
557			"(bad size %d for local fork, size = %d).",
558			(unsigned long long) ip->i_ino, size,
559			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
560		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
561				     ip->i_mount, dip);
562		return XFS_ERROR(EFSCORRUPTED);
563	}
564	ifp = XFS_IFORK_PTR(ip, whichfork);
565	real_size = 0;
566	if (size == 0)
567		ifp->if_u1.if_data = NULL;
568	else if (size <= sizeof(ifp->if_u2.if_inline_data))
569		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
570	else {
571		real_size = roundup(size, 4);
572		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
573	}
574	ifp->if_bytes = size;
575	ifp->if_real_bytes = real_size;
576	if (size)
577		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
578	ifp->if_flags &= ~XFS_IFEXTENTS;
579	ifp->if_flags |= XFS_IFINLINE;
580	return 0;
581}
582
583/*
584 * The file consists of a set of extents all
585 * of which fit into the on-disk inode.
586 * If there are few enough extents to fit into
587 * the if_inline_ext, then copy them there.
588 * Otherwise allocate a buffer for them and copy
589 * them into it.  Either way, set if_extents
590 * to point at the extents.
591 */
592STATIC int
593xfs_iformat_extents(
594	xfs_inode_t	*ip,
595	xfs_dinode_t	*dip,
596	int		whichfork)
597{
598	xfs_bmbt_rec_t	*ep, *dp;
599	xfs_ifork_t	*ifp;
600	int		nex;
601	int		size;
602	int		i;
603
604	ifp = XFS_IFORK_PTR(ip, whichfork);
605	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
606	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
607
608	/*
609	 * If the number of extents is unreasonable, then something
610	 * is wrong and we just bail out rather than crash in
611	 * kmem_alloc() or memcpy() below.
612	 */
613	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
614		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
615			"corrupt inode %Lu ((a)extents = %d).",
616			(unsigned long long) ip->i_ino, nex);
617		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
618				     ip->i_mount, dip);
619		return XFS_ERROR(EFSCORRUPTED);
620	}
621
622	ifp->if_real_bytes = 0;
623	if (nex == 0)
624		ifp->if_u1.if_extents = NULL;
625	else if (nex <= XFS_INLINE_EXTS)
626		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
627	else
628		xfs_iext_add(ifp, 0, nex);
629
630	ifp->if_bytes = size;
631	if (size) {
632		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
633		xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
634		for (i = 0; i < nex; i++, dp++) {
635			ep = xfs_iext_get_ext(ifp, i);
636			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
637								ARCH_CONVERT);
638			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
639								ARCH_CONVERT);
640		}
641		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
642			whichfork);
643		if (whichfork != XFS_DATA_FORK ||
644			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
645				if (unlikely(xfs_check_nostate_extents(
646				    ifp, 0, nex))) {
647					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
648							 XFS_ERRLEVEL_LOW,
649							 ip->i_mount);
650					return XFS_ERROR(EFSCORRUPTED);
651				}
652	}
653	ifp->if_flags |= XFS_IFEXTENTS;
654	return 0;
655}
656
657/*
658 * The file has too many extents to fit into
659 * the inode, so they are in B-tree format.
660 * Allocate a buffer for the root of the B-tree
661 * and copy the root into it.  The i_extents
662 * field will remain NULL until all of the
663 * extents are read in (when they are needed).
664 */
665STATIC int
666xfs_iformat_btree(
667	xfs_inode_t		*ip,
668	xfs_dinode_t		*dip,
669	int			whichfork)
670{
671	xfs_bmdr_block_t	*dfp;
672	xfs_ifork_t		*ifp;
673	/* REFERENCED */
674	int			nrecs;
675	int			size;
676
677	ifp = XFS_IFORK_PTR(ip, whichfork);
678	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
679	size = XFS_BMAP_BROOT_SPACE(dfp);
680	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
681
682	/*
683	 * blow out if -- fork has less extents than can fit in
684	 * fork (fork shouldn't be a btree format), root btree
685	 * block has more records than can fit into the fork,
686	 * or the number of extents is greater than the number of
687	 * blocks.
688	 */
689	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
690	    || XFS_BMDR_SPACE_CALC(nrecs) >
691			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
692	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
693		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
694			"corrupt inode %Lu (btree).",
695			(unsigned long long) ip->i_ino);
696		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
697				 ip->i_mount);
698		return XFS_ERROR(EFSCORRUPTED);
699	}
700
701	ifp->if_broot_bytes = size;
702	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
703	ASSERT(ifp->if_broot != NULL);
704	/*
705	 * Copy and convert from the on-disk structure
706	 * to the in-memory structure.
707	 */
708	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
709		ifp->if_broot, size);
710	ifp->if_flags &= ~XFS_IFEXTENTS;
711	ifp->if_flags |= XFS_IFBROOT;
712
713	return 0;
714}
715
716/*
717 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
718 * and native format
719 *
720 * buf  = on-disk representation
721 * dip  = native representation
722 * dir  = direction - +ve -> disk to native
723 *                    -ve -> native to disk
724 */
725void
726xfs_xlate_dinode_core(
727	xfs_caddr_t		buf,
728	xfs_dinode_core_t	*dip,
729	int			dir)
730{
731	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf;
732	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip;
733	xfs_arch_t		arch = ARCH_CONVERT;
734
735	ASSERT(dir);
736
737	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
738	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
739	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch);
740	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
741	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
742	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
743	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
744	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
745	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
746
747	if (dir > 0) {
748		memcpy(mem_core->di_pad, buf_core->di_pad,
749			sizeof(buf_core->di_pad));
750	} else {
751		memcpy(buf_core->di_pad, mem_core->di_pad,
752			sizeof(buf_core->di_pad));
753	}
754
755	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
756
757	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
758			dir, arch);
759	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
760			dir, arch);
761	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
762			dir, arch);
763	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
764			dir, arch);
765	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
766			dir, arch);
767	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
768			dir, arch);
769	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
770	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
771	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
772	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
773	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
774	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
775	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
776	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
777	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
778	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
779	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
780}
781
782STATIC uint
783_xfs_dic2xflags(
784	xfs_dinode_core_t	*dic,
785	__uint16_t		di_flags)
786{
787	uint			flags = 0;
788
789	if (di_flags & XFS_DIFLAG_ANY) {
790		if (di_flags & XFS_DIFLAG_REALTIME)
791			flags |= XFS_XFLAG_REALTIME;
792		if (di_flags & XFS_DIFLAG_PREALLOC)
793			flags |= XFS_XFLAG_PREALLOC;
794		if (di_flags & XFS_DIFLAG_IMMUTABLE)
795			flags |= XFS_XFLAG_IMMUTABLE;
796		if (di_flags & XFS_DIFLAG_APPEND)
797			flags |= XFS_XFLAG_APPEND;
798		if (di_flags & XFS_DIFLAG_SYNC)
799			flags |= XFS_XFLAG_SYNC;
800		if (di_flags & XFS_DIFLAG_NOATIME)
801			flags |= XFS_XFLAG_NOATIME;
802		if (di_flags & XFS_DIFLAG_NODUMP)
803			flags |= XFS_XFLAG_NODUMP;
804		if (di_flags & XFS_DIFLAG_RTINHERIT)
805			flags |= XFS_XFLAG_RTINHERIT;
806		if (di_flags & XFS_DIFLAG_PROJINHERIT)
807			flags |= XFS_XFLAG_PROJINHERIT;
808		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
809			flags |= XFS_XFLAG_NOSYMLINKS;
810		if (di_flags & XFS_DIFLAG_EXTSIZE)
811			flags |= XFS_XFLAG_EXTSIZE;
812		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
813			flags |= XFS_XFLAG_EXTSZINHERIT;
814	}
815
816	return flags;
817}
818
819uint
820xfs_ip2xflags(
821	xfs_inode_t		*ip)
822{
823	xfs_dinode_core_t	*dic = &ip->i_d;
824
825	return _xfs_dic2xflags(dic, dic->di_flags) |
826		(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
827}
828
829uint
830xfs_dic2xflags(
831	xfs_dinode_core_t	*dic)
832{
833	return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
834		(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
835}
836
837/*
838 * Given a mount structure and an inode number, return a pointer
839 * to a newly allocated in-core inode corresponding to the given
840 * inode number.
841 *
842 * Initialize the inode's attributes and extent pointers if it
843 * already has them (it will not if the inode has no links).
844 */
845int
846xfs_iread(
847	xfs_mount_t	*mp,
848	xfs_trans_t	*tp,
849	xfs_ino_t	ino,
850	xfs_inode_t	**ipp,
851	xfs_daddr_t	bno)
852{
853	xfs_buf_t	*bp;
854	xfs_dinode_t	*dip;
855	xfs_inode_t	*ip;
856	int		error;
857
858	ASSERT(xfs_inode_zone != NULL);
859
860	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
861	ip->i_ino = ino;
862	ip->i_mount = mp;
863
864	/*
865	 * Get pointer's to the on-disk inode and the buffer containing it.
866	 * If the inode number refers to a block outside the file system
867	 * then xfs_itobp() will return NULL.  In this case we should
868	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
869	 * know that this is a new incore inode.
870	 */
871	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
872	if (error) {
873		kmem_zone_free(xfs_inode_zone, ip);
874		return error;
875	}
876
877	/*
878	 * Initialize inode's trace buffers.
879	 * Do this before xfs_iformat in case it adds entries.
880	 */
881#ifdef XFS_BMAP_TRACE
882	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
883#endif
884#ifdef XFS_BMBT_TRACE
885	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
886#endif
887#ifdef XFS_RW_TRACE
888	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
889#endif
890#ifdef XFS_ILOCK_TRACE
891	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
892#endif
893#ifdef XFS_DIR2_TRACE
894	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
895#endif
896
897	/*
898	 * If we got something that isn't an inode it means someone
899	 * (nfs or dmi) has a stale handle.
900	 */
901	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
902		kmem_zone_free(xfs_inode_zone, ip);
903		xfs_trans_brelse(tp, bp);
904#ifdef DEBUG
905		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
906				"dip->di_core.di_magic (0x%x) != "
907				"XFS_DINODE_MAGIC (0x%x)",
908				INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
909				XFS_DINODE_MAGIC);
910#endif /* DEBUG */
911		return XFS_ERROR(EINVAL);
912	}
913
914	/*
915	 * If the on-disk inode is already linked to a directory
916	 * entry, copy all of the inode into the in-core inode.
917	 * xfs_iformat() handles copying in the inode format
918	 * specific information.
919	 * Otherwise, just get the truly permanent information.
920	 */
921	if (dip->di_core.di_mode) {
922		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
923		     &(ip->i_d), 1);
924		error = xfs_iformat(ip, dip);
925		if (error)  {
926			kmem_zone_free(xfs_inode_zone, ip);
927			xfs_trans_brelse(tp, bp);
928#ifdef DEBUG
929			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
930					"xfs_iformat() returned error %d",
931					error);
932#endif /* DEBUG */
933			return error;
934		}
935	} else {
936		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
937		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
938		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
939		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
940		/*
941		 * Make sure to pull in the mode here as well in
942		 * case the inode is released without being used.
943		 * This ensures that xfs_inactive() will see that
944		 * the inode is already free and not try to mess
945		 * with the uninitialized part of it.
946		 */
947		ip->i_d.di_mode = 0;
948		/*
949		 * Initialize the per-fork minima and maxima for a new
950		 * inode here.  xfs_iformat will do it for old inodes.
951		 */
952		ip->i_df.if_ext_max =
953			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
954	}
955
956#ifdef RMC
957	INIT_LIST_HEAD(&ip->i_reclaim);
958#else
959	bzero(&ip->i_reclaim,sizeof(ip->i_reclaim));
960#endif
961
962
963	/*
964	 * The inode format changed when we moved the link count and
965	 * made it 32 bits long.  If this is an old format inode,
966	 * convert it in memory to look like a new one.  If it gets
967	 * flushed to disk we will convert back before flushing or
968	 * logging it.  We zero out the new projid field and the old link
969	 * count field.  We'll handle clearing the pad field (the remains
970	 * of the old uuid field) when we actually convert the inode to
971	 * the new format. We don't change the version number so that we
972	 * can distinguish this from a real new format inode.
973	 */
974	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
975		ip->i_d.di_nlink = ip->i_d.di_onlink;
976		ip->i_d.di_onlink = 0;
977		ip->i_d.di_projid = 0;
978	}
979
980	ip->i_delayed_blks = 0;
981
982	/*
983	 * Mark the buffer containing the inode as something to keep
984	 * around for a while.  This helps to keep recently accessed
985	 * meta-data in-core longer.
986	 */
987	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
988
989	/*
990	 * Use xfs_trans_brelse() to release the buffer containing the
991	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
992	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
993	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
994	 * will only release the buffer if it is not dirty within the
995	 * transaction.  It will be OK to release the buffer in this case,
996	 * because inodes on disk are never destroyed and we will be
997	 * locking the new in-core inode before putting it in the hash
998	 * table where other processes can find it.  Thus we don't have
999	 * to worry about the inode being changed just because we released
1000	 * the buffer.
1001	 */
1002	xfs_trans_brelse(tp, bp);
1003	*ipp = ip;
1004	return 0;
1005}
1006
1007/*
1008 * Read in extents from a btree-format inode.
1009 * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1010 */
1011int
1012xfs_iread_extents(
1013	xfs_trans_t	*tp,
1014	xfs_inode_t	*ip,
1015	int		whichfork)
1016{
1017	int		error;
1018	xfs_ifork_t	*ifp;
1019	xfs_extnum_t	nextents;
1020	size_t		size;
1021
1022	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1023		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1024				 ip->i_mount);
1025		return XFS_ERROR(EFSCORRUPTED);
1026	}
1027	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1028	size = nextents * sizeof(xfs_bmbt_rec_t);
1029	ifp = XFS_IFORK_PTR(ip, whichfork);
1030
1031	/*
1032	 * We know that the size is valid (it's checked in iformat_btree)
1033	 */
1034	ifp->if_lastex = NULLEXTNUM;
1035	ifp->if_bytes = ifp->if_real_bytes = 0;
1036	ifp->if_flags |= XFS_IFEXTENTS;
1037	xfs_iext_add(ifp, 0, nextents);
1038	error = xfs_bmap_read_extents(tp, ip, whichfork);
1039	if (error) {
1040		xfs_iext_destroy(ifp);
1041		ifp->if_flags &= ~XFS_IFEXTENTS;
1042		return error;
1043	}
1044	xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
1045	return 0;
1046}
1047
1048/*
1049 * Allocate an inode on disk and return a copy of its in-core version.
1050 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1051 * appropriately within the inode.  The uid and gid for the inode are
1052 * set according to the contents of the given cred structure.
1053 *
1054 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1055 * has a free inode available, call xfs_iget()
1056 * to obtain the in-core version of the allocated inode.  Finally,
1057 * fill in the inode and log its initial contents.  In this case,
1058 * ialloc_context would be set to NULL and call_again set to false.
1059 *
1060 * If xfs_dialloc() does not have an available inode,
1061 * it will replenish its supply by doing an allocation. Since we can
1062 * only do one allocation within a transaction without deadlocks, we
1063 * must commit the current transaction before returning the inode itself.
1064 * In this case, therefore, we will set call_again to true and return.
1065 * The caller should then commit the current transaction, start a new
1066 * transaction, and call xfs_ialloc() again to actually get the inode.
1067 *
1068 * To ensure that some other process does not grab the inode that
1069 * was allocated during the first call to xfs_ialloc(), this routine
1070 * also returns the [locked] bp pointing to the head of the freelist
1071 * as ialloc_context.  The caller should hold this buffer across
1072 * the commit and pass it back into this routine on the second call.
1073 */
1074int
1075xfs_ialloc(
1076	xfs_trans_t	*tp,
1077	xfs_inode_t	*pip,
1078	mode_t		mode,
1079	xfs_nlink_t	nlink,
1080	xfs_dev_t	rdev,
1081	cred_t		*cr,
1082	xfs_prid_t	prid,
1083	int		okalloc,
1084	xfs_buf_t	**ialloc_context,
1085	boolean_t	*call_again,
1086	xfs_inode_t	**ipp)
1087{
1088	xfs_ino_t	ino;
1089	xfs_inode_t	*ip;
1090	xfs_vnode_t	*vp;
1091	uint		flags;
1092	int		error;
1093
1094	/*
1095	 * Call the space management code to pick
1096	 * the on-disk inode to be allocated.
1097	 */
1098	error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1099			    ialloc_context, call_again, &ino);
1100	if (error != 0) {
1101		return error;
1102	}
1103	if (*call_again || ino == NULLFSINO) {
1104		*ipp = NULL;
1105		return 0;
1106	}
1107	ASSERT(*ialloc_context == NULL);
1108
1109	/*
1110	 * Get the in-core inode with the lock held exclusively.
1111	 * This is because we're setting fields here we need
1112	 * to prevent others from looking at until we're done.
1113	 */
1114	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1115			IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1116	if (error != 0) {
1117		return error;
1118	}
1119	ASSERT(ip != NULL);
1120
1121	vp = XFS_ITOV(ip);
1122	ip->i_d.di_mode = (__uint16_t)mode;
1123	ip->i_d.di_onlink = 0;
1124	ip->i_d.di_nlink = nlink;
1125	ASSERT(ip->i_d.di_nlink == nlink);
1126	ip->i_d.di_uid = curthread->td_ucred->cr_uid;
1127	ip->i_d.di_gid = curthread->td_ucred->cr_groups[0];
1128	ip->i_d.di_projid = prid;
1129	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1130
1131	/*
1132	 * If the superblock version is up to where we support new format
1133	 * inodes and this is currently an old format inode, then change
1134	 * the inode version number now.  This way we only do the conversion
1135	 * here rather than here and in the flush/logging code.
1136	 */
1137	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1138	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1139		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1140		/*
1141		 * We've already zeroed the old link count, the projid field,
1142		 * and the pad field.
1143		 */
1144	}
1145
1146	/*
1147	 * Project ids won't be stored on disk if we are using a version 1 inode.
1148	 */
1149	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1150		xfs_bump_ino_vers2(tp, ip);
1151
1152	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1153		ip->i_d.di_gid = pip->i_d.di_gid;
1154		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1155			ip->i_d.di_mode |= S_ISGID;
1156		}
1157	}
1158
1159	/*
1160	 * If the group ID of the new file does not match the effective group
1161	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1162	 * (and only if the irix_sgid_inherit compatibility variable is set).
1163	 */
1164	if ((irix_sgid_inherit) &&
1165	    (ip->i_d.di_mode & S_ISGID) &&
1166	    (!groupmember((gid_t)ip->i_d.di_gid, curthread->td_ucred))) {
1167		ip->i_d.di_mode &= ~S_ISGID;
1168	}
1169
1170	ip->i_d.di_size = 0;
1171	ip->i_d.di_nextents = 0;
1172	ASSERT(ip->i_d.di_nblocks == 0);
1173	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1174	/*
1175	 * di_gen will have been taken care of in xfs_iread.
1176	 */
1177	ip->i_d.di_extsize = 0;
1178	ip->i_d.di_dmevmask = 0;
1179	ip->i_d.di_dmstate = 0;
1180	ip->i_d.di_flags = 0;
1181	flags = XFS_ILOG_CORE;
1182	switch (mode & S_IFMT) {
1183	case S_IFIFO:
1184	case S_IFCHR:
1185	case S_IFBLK:
1186	case S_IFSOCK:
1187		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1188		ip->i_df.if_u2.if_rdev = rdev;
1189		ip->i_df.if_flags = 0;
1190		flags |= XFS_ILOG_DEV;
1191		break;
1192	case S_IFREG:
1193	case S_IFDIR:
1194		if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1195			uint	di_flags = 0;
1196
1197			if ((mode & S_IFMT) == S_IFDIR) {
1198				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1199					di_flags |= XFS_DIFLAG_RTINHERIT;
1200				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1201					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1202					ip->i_d.di_extsize = pip->i_d.di_extsize;
1203				}
1204			} else if ((mode & S_IFMT) == S_IFREG) {
1205				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1206					di_flags |= XFS_DIFLAG_REALTIME;
1207					ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1208				}
1209				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1210					di_flags |= XFS_DIFLAG_EXTSIZE;
1211					ip->i_d.di_extsize = pip->i_d.di_extsize;
1212				}
1213			}
1214			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1215			    xfs_inherit_noatime)
1216				di_flags |= XFS_DIFLAG_NOATIME;
1217			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1218			    xfs_inherit_nodump)
1219				di_flags |= XFS_DIFLAG_NODUMP;
1220			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1221			    xfs_inherit_sync)
1222				di_flags |= XFS_DIFLAG_SYNC;
1223			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1224			    xfs_inherit_nosymlinks)
1225				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1226			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1227				di_flags |= XFS_DIFLAG_PROJINHERIT;
1228			ip->i_d.di_flags |= di_flags;
1229		}
1230		/* FALLTHROUGH */
1231	case S_IFLNK:
1232		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1233		ip->i_df.if_flags = XFS_IFEXTENTS;
1234		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1235		ip->i_df.if_u1.if_extents = NULL;
1236		break;
1237	default:
1238		ASSERT(0);
1239	}
1240	/*
1241	 * Attribute fork settings for new inode.
1242	 */
1243	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1244	ip->i_d.di_anextents = 0;
1245
1246	/*
1247	 * Log the new values stuffed into the inode.
1248	 */
1249	xfs_trans_log_inode(tp, ip, flags);
1250
1251	/* now that we have an i_mode  we can set Linux inode ops (& unlock) */
1252	XVFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1253
1254	*ipp = ip;
1255	return 0;
1256}
1257
1258/*
1259 * Check to make sure that there are no blocks allocated to the
1260 * file beyond the size of the file.  We don't check this for
1261 * files with fixed size extents or real time extents, but we
1262 * at least do it for regular files.
1263 */
1264#ifdef DEBUG
1265void
1266xfs_isize_check(
1267	xfs_mount_t	*mp,
1268	xfs_inode_t	*ip,
1269	xfs_fsize_t	isize)
1270{
1271	xfs_fileoff_t	map_first;
1272	int		nimaps;
1273	xfs_bmbt_irec_t	imaps[2];
1274
1275	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1276		return;
1277
1278	if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1279		return;
1280
1281	nimaps = 2;
1282	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1283	/*
1284	 * The filesystem could be shutting down, so bmapi may return
1285	 * an error.
1286	 */
1287	if (xfs_bmapi(NULL, ip, map_first,
1288			 (XFS_B_TO_FSB(mp,
1289				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1290			  map_first),
1291			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1292			 NULL, NULL))
1293	    return;
1294	ASSERT(nimaps == 1);
1295	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1296}
1297#endif	/* DEBUG */
1298
1299/*
1300 * Calculate the last possible buffered byte in a file.  This must
1301 * include data that was buffered beyond the EOF by the write code.
1302 * This also needs to deal with overflowing the xfs_fsize_t type
1303 * which can happen for sizes near the limit.
1304 *
1305 * We also need to take into account any blocks beyond the EOF.  It
1306 * may be the case that they were buffered by a write which failed.
1307 * In that case the pages will still be in memory, but the inode size
1308 * will never have been updated.
1309 */
1310xfs_fsize_t
1311xfs_file_last_byte(
1312	xfs_inode_t	*ip)
1313{
1314	xfs_mount_t	*mp;
1315	xfs_fsize_t	last_byte;
1316	xfs_fileoff_t	last_block;
1317	xfs_fileoff_t	size_last_block;
1318	int		error;
1319
1320	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1321
1322	mp = ip->i_mount;
1323	/*
1324	 * Only check for blocks beyond the EOF if the extents have
1325	 * been read in.  This eliminates the need for the inode lock,
1326	 * and it also saves us from looking when it really isn't
1327	 * necessary.
1328	 */
1329	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1330		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1331			XFS_DATA_FORK);
1332		if (error) {
1333			last_block = 0;
1334		}
1335	} else {
1336		last_block = 0;
1337	}
1338	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1339	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1340
1341	last_byte = XFS_FSB_TO_B(mp, last_block);
1342	if (last_byte < 0) {
1343		return XFS_MAXIOFFSET(mp);
1344	}
1345	last_byte += (1 << mp->m_writeio_log);
1346	if (last_byte < 0) {
1347		return XFS_MAXIOFFSET(mp);
1348	}
1349	return last_byte;
1350}
1351
1352#if defined(XFS_RW_TRACE)
1353STATIC void
1354xfs_itrunc_trace(
1355	int		tag,
1356	xfs_inode_t	*ip,
1357	int		flag,
1358	xfs_fsize_t	new_size,
1359	xfs_off_t	toss_start,
1360	xfs_off_t	toss_finish)
1361{
1362	if (ip->i_rwtrace == NULL) {
1363		return;
1364	}
1365
1366	ktrace_enter(ip->i_rwtrace,
1367		     (void*)((long)tag),
1368		     (void*)ip,
1369		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1370		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1371		     (void*)((long)flag),
1372		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1373		     (void*)(unsigned long)(new_size & 0xffffffff),
1374		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1375		     (void*)(unsigned long)(toss_start & 0xffffffff),
1376		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1377		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1378		     (void*)(unsigned long)current_cpu(),
1379		     (void*)(unsigned long)current_pid(),
1380		     (void*)NULL,
1381		     (void*)NULL,
1382		     (void*)NULL);
1383}
1384#else
1385#define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1386#endif
1387
1388/*
1389 * Start the truncation of the file to new_size.  The new size
1390 * must be smaller than the current size.  This routine will
1391 * clear the buffer and page caches of file data in the removed
1392 * range, and xfs_itruncate_finish() will remove the underlying
1393 * disk blocks.
1394 *
1395 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1396 * must NOT have the inode lock held at all.  This is because we're
1397 * calling into the buffer/page cache code and we can't hold the
1398 * inode lock when we do so.
1399 *
1400 * We need to wait for any direct I/Os in flight to complete before we
1401 * proceed with the truncate. This is needed to prevent the extents
1402 * being read or written by the direct I/Os from being removed while the
1403 * I/O is in flight as there is no other method of synchronising
1404 * direct I/O with the truncate operation.  Also, because we hold
1405 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1406 * started until the truncate completes and drops the lock. Essentially,
1407 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1408 * between direct I/Os and the truncate operation.
1409 *
1410 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1411 * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1412 * in the case that the caller is locking things out of order and
1413 * may not be able to call xfs_itruncate_finish() with the inode lock
1414 * held without dropping the I/O lock.  If the caller must drop the
1415 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1416 * must be called again with all the same restrictions as the initial
1417 * call.
1418 */
1419void
1420xfs_itruncate_start(
1421	xfs_inode_t	*ip,
1422	uint		flags,
1423	xfs_fsize_t	new_size)
1424{
1425	xfs_fsize_t	last_byte;
1426	xfs_off_t	toss_start;
1427	xfs_mount_t	*mp;
1428	xfs_vnode_t	*vp;
1429
1430	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1431	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1432	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1433	       (flags == XFS_ITRUNC_MAYBE));
1434
1435	mp = ip->i_mount;
1436	vp = XFS_ITOV(ip);
1437
1438	vn_iowait(vp);  /* wait for the completion of any pending DIOs */
1439
1440	/*
1441	 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1442	 * overlapping the region being removed.  We have to use
1443	 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1444	 * caller may not be able to finish the truncate without
1445	 * dropping the inode's I/O lock.  Make sure
1446	 * to catch any pages brought in by buffers overlapping
1447	 * the EOF by searching out beyond the isize by our
1448	 * block size. We round new_size up to a block boundary
1449	 * so that we don't toss things on the same block as
1450	 * new_size but before it.
1451	 *
1452	 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1453	 * call remapf() over the same region if the file is mapped.
1454	 * This frees up mapped file references to the pages in the
1455	 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1456	 * that we get the latest mapped changes flushed out.
1457	 */
1458	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1459	toss_start = XFS_FSB_TO_B(mp, toss_start);
1460	if (toss_start < 0) {
1461		/*
1462		 * The place to start tossing is beyond our maximum
1463		 * file size, so there is no way that the data extended
1464		 * out there.
1465		 */
1466		return;
1467	}
1468	last_byte = xfs_file_last_byte(ip);
1469	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1470			 last_byte);
1471	if (last_byte > toss_start) {
1472		if (flags & XFS_ITRUNC_DEFINITE) {
1473			XVOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1474		} else {
1475			XVOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1476		}
1477	}
1478
1479#ifdef DEBUG
1480	if (new_size == 0) {
1481		ASSERT(VN_CACHED(vp) == 0);
1482	}
1483#endif
1484}
1485
1486/*
1487 * Shrink the file to the given new_size.  The new
1488 * size must be smaller than the current size.
1489 * This will free up the underlying blocks
1490 * in the removed range after a call to xfs_itruncate_start()
1491 * or xfs_atruncate_start().
1492 *
1493 * The transaction passed to this routine must have made
1494 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1495 * This routine may commit the given transaction and
1496 * start new ones, so make sure everything involved in
1497 * the transaction is tidy before calling here.
1498 * Some transaction will be returned to the caller to be
1499 * committed.  The incoming transaction must already include
1500 * the inode, and both inode locks must be held exclusively.
1501 * The inode must also be "held" within the transaction.  On
1502 * return the inode will be "held" within the returned transaction.
1503 * This routine does NOT require any disk space to be reserved
1504 * for it within the transaction.
1505 *
1506 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1507 * and it indicates the fork which is to be truncated.  For the
1508 * attribute fork we only support truncation to size 0.
1509 *
1510 * We use the sync parameter to indicate whether or not the first
1511 * transaction we perform might have to be synchronous.  For the attr fork,
1512 * it needs to be so if the unlink of the inode is not yet known to be
1513 * permanent in the log.  This keeps us from freeing and reusing the
1514 * blocks of the attribute fork before the unlink of the inode becomes
1515 * permanent.
1516 *
1517 * For the data fork, we normally have to run synchronously if we're
1518 * being called out of the inactive path or we're being called
1519 * out of the create path where we're truncating an existing file.
1520 * Either way, the truncate needs to be sync so blocks don't reappear
1521 * in the file with altered data in case of a crash.  wsync filesystems
1522 * can run the first case async because anything that shrinks the inode
1523 * has to run sync so by the time we're called here from inactive, the
1524 * inode size is permanently set to 0.
1525 *
1526 * Calls from the truncate path always need to be sync unless we're
1527 * in a wsync filesystem and the file has already been unlinked.
1528 *
1529 * The caller is responsible for correctly setting the sync parameter.
1530 * It gets too hard for us to guess here which path we're being called
1531 * out of just based on inode state.
1532 */
1533int
1534xfs_itruncate_finish(
1535	xfs_trans_t	**tp,
1536	xfs_inode_t	*ip,
1537	xfs_fsize_t	new_size,
1538	int		fork,
1539	int		sync)
1540{
1541	xfs_fsblock_t	first_block;
1542	xfs_fileoff_t	first_unmap_block;
1543	xfs_fileoff_t	last_block;
1544	xfs_filblks_t	unmap_len=0;
1545	xfs_mount_t	*mp;
1546	xfs_trans_t	*ntp;
1547	int		done;
1548	int		committed;
1549	xfs_bmap_free_t	free_list;
1550	int		error;
1551
1552	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1553	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1554	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1555	ASSERT(*tp != NULL);
1556	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1557	ASSERT(ip->i_transp == *tp);
1558	ASSERT(ip->i_itemp != NULL);
1559	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1560
1561
1562	ntp = *tp;
1563	mp = (ntp)->t_mountp;
1564	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1565
1566	/*
1567	 * We only support truncating the entire attribute fork.
1568	 */
1569	if (fork == XFS_ATTR_FORK) {
1570		new_size = 0LL;
1571	}
1572	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1573	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1574	/*
1575	 * The first thing we do is set the size to new_size permanently
1576	 * on disk.  This way we don't have to worry about anyone ever
1577	 * being able to look at the data being freed even in the face
1578	 * of a crash.  What we're getting around here is the case where
1579	 * we free a block, it is allocated to another file, it is written
1580	 * to, and then we crash.  If the new data gets written to the
1581	 * file but the log buffers containing the free and reallocation
1582	 * don't, then we'd end up with garbage in the blocks being freed.
1583	 * As long as we make the new_size permanent before actually
1584	 * freeing any blocks it doesn't matter if they get writtten to.
1585	 *
1586	 * The callers must signal into us whether or not the size
1587	 * setting here must be synchronous.  There are a few cases
1588	 * where it doesn't have to be synchronous.  Those cases
1589	 * occur if the file is unlinked and we know the unlink is
1590	 * permanent or if the blocks being truncated are guaranteed
1591	 * to be beyond the inode eof (regardless of the link count)
1592	 * and the eof value is permanent.  Both of these cases occur
1593	 * only on wsync-mounted filesystems.  In those cases, we're
1594	 * guaranteed that no user will ever see the data in the blocks
1595	 * that are being truncated so the truncate can run async.
1596	 * In the free beyond eof case, the file may wind up with
1597	 * more blocks allocated to it than it needs if we crash
1598	 * and that won't get fixed until the next time the file
1599	 * is re-opened and closed but that's ok as that shouldn't
1600	 * be too many blocks.
1601	 *
1602	 * However, we can't just make all wsync xactions run async
1603	 * because there's one call out of the create path that needs
1604	 * to run sync where it's truncating an existing file to size
1605	 * 0 whose size is > 0.
1606	 *
1607	 * It's probably possible to come up with a test in this
1608	 * routine that would correctly distinguish all the above
1609	 * cases from the values of the function parameters and the
1610	 * inode state but for sanity's sake, I've decided to let the
1611	 * layers above just tell us.  It's simpler to correctly figure
1612	 * out in the layer above exactly under what conditions we
1613	 * can run async and I think it's easier for others read and
1614	 * follow the logic in case something has to be changed.
1615	 * cscope is your friend -- rcc.
1616	 *
1617	 * The attribute fork is much simpler.
1618	 *
1619	 * For the attribute fork we allow the caller to tell us whether
1620	 * the unlink of the inode that led to this call is yet permanent
1621	 * in the on disk log.  If it is not and we will be freeing extents
1622	 * in this inode then we make the first transaction synchronous
1623	 * to make sure that the unlink is permanent by the time we free
1624	 * the blocks.
1625	 */
1626	if (fork == XFS_DATA_FORK) {
1627		if (ip->i_d.di_nextents > 0) {
1628			ip->i_d.di_size = new_size;
1629			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1630		}
1631	} else if (sync) {
1632		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1633		if (ip->i_d.di_anextents > 0)
1634			xfs_trans_set_sync(ntp);
1635	}
1636	ASSERT(fork == XFS_DATA_FORK ||
1637		(fork == XFS_ATTR_FORK &&
1638			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1639			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1640
1641	/*
1642	 * Since it is possible for space to become allocated beyond
1643	 * the end of the file (in a crash where the space is allocated
1644	 * but the inode size is not yet updated), simply remove any
1645	 * blocks which show up between the new EOF and the maximum
1646	 * possible file size.  If the first block to be removed is
1647	 * beyond the maximum file size (ie it is the same as last_block),
1648	 * then there is nothing to do.
1649	 */
1650	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1651	ASSERT(first_unmap_block <= last_block);
1652	done = 0;
1653	if (last_block == first_unmap_block) {
1654		done = 1;
1655	} else {
1656		unmap_len = last_block - first_unmap_block + 1;
1657	}
1658	while (!done) {
1659		/*
1660		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1661		 * will tell us whether it freed the entire range or
1662		 * not.  If this is a synchronous mount (wsync),
1663		 * then we can tell bunmapi to keep all the
1664		 * transactions asynchronous since the unlink
1665		 * transaction that made this inode inactive has
1666		 * already hit the disk.  There's no danger of
1667		 * the freed blocks being reused, there being a
1668		 * crash, and the reused blocks suddenly reappearing
1669		 * in this file with garbage in them once recovery
1670		 * runs.
1671		 */
1672		XFS_BMAP_INIT(&free_list, &first_block);
1673		error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1674				    first_unmap_block, unmap_len,
1675				    XFS_BMAPI_AFLAG(fork) |
1676				      (sync ? 0 : XFS_BMAPI_ASYNC),
1677				    XFS_ITRUNC_MAX_EXTENTS,
1678				    &first_block, &free_list,
1679				    NULL, &done);
1680		if (error) {
1681			/*
1682			 * If the bunmapi call encounters an error,
1683			 * return to the caller where the transaction
1684			 * can be properly aborted.  We just need to
1685			 * make sure we're not holding any resources
1686			 * that we were not when we came in.
1687			 */
1688			xfs_bmap_cancel(&free_list);
1689			return error;
1690		}
1691
1692		/*
1693		 * Duplicate the transaction that has the permanent
1694		 * reservation and commit the old transaction.
1695		 */
1696		error = xfs_bmap_finish(tp, &free_list, first_block,
1697					&committed);
1698		ntp = *tp;
1699		if (error) {
1700			/*
1701			 * If the bmap finish call encounters an error,
1702			 * return to the caller where the transaction
1703			 * can be properly aborted.  We just need to
1704			 * make sure we're not holding any resources
1705			 * that we were not when we came in.
1706			 *
1707			 * Aborting from this point might lose some
1708			 * blocks in the file system, but oh well.
1709			 */
1710			xfs_bmap_cancel(&free_list);
1711			if (committed) {
1712				/*
1713				 * If the passed in transaction committed
1714				 * in xfs_bmap_finish(), then we want to
1715				 * add the inode to this one before returning.
1716				 * This keeps things simple for the higher
1717				 * level code, because it always knows that
1718				 * the inode is locked and held in the
1719				 * transaction that returns to it whether
1720				 * errors occur or not.  We don't mark the
1721				 * inode dirty so that this transaction can
1722				 * be easily aborted if possible.
1723				 */
1724				xfs_trans_ijoin(ntp, ip,
1725					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1726				xfs_trans_ihold(ntp, ip);
1727			}
1728			return error;
1729		}
1730
1731		if (committed) {
1732			/*
1733			 * The first xact was committed,
1734			 * so add the inode to the new one.
1735			 * Mark it dirty so it will be logged
1736			 * and moved forward in the log as
1737			 * part of every commit.
1738			 */
1739			xfs_trans_ijoin(ntp, ip,
1740					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1741			xfs_trans_ihold(ntp, ip);
1742			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1743		}
1744		ntp = xfs_trans_dup(ntp);
1745		(void) xfs_trans_commit(*tp, 0, NULL);
1746		*tp = ntp;
1747		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1748					  XFS_TRANS_PERM_LOG_RES,
1749					  XFS_ITRUNCATE_LOG_COUNT);
1750		/*
1751		 * Add the inode being truncated to the next chained
1752		 * transaction.
1753		 */
1754		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1755		xfs_trans_ihold(ntp, ip);
1756		if (error)
1757			return (error);
1758	}
1759	/*
1760	 * Only update the size in the case of the data fork, but
1761	 * always re-log the inode so that our permanent transaction
1762	 * can keep on rolling it forward in the log.
1763	 */
1764	if (fork == XFS_DATA_FORK) {
1765		xfs_isize_check(mp, ip, new_size);
1766		ip->i_d.di_size = new_size;
1767	}
1768	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1769	ASSERT((new_size != 0) ||
1770	       (fork == XFS_ATTR_FORK) ||
1771	       (ip->i_delayed_blks == 0));
1772	ASSERT((new_size != 0) ||
1773	       (fork == XFS_ATTR_FORK) ||
1774	       (ip->i_d.di_nextents == 0));
1775	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1776	return 0;
1777}
1778
1779
1780/*
1781 * xfs_igrow_start
1782 *
1783 * Do the first part of growing a file: zero any data in the last
1784 * block that is beyond the old EOF.  We need to do this before
1785 * the inode is joined to the transaction to modify the i_size.
1786 * That way we can drop the inode lock and call into the buffer
1787 * cache to get the buffer mapping the EOF.
1788 */
1789int
1790xfs_igrow_start(
1791	xfs_inode_t	*ip,
1792	xfs_fsize_t	new_size,
1793	cred_t		*credp)
1794{
1795	int		error;
1796
1797	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1798	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1799	ASSERT(new_size > ip->i_d.di_size);
1800
1801	/*
1802	 * Zero any pages that may have been created by
1803	 * xfs_write_file() beyond the end of the file
1804	 * and any blocks between the old and new file sizes.
1805	 */
1806	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1807			     ip->i_d.di_size, new_size);
1808	return error;
1809}
1810
1811/*
1812 * xfs_igrow_finish
1813 *
1814 * This routine is called to extend the size of a file.
1815 * The inode must have both the iolock and the ilock locked
1816 * for update and it must be a part of the current transaction.
1817 * The xfs_igrow_start() function must have been called previously.
1818 * If the change_flag is not zero, the inode change timestamp will
1819 * be updated.
1820 */
1821void
1822xfs_igrow_finish(
1823	xfs_trans_t	*tp,
1824	xfs_inode_t	*ip,
1825	xfs_fsize_t	new_size,
1826	int		change_flag)
1827{
1828	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1829	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1830	ASSERT(ip->i_transp == tp);
1831	ASSERT(new_size > ip->i_d.di_size);
1832
1833	/*
1834	 * Update the file size.  Update the inode change timestamp
1835	 * if change_flag set.
1836	 */
1837	ip->i_d.di_size = new_size;
1838	if (change_flag)
1839		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1840	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1841
1842}
1843
1844
1845/*
1846 * This is called when the inode's link count goes to 0.
1847 * We place the on-disk inode on a list in the AGI.  It
1848 * will be pulled from this list when the inode is freed.
1849 */
1850int
1851xfs_iunlink(
1852	xfs_trans_t	*tp,
1853	xfs_inode_t	*ip)
1854{
1855	xfs_mount_t	*mp;
1856	xfs_agi_t	*agi;
1857	xfs_dinode_t	*dip;
1858	xfs_buf_t	*agibp;
1859	xfs_buf_t	*ibp;
1860	xfs_agnumber_t	agno;
1861	xfs_daddr_t	agdaddr;
1862	xfs_agino_t	agino;
1863	short		bucket_index;
1864	int		offset;
1865	int		error;
1866	int		agi_ok;
1867
1868	ASSERT(ip->i_d.di_nlink == 0);
1869	ASSERT(ip->i_d.di_mode != 0);
1870	ASSERT(ip->i_transp == tp);
1871
1872	mp = tp->t_mountp;
1873
1874	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1875	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1876
1877	/*
1878	 * Get the agi buffer first.  It ensures lock ordering
1879	 * on the list.
1880	 */
1881	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1882				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1883	if (error) {
1884		return error;
1885	}
1886	/*
1887	 * Validate the magic number of the agi block.
1888	 */
1889	agi = XFS_BUF_TO_AGI(agibp);
1890	agi_ok =
1891		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1892		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1893	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1894			XFS_RANDOM_IUNLINK))) {
1895		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1896		xfs_trans_brelse(tp, agibp);
1897		return XFS_ERROR(EFSCORRUPTED);
1898	}
1899	/*
1900	 * Get the index into the agi hash table for the
1901	 * list this inode will go on.
1902	 */
1903	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1904	ASSERT(agino != 0);
1905	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1906	ASSERT(agi->agi_unlinked[bucket_index]);
1907	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1908
1909	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1910		/*
1911		 * There is already another inode in the bucket we need
1912		 * to add ourselves to.  Add us at the front of the list.
1913		 * Here we put the head pointer into our next pointer,
1914		 * and then we fall through to point the head at us.
1915		 */
1916		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1917		if (error) {
1918			return error;
1919		}
1920		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1921		ASSERT(dip->di_next_unlinked);
1922		/* both on-disk, don't endian flip twice */
1923		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1924		offset = ip->i_boffset +
1925			offsetof(xfs_dinode_t, di_next_unlinked);
1926		xfs_trans_inode_buf(tp, ibp);
1927		xfs_trans_log_buf(tp, ibp, offset,
1928				  (offset + sizeof(xfs_agino_t) - 1));
1929		xfs_inobp_check(mp, ibp);
1930	}
1931
1932	/*
1933	 * Point the bucket head pointer at the inode being inserted.
1934	 */
1935	ASSERT(agino != 0);
1936	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1937	offset = offsetof(xfs_agi_t, agi_unlinked) +
1938		(sizeof(xfs_agino_t) * bucket_index);
1939	xfs_trans_log_buf(tp, agibp, offset,
1940			  (offset + sizeof(xfs_agino_t) - 1));
1941	return 0;
1942}
1943
1944/*
1945 * Pull the on-disk inode from the AGI unlinked list.
1946 */
1947STATIC int
1948xfs_iunlink_remove(
1949	xfs_trans_t	*tp,
1950	xfs_inode_t	*ip)
1951{
1952	xfs_ino_t	next_ino;
1953	xfs_mount_t	*mp;
1954	xfs_agi_t	*agi;
1955	xfs_dinode_t	*dip;
1956	xfs_buf_t	*agibp;
1957	xfs_buf_t	*ibp;
1958	xfs_agnumber_t	agno;
1959	xfs_daddr_t	agdaddr;
1960	xfs_agino_t	agino;
1961	xfs_agino_t	next_agino;
1962	xfs_buf_t	*last_ibp;
1963	xfs_dinode_t	*last_dip = NULL;
1964	short		bucket_index;
1965	int		offset, last_offset = 0;
1966	int		error;
1967	int		agi_ok;
1968
1969	/*
1970	 * First pull the on-disk inode from the AGI unlinked list.
1971	 */
1972	mp = tp->t_mountp;
1973
1974	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1975	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1976
1977	/*
1978	 * Get the agi buffer first.  It ensures lock ordering
1979	 * on the list.
1980	 */
1981	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1982				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1983	if (error) {
1984		cmn_err(CE_WARN,
1985			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
1986			error, mp->m_fsname);
1987		return error;
1988	}
1989	/*
1990	 * Validate the magic number of the agi block.
1991	 */
1992	agi = XFS_BUF_TO_AGI(agibp);
1993	agi_ok =
1994		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1995		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1996	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1997			XFS_RANDOM_IUNLINK_REMOVE))) {
1998		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1999				     mp, agi);
2000		xfs_trans_brelse(tp, agibp);
2001		cmn_err(CE_WARN,
2002			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
2003			 mp->m_fsname);
2004		return XFS_ERROR(EFSCORRUPTED);
2005	}
2006	/*
2007	 * Get the index into the agi hash table for the
2008	 * list this inode will go on.
2009	 */
2010	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2011	ASSERT(agino != 0);
2012	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2013	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2014	ASSERT(agi->agi_unlinked[bucket_index]);
2015
2016	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2017		/*
2018		 * We're at the head of the list.  Get the inode's
2019		 * on-disk buffer to see if there is anyone after us
2020		 * on the list.  Only modify our next pointer if it
2021		 * is not already NULLAGINO.  This saves us the overhead
2022		 * of dealing with the buffer when there is no need to
2023		 * change it.
2024		 */
2025		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2026		if (error) {
2027			cmn_err(CE_WARN,
2028				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2029				error, mp->m_fsname);
2030			return error;
2031		}
2032		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2033		ASSERT(next_agino != 0);
2034		if (next_agino != NULLAGINO) {
2035			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2036			offset = ip->i_boffset +
2037				offsetof(xfs_dinode_t, di_next_unlinked);
2038			xfs_trans_inode_buf(tp, ibp);
2039			xfs_trans_log_buf(tp, ibp, offset,
2040					  (offset + sizeof(xfs_agino_t) - 1));
2041			xfs_inobp_check(mp, ibp);
2042		} else {
2043			xfs_trans_brelse(tp, ibp);
2044		}
2045		/*
2046		 * Point the bucket head pointer at the next inode.
2047		 */
2048		ASSERT(next_agino != 0);
2049		ASSERT(next_agino != agino);
2050		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2051		offset = offsetof(xfs_agi_t, agi_unlinked) +
2052			(sizeof(xfs_agino_t) * bucket_index);
2053		xfs_trans_log_buf(tp, agibp, offset,
2054				  (offset + sizeof(xfs_agino_t) - 1));
2055	} else {
2056		/*
2057		 * We need to search the list for the inode being freed.
2058		 */
2059		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2060		last_ibp = NULL;
2061		while (next_agino != agino) {
2062			/*
2063			 * If the last inode wasn't the one pointing to
2064			 * us, then release its buffer since we're not
2065			 * going to do anything with it.
2066			 */
2067			if (last_ibp != NULL) {
2068				xfs_trans_brelse(tp, last_ibp);
2069			}
2070			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2071			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2072					    &last_ibp, &last_offset);
2073			if (error) {
2074				cmn_err(CE_WARN,
2075			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2076					error, mp->m_fsname);
2077				return error;
2078			}
2079			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2080			ASSERT(next_agino != NULLAGINO);
2081			ASSERT(next_agino != 0);
2082		}
2083		/*
2084		 * Now last_ibp points to the buffer previous to us on
2085		 * the unlinked list.  Pull us from the list.
2086		 */
2087		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2088		if (error) {
2089			cmn_err(CE_WARN,
2090				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2091				error, mp->m_fsname);
2092			return error;
2093		}
2094		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2095		ASSERT(next_agino != 0);
2096		ASSERT(next_agino != agino);
2097		if (next_agino != NULLAGINO) {
2098			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2099			offset = ip->i_boffset +
2100				offsetof(xfs_dinode_t, di_next_unlinked);
2101			xfs_trans_inode_buf(tp, ibp);
2102			xfs_trans_log_buf(tp, ibp, offset,
2103					  (offset + sizeof(xfs_agino_t) - 1));
2104			xfs_inobp_check(mp, ibp);
2105		} else {
2106			xfs_trans_brelse(tp, ibp);
2107		}
2108		/*
2109		 * Point the previous inode on the list to the next inode.
2110		 */
2111		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2112		ASSERT(next_agino != 0);
2113		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2114		xfs_trans_inode_buf(tp, last_ibp);
2115		xfs_trans_log_buf(tp, last_ibp, offset,
2116				  (offset + sizeof(xfs_agino_t) - 1));
2117		xfs_inobp_check(mp, last_ibp);
2118	}
2119	return 0;
2120}
2121
2122static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2123{
2124	return (((ip->i_itemp == NULL) ||
2125		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2126		(ip->i_update_core == 0));
2127}
2128
2129STATIC void
2130xfs_ifree_cluster(
2131	xfs_inode_t	*free_ip,
2132	xfs_trans_t	*tp,
2133	xfs_ino_t	inum)
2134{
2135	xfs_mount_t		*mp = free_ip->i_mount;
2136	int			blks_per_cluster;
2137	int			nbufs;
2138	int			ninodes;
2139	int			i, j, found, pre_flushed;
2140	xfs_daddr_t		blkno;
2141	xfs_buf_t		*bp;
2142	xfs_ihash_t		*ih;
2143	xfs_inode_t		*ip, **ip_found;
2144	xfs_inode_log_item_t	*iip;
2145	xfs_log_item_t		*lip;
2146	SPLDECL(s);
2147
2148	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2149		blks_per_cluster = 1;
2150		ninodes = mp->m_sb.sb_inopblock;
2151		nbufs = XFS_IALLOC_BLOCKS(mp);
2152	} else {
2153		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2154					mp->m_sb.sb_blocksize;
2155		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2156		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2157	}
2158
2159	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2160
2161	for (j = 0; j < nbufs; j++, inum += ninodes) {
2162		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2163					 XFS_INO_TO_AGBNO(mp, inum));
2164
2165
2166		/*
2167		 * Look for each inode in memory and attempt to lock it,
2168		 * we can be racing with flush and tail pushing here.
2169		 * any inode we get the locks on, add to an array of
2170		 * inode items to process later.
2171		 *
2172		 * The get the buffer lock, we could beat a flush
2173		 * or tail pushing thread to the lock here, in which
2174		 * case they will go looking for the inode buffer
2175		 * and fail, we need some other form of interlock
2176		 * here.
2177		 */
2178		found = 0;
2179		for (i = 0; i < ninodes; i++) {
2180			ih = XFS_IHASH(mp, inum + i);
2181			read_lock(&ih->ih_lock);
2182			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2183				if (ip->i_ino == inum + i)
2184					break;
2185			}
2186
2187			/* Inode not in memory or we found it already,
2188			 * nothing to do
2189			 */
2190			if (!ip || (ip->i_flags & XFS_ISTALE)) {
2191				read_unlock(&ih->ih_lock);
2192				continue;
2193			}
2194
2195			if (xfs_inode_clean(ip)) {
2196				read_unlock(&ih->ih_lock);
2197				continue;
2198			}
2199
2200			/* If we can get the locks then add it to the
2201			 * list, otherwise by the time we get the bp lock
2202			 * below it will already be attached to the
2203			 * inode buffer.
2204			 */
2205
2206			/* This inode will already be locked - by us, lets
2207			 * keep it that way.
2208			 */
2209
2210			if (ip == free_ip) {
2211				if (xfs_iflock_nowait(ip)) {
2212					ip->i_flags |= XFS_ISTALE;
2213
2214					if (xfs_inode_clean(ip)) {
2215						xfs_ifunlock(ip);
2216					} else {
2217						ip_found[found++] = ip;
2218					}
2219				}
2220				read_unlock(&ih->ih_lock);
2221				continue;
2222			}
2223
2224			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2225				if (xfs_iflock_nowait(ip)) {
2226					ip->i_flags |= XFS_ISTALE;
2227
2228					if (xfs_inode_clean(ip)) {
2229						xfs_ifunlock(ip);
2230						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2231					} else {
2232						ip_found[found++] = ip;
2233					}
2234				} else {
2235					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2236				}
2237			}
2238
2239			read_unlock(&ih->ih_lock);
2240		}
2241
2242		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2243					mp->m_bsize * blks_per_cluster,
2244					XFS_BUF_LOCK);
2245
2246		pre_flushed = 0;
2247		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2248		while (lip) {
2249			if (lip->li_type == XFS_LI_INODE) {
2250				iip = (xfs_inode_log_item_t *)lip;
2251				ASSERT(iip->ili_logged == 1);
2252				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2253				AIL_LOCK(mp,s);
2254				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2255				AIL_UNLOCK(mp, s);
2256				iip->ili_inode->i_flags |= XFS_ISTALE;
2257				pre_flushed++;
2258			}
2259			lip = lip->li_bio_list;
2260		}
2261
2262		for (i = 0; i < found; i++) {
2263			ip = ip_found[i];
2264			iip = ip->i_itemp;
2265
2266			if (!iip) {
2267				ip->i_update_core = 0;
2268				xfs_ifunlock(ip);
2269				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2270				continue;
2271			}
2272
2273			iip->ili_last_fields = iip->ili_format.ilf_fields;
2274			iip->ili_format.ilf_fields = 0;
2275			iip->ili_logged = 1;
2276			AIL_LOCK(mp,s);
2277			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2278			AIL_UNLOCK(mp, s);
2279
2280			xfs_buf_attach_iodone(bp,
2281				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2282				xfs_istale_done, (xfs_log_item_t *)iip);
2283			if (ip != free_ip) {
2284				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2285			}
2286		}
2287
2288		if (found || pre_flushed)
2289			xfs_trans_stale_inode_buf(tp, bp);
2290		xfs_trans_binval(tp, bp);
2291	}
2292
2293	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2294}
2295
2296/*
2297 * This is called to return an inode to the inode free list.
2298 * The inode should already be truncated to 0 length and have
2299 * no pages associated with it.  This routine also assumes that
2300 * the inode is already a part of the transaction.
2301 *
2302 * The on-disk copy of the inode will have been added to the list
2303 * of unlinked inodes in the AGI. We need to remove the inode from
2304 * that list atomically with respect to freeing it here.
2305 */
2306int
2307xfs_ifree(
2308	xfs_trans_t	*tp,
2309	xfs_inode_t	*ip,
2310	xfs_bmap_free_t	*flist)
2311{
2312	int			error;
2313	int			delete;
2314	xfs_ino_t		first_ino;
2315
2316	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2317	ASSERT(ip->i_transp == tp);
2318	ASSERT(ip->i_d.di_nlink == 0);
2319	ASSERT(ip->i_d.di_nextents == 0);
2320	ASSERT(ip->i_d.di_anextents == 0);
2321	ASSERT((ip->i_d.di_size == 0) ||
2322	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2323	ASSERT(ip->i_d.di_nblocks == 0);
2324
2325	/*
2326	 * Pull the on-disk inode from the AGI unlinked list.
2327	 */
2328	error = xfs_iunlink_remove(tp, ip);
2329	if (error != 0) {
2330		return error;
2331	}
2332
2333	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2334	if (error != 0) {
2335		return error;
2336	}
2337	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2338	ip->i_d.di_flags = 0;
2339	ip->i_d.di_dmevmask = 0;
2340	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2341	ip->i_df.if_ext_max =
2342		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2343	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2344	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2345	/*
2346	 * Bump the generation count so no one will be confused
2347	 * by reincarnations of this inode.
2348	 */
2349	ip->i_d.di_gen++;
2350	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2351
2352	if (delete) {
2353		xfs_ifree_cluster(ip, tp, first_ino);
2354	}
2355
2356	return 0;
2357}
2358
2359/*
2360 * Reallocate the space for if_broot based on the number of records
2361 * being added or deleted as indicated in rec_diff.  Move the records
2362 * and pointers in if_broot to fit the new size.  When shrinking this
2363 * will eliminate holes between the records and pointers created by
2364 * the caller.  When growing this will create holes to be filled in
2365 * by the caller.
2366 *
2367 * The caller must not request to add more records than would fit in
2368 * the on-disk inode root.  If the if_broot is currently NULL, then
2369 * if we adding records one will be allocated.  The caller must also
2370 * not request that the number of records go below zero, although
2371 * it can go to zero.
2372 *
2373 * ip -- the inode whose if_broot area is changing
2374 * ext_diff -- the change in the number of records, positive or negative,
2375 *	 requested for the if_broot array.
2376 */
2377void
2378xfs_iroot_realloc(
2379	xfs_inode_t		*ip,
2380	int			rec_diff,
2381	int			whichfork)
2382{
2383	int			cur_max;
2384	xfs_ifork_t		*ifp;
2385	xfs_bmbt_block_t	*new_broot;
2386	int			new_max;
2387	size_t			new_size;
2388	char			*np;
2389	char			*op;
2390
2391	/*
2392	 * Handle the degenerate case quietly.
2393	 */
2394	if (rec_diff == 0) {
2395		return;
2396	}
2397
2398	ifp = XFS_IFORK_PTR(ip, whichfork);
2399	if (rec_diff > 0) {
2400		/*
2401		 * If there wasn't any memory allocated before, just
2402		 * allocate it now and get out.
2403		 */
2404		if (ifp->if_broot_bytes == 0) {
2405			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2406			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2407								     KM_SLEEP);
2408			ifp->if_broot_bytes = (int)new_size;
2409			return;
2410		}
2411
2412		/*
2413		 * If there is already an existing if_broot, then we need
2414		 * to realloc() it and shift the pointers to their new
2415		 * location.  The records don't change location because
2416		 * they are kept butted up against the btree block header.
2417		 */
2418		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2419		new_max = cur_max + rec_diff;
2420		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2421		ifp->if_broot = (xfs_bmbt_block_t *)
2422		  kmem_realloc(ifp->if_broot,
2423				new_size,
2424				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2425				KM_SLEEP);
2426		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2427						      ifp->if_broot_bytes);
2428		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2429						      (int)new_size);
2430		ifp->if_broot_bytes = (int)new_size;
2431		ASSERT(ifp->if_broot_bytes <=
2432			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2433		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2434		return;
2435	}
2436
2437	/*
2438	 * rec_diff is less than 0.  In this case, we are shrinking the
2439	 * if_broot buffer.  It must already exist.  If we go to zero
2440	 * records, just get rid of the root and clear the status bit.
2441	 */
2442	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2443	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2444	new_max = cur_max + rec_diff;
2445	ASSERT(new_max >= 0);
2446	if (new_max > 0)
2447		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2448	else
2449		new_size = 0;
2450	if (new_size > 0) {
2451		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2452		/*
2453		 * First copy over the btree block header.
2454		 */
2455		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2456	} else {
2457		new_broot = NULL;
2458		ifp->if_flags &= ~XFS_IFBROOT;
2459	}
2460
2461	/*
2462	 * Only copy the records and pointers if there are any.
2463	 */
2464	if (new_max > 0) {
2465		/*
2466		 * First copy the records.
2467		 */
2468		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2469						     ifp->if_broot_bytes);
2470		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2471						     (int)new_size);
2472		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2473
2474		/*
2475		 * Then copy the pointers.
2476		 */
2477		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2478						     ifp->if_broot_bytes);
2479		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2480						     (int)new_size);
2481		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2482	}
2483	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2484	ifp->if_broot = new_broot;
2485	ifp->if_broot_bytes = (int)new_size;
2486	ASSERT(ifp->if_broot_bytes <=
2487		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2488	return;
2489}
2490
2491
2492/*
2493 * This is called when the amount of space needed for if_data
2494 * is increased or decreased.  The change in size is indicated by
2495 * the number of bytes that need to be added or deleted in the
2496 * byte_diff parameter.
2497 *
2498 * If the amount of space needed has decreased below the size of the
2499 * inline buffer, then switch to using the inline buffer.  Otherwise,
2500 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2501 * to what is needed.
2502 *
2503 * ip -- the inode whose if_data area is changing
2504 * byte_diff -- the change in the number of bytes, positive or negative,
2505 *	 requested for the if_data array.
2506 */
2507void
2508xfs_idata_realloc(
2509	xfs_inode_t	*ip,
2510	int		byte_diff,
2511	int		whichfork)
2512{
2513	xfs_ifork_t	*ifp;
2514	int		new_size;
2515	int		real_size;
2516
2517	if (byte_diff == 0) {
2518		return;
2519	}
2520
2521	ifp = XFS_IFORK_PTR(ip, whichfork);
2522	new_size = (int)ifp->if_bytes + byte_diff;
2523	ASSERT(new_size >= 0);
2524
2525	if (new_size == 0) {
2526		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2527			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2528		}
2529		ifp->if_u1.if_data = NULL;
2530		real_size = 0;
2531	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2532		/*
2533		 * If the valid extents/data can fit in if_inline_ext/data,
2534		 * copy them from the malloc'd vector and free it.
2535		 */
2536		if (ifp->if_u1.if_data == NULL) {
2537			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2538		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2539			ASSERT(ifp->if_real_bytes != 0);
2540			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2541			      new_size);
2542			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2543			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2544		}
2545		real_size = 0;
2546	} else {
2547		/*
2548		 * Stuck with malloc/realloc.
2549		 * For inline data, the underlying buffer must be
2550		 * a multiple of 4 bytes in size so that it can be
2551		 * logged and stay on word boundaries.  We enforce
2552		 * that here.
2553		 */
2554		real_size = roundup(new_size, 4);
2555		if (ifp->if_u1.if_data == NULL) {
2556			ASSERT(ifp->if_real_bytes == 0);
2557			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2558		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2559			/*
2560			 * Only do the realloc if the underlying size
2561			 * is really changing.
2562			 */
2563			if (ifp->if_real_bytes != real_size) {
2564				ifp->if_u1.if_data =
2565					kmem_realloc(ifp->if_u1.if_data,
2566							real_size,
2567							ifp->if_real_bytes,
2568							KM_SLEEP);
2569			}
2570		} else {
2571			ASSERT(ifp->if_real_bytes == 0);
2572			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2573			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2574				ifp->if_bytes);
2575		}
2576	}
2577	ifp->if_real_bytes = real_size;
2578	ifp->if_bytes = new_size;
2579	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2580}
2581
2582
2583
2584
2585/*
2586 * Map inode to disk block and offset.
2587 *
2588 * mp -- the mount point structure for the current file system
2589 * tp -- the current transaction
2590 * ino -- the inode number of the inode to be located
2591 * imap -- this structure is filled in with the information necessary
2592 *	 to retrieve the given inode from disk
2593 * flags -- flags to pass to xfs_dilocate indicating whether or not
2594 *	 lookups in the inode btree were OK or not
2595 */
2596int
2597xfs_imap(
2598	xfs_mount_t	*mp,
2599	xfs_trans_t	*tp,
2600	xfs_ino_t	ino,
2601	xfs_imap_t	*imap,
2602	uint		flags)
2603{
2604	xfs_fsblock_t	fsbno;
2605	int		len;
2606	int		off;
2607	int		error;
2608
2609	fsbno = imap->im_blkno ?
2610		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2611	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2612	if (error != 0) {
2613		return error;
2614	}
2615	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2616	imap->im_len = XFS_FSB_TO_BB(mp, len);
2617	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2618	imap->im_ioffset = (ushort)off;
2619	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2620	return 0;
2621}
2622
2623void
2624xfs_idestroy_fork(
2625	xfs_inode_t	*ip,
2626	int		whichfork)
2627{
2628	xfs_ifork_t	*ifp;
2629
2630	ifp = XFS_IFORK_PTR(ip, whichfork);
2631	if (ifp->if_broot != NULL) {
2632		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2633		ifp->if_broot = NULL;
2634	}
2635
2636	/*
2637	 * If the format is local, then we can't have an extents
2638	 * array so just look for an inline data array.  If we're
2639	 * not local then we may or may not have an extents list,
2640	 * so check and free it up if we do.
2641	 */
2642	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2643		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2644		    (ifp->if_u1.if_data != NULL)) {
2645			ASSERT(ifp->if_real_bytes != 0);
2646			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2647			ifp->if_u1.if_data = NULL;
2648			ifp->if_real_bytes = 0;
2649		}
2650	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2651		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2652		    ((ifp->if_u1.if_extents != NULL) &&
2653		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2654		ASSERT(ifp->if_real_bytes != 0);
2655		xfs_iext_destroy(ifp);
2656	}
2657	ASSERT(ifp->if_u1.if_extents == NULL ||
2658	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2659	ASSERT(ifp->if_real_bytes == 0);
2660	if (whichfork == XFS_ATTR_FORK) {
2661		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2662		ip->i_afp = NULL;
2663	}
2664}
2665
2666/*
2667 * This is called free all the memory associated with an inode.
2668 * It must free the inode itself and any buffers allocated for
2669 * if_extents/if_data and if_broot.  It must also free the lock
2670 * associated with the inode.
2671 */
2672void
2673xfs_idestroy(
2674	xfs_inode_t	*ip)
2675{
2676
2677	switch (ip->i_d.di_mode & S_IFMT) {
2678	case S_IFREG:
2679	case S_IFDIR:
2680	case S_IFLNK:
2681		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2682		break;
2683	}
2684	if (ip->i_afp)
2685		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2686	mrfree(&ip->i_lock);
2687	mrfree(&ip->i_iolock);
2688	freesema(&ip->i_flock);
2689#ifdef XFS_BMAP_TRACE
2690	ktrace_free(ip->i_xtrace);
2691#endif
2692#ifdef XFS_BMBT_TRACE
2693	ktrace_free(ip->i_btrace);
2694#endif
2695#ifdef XFS_RW_TRACE
2696	ktrace_free(ip->i_rwtrace);
2697#endif
2698#ifdef XFS_ILOCK_TRACE
2699	ktrace_free(ip->i_lock_trace);
2700#endif
2701#ifdef XFS_DIR2_TRACE
2702	ktrace_free(ip->i_dir_trace);
2703#endif
2704	if (ip->i_itemp) {
2705		/* XXXdpd should be able to assert this but shutdown
2706		 * is leaving the AIL behind. */
2707		ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2708		       XFS_FORCED_SHUTDOWN(ip->i_mount));
2709		xfs_inode_item_destroy(ip);
2710	}
2711	kmem_zone_free(xfs_inode_zone, ip);
2712}
2713
2714
2715/*
2716 * Increment the pin count of the given buffer.
2717 * This value is protected by ipinlock spinlock in the mount structure.
2718 */
2719void
2720xfs_ipin(
2721	xfs_inode_t	*ip)
2722{
2723	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2724
2725	atomic_inc(&ip->i_pincount);
2726}
2727
2728/*
2729 * Decrement the pin count of the given inode, and wake up
2730 * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2731 * inode must have been previously pinned with a call to xfs_ipin().
2732 */
2733void
2734xfs_iunpin(
2735	xfs_inode_t	*ip)
2736{
2737	ASSERT(atomic_read(&ip->i_pincount) > 0);
2738
2739	if (atomic_dec_and_test(&ip->i_pincount)) {
2740		/*
2741		 * If the inode is currently being reclaimed, the
2742		 * linux inode _and_ the xfs vnode may have been
2743		 * freed so we cannot reference either of them safely.
2744		 * Hence we should not try to do anything to them
2745		 * if the xfs inode is currently in the reclaim
2746		 * path.
2747		 *
2748		 * However, we still need to issue the unpin wakeup
2749		 * call as the inode reclaim may be blocked waiting for
2750		 * the inode to become unpinned.
2751		 */
2752		if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) {
2753			/*
2754			 * Should I mark FreeBSD vnode as dirty here?
2755			 */
2756			printf("xfs_iunpin: REC RECABLE ip %p\n",ip);
2757#ifdef RMC
2758			xfs_vnode_t	*vp = XFS_ITOV_NULL(ip);
2759
2760			/* make sync come back and flush this inode */
2761			if (vp) {
2762				struct inode	*inode = vn_to_inode(vp);
2763
2764				if (!(inode->i_state & I_NEW))
2765					mark_inode_dirty_sync(inode);
2766			}
2767#endif
2768		}
2769		wakeup(&ip->i_ipin_wait);
2770	}
2771}
2772
2773/*
2774 * This is called to wait for the given inode to be unpinned.
2775 * It will sleep until this happens.  The caller must have the
2776 * inode locked in at least shared mode so that the buffer cannot
2777 * be subsequently pinned once someone is waiting for it to be
2778 * unpinned.
2779 */
2780STATIC void
2781xfs_iunpin_wait(
2782	xfs_inode_t	*ip)
2783{
2784	xfs_inode_log_item_t	*iip;
2785	xfs_lsn_t	lsn;
2786
2787	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2788
2789	if (atomic_read(&ip->i_pincount) == 0) {
2790		return;
2791	}
2792
2793	iip = ip->i_itemp;
2794	if (iip && iip->ili_last_lsn) {
2795		lsn = iip->ili_last_lsn;
2796	} else {
2797		lsn = (xfs_lsn_t)0;
2798	}
2799
2800	/*
2801	 * Give the log a push so we don't wait here too long.
2802	 */
2803	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2804
2805	/*
2806	 * XXXKAN: xfs_iunpin is not locking inode
2807	 * at all?
2808	 */
2809	while(atomic_read(&ip->i_pincount) != 0)
2810		tsleep(&ip->i_ipin_wait, PRIBIO, "iunpin", 0);
2811}
2812
2813
2814/*
2815 * xfs_iextents_copy()
2816 *
2817 * This is called to copy the REAL extents (as opposed to the delayed
2818 * allocation extents) from the inode into the given buffer.  It
2819 * returns the number of bytes copied into the buffer.
2820 *
2821 * If there are no delayed allocation extents, then we can just
2822 * memcpy() the extents into the buffer.  Otherwise, we need to
2823 * examine each extent in turn and skip those which are delayed.
2824 */
2825int
2826xfs_iextents_copy(
2827	xfs_inode_t		*ip,
2828	xfs_bmbt_rec_t		*buffer,
2829	int			whichfork)
2830{
2831	int			copied;
2832	xfs_bmbt_rec_t		*dest_ep;
2833	xfs_bmbt_rec_t		*ep;
2834#ifdef XFS_BMAP_TRACE
2835	static char		fname[] = "xfs_iextents_copy";
2836#endif
2837	int			i;
2838	xfs_ifork_t		*ifp;
2839	int			nrecs;
2840	xfs_fsblock_t		start_block;
2841
2842	ifp = XFS_IFORK_PTR(ip, whichfork);
2843	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2844	ASSERT(ifp->if_bytes > 0);
2845
2846	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2847	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2848	ASSERT(nrecs > 0);
2849
2850	/*
2851	 * There are some delayed allocation extents in the
2852	 * inode, so copy the extents one at a time and skip
2853	 * the delayed ones.  There must be at least one
2854	 * non-delayed extent.
2855	 */
2856	dest_ep = buffer;
2857	copied = 0;
2858	for (i = 0; i < nrecs; i++) {
2859		ep = xfs_iext_get_ext(ifp, i);
2860		start_block = xfs_bmbt_get_startblock(ep);
2861		if (ISNULLSTARTBLOCK(start_block)) {
2862			/*
2863			 * It's a delayed allocation extent, so skip it.
2864			 */
2865			continue;
2866		}
2867
2868		/* Translate to on disk format */
2869		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2870			      (__uint64_t*)&dest_ep->l0);
2871		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2872			      (__uint64_t*)&dest_ep->l1);
2873		dest_ep++;
2874		copied++;
2875	}
2876	ASSERT(copied != 0);
2877	xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
2878
2879	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2880}
2881
2882/*
2883 * Each of the following cases stores data into the same region
2884 * of the on-disk inode, so only one of them can be valid at
2885 * any given time. While it is possible to have conflicting formats
2886 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2887 * in EXTENTS format, this can only happen when the fork has
2888 * changed formats after being modified but before being flushed.
2889 * In these cases, the format always takes precedence, because the
2890 * format indicates the current state of the fork.
2891 */
2892/*ARGSUSED*/
2893STATIC int
2894xfs_iflush_fork(
2895	xfs_inode_t		*ip,
2896	xfs_dinode_t		*dip,
2897	xfs_inode_log_item_t	*iip,
2898	int			whichfork,
2899	xfs_buf_t		*bp)
2900{
2901	char			*cp;
2902	xfs_ifork_t		*ifp;
2903	xfs_mount_t		*mp;
2904#ifdef XFS_TRANS_DEBUG
2905	int			first;
2906#endif
2907	static const short	brootflag[2] =
2908		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2909	static const short	dataflag[2] =
2910		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2911	static const short	extflag[2] =
2912		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2913
2914	if (iip == NULL)
2915		return 0;
2916	ifp = XFS_IFORK_PTR(ip, whichfork);
2917	/*
2918	 * This can happen if we gave up in iformat in an error path,
2919	 * for the attribute fork.
2920	 */
2921	if (ifp == NULL) {
2922		ASSERT(whichfork == XFS_ATTR_FORK);
2923		return 0;
2924	}
2925	cp = XFS_DFORK_PTR(dip, whichfork);
2926	mp = ip->i_mount;
2927	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2928	case XFS_DINODE_FMT_LOCAL:
2929		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2930		    (ifp->if_bytes > 0)) {
2931			ASSERT(ifp->if_u1.if_data != NULL);
2932			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2933			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2934		}
2935		if (whichfork == XFS_DATA_FORK) {
2936			if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2937				XFS_ERROR_REPORT("xfs_iflush_fork",
2938						 XFS_ERRLEVEL_LOW, mp);
2939				return XFS_ERROR(EFSCORRUPTED);
2940			}
2941		}
2942		break;
2943
2944	case XFS_DINODE_FMT_EXTENTS:
2945		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2946		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2947		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2948			(ifp->if_bytes == 0));
2949		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2950			(ifp->if_bytes > 0));
2951		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2952		    (ifp->if_bytes > 0)) {
2953			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2954			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2955				whichfork);
2956		}
2957		break;
2958
2959	case XFS_DINODE_FMT_BTREE:
2960		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2961		    (ifp->if_broot_bytes > 0)) {
2962			ASSERT(ifp->if_broot != NULL);
2963			ASSERT(ifp->if_broot_bytes <=
2964			       (XFS_IFORK_SIZE(ip, whichfork) +
2965				XFS_BROOT_SIZE_ADJ));
2966			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2967				(xfs_bmdr_block_t *)cp,
2968				XFS_DFORK_SIZE(dip, mp, whichfork));
2969		}
2970		break;
2971
2972	case XFS_DINODE_FMT_DEV:
2973		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2974			ASSERT(whichfork == XFS_DATA_FORK);
2975			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2976		}
2977		break;
2978
2979	case XFS_DINODE_FMT_UUID:
2980		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2981			ASSERT(whichfork == XFS_DATA_FORK);
2982			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2983				sizeof(uuid_t));
2984		}
2985		break;
2986
2987	default:
2988		ASSERT(0);
2989		break;
2990	}
2991
2992	return 0;
2993}
2994
2995/*
2996 * xfs_iflush() will write a modified inode's changes out to the
2997 * inode's on disk home.  The caller must have the inode lock held
2998 * in at least shared mode and the inode flush semaphore must be
2999 * held as well.  The inode lock will still be held upon return from
3000 * the call and the caller is free to unlock it.
3001 * The inode flush lock will be unlocked when the inode reaches the disk.
3002 * The flags indicate how the inode's buffer should be written out.
3003 */
3004int
3005xfs_iflush(
3006	xfs_inode_t		*ip,
3007	uint			flags)
3008{
3009	xfs_inode_log_item_t	*iip;
3010	xfs_buf_t		*bp;
3011	xfs_dinode_t		*dip;
3012	xfs_mount_t		*mp;
3013	int			error;
3014	/* REFERENCED */
3015	xfs_chash_t		*ch;
3016	xfs_inode_t		*iq;
3017	int			clcount;	/* count of inodes clustered */
3018	int			bufwasdelwri;
3019	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3020	SPLDECL(s);
3021
3022	XFS_STATS_INC(xs_iflush_count);
3023
3024
3025	printf("xfs_iflush: ip %p i_ino %lld\n",ip,ip->i_ino);
3026	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3027	ASSERT(valusema(&ip->i_flock) <= 0);
3028	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3029	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3030
3031	iip = ip->i_itemp;
3032	mp = ip->i_mount;
3033
3034	/*
3035	 * If the inode isn't dirty, then just release the inode
3036	 * flush lock and do nothing.
3037	 */
3038	if ((ip->i_update_core == 0) &&
3039	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3040		ASSERT((iip != NULL) ?
3041			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3042		xfs_ifunlock(ip);
3043		return 0;
3044	}
3045
3046	/*
3047	 * We can't flush the inode until it is unpinned, so
3048	 * wait for it.  We know noone new can pin it, because
3049	 * we are holding the inode lock shared and you need
3050	 * to hold it exclusively to pin the inode.
3051	 */
3052	xfs_iunpin_wait(ip);
3053
3054	/*
3055	 * This may have been unpinned because the filesystem is shutting
3056	 * down forcibly. If that's the case we must not write this inode
3057	 * to disk, because the log record didn't make it to disk!
3058	 */
3059	if (XFS_FORCED_SHUTDOWN(mp)) {
3060		ip->i_update_core = 0;
3061		if (iip)
3062			iip->ili_format.ilf_fields = 0;
3063		xfs_ifunlock(ip);
3064		return XFS_ERROR(EIO);
3065	}
3066
3067	/*
3068	 * Get the buffer containing the on-disk inode.
3069	 */
3070	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3071	if (error) {
3072		xfs_ifunlock(ip);
3073		return error;
3074	}
3075
3076	/*
3077	 * Decide how buffer will be flushed out.  This is done before
3078	 * the call to xfs_iflush_int because this field is zeroed by it.
3079	 */
3080	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3081		/*
3082		 * Flush out the inode buffer according to the directions
3083		 * of the caller.  In the cases where the caller has given
3084		 * us a choice choose the non-delwri case.  This is because
3085		 * the inode is in the AIL and we need to get it out soon.
3086		 */
3087		switch (flags) {
3088		case XFS_IFLUSH_SYNC:
3089		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3090			flags = 0;
3091			break;
3092		case XFS_IFLUSH_ASYNC:
3093		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3094			flags = INT_ASYNC;
3095			break;
3096		case XFS_IFLUSH_DELWRI:
3097			flags = INT_DELWRI;
3098			break;
3099		default:
3100			ASSERT(0);
3101			flags = 0;
3102			break;
3103		}
3104	} else {
3105		switch (flags) {
3106		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3107		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3108		case XFS_IFLUSH_DELWRI:
3109			flags = INT_DELWRI;
3110			break;
3111		case XFS_IFLUSH_ASYNC:
3112			flags = INT_ASYNC;
3113			break;
3114		case XFS_IFLUSH_SYNC:
3115			flags = 0;
3116			break;
3117		default:
3118			ASSERT(0);
3119			flags = 0;
3120			break;
3121		}
3122	}
3123
3124	/*
3125	 * First flush out the inode that xfs_iflush was called with.
3126	 */
3127	error = xfs_iflush_int(ip, bp);
3128	if (error) {
3129		goto corrupt_out;
3130	}
3131
3132	/*
3133	 * inode clustering:
3134	 * see if other inodes can be gathered into this write
3135	 */
3136
3137	ip->i_chash->chl_buf = bp;
3138
3139	ch = XFS_CHASH(mp, ip->i_blkno);
3140	s = mutex_spinlock(&ch->ch_lock);
3141
3142	clcount = 0;
3143	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3144		/*
3145		 * Do an un-protected check to see if the inode is dirty and
3146		 * is a candidate for flushing.  These checks will be repeated
3147		 * later after the appropriate locks are acquired.
3148		 */
3149		iip = iq->i_itemp;
3150		if ((iq->i_update_core == 0) &&
3151		    ((iip == NULL) ||
3152		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3153		      xfs_ipincount(iq) == 0) {
3154			continue;
3155		}
3156
3157		/*
3158		 * Try to get locks.  If any are unavailable,
3159		 * then this inode cannot be flushed and is skipped.
3160		 */
3161
3162		/* get inode locks (just i_lock) */
3163		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3164			/* get inode flush lock */
3165			if (xfs_iflock_nowait(iq)) {
3166				/* check if pinned */
3167				if (xfs_ipincount(iq) == 0) {
3168					/* arriving here means that
3169					 * this inode can be flushed.
3170					 * first re-check that it's
3171					 * dirty
3172					 */
3173					iip = iq->i_itemp;
3174					if ((iq->i_update_core != 0)||
3175					    ((iip != NULL) &&
3176					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3177						clcount++;
3178						error = xfs_iflush_int(iq, bp);
3179						if (error) {
3180							xfs_iunlock(iq,
3181								    XFS_ILOCK_SHARED);
3182							goto cluster_corrupt_out;
3183						}
3184					} else {
3185						xfs_ifunlock(iq);
3186					}
3187				} else {
3188					xfs_ifunlock(iq);
3189				}
3190			}
3191			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3192		}
3193	}
3194	mutex_spinunlock(&ch->ch_lock, s);
3195
3196	if (clcount) {
3197		XFS_STATS_INC(xs_icluster_flushcnt);
3198		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3199	}
3200
3201	/*
3202	 * If the buffer is pinned then push on the log so we won't
3203	 * get stuck waiting in the write for too long.
3204	 */
3205	if (XFS_BUF_ISPINNED(bp)){
3206		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3207	}
3208
3209	if (flags & INT_DELWRI) {
3210		xfs_bdwrite(mp, bp);
3211	} else if (flags & INT_ASYNC) {
3212		xfs_bawrite(mp, bp);
3213	} else {
3214		error = xfs_bwrite(mp, bp);
3215	}
3216	return error;
3217
3218corrupt_out:
3219	xfs_buf_relse(bp);
3220	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3221	xfs_iflush_abort(ip);
3222	/*
3223	 * Unlocks the flush lock
3224	 */
3225	return XFS_ERROR(EFSCORRUPTED);
3226
3227cluster_corrupt_out:
3228	/* Corruption detected in the clustering loop.  Invalidate the
3229	 * inode buffer and shut down the filesystem.
3230	 */
3231	mutex_spinunlock(&ch->ch_lock, s);
3232
3233	/*
3234	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3235	 * brelse can handle it with no problems.  If not, shut down the
3236	 * filesystem before releasing the buffer.
3237	 */
3238	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3239		xfs_buf_relse(bp);
3240	}
3241
3242	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3243
3244	if(!bufwasdelwri)  {
3245		/*
3246		 * Just like incore_relse: if we have b_iodone functions,
3247		 * mark the buffer as an error and call them.  Otherwise
3248		 * mark it as stale and brelse.
3249		 */
3250		if (XFS_BUF_IODONE_FUNC(bp)) {
3251			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3252			XFS_BUF_UNDONE(bp);
3253			XFS_BUF_STALE(bp);
3254			XFS_BUF_SHUT(bp);
3255			XFS_BUF_ERROR(bp,EIO);
3256			xfs_biodone(bp);
3257		} else {
3258			XFS_BUF_STALE(bp);
3259			xfs_buf_relse(bp);
3260		}
3261	}
3262
3263	xfs_iflush_abort(iq);
3264	/*
3265	 * Unlocks the flush lock
3266	 */
3267	return XFS_ERROR(EFSCORRUPTED);
3268}
3269
3270
3271STATIC int
3272xfs_iflush_int(
3273	xfs_inode_t		*ip,
3274	xfs_buf_t		*bp)
3275{
3276	xfs_inode_log_item_t	*iip;
3277	xfs_dinode_t		*dip;
3278	xfs_mount_t		*mp;
3279#ifdef XFS_TRANS_DEBUG
3280	// int			first;
3281#endif
3282	SPLDECL(s);
3283
3284	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3285	ASSERT(valusema(&ip->i_flock) <= 0);
3286	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3287	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3288
3289	iip = ip->i_itemp;
3290	mp = ip->i_mount;
3291
3292
3293	/*
3294	 * If the inode isn't dirty, then just release the inode
3295	 * flush lock and do nothing.
3296	 */
3297	if ((ip->i_update_core == 0) &&
3298	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3299		xfs_ifunlock(ip);
3300		return 0;
3301	}
3302
3303	/* set *dip = inode's place in the buffer */
3304	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3305
3306	/*
3307	 * Clear i_update_core before copying out the data.
3308	 * This is for coordination with our timestamp updates
3309	 * that don't hold the inode lock. They will always
3310	 * update the timestamps BEFORE setting i_update_core,
3311	 * so if we clear i_update_core after they set it we
3312	 * are guaranteed to see their updates to the timestamps.
3313	 * I believe that this depends on strongly ordered memory
3314	 * semantics, but we have that.  We use the SYNCHRONIZE
3315	 * macro to make sure that the compiler does not reorder
3316	 * the i_update_core access below the data copy below.
3317	 */
3318	ip->i_update_core = 0;
3319	SYNCHRONIZE();
3320
3321	/*
3322	 * Make sure to get the latest atime from the Linux inode.
3323	 */
3324	xfs_synchronize_atime(ip);
3325
3326	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3327			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3328		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3329		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3330			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3331		goto corrupt_out;
3332	}
3333	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3334				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3335		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3336			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3337			ip->i_ino, ip, ip->i_d.di_magic);
3338		goto corrupt_out;
3339	}
3340	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3341		if (XFS_TEST_ERROR(
3342		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3343		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3344		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3345			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3346				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3347				ip->i_ino, ip);
3348			goto corrupt_out;
3349		}
3350	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3351		if (XFS_TEST_ERROR(
3352		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3353		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3354		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3355		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3356			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3357				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3358				ip->i_ino, ip);
3359			goto corrupt_out;
3360		}
3361	}
3362	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3363				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3364				XFS_RANDOM_IFLUSH_5)) {
3365		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3366			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3367			ip->i_ino,
3368			ip->i_d.di_nextents + ip->i_d.di_anextents,
3369			ip->i_d.di_nblocks,
3370			ip);
3371		goto corrupt_out;
3372	}
3373	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3374				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3375		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3376			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3377			ip->i_ino, ip->i_d.di_forkoff, ip);
3378		goto corrupt_out;
3379	}
3380	/*
3381	 * bump the flush iteration count, used to detect flushes which
3382	 * postdate a log record during recovery.
3383	 */
3384
3385	ip->i_d.di_flushiter++;
3386
3387	/*
3388	 * Copy the dirty parts of the inode into the on-disk
3389	 * inode.  We always copy out the core of the inode,
3390	 * because if the inode is dirty at all the core must
3391	 * be.
3392	 */
3393	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3394
3395	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3396	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3397		ip->i_d.di_flushiter = 0;
3398
3399	/*
3400	 * If this is really an old format inode and the superblock version
3401	 * has not been updated to support only new format inodes, then
3402	 * convert back to the old inode format.  If the superblock version
3403	 * has been updated, then make the conversion permanent.
3404	 */
3405	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3406	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3407	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3408		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3409			/*
3410			 * Convert it back.
3411			 */
3412			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3413			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3414		} else {
3415			/*
3416			 * The superblock version has already been bumped,
3417			 * so just make the conversion to the new inode
3418			 * format permanent.
3419			 */
3420			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3421			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3422			ip->i_d.di_onlink = 0;
3423			dip->di_core.di_onlink = 0;
3424			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3425			memset(&(dip->di_core.di_pad[0]), 0,
3426			      sizeof(dip->di_core.di_pad));
3427			ASSERT(ip->i_d.di_projid == 0);
3428		}
3429	}
3430
3431	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3432		goto corrupt_out;
3433	}
3434
3435	if (XFS_IFORK_Q(ip)) {
3436		/*
3437		 * The only error from xfs_iflush_fork is on the data fork.
3438		 */
3439		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3440	}
3441	xfs_inobp_check(mp, bp);
3442
3443	/*
3444	 * We've recorded everything logged in the inode, so we'd
3445	 * like to clear the ilf_fields bits so we don't log and
3446	 * flush things unnecessarily.  However, we can't stop
3447	 * logging all this information until the data we've copied
3448	 * into the disk buffer is written to disk.  If we did we might
3449	 * overwrite the copy of the inode in the log with all the
3450	 * data after re-logging only part of it, and in the face of
3451	 * a crash we wouldn't have all the data we need to recover.
3452	 *
3453	 * What we do is move the bits to the ili_last_fields field.
3454	 * When logging the inode, these bits are moved back to the
3455	 * ilf_fields field.  In the xfs_iflush_done() routine we
3456	 * clear ili_last_fields, since we know that the information
3457	 * those bits represent is permanently on disk.  As long as
3458	 * the flush completes before the inode is logged again, then
3459	 * both ilf_fields and ili_last_fields will be cleared.
3460	 *
3461	 * We can play with the ilf_fields bits here, because the inode
3462	 * lock must be held exclusively in order to set bits there
3463	 * and the flush lock protects the ili_last_fields bits.
3464	 * Set ili_logged so the flush done
3465	 * routine can tell whether or not to look in the AIL.
3466	 * Also, store the current LSN of the inode so that we can tell
3467	 * whether the item has moved in the AIL from xfs_iflush_done().
3468	 * In order to read the lsn we need the AIL lock, because
3469	 * it is a 64 bit value that cannot be read atomically.
3470	 */
3471	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3472		iip->ili_last_fields = iip->ili_format.ilf_fields;
3473		iip->ili_format.ilf_fields = 0;
3474		iip->ili_logged = 1;
3475
3476		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3477		AIL_LOCK(mp,s);
3478		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3479		AIL_UNLOCK(mp, s);
3480
3481		/*
3482		 * Attach the function xfs_iflush_done to the inode's
3483		 * buffer.  This will remove the inode from the AIL
3484		 * and unlock the inode's flush lock when the inode is
3485		 * completely written to disk.
3486		 */
3487		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3488				      xfs_iflush_done, (xfs_log_item_t *)iip);
3489
3490		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3491		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3492	} else {
3493		/*
3494		 * We're flushing an inode which is not in the AIL and has
3495		 * not been logged but has i_update_core set.  For this
3496		 * case we can use a B_DELWRI flush and immediately drop
3497		 * the inode flush lock because we can avoid the whole
3498		 * AIL state thing.  It's OK to drop the flush lock now,
3499		 * because we've already locked the buffer and to do anything
3500		 * you really need both.
3501		 */
3502		if (iip != NULL) {
3503			ASSERT(iip->ili_logged == 0);
3504			ASSERT(iip->ili_last_fields == 0);
3505			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3506		}
3507		xfs_ifunlock(ip);
3508	}
3509
3510	return 0;
3511
3512corrupt_out:
3513	return XFS_ERROR(EFSCORRUPTED);
3514}
3515
3516
3517/*
3518 * Flush all inactive inodes in mp.
3519 */
3520void
3521xfs_iflush_all(
3522	xfs_mount_t	*mp)
3523{
3524	int		done;
3525	int		purged;
3526	xfs_inode_t	*ip;
3527	xfs_vnode_t	*vp;
3528
3529	done = 0;
3530	while (!done) {
3531		purged = 0;
3532		XFS_MOUNT_ILOCK(mp);
3533		ip = mp->m_inodes;
3534		if (ip == NULL) {
3535			break;
3536		}
3537		do {
3538			/* Make sure we skip markers inserted by sync */
3539			if (ip->i_mount == NULL) {
3540				ip = ip->i_mnext;
3541				continue;
3542			}
3543
3544			/*
3545			 * It's up to our caller to purge the root
3546			 * and quota vnodes later.
3547			 */
3548			vp = XFS_ITOV_NULL(ip);
3549
3550			if (!vp) {
3551				XFS_MOUNT_IUNLOCK(mp);
3552				xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3553				purged = 1;
3554				break;
3555			}
3556
3557			if (vn_count(vp) != 0) {
3558				if (vn_count(vp) == 1 &&
3559				    (ip == mp->m_rootip ||
3560				     (mp->m_quotainfo &&
3561				      (ip->i_ino == mp->m_sb.sb_uquotino ||
3562				       ip->i_ino == mp->m_sb.sb_gquotino)))) {
3563					ip = ip->i_mnext;
3564					continue;
3565				}
3566				/*
3567				 * Ignore busy inodes but continue flushing
3568				 * others.
3569				 */
3570				ip = ip->i_mnext;
3571				continue;
3572			}
3573			/*
3574			 * Sample vp mapping while holding mp locked on MP
3575			 * systems, so we don't purge a reclaimed or
3576			 * nonexistent vnode.  We break from the loop
3577			 * since we know that we modify
3578			 * it by pulling ourselves from it in xfs_reclaim()
3579			 * called via vn_purge() below.  Set ip to the next
3580			 * entry in the list anyway so we'll know below
3581			 * whether we reached the end or not.
3582			 */
3583
3584			XFS_MOUNT_IUNLOCK(mp);
3585			vn_purge(vp);
3586			purged = 1;
3587			break;
3588		} while (ip != mp->m_inodes);
3589		/*
3590		 * We need to distinguish between when we exit the loop
3591		 * after a purge and when we simply hit the end of the
3592		 * list.  We can't use the (ip == mp->m_inodes) test,
3593		 * because when we purge an inode at the start of the list
3594		 * the next inode on the list becomes mp->m_inodes.  That
3595		 * would cause such a test to bail out early.  The purged
3596		 * variable tells us how we got out of the loop.
3597		 */
3598		if (!purged) {
3599			done = 1;
3600		}
3601	}
3602	XFS_MOUNT_IUNLOCK(mp);
3603}
3604
3605/*
3606 * xfs_iaccess: check accessibility of inode for mode.
3607 * This function is quite linuxy now
3608 * probably should be move to a os specfic location
3609 */
3610int
3611xfs_iaccess(
3612	xfs_inode_t	*ip,
3613	accmode_t	accmode,
3614	cred_t		*cr)
3615{
3616	xfs_vnode_t	*vp;
3617	int		error;
3618
3619	mode_t		imode;
3620
3621	vp = XFS_ITOV(ip);
3622	/* FreeBSD local change here */
3623	imode = (ip->i_d.di_mode & MODEMASK) | VTTOIF(vp->v_vnode->v_type);
3624	/*
3625	 * Verify that the MAC policy allows the requested access.
3626	 */
3627	if ((error = _MAC_XFS_IACCESS(ip, accmode, cr)))
3628		return XFS_ERROR(error);
3629
3630	if (accmode & VWRITE) {
3631		xfs_mount_t	*mp = ip->i_mount;
3632
3633		if ((XVFSTOMNT(XFS_MTOVFS(mp))->mnt_flag & MNT_RDONLY) &&
3634		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3635			return XFS_ERROR(EROFS);
3636
3637#ifdef XXXKAN
3638		if (IS_IMMUTABLE(inode))
3639			return XFS_ERROR(EACCES);
3640#endif
3641	}
3642
3643	/*
3644	 * If there's an Access Control List it's used instead of
3645	 * the mode bits.
3646	 */
3647	if ((error = _ACL_XFS_IACCESS(ip, accmode, cr)) != -1)
3648		return error ? XFS_ERROR(error) : 0;
3649
3650
3651	/* FreeBSD local change here */
3652	error = vaccess(vp->v_vnode->v_type, imode, ip->i_d.di_uid, ip->i_d.di_gid,
3653	    accmode, cr, NULL);
3654
3655	return (error);
3656}
3657
3658/*
3659 * xfs_iroundup: round up argument to next power of two
3660 */
3661uint
3662xfs_iroundup(
3663	uint	v)
3664{
3665	int i;
3666	uint m;
3667
3668	if ((v & (v - 1)) == 0)
3669		return v;
3670	ASSERT((v & 0x80000000) == 0);
3671	if ((v & (v + 1)) == 0)
3672		return v + 1;
3673	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3674		if (v & m)
3675			continue;
3676		v |= m;
3677		if ((v & (v + 1)) == 0)
3678			return v + 1;
3679	}
3680	ASSERT(0);
3681	return( 0 );
3682}
3683
3684#ifdef XFS_ILOCK_TRACE
3685ktrace_t	*xfs_ilock_trace_buf;
3686
3687void
3688xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3689{
3690	ktrace_enter(ip->i_lock_trace,
3691		     (void *)ip,
3692		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3693		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3694		     (void *)ra,		/* caller of ilock */
3695		     (void *)(unsigned long)current_cpu(),
3696		     (void *)(unsigned long)current_pid(),
3697		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3698}
3699#endif
3700
3701/*
3702 * Return a pointer to the extent record at file index idx.
3703 */
3704xfs_bmbt_rec_t *
3705xfs_iext_get_ext(
3706	xfs_ifork_t	*ifp,		/* inode fork pointer */
3707	xfs_extnum_t	idx)		/* index of target extent */
3708{
3709	ASSERT(idx >= 0);
3710	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3711		return ifp->if_u1.if_ext_irec->er_extbuf;
3712	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3713		xfs_ext_irec_t	*erp;		/* irec pointer */
3714		int		erp_idx = 0;	/* irec index */
3715		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3716
3717		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3718		return &erp->er_extbuf[page_idx];
3719	} else if (ifp->if_bytes) {
3720		return &ifp->if_u1.if_extents[idx];
3721	} else {
3722		return NULL;
3723	}
3724}
3725
3726/*
3727 * Insert new item(s) into the extent records for incore inode
3728 * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3729 */
3730void
3731xfs_iext_insert(
3732	xfs_ifork_t	*ifp,		/* inode fork pointer */
3733	xfs_extnum_t	idx,		/* starting index of new items */
3734	xfs_extnum_t	count,		/* number of inserted items */
3735	xfs_bmbt_irec_t	*new)		/* items to insert */
3736{
3737	xfs_bmbt_rec_t	*ep;		/* extent record pointer */
3738	xfs_extnum_t	i;		/* extent record index */
3739
3740	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3741	xfs_iext_add(ifp, idx, count);
3742	for (i = idx; i < idx + count; i++, new++) {
3743		ep = xfs_iext_get_ext(ifp, i);
3744		xfs_bmbt_set_all(ep, new);
3745	}
3746}
3747
3748/*
3749 * This is called when the amount of space required for incore file
3750 * extents needs to be increased. The ext_diff parameter stores the
3751 * number of new extents being added and the idx parameter contains
3752 * the extent index where the new extents will be added. If the new
3753 * extents are being appended, then we just need to (re)allocate and
3754 * initialize the space. Otherwise, if the new extents are being
3755 * inserted into the middle of the existing entries, a bit more work
3756 * is required to make room for the new extents to be inserted. The
3757 * caller is responsible for filling in the new extent entries upon
3758 * return.
3759 */
3760void
3761xfs_iext_add(
3762	xfs_ifork_t	*ifp,		/* inode fork pointer */
3763	xfs_extnum_t	idx,		/* index to begin adding exts */
3764	int		ext_diff)	/* number of extents to add */
3765{
3766	int		byte_diff;	/* new bytes being added */
3767	int		new_size;	/* size of extents after adding */
3768	xfs_extnum_t	nextents;	/* number of extents in file */
3769
3770	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3771	ASSERT((idx >= 0) && (idx <= nextents));
3772	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3773	new_size = ifp->if_bytes + byte_diff;
3774	/*
3775	 * If the new number of extents (nextents + ext_diff)
3776	 * fits inside the inode, then continue to use the inline
3777	 * extent buffer.
3778	 */
3779	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3780		if (idx < nextents) {
3781			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3782				&ifp->if_u2.if_inline_ext[idx],
3783				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3784			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3785		}
3786		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3787		ifp->if_real_bytes = 0;
3788		ifp->if_lastex = nextents + ext_diff;
3789	}
3790	/*
3791	 * Otherwise use a linear (direct) extent list.
3792	 * If the extents are currently inside the inode,
3793	 * xfs_iext_realloc_direct will switch us from
3794	 * inline to direct extent allocation mode.
3795	 */
3796	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3797		xfs_iext_realloc_direct(ifp, new_size);
3798		if (idx < nextents) {
3799			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3800				&ifp->if_u1.if_extents[idx],
3801				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3802			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3803		}
3804	}
3805	/* Indirection array */
3806	else {
3807		xfs_ext_irec_t	*erp;
3808		int		erp_idx = 0;
3809		int		page_idx = idx;
3810
3811		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3812		if (ifp->if_flags & XFS_IFEXTIREC) {
3813			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3814		} else {
3815			xfs_iext_irec_init(ifp);
3816			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3817			erp = ifp->if_u1.if_ext_irec;
3818		}
3819		/* Extents fit in target extent page */
3820		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3821			if (page_idx < erp->er_extcount) {
3822				memmove(&erp->er_extbuf[page_idx + ext_diff],
3823					&erp->er_extbuf[page_idx],
3824					(erp->er_extcount - page_idx) *
3825					sizeof(xfs_bmbt_rec_t));
3826				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3827			}
3828			erp->er_extcount += ext_diff;
3829			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3830		}
3831		/* Insert a new extent page */
3832		else if (erp) {
3833			xfs_iext_add_indirect_multi(ifp,
3834				erp_idx, page_idx, ext_diff);
3835		}
3836		/*
3837		 * If extent(s) are being appended to the last page in
3838		 * the indirection array and the new extent(s) don't fit
3839		 * in the page, then erp is NULL and erp_idx is set to
3840		 * the next index needed in the indirection array.
3841		 */
3842		else {
3843			int	count = ext_diff;
3844
3845			while (count) {
3846				erp = xfs_iext_irec_new(ifp, erp_idx);
3847				erp->er_extcount = count;
3848				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3849				if (count) {
3850					erp_idx++;
3851				}
3852			}
3853		}
3854	}
3855	ifp->if_bytes = new_size;
3856}
3857
3858/*
3859 * This is called when incore extents are being added to the indirection
3860 * array and the new extents do not fit in the target extent list. The
3861 * erp_idx parameter contains the irec index for the target extent list
3862 * in the indirection array, and the idx parameter contains the extent
3863 * index within the list. The number of extents being added is stored
3864 * in the count parameter.
3865 *
3866 *    |-------|   |-------|
3867 *    |       |   |       |    idx - number of extents before idx
3868 *    |  idx  |   | count |
3869 *    |       |   |       |    count - number of extents being inserted at idx
3870 *    |-------|   |-------|
3871 *    | count |   | nex2  |    nex2 - number of extents after idx + count
3872 *    |-------|   |-------|
3873 */
3874void
3875xfs_iext_add_indirect_multi(
3876	xfs_ifork_t	*ifp,			/* inode fork pointer */
3877	int		erp_idx,		/* target extent irec index */
3878	xfs_extnum_t	idx,			/* index within target list */
3879	int		count)			/* new extents being added */
3880{
3881	int		byte_diff;		/* new bytes being added */
3882	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3883	xfs_extnum_t	ext_diff;		/* number of extents to add */
3884	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3885	xfs_extnum_t	nex2;			/* extents after idx + count */
3886	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3887	int		nlists;			/* number of irec's (lists) */
3888
3889	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3890	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3891	nex2 = erp->er_extcount - idx;
3892	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3893
3894	/*
3895	 * Save second part of target extent list
3896	 * (all extents past */
3897	if (nex2) {
3898		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3899		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3900		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3901		erp->er_extcount -= nex2;
3902		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3903		memset(&erp->er_extbuf[idx], 0, byte_diff);
3904	}
3905
3906	/*
3907	 * Add the new extents to the end of the target
3908	 * list, then allocate new irec record(s) and
3909	 * extent buffer(s) as needed to store the rest
3910	 * of the new extents.
3911	 */
3912	ext_cnt = count;
3913	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3914	if (ext_diff) {
3915		erp->er_extcount += ext_diff;
3916		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3917		ext_cnt -= ext_diff;
3918	}
3919	while (ext_cnt) {
3920		erp_idx++;
3921		erp = xfs_iext_irec_new(ifp, erp_idx);
3922		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3923		erp->er_extcount = ext_diff;
3924		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3925		ext_cnt -= ext_diff;
3926	}
3927
3928	/* Add nex2 extents back to indirection array */
3929	if (nex2) {
3930		xfs_extnum_t	ext_avail;
3931		int		i;
3932
3933		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3934		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3935		i = 0;
3936		/*
3937		 * If nex2 extents fit in the current page, append
3938		 * nex2_ep after the new extents.
3939		 */
3940		if (nex2 <= ext_avail) {
3941			i = erp->er_extcount;
3942		}
3943		/*
3944		 * Otherwise, check if space is available in the
3945		 * next page.
3946		 */
3947		else if ((erp_idx < nlists - 1) &&
3948			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3949			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3950			erp_idx++;
3951			erp++;
3952			/* Create a hole for nex2 extents */
3953			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3954				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3955		}
3956		/*
3957		 * Final choice, create a new extent page for
3958		 * nex2 extents.
3959		 */
3960		else {
3961			erp_idx++;
3962			erp = xfs_iext_irec_new(ifp, erp_idx);
3963		}
3964		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3965		kmem_free(nex2_ep, byte_diff);
3966		erp->er_extcount += nex2;
3967		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3968	}
3969}
3970
3971/*
3972 * This is called when the amount of space required for incore file
3973 * extents needs to be decreased. The ext_diff parameter stores the
3974 * number of extents to be removed and the idx parameter contains
3975 * the extent index where the extents will be removed from.
3976 *
3977 * If the amount of space needed has decreased below the linear
3978 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3979 * extent array.  Otherwise, use kmem_realloc() to adjust the
3980 * size to what is needed.
3981 */
3982void
3983xfs_iext_remove(
3984	xfs_ifork_t	*ifp,		/* inode fork pointer */
3985	xfs_extnum_t	idx,		/* index to begin removing exts */
3986	int		ext_diff)	/* number of extents to remove */
3987{
3988	xfs_extnum_t	nextents;	/* number of extents in file */
3989	int		new_size;	/* size of extents after removal */
3990
3991	ASSERT(ext_diff > 0);
3992	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3993	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3994
3995	if (new_size == 0) {
3996		xfs_iext_destroy(ifp);
3997	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3998		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3999	} else if (ifp->if_real_bytes) {
4000		xfs_iext_remove_direct(ifp, idx, ext_diff);
4001	} else {
4002		xfs_iext_remove_inline(ifp, idx, ext_diff);
4003	}
4004	ifp->if_bytes = new_size;
4005}
4006
4007/*
4008 * This removes ext_diff extents from the inline buffer, beginning
4009 * at extent index idx.
4010 */
4011void
4012xfs_iext_remove_inline(
4013	xfs_ifork_t	*ifp,		/* inode fork pointer */
4014	xfs_extnum_t	idx,		/* index to begin removing exts */
4015	int		ext_diff)	/* number of extents to remove */
4016{
4017	int		nextents;	/* number of extents in file */
4018
4019	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4020	ASSERT(idx < XFS_INLINE_EXTS);
4021	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4022	ASSERT(((nextents - ext_diff) > 0) &&
4023		(nextents - ext_diff) < XFS_INLINE_EXTS);
4024
4025	if (idx + ext_diff < nextents) {
4026		memmove(&ifp->if_u2.if_inline_ext[idx],
4027			&ifp->if_u2.if_inline_ext[idx + ext_diff],
4028			(nextents - (idx + ext_diff)) *
4029			 sizeof(xfs_bmbt_rec_t));
4030		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4031			0, ext_diff * sizeof(xfs_bmbt_rec_t));
4032	} else {
4033		memset(&ifp->if_u2.if_inline_ext[idx], 0,
4034			ext_diff * sizeof(xfs_bmbt_rec_t));
4035	}
4036}
4037
4038/*
4039 * This removes ext_diff extents from a linear (direct) extent list,
4040 * beginning at extent index idx. If the extents are being removed
4041 * from the end of the list (ie. truncate) then we just need to re-
4042 * allocate the list to remove the extra space. Otherwise, if the
4043 * extents are being removed from the middle of the existing extent
4044 * entries, then we first need to move the extent records beginning
4045 * at idx + ext_diff up in the list to overwrite the records being
4046 * removed, then remove the extra space via kmem_realloc.
4047 */
4048void
4049xfs_iext_remove_direct(
4050	xfs_ifork_t	*ifp,		/* inode fork pointer */
4051	xfs_extnum_t	idx,		/* index to begin removing exts */
4052	int		ext_diff)	/* number of extents to remove */
4053{
4054	xfs_extnum_t	nextents;	/* number of extents in file */
4055	int		new_size;	/* size of extents after removal */
4056
4057	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4058	new_size = ifp->if_bytes -
4059		(ext_diff * sizeof(xfs_bmbt_rec_t));
4060	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4061
4062	if (new_size == 0) {
4063		xfs_iext_destroy(ifp);
4064		return;
4065	}
4066	/* Move extents up in the list (if needed) */
4067	if (idx + ext_diff < nextents) {
4068		memmove(&ifp->if_u1.if_extents[idx],
4069			&ifp->if_u1.if_extents[idx + ext_diff],
4070			(nextents - (idx + ext_diff)) *
4071			 sizeof(xfs_bmbt_rec_t));
4072	}
4073	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4074		0, ext_diff * sizeof(xfs_bmbt_rec_t));
4075	/*
4076	 * Reallocate the direct extent list. If the extents
4077	 * will fit inside the inode then xfs_iext_realloc_direct
4078	 * will switch from direct to inline extent allocation
4079	 * mode for us.
4080	 */
4081	xfs_iext_realloc_direct(ifp, new_size);
4082	ifp->if_bytes = new_size;
4083}
4084
4085/*
4086 * This is called when incore extents are being removed from the
4087 * indirection array and the extents being removed span multiple extent
4088 * buffers. The idx parameter contains the file extent index where we
4089 * want to begin removing extents, and the count parameter contains
4090 * how many extents need to be removed.
4091 *
4092 *    |-------|   |-------|
4093 *    | nex1  |   |       |    nex1 - number of extents before idx
4094 *    |-------|   | count |
4095 *    |       |   |       |    count - number of extents being removed at idx
4096 *    | count |   |-------|
4097 *    |       |   | nex2  |    nex2 - number of extents after idx + count
4098 *    |-------|   |-------|
4099 */
4100void
4101xfs_iext_remove_indirect(
4102	xfs_ifork_t	*ifp,		/* inode fork pointer */
4103	xfs_extnum_t	idx,		/* index to begin removing extents */
4104	int		count)		/* number of extents to remove */
4105{
4106	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4107	int		erp_idx = 0;	/* indirection array index */
4108	xfs_extnum_t	ext_cnt;	/* extents left to remove */
4109	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
4110	xfs_extnum_t	nex1;		/* number of extents before idx */
4111	xfs_extnum_t	nex2;		/* extents after idx + count */
4112	int		nlists;		/* entries in indirection array */
4113	int		page_idx = idx;	/* index in target extent list */
4114
4115	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4116	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
4117	ASSERT(erp != NULL);
4118	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4119	nex1 = page_idx;
4120	ext_cnt = count;
4121	while (ext_cnt) {
4122		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4123		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4124		/*
4125		 * Check for deletion of entire list;
4126		 * xfs_iext_irec_remove() updates extent offsets.
4127		 */
4128		if (ext_diff == erp->er_extcount) {
4129			xfs_iext_irec_remove(ifp, erp_idx);
4130			ext_cnt -= ext_diff;
4131			nex1 = 0;
4132			if (ext_cnt) {
4133				ASSERT(erp_idx < ifp->if_real_bytes /
4134					XFS_IEXT_BUFSZ);
4135				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4136				nex1 = 0;
4137				continue;
4138			} else {
4139				break;
4140			}
4141		}
4142		/* Move extents up (if needed) */
4143		if (nex2) {
4144			memmove(&erp->er_extbuf[nex1],
4145				&erp->er_extbuf[nex1 + ext_diff],
4146				nex2 * sizeof(xfs_bmbt_rec_t));
4147		}
4148		/* Zero out rest of page */
4149		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4150			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4151		/* Update remaining counters */
4152		erp->er_extcount -= ext_diff;
4153		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4154		ext_cnt -= ext_diff;
4155		nex1 = 0;
4156		erp_idx++;
4157		erp++;
4158	}
4159	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4160	xfs_iext_irec_compact(ifp);
4161}
4162
4163/*
4164 * Create, destroy, or resize a linear (direct) block of extents.
4165 */
4166void
4167xfs_iext_realloc_direct(
4168	xfs_ifork_t	*ifp,		/* inode fork pointer */
4169	int		new_size)	/* new size of extents */
4170{
4171	int		rnew_size;	/* real new size of extents */
4172
4173	rnew_size = new_size;
4174
4175	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4176		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4177		 (new_size != ifp->if_real_bytes)));
4178
4179	/* Free extent records */
4180	if (new_size == 0) {
4181		xfs_iext_destroy(ifp);
4182	}
4183	/* Resize direct extent list and zero any new bytes */
4184	else if (ifp->if_real_bytes) {
4185		/* Check if extents will fit inside the inode */
4186		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4187			xfs_iext_direct_to_inline(ifp, new_size /
4188				(uint)sizeof(xfs_bmbt_rec_t));
4189			ifp->if_bytes = new_size;
4190			return;
4191		}
4192		if ((new_size & (new_size - 1)) != 0) {
4193			rnew_size = xfs_iroundup(new_size);
4194		}
4195		if (rnew_size != ifp->if_real_bytes) {
4196			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4197				kmem_realloc(ifp->if_u1.if_extents,
4198						rnew_size,
4199						ifp->if_real_bytes,
4200						KM_SLEEP);
4201		}
4202		if (rnew_size > ifp->if_real_bytes) {
4203			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4204				(uint)sizeof(xfs_bmbt_rec_t)], 0,
4205				rnew_size - ifp->if_real_bytes);
4206		}
4207	}
4208	/*
4209	 * Switch from the inline extent buffer to a direct
4210	 * extent list. Be sure to include the inline extent
4211	 * bytes in new_size.
4212	 */
4213	else {
4214		new_size += ifp->if_bytes;
4215		if ((new_size & (new_size - 1)) != 0) {
4216			rnew_size = xfs_iroundup(new_size);
4217		}
4218		xfs_iext_inline_to_direct(ifp, rnew_size);
4219	}
4220	ifp->if_real_bytes = rnew_size;
4221	ifp->if_bytes = new_size;
4222}
4223
4224/*
4225 * Switch from linear (direct) extent records to inline buffer.
4226 */
4227void
4228xfs_iext_direct_to_inline(
4229	xfs_ifork_t	*ifp,		/* inode fork pointer */
4230	xfs_extnum_t	nextents)	/* number of extents in file */
4231{
4232	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4233	ASSERT(nextents <= XFS_INLINE_EXTS);
4234	/*
4235	 * The inline buffer was zeroed when we switched
4236	 * from inline to direct extent allocation mode,
4237	 * so we don't need to clear it here.
4238	 */
4239	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4240		nextents * sizeof(xfs_bmbt_rec_t));
4241	kmem_free(ifp->if_u1.if_extents, KM_SLEEP);
4242	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4243	ifp->if_real_bytes = 0;
4244}
4245
4246/*
4247 * Switch from inline buffer to linear (direct) extent records.
4248 * new_size should already be rounded up to the next power of 2
4249 * by the caller (when appropriate), so use new_size as it is.
4250 * However, since new_size may be rounded up, we can't update
4251 * if_bytes here. It is the caller's responsibility to update
4252 * if_bytes upon return.
4253 */
4254void
4255xfs_iext_inline_to_direct(
4256	xfs_ifork_t	*ifp,		/* inode fork pointer */
4257	int		new_size)	/* number of extents in file */
4258{
4259	ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4260		kmem_alloc(new_size, KM_SLEEP);
4261	memset(ifp->if_u1.if_extents, 0, new_size);
4262	if (ifp->if_bytes) {
4263		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4264			ifp->if_bytes);
4265		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4266			sizeof(xfs_bmbt_rec_t));
4267	}
4268	ifp->if_real_bytes = new_size;
4269}
4270
4271/*
4272 * Resize an extent indirection array to new_size bytes.
4273 */
4274void
4275xfs_iext_realloc_indirect(
4276	xfs_ifork_t	*ifp,		/* inode fork pointer */
4277	int		new_size)	/* new indirection array size */
4278{
4279	int		nlists;		/* number of irec's (ex lists) */
4280	int		size;		/* current indirection array size */
4281
4282	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4283	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4284	size = nlists * sizeof(xfs_ext_irec_t);
4285	ASSERT(ifp->if_real_bytes);
4286	ASSERT((new_size >= 0) && (new_size != size));
4287	if (new_size == 0) {
4288		xfs_iext_destroy(ifp);
4289	} else {
4290		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4291			kmem_realloc(ifp->if_u1.if_ext_irec,
4292				new_size, size, KM_SLEEP);
4293	}
4294}
4295
4296/*
4297 * Switch from indirection array to linear (direct) extent allocations.
4298 */
4299void
4300xfs_iext_indirect_to_direct(
4301	 xfs_ifork_t	*ifp)		/* inode fork pointer */
4302{
4303	xfs_bmbt_rec_t	*ep;		/* extent record pointer */
4304	xfs_extnum_t	nextents;	/* number of extents in file */
4305	int		size;		/* size of file extents */
4306
4307	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4308	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4309	ASSERT(nextents <= XFS_LINEAR_EXTS);
4310	size = nextents * sizeof(xfs_bmbt_rec_t);
4311
4312	xfs_iext_irec_compact_full(ifp);
4313	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4314
4315	ep = ifp->if_u1.if_ext_irec->er_extbuf;
4316	kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4317	ifp->if_flags &= ~XFS_IFEXTIREC;
4318	ifp->if_u1.if_extents = ep;
4319	ifp->if_bytes = size;
4320	if (nextents < XFS_LINEAR_EXTS) {
4321		xfs_iext_realloc_direct(ifp, size);
4322	}
4323}
4324
4325/*
4326 * Free incore file extents.
4327 */
4328void
4329xfs_iext_destroy(
4330	xfs_ifork_t	*ifp)		/* inode fork pointer */
4331{
4332	if (ifp->if_flags & XFS_IFEXTIREC) {
4333		int	erp_idx;
4334		int	nlists;
4335
4336		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4337		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4338			xfs_iext_irec_remove(ifp, erp_idx);
4339		}
4340		ifp->if_flags &= ~XFS_IFEXTIREC;
4341	} else if (ifp->if_real_bytes) {
4342		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4343	} else if (ifp->if_bytes) {
4344		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4345			sizeof(xfs_bmbt_rec_t));
4346	}
4347	ifp->if_u1.if_extents = NULL;
4348	ifp->if_real_bytes = 0;
4349	ifp->if_bytes = 0;
4350}
4351
4352/*
4353 * Return a pointer to the extent record for file system block bno.
4354 */
4355xfs_bmbt_rec_t *			/* pointer to found extent record */
4356xfs_iext_bno_to_ext(
4357	xfs_ifork_t	*ifp,		/* inode fork pointer */
4358	xfs_fileoff_t	bno,		/* block number to search for */
4359	xfs_extnum_t	*idxp)		/* index of target extent */
4360{
4361	xfs_bmbt_rec_t	*base;		/* pointer to first extent */
4362	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
4363	xfs_bmbt_rec_t	*ep = NULL;	/* pointer to target extent */
4364	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4365	int		high;		/* upper boundary in search */
4366	xfs_extnum_t	idx = 0;	/* index of target extent */
4367	int		low;		/* lower boundary in search */
4368	xfs_extnum_t	nextents;	/* number of file extents */
4369	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
4370
4371	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4372	if (nextents == 0) {
4373		*idxp = 0;
4374		return NULL;
4375	}
4376	low = 0;
4377	if (ifp->if_flags & XFS_IFEXTIREC) {
4378		/* Find target extent list */
4379		int	erp_idx = 0;
4380		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4381		base = erp->er_extbuf;
4382		high = erp->er_extcount - 1;
4383	} else {
4384		base = ifp->if_u1.if_extents;
4385		high = nextents - 1;
4386	}
4387	/* Binary search extent records */
4388	while (low <= high) {
4389		idx = (low + high) >> 1;
4390		ep = base + idx;
4391		startoff = xfs_bmbt_get_startoff(ep);
4392		blockcount = xfs_bmbt_get_blockcount(ep);
4393		if (bno < startoff) {
4394			high = idx - 1;
4395		} else if (bno >= startoff + blockcount) {
4396			low = idx + 1;
4397		} else {
4398			/* Convert back to file-based extent index */
4399			if (ifp->if_flags & XFS_IFEXTIREC) {
4400				idx += erp->er_extoff;
4401			}
4402			*idxp = idx;
4403			return ep;
4404		}
4405	}
4406	/* Convert back to file-based extent index */
4407	if (ifp->if_flags & XFS_IFEXTIREC) {
4408		idx += erp->er_extoff;
4409	}
4410	if (bno >= startoff + blockcount) {
4411		if (++idx == nextents) {
4412			ep = NULL;
4413		} else {
4414			ep = xfs_iext_get_ext(ifp, idx);
4415		}
4416	}
4417	*idxp = idx;
4418	return ep;
4419}
4420
4421/*
4422 * Return a pointer to the indirection array entry containing the
4423 * extent record for filesystem block bno. Store the index of the
4424 * target irec in *erp_idxp.
4425 */
4426xfs_ext_irec_t *			/* pointer to found extent record */
4427xfs_iext_bno_to_irec(
4428	xfs_ifork_t	*ifp,		/* inode fork pointer */
4429	xfs_fileoff_t	bno,		/* block number to search for */
4430	int		*erp_idxp)	/* irec index of target ext list */
4431{
4432	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4433	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
4434	int		erp_idx;	/* indirection array index */
4435	int		nlists;		/* number of extent irec's (lists) */
4436	int		high;		/* binary search upper limit */
4437	int		low;		/* binary search lower limit */
4438
4439	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4440	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4441	erp_idx = 0;
4442	low = 0;
4443	high = nlists - 1;
4444	while (low <= high) {
4445		erp_idx = (low + high) >> 1;
4446		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4447		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4448		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4449			high = erp_idx - 1;
4450		} else if (erp_next && bno >=
4451			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4452			low = erp_idx + 1;
4453		} else {
4454			break;
4455		}
4456	}
4457	*erp_idxp = erp_idx;
4458	return erp;
4459}
4460
4461/*
4462 * Return a pointer to the indirection array entry containing the
4463 * extent record at file extent index *idxp. Store the index of the
4464 * target irec in *erp_idxp and store the page index of the target
4465 * extent record in *idxp.
4466 */
4467xfs_ext_irec_t *
4468xfs_iext_idx_to_irec(
4469	xfs_ifork_t	*ifp,		/* inode fork pointer */
4470	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4471	int		*erp_idxp,	/* pointer to target irec */
4472	int		realloc)	/* new bytes were just added */
4473{
4474	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4475	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4476	int		erp_idx;	/* indirection array index */
4477	int		nlists;		/* number of irec's (ex lists) */
4478	int		high;		/* binary search upper limit */
4479	int		low;		/* binary search lower limit */
4480	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4481
4482	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4483	ASSERT(page_idx >= 0 && page_idx <=
4484		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4485	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4486	erp_idx = 0;
4487	low = 0;
4488	high = nlists - 1;
4489
4490	/* Binary search extent irec's */
4491	while (low <= high) {
4492		erp_idx = (low + high) >> 1;
4493		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4494		prev = erp_idx > 0 ? erp - 1 : NULL;
4495		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4496		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4497			high = erp_idx - 1;
4498		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4499			   (page_idx == erp->er_extoff + erp->er_extcount &&
4500			    !realloc)) {
4501			low = erp_idx + 1;
4502		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4503			   erp->er_extcount == XFS_LINEAR_EXTS) {
4504			ASSERT(realloc);
4505			page_idx = 0;
4506			erp_idx++;
4507			erp = erp_idx < nlists ? erp + 1 : NULL;
4508			break;
4509		} else {
4510			page_idx -= erp->er_extoff;
4511			break;
4512		}
4513	}
4514	*idxp = page_idx;
4515	*erp_idxp = erp_idx;
4516	return(erp);
4517}
4518
4519/*
4520 * Allocate and initialize an indirection array once the space needed
4521 * for incore extents increases above XFS_IEXT_BUFSZ.
4522 */
4523void
4524xfs_iext_irec_init(
4525	xfs_ifork_t	*ifp)		/* inode fork pointer */
4526{
4527	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4528	xfs_extnum_t	nextents;	/* number of extents in file */
4529
4530	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4531	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4532	ASSERT(nextents <= XFS_LINEAR_EXTS);
4533
4534	erp = (xfs_ext_irec_t *)
4535		kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4536
4537	if (nextents == 0) {
4538		ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4539			kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4540	} else if (!ifp->if_real_bytes) {
4541		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4542	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4543		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4544	}
4545	erp->er_extbuf = ifp->if_u1.if_extents;
4546	erp->er_extcount = nextents;
4547	erp->er_extoff = 0;
4548
4549	ifp->if_flags |= XFS_IFEXTIREC;
4550	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4551	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4552	ifp->if_u1.if_ext_irec = erp;
4553
4554	return;
4555}
4556
4557/*
4558 * Allocate and initialize a new entry in the indirection array.
4559 */
4560xfs_ext_irec_t *
4561xfs_iext_irec_new(
4562	xfs_ifork_t	*ifp,		/* inode fork pointer */
4563	int		erp_idx)	/* index for new irec */
4564{
4565	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4566	int		i;		/* loop counter */
4567	int		nlists;		/* number of irec's (ex lists) */
4568
4569	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4570	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4571
4572	/* Resize indirection array */
4573	xfs_iext_realloc_indirect(ifp, ++nlists *
4574				  sizeof(xfs_ext_irec_t));
4575	/*
4576	 * Move records down in the array so the
4577	 * new page can use erp_idx.
4578	 */
4579	erp = ifp->if_u1.if_ext_irec;
4580	for (i = nlists - 1; i > erp_idx; i--) {
4581		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4582	}
4583	ASSERT(i == erp_idx);
4584
4585	/* Initialize new extent record */
4586	erp = ifp->if_u1.if_ext_irec;
4587	erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4588		kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4589	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4590	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4591	erp[erp_idx].er_extcount = 0;
4592	erp[erp_idx].er_extoff = erp_idx > 0 ?
4593		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4594	return (&erp[erp_idx]);
4595}
4596
4597/*
4598 * Remove a record from the indirection array.
4599 */
4600void
4601xfs_iext_irec_remove(
4602	xfs_ifork_t	*ifp,		/* inode fork pointer */
4603	int		erp_idx)	/* irec index to remove */
4604{
4605	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4606	int		i;		/* loop counter */
4607	int		nlists;		/* number of irec's (ex lists) */
4608
4609	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4610	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4611	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4612	if (erp->er_extbuf) {
4613		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4614			-erp->er_extcount);
4615		kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4616	}
4617	/* Compact extent records */
4618	erp = ifp->if_u1.if_ext_irec;
4619	for (i = erp_idx; i < nlists - 1; i++) {
4620		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4621	}
4622	/*
4623	 * Manually free the last extent record from the indirection
4624	 * array.  A call to xfs_iext_realloc_indirect() with a size
4625	 * of zero would result in a call to xfs_iext_destroy() which
4626	 * would in turn call this function again, creating a nasty
4627	 * infinite loop.
4628	 */
4629	if (--nlists) {
4630		xfs_iext_realloc_indirect(ifp,
4631			nlists * sizeof(xfs_ext_irec_t));
4632	} else {
4633		kmem_free(ifp->if_u1.if_ext_irec,
4634			sizeof(xfs_ext_irec_t));
4635	}
4636	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4637}
4638
4639/*
4640 * This is called to clean up large amounts of unused memory allocated
4641 * by the indirection array.  Before compacting anything though, verify
4642 * that the indirection array is still needed and switch back to the
4643 * linear extent list (or even the inline buffer) if possible.  The
4644 * compaction policy is as follows:
4645 *
4646 *    Full Compaction: Extents fit into a single page (or inline buffer)
4647 *    Full Compaction: Extents occupy less than 10% of allocated space
4648 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4649 *      No Compaction: Extents occupy at least 50% of allocated space
4650 */
4651void
4652xfs_iext_irec_compact(
4653	xfs_ifork_t	*ifp)		/* inode fork pointer */
4654{
4655	xfs_extnum_t	nextents;	/* number of extents in file */
4656	int		nlists;		/* number of irec's (ex lists) */
4657
4658	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4659	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4660	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4661
4662	if (nextents == 0) {
4663		xfs_iext_destroy(ifp);
4664	} else if (nextents <= XFS_INLINE_EXTS) {
4665		xfs_iext_indirect_to_direct(ifp);
4666		xfs_iext_direct_to_inline(ifp, nextents);
4667	} else if (nextents <= XFS_LINEAR_EXTS) {
4668		xfs_iext_indirect_to_direct(ifp);
4669	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4670		xfs_iext_irec_compact_full(ifp);
4671	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4672		xfs_iext_irec_compact_pages(ifp);
4673	}
4674}
4675
4676/*
4677 * Combine extents from neighboring extent pages.
4678 */
4679void
4680xfs_iext_irec_compact_pages(
4681	xfs_ifork_t	*ifp)		/* inode fork pointer */
4682{
4683	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4684	int		erp_idx = 0;	/* indirection array index */
4685	int		nlists;		/* number of irec's (ex lists) */
4686
4687	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4688	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4689	while (erp_idx < nlists - 1) {
4690		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4691		erp_next = erp + 1;
4692		if (erp_next->er_extcount <=
4693		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4694			memmove(&erp->er_extbuf[erp->er_extcount],
4695				erp_next->er_extbuf, erp_next->er_extcount *
4696				sizeof(xfs_bmbt_rec_t));
4697			erp->er_extcount += erp_next->er_extcount;
4698			/*
4699			 * Free page before removing extent record
4700			 * so er_extoffs don't get modified in
4701			 * xfs_iext_irec_remove.
4702			 */
4703			kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4704			erp_next->er_extbuf = NULL;
4705			xfs_iext_irec_remove(ifp, erp_idx + 1);
4706			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4707		} else {
4708			erp_idx++;
4709		}
4710	}
4711}
4712
4713/*
4714 * Fully compact the extent records managed by the indirection array.
4715 */
4716void
4717xfs_iext_irec_compact_full(
4718	xfs_ifork_t	*ifp)			/* inode fork pointer */
4719{
4720	xfs_bmbt_rec_t	*ep, *ep_next;		/* extent record pointers */
4721	xfs_ext_irec_t	*erp, *erp_next;	/* extent irec pointers */
4722	int		erp_idx = 0;		/* extent irec index */
4723	int		ext_avail;		/* empty entries in ex list */
4724	int		ext_diff;		/* number of exts to add */
4725	int		nlists;			/* number of irec's (ex lists) */
4726
4727	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4728	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4729	erp = ifp->if_u1.if_ext_irec;
4730	ep = &erp->er_extbuf[erp->er_extcount];
4731	erp_next = erp + 1;
4732	ep_next = erp_next->er_extbuf;
4733	while (erp_idx < nlists - 1) {
4734		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4735		ext_diff = MIN(ext_avail, erp_next->er_extcount);
4736		memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4737		erp->er_extcount += ext_diff;
4738		erp_next->er_extcount -= ext_diff;
4739		/* Remove next page */
4740		if (erp_next->er_extcount == 0) {
4741			/*
4742			 * Free page before removing extent record
4743			 * so er_extoffs don't get modified in
4744			 * xfs_iext_irec_remove.
4745			 */
4746			kmem_free(erp_next->er_extbuf,
4747				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4748			erp_next->er_extbuf = NULL;
4749			xfs_iext_irec_remove(ifp, erp_idx + 1);
4750			erp = &ifp->if_u1.if_ext_irec[erp_idx];
4751			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4752		/* Update next page */
4753		} else {
4754			/* Move rest of page up to become next new page */
4755			memmove(erp_next->er_extbuf, ep_next,
4756				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4757			ep_next = erp_next->er_extbuf;
4758			memset(&ep_next[erp_next->er_extcount], 0,
4759				(XFS_LINEAR_EXTS - erp_next->er_extcount) *
4760				sizeof(xfs_bmbt_rec_t));
4761		}
4762		if (erp->er_extcount == XFS_LINEAR_EXTS) {
4763			erp_idx++;
4764			if (erp_idx < nlists)
4765				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4766			else
4767				break;
4768		}
4769		ep = &erp->er_extbuf[erp->er_extcount];
4770		erp_next = erp + 1;
4771		ep_next = erp_next->er_extbuf;
4772	}
4773}
4774
4775/*
4776 * This is called to update the er_extoff field in the indirection
4777 * array when extents have been added or removed from one of the
4778 * extent lists. erp_idx contains the irec index to begin updating
4779 * at and ext_diff contains the number of extents that were added
4780 * or removed.
4781 */
4782void
4783xfs_iext_irec_update_extoffs(
4784	xfs_ifork_t	*ifp,		/* inode fork pointer */
4785	int		erp_idx,	/* irec index to update */
4786	int		ext_diff)	/* number of new extents */
4787{
4788	int		i;		/* loop counter */
4789	int		nlists;		/* number of irec's (ex lists */
4790
4791	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4792	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4793	for (i = erp_idx; i < nlists; i++) {
4794		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4795	}
4796}
4797