1/*-
2 * Copyright (c) 2002 Poul-Henning Kamp
3 * Copyright (c) 2002 Networks Associates Technology, Inc.
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Poul-Henning Kamp
7 * and NAI Labs, the Security Research Division of Network Associates, Inc.
8 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $FreeBSD$
33 */
34/* This source file contains the functions responsible for the crypto, keying
35 * and mapping operations on the I/O requests.
36 *
37 */
38
39#include <sys/param.h>
40#include <sys/bio.h>
41#include <sys/lock.h>
42#include <sys/mutex.h>
43#include <sys/queue.h>
44#include <sys/malloc.h>
45#include <sys/libkern.h>
46#include <sys/endian.h>
47#include <sys/md5.h>
48
49#include <crypto/rijndael/rijndael-api-fst.h>
50#include <crypto/sha2/sha2.h>
51
52#include <geom/geom.h>
53#include <geom/bde/g_bde.h>
54
55/*
56 * XXX: Debugging DO NOT ENABLE
57 */
58#undef MD5_KEY
59
60/*
61 * Derive kkey from mkey + sector offset.
62 *
63 * Security objective: Derive a potentially very large number of distinct skeys
64 * from the comparatively small key material in our mkey, in such a way that
65 * if one, more or even many of the kkeys are compromised, this does not
66 * significantly help an attack on other kkeys and in particular does not
67 * weaken or compromise the mkey.
68 *
69 * First we MD5 hash the sectornumber with the salt from the lock sector.
70 * The salt prevents the precalculation and statistical analysis of the MD5
71 * output which would be possible if we only gave it the sectornumber.
72 *
73 * The MD5 hash is used to pick out 16 bytes from the masterkey, which
74 * are then hashed with MD5 together with the sector number.
75 *
76 * The resulting MD5 hash is the kkey.
77 */
78
79static void
80g_bde_kkey(struct g_bde_softc *sc, keyInstance *ki, int dir, off_t sector)
81{
82	u_int t;
83	MD5_CTX ct;
84	u_char buf[16];
85	u_char buf2[8];
86
87	/* We have to be architecture neutral */
88	le64enc(buf2, sector);
89
90	MD5Init(&ct);
91	MD5Update(&ct, sc->key.salt, 8);
92	MD5Update(&ct, buf2, sizeof buf2);
93	MD5Update(&ct, sc->key.salt + 8, 8);
94	MD5Final(buf, &ct);
95
96	MD5Init(&ct);
97	for (t = 0; t < 16; t++) {
98		MD5Update(&ct, &sc->key.mkey[buf[t]], 1);
99		if (t == 8)
100			MD5Update(&ct, buf2, sizeof buf2);
101	}
102	bzero(buf2, sizeof buf2);
103	MD5Final(buf, &ct);
104	bzero(&ct, sizeof ct);
105	AES_makekey(ki, dir, G_BDE_KKEYBITS, buf);
106	bzero(buf, sizeof buf);
107}
108
109/*
110 * Encryption work for read operation.
111 *
112 * Security objective: Find the kkey, find the skey, decrypt the sector data.
113 */
114
115void
116g_bde_crypt_read(struct g_bde_work *wp)
117{
118	struct g_bde_softc *sc;
119	u_char *d;
120	u_int n;
121	off_t o;
122	u_char skey[G_BDE_SKEYLEN];
123	keyInstance ki;
124	cipherInstance ci;
125
126
127	AES_init(&ci);
128	sc = wp->softc;
129	o = 0;
130	for (n = 0; o < wp->length; n++, o += sc->sectorsize) {
131		d = (u_char *)wp->ksp->data + wp->ko + n * G_BDE_SKEYLEN;
132		g_bde_kkey(sc, &ki, DIR_DECRYPT, wp->offset + o);
133		AES_decrypt(&ci, &ki, d, skey, sizeof skey);
134		d = (u_char *)wp->data + o;
135		AES_makekey(&ki, DIR_DECRYPT, G_BDE_SKEYBITS, skey);
136		AES_decrypt(&ci, &ki, d, d, sc->sectorsize);
137	}
138	bzero(skey, sizeof skey);
139	bzero(&ci, sizeof ci);
140	bzero(&ki, sizeof ki);
141}
142
143/*
144 * Encryption work for write operation.
145 *
146 * Security objective: Create random skey, encrypt sector data,
147 * encrypt skey with the kkey.
148 */
149
150void
151g_bde_crypt_write(struct g_bde_work *wp)
152{
153	u_char *s, *d;
154	struct g_bde_softc *sc;
155	u_int n;
156	off_t o;
157	u_char skey[G_BDE_SKEYLEN];
158	keyInstance ki;
159	cipherInstance ci;
160
161	sc = wp->softc;
162	AES_init(&ci);
163	o = 0;
164	for (n = 0; o < wp->length; n++, o += sc->sectorsize) {
165
166		s = (u_char *)wp->data + o;
167		d = (u_char *)wp->sp->data + o;
168		arc4rand(skey, sizeof skey, 0);
169		AES_makekey(&ki, DIR_ENCRYPT, G_BDE_SKEYBITS, skey);
170		AES_encrypt(&ci, &ki, s, d, sc->sectorsize);
171
172		d = (u_char *)wp->ksp->data + wp->ko + n * G_BDE_SKEYLEN;
173		g_bde_kkey(sc, &ki, DIR_ENCRYPT, wp->offset + o);
174		AES_encrypt(&ci, &ki, skey, d, sizeof skey);
175		bzero(skey, sizeof skey);
176	}
177	bzero(skey, sizeof skey);
178	bzero(&ci, sizeof ci);
179	bzero(&ki, sizeof ki);
180}
181
182/*
183 * Encryption work for delete operation.
184 *
185 * Security objective: Write random data to the sectors.
186 *
187 * XXX: At a hit in performance we would trash the encrypted skey as well.
188 * XXX: This would add frustration to the cleaning lady attack by making
189 * XXX: deletes look like writes.
190 */
191
192void
193g_bde_crypt_delete(struct g_bde_work *wp)
194{
195	struct g_bde_softc *sc;
196	u_char *d;
197	off_t o;
198	u_char skey[G_BDE_SKEYLEN];
199	keyInstance ki;
200	cipherInstance ci;
201
202	sc = wp->softc;
203	d = wp->sp->data;
204	AES_init(&ci);
205	/*
206	 * Do not unroll this loop!
207	 * Our zone may be significantly wider than the amount of random
208	 * bytes arc4rand likes to give in one reseeding, whereas our
209	 * sectorsize is far more likely to be in the same range.
210	 */
211	for (o = 0; o < wp->length; o += sc->sectorsize) {
212		arc4rand(d, sc->sectorsize, 0);
213		arc4rand(skey, sizeof skey, 0);
214		AES_makekey(&ki, DIR_ENCRYPT, G_BDE_SKEYBITS, skey);
215		AES_encrypt(&ci, &ki, d, d, sc->sectorsize);
216		d += sc->sectorsize;
217	}
218	/*
219	 * Having written a long random sequence to disk here, we want to
220	 * force a reseed, to avoid weakening the next time we use random
221	 * data for something important.
222	 */
223	arc4rand(&o, sizeof o, 1);
224}
225
226/*
227 * Calculate the total payload size of the encrypted device.
228 *
229 * Security objectives: none.
230 *
231 * This function needs to agree with g_bde_map_sector() about things.
232 */
233
234uint64_t
235g_bde_max_sector(struct g_bde_key *kp)
236{
237	uint64_t maxsect;
238
239	maxsect = kp->media_width;
240	maxsect /= kp->zone_width;
241	maxsect *= kp->zone_cont;
242	return (maxsect);
243}
244
245/*
246 * Convert an unencrypted side offset to offsets on the encrypted side.
247 *
248 * Security objective:  Make it harder to identify what sectors contain what
249 * on a "cold" disk image.
250 *
251 * We do this by adding the "keyoffset" from the lock to the physical sector
252 * number modulus the available number of sectors.  Since all physical sectors
253 * presumably look the same cold, this will do.
254 *
255 * As part of the mapping we have to skip the lock sectors which we know
256 * the physical address off.  We also truncate the work packet, respecting
257 * zone boundaries and lock sectors, so that we end up with a sequence of
258 * sectors which are physically contiguous.
259 *
260 * Shuffling things further is an option, but the incremental frustration is
261 * not currently deemed worth the run-time performance hit resulting from the
262 * increased number of disk arm movements it would incur.
263 *
264 * This function offers nothing but a trivial diversion for an attacker able
265 * to do "the cleaning lady attack" in its current static mapping form.
266 */
267
268void
269g_bde_map_sector(struct g_bde_work *wp)
270{
271
272	u_int	zone, zoff, u, len;
273	uint64_t ko;
274	struct g_bde_softc *sc;
275	struct g_bde_key *kp;
276
277	sc = wp->softc;
278	kp = &sc->key;
279
280	/* find which zone and the offset in it */
281	zone = wp->offset / kp->zone_cont;
282	zoff = wp->offset % kp->zone_cont;
283
284	/* Calculate the offset of the key in the key sector */
285	wp->ko = (zoff / kp->sectorsize) * G_BDE_SKEYLEN;
286
287	/* restrict length to that zone */
288	len = kp->zone_cont - zoff;
289
290	/* ... and in general */
291	if (len > DFLTPHYS)
292		len = DFLTPHYS;
293
294	if (len < wp->length)
295		wp->length = len;
296
297	/* Find physical sector address */
298	wp->so = zone * kp->zone_width + zoff;
299	wp->so += kp->keyoffset;
300	wp->so %= kp->media_width;
301	if (wp->so + wp->length > kp->media_width)
302		wp->length = kp->media_width - wp->so;
303	wp->so += kp->sector0;
304
305	/* The key sector is the last in this zone. */
306	wp->kso = zone * kp->zone_width + kp->zone_cont;
307	wp->kso += kp->keyoffset;
308	wp->kso %= kp->media_width;
309	wp->kso += kp->sector0;
310
311	/* Compensate for lock sectors */
312	for (u = 0; u < G_BDE_MAXKEYS; u++) {
313		/* Find the start of this lock sector */
314		ko = kp->lsector[u] & ~((uint64_t)kp->sectorsize - 1);
315
316		if (wp->kso >= ko)
317			wp->kso += kp->sectorsize;
318
319		if (wp->so >= ko) {
320			/* lock sector before work packet */
321			wp->so += kp->sectorsize;
322		} else if ((wp->so + wp->length) > ko) {
323			/* lock sector in work packet, truncate */
324			wp->length = ko - wp->so;
325		}
326	}
327
328#if 0
329	printf("off %jd len %jd so %jd ko %jd kso %u\n",
330	    (intmax_t)wp->offset,
331	    (intmax_t)wp->length,
332	    (intmax_t)wp->so,
333	    (intmax_t)wp->kso,
334	    wp->ko);
335#endif
336	KASSERT(wp->so + wp->length <= kp->sectorN,
337	    ("wp->so (%jd) + wp->length (%jd) > EOM (%jd), offset = %jd",
338	    (intmax_t)wp->so,
339	    (intmax_t)wp->length,
340	    (intmax_t)kp->sectorN,
341	    (intmax_t)wp->offset));
342
343	KASSERT(wp->kso + kp->sectorsize <= kp->sectorN,
344	    ("wp->kso (%jd) + kp->sectorsize > EOM (%jd), offset = %jd",
345	    (intmax_t)wp->kso,
346	    (intmax_t)kp->sectorN,
347	    (intmax_t)wp->offset));
348
349	KASSERT(wp->so >= kp->sector0,
350	    ("wp->so (%jd) < BOM (%jd), offset = %jd",
351	    (intmax_t)wp->so,
352	    (intmax_t)kp->sector0,
353	    (intmax_t)wp->offset));
354
355	KASSERT(wp->kso >= kp->sector0,
356	    ("wp->kso (%jd) <BOM (%jd), offset = %jd",
357	    (intmax_t)wp->kso,
358	    (intmax_t)kp->sector0,
359	    (intmax_t)wp->offset));
360}
361