1/*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_bit.h"
21#include "xfs_log.h"
22#include "xfs_inum.h"
23#include "xfs_trans.h"
24#include "xfs_sb.h"
25#include "xfs_ag.h"
26#include "xfs_dir.h"
27#include "xfs_dir2.h"
28#include "xfs_alloc.h"
29#include "xfs_dmapi.h"
30#include "xfs_quota.h"
31#include "xfs_mount.h"
32#include "xfs_bmap_btree.h"
33#include "xfs_alloc_btree.h"
34#include "xfs_ialloc_btree.h"
35#include "xfs_dir_sf.h"
36#include "xfs_dir2_sf.h"
37#include "xfs_attr_sf.h"
38#include "xfs_dinode.h"
39#include "xfs_inode.h"
40#include "xfs_bmap.h"
41#include "xfs_btree.h"
42#include "xfs_ialloc.h"
43#include "xfs_rtalloc.h"
44#include "xfs_error.h"
45#include "xfs_itable.h"
46#include "xfs_rw.h"
47#include "xfs_acl.h"
48#include "xfs_cap.h"
49#include "xfs_mac.h"
50#include "xfs_attr.h"
51#include "xfs_inode_item.h"
52#include "xfs_buf_item.h"
53#include "xfs_utils.h"
54#include "xfs_iomap.h"
55
56#if defined(XFS_RW_TRACE)
57void
58xfs_rw_enter_trace(
59	int		tag,
60	xfs_iocore_t	*io,
61	const char	*buf,
62	size_t		size,
63	loff_t		offset,
64	int		ioflags)
65{
66	xfs_inode_t	*ip = XFS_IO_INODE(io);
67
68	if (ip->i_rwtrace == NULL)
69		return;
70	ktrace_enter(ip->i_rwtrace,
71		(void *)(unsigned long)tag,
72		(void *)ip,
73		(void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
74		(void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
75		(void *)(__psint_t)buf,
76		(void *)((unsigned long)size),
77		(void *)((unsigned long)((offset >> 32) & 0xffffffff)),
78		(void *)((unsigned long)(offset & 0xffffffff)),
79		(void *)((unsigned long)ioflags),
80		(void *)((unsigned long)((io->io_new_size >> 32) & 0xffffffff)),
81		(void *)((unsigned long)(io->io_new_size & 0xffffffff)),
82		(void *)NULL,
83		(void *)NULL,
84		(void *)NULL,
85		(void *)NULL,
86		(void *)NULL);
87}
88
89void
90xfs_inval_cached_trace(
91	xfs_iocore_t	*io,
92	xfs_off_t	offset,
93	xfs_off_t	len,
94	xfs_off_t	first,
95	xfs_off_t	last)
96{
97	xfs_inode_t	*ip = XFS_IO_INODE(io);
98
99	if (ip->i_rwtrace == NULL)
100		return;
101	ktrace_enter(ip->i_rwtrace,
102		(void *)(__psint_t)XFS_INVAL_CACHED,
103		(void *)ip,
104		(void *)((unsigned long)((offset >> 32) & 0xffffffff)),
105		(void *)((unsigned long)(offset & 0xffffffff)),
106		(void *)((unsigned long)((len >> 32) & 0xffffffff)),
107		(void *)((unsigned long)(len & 0xffffffff)),
108		(void *)((unsigned long)((first >> 32) & 0xffffffff)),
109		(void *)((unsigned long)(first & 0xffffffff)),
110		(void *)((unsigned long)((last >> 32) & 0xffffffff)),
111		(void *)((unsigned long)(last & 0xffffffff)),
112		(void *)NULL,
113		(void *)NULL,
114		(void *)NULL,
115		(void *)NULL,
116		(void *)NULL,
117		(void *)NULL);
118}
119#endif
120
121/*
122 *	xfs_iozero
123 *
124 *	xfs_iozero clears the specified range of buffer supplied,
125 *	and marks all the affected blocks as valid and modified.  If
126 *	an affected block is not allocated, it will be allocated.  If
127 *	an affected block is not completely overwritten, and is not
128 *	valid before the operation, it will be read from disk before
129 *	being partially zeroed.
130 */
131STATIC int
132xfs_iozero(
133	xfs_vnode_t		*vp,	/* vnode			*/
134	xfs_off_t		pos,	/* offset in file		*/
135	size_t			count,	/* size of data to zero		*/
136	xfs_off_t		end_size)	/* max file size to set */
137{
138	int			status;
139	status = 0; /* XXXKAN: */
140#ifdef XXXKAN
141	unsigned		bytes;
142	struct page		*page;
143	struct address_space	*mapping;
144	char			*kaddr;
145
146	mapping = ip->i_mapping;
147	do {
148		unsigned long index, offset;
149
150		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
151		index = pos >> PAGE_CACHE_SHIFT;
152		bytes = PAGE_CACHE_SIZE - offset;
153		if (bytes > count)
154			bytes = count;
155
156		status = -ENOMEM;
157		page = grab_cache_page(mapping, index);
158		if (!page)
159			break;
160
161		kaddr = kmap(page);
162		status = mapping->a_ops->prepare_write(NULL, page, offset,
163							offset + bytes);
164		if (status) {
165			goto unlock;
166		}
167
168		memset((void *) (kaddr + offset), 0, bytes);
169		flush_dcache_page(page);
170		status = mapping->a_ops->commit_write(NULL, page, offset,
171							offset + bytes);
172		if (!status) {
173			pos += bytes;
174			count -= bytes;
175			if (pos > i_size_read(ip))
176				i_size_write(ip, pos < end_size ? pos : end_size);
177		}
178
179unlock:
180		kunmap(page);
181		unlock_page(page);
182		page_cache_release(page);
183		if (status)
184			break;
185	} while (count);
186#endif
187	return (-status);
188}
189
190ssize_t			/* bytes read, or (-)  error */
191xfs_read(
192	bhv_desc_t      *bdp,
193	uio_t		*uio,
194	int		ioflags,
195	cred_t          *credp)
196{
197	ssize_t		ret, size;
198	xfs_fsize_t	n;
199	xfs_inode_t	*ip;
200	xfs_mount_t	*mp;
201
202	ip = XFS_BHVTOI(bdp);
203	mp = ip->i_mount;
204
205	XFS_STATS_INC(xs_read_calls);
206
207	if (unlikely(ioflags & IO_ISDIRECT)) {
208		if (((__psint_t)buf & BBMASK) ||
209		    (uio->uio_offset & mp->m_blockmask) ||
210		    (uio->uio_resid & mp->m_blockmask)) {
211			if (uio->uio_offset >= ip->i_d.di_size) {
212				return (0);
213			}
214			return EINVAL;
215		}
216	}
217
218	if (uio->uio_resid == 0)
219		return 0;
220	n = XFS_MAXIOFFSET(mp) - uio->uio_offset;
221	if (n <= 0)
222		return EFBIG;
223
224	size = (n < uio->uio_resid)? n : uio->uio_resid;
225
226	if (XFS_FORCED_SHUTDOWN(mp)) {
227		return EIO;
228	}
229
230	xfs_ilock(ip, XFS_IOLOCK_SHARED);
231
232#ifdef XXX
233	if (DM_EVENT_ENABLED(BHV_TO_VNODE(bdp)->v_vfsp, ip, DM_EVENT_READ) &&
234	    !(ioflags & IO_INVIS)) {
235		int error;
236		vrwlock_t locktype = VRWLOCK_READ;
237		int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);
238
239		error = XFS_SEND_DATA(mp, DM_EVENT_READ, BHV_TO_VNODE(bdp),
240			uio->uio_offset, size, dmflags, &locktype);
241		if (error) {
242			xfs_iunlock(ip, XFS_IOLOCK_SHARED);
243			return (error);
244		}
245	}
246#endif
247
248	ret = xfs_read_file(mp, ip, uio, ioflags);
249
250	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
251
252	XFS_STATS_ADD(xs_read_bytes, ret);
253
254	if (likely((ioflags & IO_INVIS) == 0)) {
255		xfs_ichgtime(ip, XFS_ICHGTIME_ACC);
256	}
257
258	return ret;
259}
260
261/*
262 * This routine is called to handle zeroing any space in the last
263 * block of the file that is beyond the EOF.  We do this since the
264 * size is being increased without writing anything to that block
265 * and we don't want anyone to read the garbage on the disk.
266 */
267STATIC int				/* error (positive) */
268xfs_zero_last_block(
269	xfs_vnode_t	*vp,
270	xfs_iocore_t	*io,
271	xfs_fsize_t	isize,
272	xfs_fsize_t	end_size)
273{
274	xfs_fileoff_t	last_fsb;
275	xfs_mount_t	*mp;
276	int		nimaps;
277	int		zero_offset;
278	int		zero_len;
279	int		error = 0;
280	xfs_bmbt_irec_t	imap;
281	xfs_off_t	loff;
282
283	ASSERT(ismrlocked(io->io_lock, MR_UPDATE) != 0);
284
285	mp = io->io_mount;
286
287	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
288	if (zero_offset == 0) {
289		/*
290		 * There are no extra bytes in the last block on disk to
291		 * zero, so return.
292		 */
293		return 0;
294	}
295
296	last_fsb = XFS_B_TO_FSBT(mp, isize);
297	nimaps = 1;
298	error = XFS_BMAPI(mp, NULL, io, last_fsb, 1, 0, NULL, 0, &imap,
299			  &nimaps, NULL, NULL);
300	if (error) {
301		return error;
302	}
303	ASSERT(nimaps > 0);
304	/*
305	 * If the block underlying isize is just a hole, then there
306	 * is nothing to zero.
307	 */
308	if (imap.br_startblock == HOLESTARTBLOCK) {
309		return 0;
310	}
311	/*
312	 * Zero the part of the last block beyond the EOF, and write it
313	 * out sync.  We need to drop the ilock while we do this so we
314	 * don't deadlock when the buffer cache calls back to us.
315	 */
316	XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL| XFS_EXTSIZE_RD);
317	loff = XFS_FSB_TO_B(mp, last_fsb);
318
319	zero_len = mp->m_sb.sb_blocksize - zero_offset;
320
321	error = xfs_iozero(vp, loff + zero_offset, zero_len, end_size);
322
323	XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
324	ASSERT(error >= 0);
325	return error;
326}
327
328/*
329 * Zero any on disk space between the current EOF and the new,
330 * larger EOF.  This handles the normal case of zeroing the remainder
331 * of the last block in the file and the unusual case of zeroing blocks
332 * out beyond the size of the file.  This second case only happens
333 * with fixed size extents and when the system crashes before the inode
334 * size was updated but after blocks were allocated.  If fill is set,
335 * then any holes in the range are filled and zeroed.  If not, the holes
336 * are left alone as holes.
337 */
338
339int					/* error (positive) */
340xfs_zero_eof(
341	xfs_vnode_t	*vp,
342	xfs_iocore_t	*io,
343	xfs_off_t	offset,		/* starting I/O offset */
344	xfs_fsize_t	isize,		/* current inode size */
345	xfs_fsize_t	end_size)	/* terminal inode size */
346{
347	xfs_fileoff_t	start_zero_fsb;
348	xfs_fileoff_t	end_zero_fsb;
349	xfs_fileoff_t	zero_count_fsb;
350	xfs_fileoff_t	last_fsb;
351	xfs_extlen_t	buf_len_fsb;
352	xfs_mount_t	*mp;
353	int		nimaps;
354	int		error = 0;
355	xfs_bmbt_irec_t	imap;
356
357	ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
358	ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
359	ASSERT(offset > isize);
360
361	mp = io->io_mount;
362
363	/*
364	 * First handle zeroing the block on which isize resides.
365	 * We only zero a part of that block so it is handled specially.
366	 */
367	error = xfs_zero_last_block(vp, io, isize, end_size);
368	if (error) {
369		ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
370		ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
371		return error;
372	}
373
374	/*
375	 * Calculate the range between the new size and the old
376	 * where blocks needing to be zeroed may exist.  To get the
377	 * block where the last byte in the file currently resides,
378	 * we need to subtract one from the size and truncate back
379	 * to a block boundary.  We subtract 1 in case the size is
380	 * exactly on a block boundary.
381	 */
382	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
383	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
384	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
385	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
386	if (last_fsb == end_zero_fsb) {
387		/*
388		 * The size was only incremented on its last block.
389		 * We took care of that above, so just return.
390		 */
391		return 0;
392	}
393
394	ASSERT(start_zero_fsb <= end_zero_fsb);
395	while (start_zero_fsb <= end_zero_fsb) {
396		nimaps = 1;
397		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
398		error = XFS_BMAPI(mp, NULL, io, start_zero_fsb, zero_count_fsb,
399				  0, NULL, 0, &imap, &nimaps, NULL, NULL);
400		if (error) {
401			ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
402			ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
403			return error;
404		}
405		ASSERT(nimaps > 0);
406
407		if (imap.br_state == XFS_EXT_UNWRITTEN ||
408		    imap.br_startblock == HOLESTARTBLOCK) {
409			/*
410			 * This loop handles initializing pages that were
411			 * partially initialized by the code below this
412			 * loop. It basically zeroes the part of the page
413			 * that sits on a hole and sets the page as P_HOLE
414			 * and calls remapf if it is a mapped file.
415			 */
416			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
417			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
418			continue;
419		}
420
421		/*
422		 * There are blocks in the range requested.
423		 * Zero them a single write at a time.  We actually
424		 * don't zero the entire range returned if it is
425		 * too big and simply loop around to get the rest.
426		 * That is not the most efficient thing to do, but it
427		 * is simple and this path should not be exercised often.
428		 */
429		buf_len_fsb = XFS_FILBLKS_MIN(imap.br_blockcount,
430					      mp->m_writeio_blocks << 8);
431		/*
432		 * Drop the inode lock while we're doing the I/O.
433		 * We'll still have the iolock to protect us.
434		 */
435		XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
436
437		error = xfs_iozero(vp,
438				   XFS_FSB_TO_B(mp, start_zero_fsb),
439				   XFS_FSB_TO_B(mp, buf_len_fsb),
440				   end_size);
441
442		if (error) {
443			goto out_lock;
444		}
445
446		start_zero_fsb = imap.br_startoff + buf_len_fsb;
447		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
448
449		XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
450	}
451
452	return 0;
453
454out_lock:
455
456	XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
457	ASSERT(error >= 0);
458	return error;
459}
460
461ssize_t				/* bytes written, or (-) error */
462xfs_write(
463	bhv_desc_t      *bdp,
464	uio_t		*uio,
465	int		ioflag,
466	cred_t          *credp)
467{
468	xfs_inode_t	*xip;
469	xfs_mount_t	*mp;
470	ssize_t		ret = 0;
471	int		error = 0;
472	xfs_fsize_t     isize, new_size;
473	xfs_fsize_t	n, limit;
474	xfs_fsize_t	size;
475	xfs_iocore_t    *io;
476	xfs_vnode_t	*vp;
477	int		iolock;
478	//int		eventsent = 0;
479	vrwlock_t	locktype;
480	xfs_off_t	offset_c;
481	xfs_off_t	*offset;
482	xfs_off_t	pos;
483
484	XFS_STATS_INC(xs_write_calls);
485
486	vp = BHV_TO_VNODE(bdp);
487	xip = XFS_BHVTOI(bdp);
488
489	io = &xip->i_iocore;
490	mp = io->io_mount;
491
492	if (XFS_FORCED_SHUTDOWN(xip->i_mount)) {
493		return EIO;
494	}
495
496	size = uio->uio_resid;
497	pos = offset_c = uio->uio_offset;
498	offset = &offset_c;
499
500	if (unlikely(ioflag & IO_ISDIRECT)) {
501		if (((__psint_t)buf & BBMASK) ||
502		    (*offset & mp->m_blockmask) ||
503		    (size  & mp->m_blockmask)) {
504			return EINVAL;
505		}
506		iolock = XFS_IOLOCK_SHARED;
507		locktype = VRWLOCK_WRITE_DIRECT;
508	} else {
509		if (io->io_flags & XFS_IOCORE_RT)
510			return EINVAL;
511		iolock = XFS_IOLOCK_EXCL;
512		locktype = VRWLOCK_WRITE;
513	}
514
515	iolock = XFS_IOLOCK_EXCL;
516	locktype = VRWLOCK_WRITE;
517
518	xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
519
520	isize = xip->i_d.di_size;
521	limit = XFS_MAXIOFFSET(mp);
522
523	if (ioflag & O_APPEND)
524		*offset = isize;
525
526//start:
527	n = limit - *offset;
528	if (n <= 0) {
529		xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
530		return EFBIG;
531	}
532	if (n < size)
533		size = n;
534
535	new_size = *offset + size;
536	if (new_size > isize) {
537		io->io_new_size = new_size;
538	}
539
540#ifdef RMC
541	/* probably be a long time before if ever that we do dmapi */
542	if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) &&
543	    !(ioflags & IO_INVIS) && !eventsent)) {
544		loff_t		savedsize = *offset;
545		int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);
546
547		xfs_iunlock(xip, XFS_ILOCK_EXCL);
548		error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
549				      *offset, size,
550				      dmflags, &locktype);
551		if (error) {
552			if (iolock) xfs_iunlock(xip, iolock);
553			return -error;
554		}
555		xfs_ilock(xip, XFS_ILOCK_EXCL);
556		eventsent = 1;
557
558		/*
559		 * The iolock was dropped and reaquired in XFS_SEND_DATA
560		 * so we have to recheck the size when appending.
561		 * We will only "goto start;" once, since having sent the
562		 * event prevents another call to XFS_SEND_DATA, which is
563		 * what allows the size to change in the first place.
564		 */
565		if ((file->f_flags & O_APPEND) &&
566		    savedsize != xip->i_d.di_size) {
567			*offset = isize = xip->i_d.di_size;
568			goto start;
569		}
570	}
571#endif
572
573	/*
574	 * If the offset is beyond the size of the file, we have a couple
575	 * of things to do. First, if there is already space allocated
576	 * we need to either create holes or zero the disk or ...
577	 *
578	 * If there is a page where the previous size lands, we need
579	 * to zero it out up to the new size.
580	 */
581
582	if (!(ioflag & IO_ISDIRECT) && (*offset > isize && isize)) {
583		error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, *offset,
584			isize, *offset + size);
585		if (error) {
586			xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
587			return(-error);
588		}
589	}
590	xfs_iunlock(xip, XFS_ILOCK_EXCL);
591
592#if 0
593	/*
594	 * If we're writing the file then make sure to clear the
595	 * setuid and setgid bits if the process is not being run
596	 * by root.  This keeps people from modifying setuid and
597	 * setgid binaries.
598	 */
599
600	if (((xip->i_d.di_mode & S_ISUID) ||
601	    ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
602		(S_ISGID | S_IXGRP))) &&
603	     !capable(CAP_FSETID)) {
604		error = xfs_write_clear_setuid(xip);
605		if (likely(!error))
606			error = -remove_suid(file->f_dentry);
607		if (unlikely(error)) {
608			xfs_iunlock(xip, iolock);
609			goto out_unlock_mutex;
610		}
611	}
612#endif
613
614
615//retry:
616	if (unlikely(ioflag & IO_ISDIRECT)) {
617
618#ifdef RMC
619		xfs_off_t	pos = *offset;
620		struct address_space *mapping = file->f_dentry->d_inode->i_mapping;
621		struct inode    *inode = mapping->host;
622
623		ret = precheck_file_write(file, inode, &size,  &pos);
624		if (ret || size == 0)
625			goto error;
626
627		xfs_inval_cached_pages(vp, io, pos, 1, 1);
628		inode->i_ctime = inode->i_mtime = CURRENT_TIME;
629		/* mark_inode_dirty_sync(inode); - we do this later */
630
631		xfs_rw_enter_trace(XFS_DIOWR_ENTER, io, buf, size, pos, ioflags);
632		ret = generic_file_direct_IO(WRITE, file, (char *)buf, size, pos);
633		xfs_inval_cached_pages(vp, io, pos, 1, 1);
634		if (ret > 0)
635			*offset += ret;
636#endif
637	} else {
638		xfs_rw_enter_trace(XFS_WRITE_ENTER, io, buf, size, *offset, ioflags);
639		ret = xfs_write_file(xip,uio,ioflag);
640	}
641
642	xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
643
644
645//error:
646	if (ret <= 0) {
647		if (iolock)
648			xfs_rwunlock(bdp, locktype);
649		return ret;
650	}
651
652	XFS_STATS_ADD(xs_write_bytes, ret);
653
654	if (*offset > xip->i_d.di_size) {
655		xfs_ilock(xip, XFS_ILOCK_EXCL);
656		if (*offset > xip->i_d.di_size) {
657			printf("xfs_write look at doing more here %s:%d\n",__FILE__,__LINE__);
658#ifdef RMC
659			struct inode	*inode = LINVFS_GET_IP(vp);
660			i_size_write(inode, *offset);
661			mark_inode_dirty_sync(inode);
662#endif
663
664			xip->i_d.di_size = *offset;
665			xip->i_update_core = 1;
666			xip->i_update_size = 1;
667		}
668		xfs_iunlock(xip, XFS_ILOCK_EXCL);
669	}
670
671	/* Handle various SYNC-type writes */
672#if 0
673//	if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
674#endif
675	if (ioflag & IO_SYNC) {
676		/*
677		 * If we're treating this as O_DSYNC and we have not updated the
678		 * size, force the log.
679		 */
680		if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC) &&
681		    !(xip->i_update_size)) {
682			xfs_inode_log_item_t	*iip = xip->i_itemp;
683
684			/*
685			 * If an allocation transaction occurred
686			 * without extending the size, then we have to force
687			 * the log up the proper point to ensure that the
688			 * allocation is permanent.  We can't count on
689			 * the fact that buffered writes lock out direct I/O
690			 * writes - the direct I/O write could have extended
691			 * the size nontransactionally, then finished before
692			 * we started.  xfs_write_file will think that the file
693			 * didn't grow but the update isn't safe unless the
694			 * size change is logged.
695			 *
696			 * Force the log if we've committed a transaction
697			 * against the inode or if someone else has and
698			 * the commit record hasn't gone to disk (e.g.
699			 * the inode is pinned).  This guarantees that
700			 * all changes affecting the inode are permanent
701			 * when we return.
702			 */
703			if (iip && iip->ili_last_lsn) {
704				xfs_log_force(mp, iip->ili_last_lsn,
705						XFS_LOG_FORCE | XFS_LOG_SYNC);
706			} else if (xfs_ipincount(xip) > 0) {
707				xfs_log_force(mp, (xfs_lsn_t)0,
708						XFS_LOG_FORCE | XFS_LOG_SYNC);
709			}
710
711		} else {
712			xfs_trans_t	*tp;
713
714			/*
715			 * O_SYNC or O_DSYNC _with_ a size update are handled
716			 * the same way.
717			 *
718			 * If the write was synchronous then we need to make
719			 * sure that the inode modification time is permanent.
720			 * We'll have updated the timestamp above, so here
721			 * we use a synchronous transaction to log the inode.
722			 * It's not fast, but it's necessary.
723			 *
724			 * If this a dsync write and the size got changed
725			 * non-transactionally, then we need to ensure that
726			 * the size change gets logged in a synchronous
727			 * transaction.
728			 */
729
730			tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC);
731			if ((error = xfs_trans_reserve(tp, 0,
732						      XFS_SWRITE_LOG_RES(mp),
733						      0, 0, 0))) {
734				/* Transaction reserve failed */
735				xfs_trans_cancel(tp, 0);
736			} else {
737				/* Transaction reserve successful */
738				xfs_ilock(xip, XFS_ILOCK_EXCL);
739				xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL);
740				xfs_trans_ihold(tp, xip);
741				xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE);
742				xfs_trans_set_sync(tp);
743				error = xfs_trans_commit(tp, 0, NULL);
744				xfs_iunlock(xip, XFS_ILOCK_EXCL);
745			}
746			if (error)
747				goto out_unlock_internal;
748		}
749
750		xfs_rwunlock(bdp, locktype);
751		return ret;
752
753	} /* (ioflags & O_SYNC) */
754
755out_unlock_internal:
756	xfs_rwunlock(bdp, locktype);
757#if 0
758out_unlock_mutex:
759	if (need_i_mutex)
760		mutex_unlock(&inode->i_mutex);
761#endif
762 //out_nounlocks:
763	return -error;
764}
765
766/*
767 * Initiate IO on given buffer.
768 */
769int
770xfs_buf_iorequest(struct xfs_buf *bp)
771{
772	bp->b_flags &= ~(B_INVAL|B_DONE);
773	bp->b_ioflags &= ~BIO_ERROR;
774
775	if (bp->b_flags & B_ASYNC)
776		BUF_KERNPROC(bp);
777
778	if (bp->b_vp == NULL) {
779		if (bp->b_iocmd == BIO_WRITE) {
780			bp->b_flags &= ~(B_DELWRI | B_DEFERRED);
781			bufobj_wref(bp->b_bufobj);
782		}
783
784		bp->b_iooffset = (bp->b_blkno << BBSHIFT);
785		bstrategy(bp);
786	} else {
787		if (bp->b_iocmd == BIO_WRITE) {
788			/* Mark the buffer clean */
789			bundirty(bp);
790			bufobj_wref(bp->b_bufobj);
791			vfs_busy_pages(bp, 1);
792		} else if (bp->b_iocmd == BIO_READ) {
793			vfs_busy_pages(bp, 0);
794		}
795		bp->b_iooffset = dbtob(bp->b_blkno);
796		bstrategy(bp);
797	}
798	return 0;
799}
800
801/*
802 * All xfs metadata buffers except log state machine buffers
803 * get this attached as their b_bdstrat callback function.
804 * This is so that we can catch a buffer
805 * after prematurely unpinning it to forcibly shutdown the filesystem.
806 */
807int
808xfs_bdstrat_cb(struct xfs_buf *bp)
809{
810	xfs_mount_t	*mp;
811
812	mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
813	if (!XFS_FORCED_SHUTDOWN(mp)) {
814		xfs_buf_iorequest(bp);
815		return 0;
816	} else {
817		xfs_buftrace("XFS__BDSTRAT IOERROR", bp);
818		/*
819		 * Metadata write that didn't get logged but
820		 * written delayed anyway. These aren't associated
821		 * with a transaction, and can be ignored.
822		 */
823		if (XFS_BUF_IODONE_FUNC(bp) == NULL &&
824		    (XFS_BUF_ISREAD(bp)) == 0)
825			return (xfs_bioerror_relse(bp));
826		else
827			return (xfs_bioerror(bp));
828	}
829}
830
831
832int
833xfs_bmap(bhv_desc_t	*bdp,
834	xfs_off_t	offset,
835	ssize_t		count,
836	int		flags,
837	xfs_iomap_t	*iomapp,
838	int		*niomaps)
839{
840	xfs_inode_t	*ip = XFS_BHVTOI(bdp);
841	xfs_iocore_t	*io = &ip->i_iocore;
842
843	ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
844	ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) ==
845	       ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
846
847	return xfs_iomap(io, offset, count, flags, iomapp, niomaps);
848}
849
850/*
851 * Wrapper around bdstrat so that we can stop data
852 * from going to disk in case we are shutting down the filesystem.
853 * Typically user data goes thru this path; one of the exceptions
854 * is the superblock.
855 */
856int
857xfsbdstrat(
858	struct xfs_mount	*mp,
859	struct xfs_buf		*bp)
860{
861	ASSERT(mp);
862	if (!XFS_FORCED_SHUTDOWN(mp)) {
863
864		xfs_buf_iorequest(bp);
865		return 0;
866	}
867
868	xfs_buftrace("XFSBDSTRAT IOERROR", bp);
869	return (xfs_bioerror_relse(bp));
870}
871
872/*
873 * If the underlying (data/log/rt) device is readonly, there are some
874 * operations that cannot proceed.
875 */
876int
877xfs_dev_is_read_only(
878	xfs_mount_t		*mp,
879	char			*message)
880{
881	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
882	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
883	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
884		cmn_err(CE_NOTE,
885			"XFS: %s required on read-only device.", message);
886		cmn_err(CE_NOTE,
887			"XFS: write access unavailable, cannot proceed.");
888		return EROFS;
889	}
890	return 0;
891}
892